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Abstract

A popular heuristic method for improving clustering results is to apply dimension-
ality reduction before running clustering algorithms. It has been observed that
spectral-based dimensionality reduction tools, such as PCA or SVD, improve the
performance of clustering algorithms in many applications. This phenomenon
indicates that spectral method not only serves as a dimensionality reduction tool,
but also contributes to the clustering procedure in some sense. It is an interesting
question to understand the behavior of spectral steps in clustering problems.
As an initial step in this direction, this paper studies the power of vanilla-SVD
algorithm in the stochastic block model (SBM). We show that, in the symmetric
setting, vanilla-SVD algorithm recovers all clusters correctly. This result answers
an open question posed by Van Vu (Combinatorics Probability and Computing,
2018) in the symmetric setting.

1 Introduction

Clustering is a fundamental task in machine learning, with applications in many fields, such as
biology, data mining, and statistical physics. Given a set of objects, the goal is to partition them into
clusters according to their similarities. Objects and known relations can be represented in various
ways. In most cases, objects are represented as vectors in Rd, forming a data set D ⊂ Rd; each
coordinate is called a feature, whose value is directly derived from raw data.

In many applications, the number of features is very large. It has been observed that the performance
of classical clustering algorithms such as K-means may be worse on high-dimensional datasets.
Some people call this phenomenon curse of dimensionality in machine learning [SEK04]. A popular
heuristic method to address this issue is to apply dimensionality reduction before clustering. Among
tools for dimensionality reduction, it is noted in practice that spectral methods such as principal
component analysis (PCA) and singular value decomposition (SVD) significantly improve clustering
results, e.g., [SEK04, KAH19].

A natural question arises: why do spectral methods help to cluster high-dimensional datasets?
Some practitioners believe one reason is that the spectral method filters some noise from the high-
dimensional data [ARS+04, SEK04, ZLWZ09, KAH19]. Simultaneously, many theory works also
(partially) support this explanation [AFWZ20, EBW18, LZK22, MZ22a]. With this explanation in
mind, people analyzed the behavior of spectral-based algorithms with noise perturbation. Based on
these analyses, many algorithms were proposed to recover clusters in probabilistic generative models.
Among them, a well-studied model is the signal-plus-noise model.

Signal-Plus-Noise model In this model, we assume that each observed sample v̂i has the form
v̂i = vi + ei, where vi is a ground-truth vector and ei is a random noise vector. For any two sample
vectors v̂i, v̂j , if they are from the same cluster, their corresponding ground-truth vectors are identical,
i.e., vi = vj . Signal-plus-noise model is very general; it has plentiful variants with different types of
ground-truth vectors and noise distribution. In this paper, we focus on an important instance known as
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the stochastic block model (SBM). Though SBM is not as broad as general signal-plus-noise model, it
usually serves as a benchmark for clustering and provides preliminary intuition about random graphs.

Stochastic block model The SBM is first introduced by [HLL83] and is widely used as a theoretical
benchmark for graph clustering algorithms. In the paper, we focus on the symmetric version of
stochastic block model (SSBM), described as follows. Given a set of n vertices V , we uniformly
partition them into k disjoint sets (clusters), denoted by V1, . . . , Vk. Based on this partition, a random
(undirected) graph Ĝ = (V,E) is sampled in the following way: for all pairs of vertices u, v ∈ V , an
edge {u, v} is added independently with probability p, if u, v ∈ Vℓ for some ℓ; otherwise, an edge
{u, v} is added independently with probability q.

We usually assume that p > q. The task is to recover the hidden partition V1, . . . , Vk from the random
graph Ĝ. We denote this model as SSBM(V, n, k, p, q).

SBM as a signal-plus-noise model Though SBM was originally designed for graph clustering,
we view it as a special form of vector clustering. Namely, given the adjacency matrix of a graph
Ĝ ∈ {0, 1}V×V , the columns of Ĝ form a set of n = |V | vectors. To see that SBM fits into the
signal-plus-noise model, note that in the SBM, the adjacency matrix Ĝ ∈ {0, 1}V×V can be viewed
as a fixed matrix G plus a random noise, i.e., Ĝ = G+E, where G def

= E
[
Ĝ
]

is the mean and E is a
zero-mean random matrix. More precisely, in the case of SSBM,

Guv =

{
p if u, v ∈ Vℓ for some ℓ,
q otherwise,

and Euv =

{
1−Guv with probability Guv,

−Guv with probability 1−Guv,

where the random variables {Euv : u ≤ v} are independent and Evu = Euv for all u, v ∈ V . 1

1.1 Motivations: Analyzing Vanilla Spectral Algorithms

Since the seminal work by McSherry [McS01], many spectral-based algorithms have been proposed
and studied in the SBM [GM05, Vu18, LR15, EBW18, Col19, AFWZ20, MZ22b] and even more
general signal-plus-noise models [AFWZ20, EBW18, CTP19, LZK22, MZ22a]. These algorithms
are largely based on the spectral analysis of random matrices. The purpose of designing and analyzing
such algorithms is twofold.

Understanding the limitation of spectral-based algorithms SBM is specified by parameters,
such as n, k, p, q in the symmetric case. Clustering is usually getting harder for larger k and smaller
gap (p − q). Many existing works aim to understand in which regimes of these parameters it is
possible to recover the hidden partition. In this regard, the state-of-the-art bound is given by Vu
[Vu18]. Concretely, [Vu18] proved that, in the symmetric setting, there is an algorithm that recovers

all clusters if n ≥ C · k
(

σ
√
k+

√
logn

p−q

)2

, where σ2 def
= max {p(1− p), q(1− q)} and C is a constant.

Understanding spectral-based algorithms in practice Besides analyzing spectral algorithms in
theory, the other purpose, which is the primary purpose of this paper, is to explain the usefulness
of such algorithms in practice. Indeed, as we mentioned before, many spectral-based algorithms, as
observed in practice, can filter the noise and address the curse of dimensionality [ARS+04, SEK04,
ZLWZ09, KAH19]. Some representative algorithms are PCA and SVD. Furthermore, it has been
observed that spectral algorithms used in practice, such as PCA or SVD, are usually very simple: they
just project data points into some lower-dimension subspace, and no extra steps are conducted.

In stark contrast, most of the aforementioned theoretical algorithms have pre-processing or post-
processing steps. For example, the idea in [LR15] is that one first applies SVD, and then runs a
variant of K-means to clean up the clustering; the main algorithm in [Vu18] partitions the graph into
several parts and uses these parts in different ways. As noted in [Vu18], these extra steps are only
for the purpose of theoretical analysis: From the perspective of algorithm design, these extra steps
appear redundant. Later on, [AFWZ20] coined the phrase vanilla spectral algorithms to describe
spectral algorithms that do not include any additional steps. Both [Vu18] and [AFWZ20] conjectured

1Assume we fix an order of the vertices in V .
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that vanilla spectral algorithms are themselves good clustering algorithms. In practice, this is a
widely-used heuristic; however, in theory, the analysis of vanilla spectral algorithms is not satisfactory
due to the lack of techniques for analysis. We refer to [MZ22b] for a detailed discussion on barriers
of the current analysis.

Why do we study vanilla algorithms? Our main focus is particularly on vanilla spectral algorithms
for two reasons:

1. Vanilla spectral algorithms are the most popular in practice—no extra steps are widely used.
Plus, their performance seems good enough. The lack of theoretical analysis is mostly due
to technical obstacles.

2. A vanilla spectral algorithm is often simple and is not specifically designed for theoretical
models such as SBM. In contrast, some complicated algorithms use extra steps which are
designed for SBM. These steps made the analysis of SBM go through (as commented by
[Vu18]). Meanwhile, these extra steps exploit specific structures and may cause ‘overfittings’
on SBM, which makes these algorithms less powerful in practice.

The main purpose of this paper is to theoretically understand the power of practically successful
vanilla spectral algorithms. To this end, we study SBM as a preliminary demonstration. We do not
aim to design algorithms for SBM that outperforms existing algorithms.

1.2 Our Results

The contribution of this paper is twofold. On the one hand, we show that vanilla algorithms (alg. 1) is
indeed a clustering algorithm in the SSBM for a wide range of parameters, breaking previous barrier
on analyzing on only constant number of clusters. On the other hand, we provide a novel analysis on
matrix perturbation with random noise. We discuss more details on this part in Section 1.4.

Recall that parameters of SBM is specified by SSBM(V, n, k, p, q), where n = |V |. Let σ2 =
max {p(1− p), q(1− q)}. Our main result is stated below.

Theorem 1.1. There exists a constant C > 0 with the following property. In the model

SSBM(V, n, k, p, q), if σ2 ≥ C log n/n and n ≥ C · k
(√

kp·log6 n+
√
logn

p−q

)2

, then alg. 1 recov-

ers all clusters with probability 1−O(n−1).

Here we describe the vanilla-SVD algorithm in more detail. Algorithms in [McS01, Vu18, Col19]
share a common idea: they both use SVD-based methods to find a clear-cut vector representation
of vertices. That is, every node v ∈ V is associated with a vector ρ(v), and we say a vector
representation ρ is clear-cut if the following holds for some threshold ∆: if u, v ∈ Vℓ for some ℓ,
then ∥ρ(u)− ρ(v)∥ ≤ ∆/4; otherwise, ∥ρ(u)− ρ(v)∥ ≥ ∆.

Once a clear-cut representation is found, the clustering task is easy: If the parameters n, k, p, q
are all known, we can calculate ∆ and simply decide whether two vertices are in the same cluster
based on their distance; in the case where ∆ is unknown, we need one more step. 2 Following
[Vu18], we denote by ClusterByDistance an algorithm that recovers the partition from a clear-cut
representation. One natural representation is obtained by SVD as follows. Let Ĝ ∈ {0, 1}V×V be the
adjacent matrix of the input graph, and let PĜk

be the orthogonal projection matrix onto the space

spanned by the first k eigenvectors of Ĝ. Then set ρ(u) def
= PĜk

Ĝu, where Ĝu is the column index
by u ∈ V . This yields alg. 1, the vanilla-SVD algorithm.

1.3 Comparison with Existing Analysis for Vanilla Spectral Algorithms in the SBM

To the best of our knowledge, there are very few works on the analysis of vanilla spectral algorithms
[AFWZ20, EBW18, PPV+19]. All of them only apply to the case of k = O(1). In this work, we
obtain the first analysis for general parameters n, k, p, q, in the symmetric SBM setting.

2For example, one possible implementation is as follows: create a minimal spanning tree according to the
distances under ρ, then remove the heaviest (k − 1) edges, resulting in k connected components, and output
these components as clusters.
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Algorithm 1: Vanilla-SVD algorithm for graph clustering

1 Input: adjacent matrix Ĝ ∈ {0, 1}V×V

2 Output: a partition of V

1. Compute ρ(u) def
= PĜk

Ĝu for each u ∈ V .

2. Run ClusterByDistance with representation ρ.

Davis-Kahan approaches To study spectral algorithms in signal-plus-noise models, a key step is
to understand how random noise perturbs the eigenvectors of a matrix. A commonly-used technical
ingredient is the Davis-Kahan sinΘ theorem (or its variant). However, this type of approach faces
two challenges in the SBM.

• Davis-Kahan leads to worst-case perturbation bounds. For perturbations caused by ran-
dom noises, such as signal-plus-noise models, Davis-Kahan sinΘ theorem is sometimes
suboptimal.

• These sinΘ theorems only lead to bound on 2-norm. However, in the SBM analysis, we
may need (2 → ∞)-norm bounds. See [CTP19] for more discussions.

Previous works such as [AFWZ20, EBW18, PPV+19] mainly followed this approach. They proposed
some novel ideas to (partially) address these two challenges, but only apply to the case of k =
O(1). In contrast, our approach, following the power-iteration-based analysis proposed by [MZ22b],
completely avoids Davis-Kahan sinΘ theorem and can handle the case of k = ω(1).

Comparison with [MZ22b] Inspired by power iteration methods, Mukherjee and Zhang [MZ22b]
proposed a new approach to analyze the perturbation of random matrices. The idea is to approximate
the eigenvectors of a matrix by its power. In fact, this method has been widely used in practice as a
fast algorithm to approximate eigenvectors. However, there are two limitations of [MZ22b].

• Their analysis requires a nice structure of the mean matrix, i.e., all large eigenvalues are
more or less the same.

• Their algorithm is not vanilla as it has a ‘centering step’. Moreover, their algorithm requires
the knowledge of parameters p, q, k, and particularly, the centering step alone requires the
knowledge of q. In comparison, we only need to know k; further, we can also guess k (by
checking the number of large eigenvalues) and then make alg. 1 fully parameter-free.

To overcome these limitations, we introduce a novel ‘polynomial approximation + entrywise analysis’
method, which makes this analysis more robust and requires less structure. More details will be
discussed in Section 1.4.

Regarding parameters in Theorem 1.1 The difference between the parameters in our results
and those in Vu’s paper is that we replaced σ by

√
p log6 n. If p < 0.9, σ and

√
p are equal up to

constant, so our bound is essentially the same as [Vu18] except for the log6 n factor. We believe the
extra log6 n factor can be improved by future works. This term stems from the new concentration
inequality we used as a black box. A refined analysis of this concentration inequality may remove
this factor. Here are two example settings of parameters that satisfy the conditions in Theorem 1.1:

• q = Θ( logn
n ), p = Ω(k log6 n√

n
);

• p− q = Θ(1) and k = O(
√
n

log6 n
).

1.4 Proof Outline and Technical Contributions

Let su denote the size of the cluster to which u belongs. Assume for now that all Vi’s are of size
roughly n/k. Indeed, this happens with high probability inasmuch as the partition is uniformly
sampled.
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Our goal is to show that there exists some threshold ∆ > 0 such that for every u, v ∈ V : if
u, v ∈ Vℓ for some ℓ, then

∥∥∥PĜk
Ĝu − PĜk

Ĝv

∥∥∥ ≤ ∆/4; otherwise,
∥∥∥PĜk

Ĝu − PĜk
Ĝv

∥∥∥ ≥ ∆.

Write ε(u) def
=

∥∥∥PĜk
Ĝu −Gu

∥∥∥. Then
∣∣∣∥∥∥PĜk

Ĝu − PĜk
Ĝv

∥∥∥− ∥Gv −Gu∥
∣∣∣ ≤ ε(u) + ε(v). Note

that ∥Gv −Gu∥ = 0 if u, v ∈ Vℓ for some ℓ, otherwise, ∥Gv −Gu∥ = (p− q) ·
√
su + sv > (p−

q)
√
n/k. Therefore, setting ∆ = 0.8(p− q)

√
n/k, it suffices to show that ε(u) ≤ 0.1(p− q)

√
n/k

for every u ∈ V .

We decompose ε(u) into two terms:

ε(u) ≤
∥∥∥PĜk

(Ĝu −Gu)
∥∥∥+

∥∥∥(PĜk
− I)Gu

∥∥∥ =
∥∥∥PĜk

Eu

∥∥∥︸ ︷︷ ︸
"noise term"

+
∥∥∥(PĜk

− I)Gu

∥∥∥︸ ︷︷ ︸
“deviation term”

. (1)

We shall bound the two terms from above separately. Intuitively, the noise term is small means PĜk

reduces the noise, while the deviation term is small means PĜk
preserves the data.

Upper bound of the noise term It is known that PĜk
(resp., PGk

) can be write as a polynomial of

Ĝ (resp.,G). By Weyl’s inequality, the eigenvalues of Ĝ are not too far from those ofG. Therefore, in
our case, one can find a simple polynomial φ which only depends on G, such that φ(Ĝ) (resp., φ(G))
is a good approximation of PĜk

(resp., PGk
); this is formalized in Lemma 3.2. Then we have the

following decomposition:
∥∥∥PĜk

Eu

∥∥∥ ≤ 2
∥∥∥φ(Ĝ)Eu

∥∥∥ ≤ 2 ∥φ(G)Eu∥+ 2
∥∥∥(φ(Ĝ)− φ(G)

)
Eu

∥∥∥ ,
where the first inequality follows from Lemma 3.2, which roughly says φ(Ĝ) is a good approximation
of PĜk

.

1. The first term, ∥φ(G)Eu∥, is small with high probability. To see this, we use Lemma 3.2
again: ∥φ(G)Eu∥ ≤ 3

2 ∥PGk
Eu∥. According to a known result (c.f. Proposition 2.4),

∥PGk
Eu∥ is small with high probability, largely because the projection PGk

and the vector
Eu are independent.

2. The second term is the tricky part, and we draw on an entrywise analysis. Namely, we study
every entry of (φ(Ĝ)− φ(G))Eu, using the new inequality from [MZ22b]. See Lemma 3.3
for more details.

The upper bound for the noise term is encapsulated in Lemma 3.4.

Upper bound of the deviation term The following argument is reminiscent of [Vu18]. Say u ∈ Vℓ.
Note that Gχℓ =

√
su ·Gu where χℓ =

1√
su

· 1Vℓ
is the normalized characteristic vector of Vℓ (i.e.,

1Vℓ
(v) = 1 ⇐⇒ v ∈ Vℓ). It follows that∥∥∥(PĜk

− I)G
∥∥∥
2
≤

∥∥∥(PĜk
− I)Ĝ

∥∥∥
2
+
∥∥∥(PĜk

− I)E
∥∥∥
2
≤

∥∥∥G− Ĝ
∥∥∥
2
+
∥∥∥(PĜk

− I)E
∥∥∥
2
≤ 2 ∥E∥2 ,

where the second inequality holds because PĜk
Ĝ is the best k-rank approximation of Ĝ and

rank(G) = k, and in the third inequality, we use
∥∥∥(PĜk

− I)
∥∥∥
2
≤ 1, as PĜk

is a projection
matrix. Therefore,∥∥∥(PĜk

− I)Gu

∥∥∥ =
1

√
su

∥∥∥(PĜk
− I)Gχu

∥∥∥ ≤ 1
√
su

∥∥∥(PĜk
− I)G

∥∥∥
2
≤

2 ∥E∥2√
su

. (2)

A typical result in random matrix theory (c.f. Proposition 2.3) states that with high probability,
∥E∥2 = O(

√
n). Combining Equation (2) and su ≈ n/k, we get

∥∥∥(PĜk
− I)Gu

∥∥∥ = O(
√
k). And

by our assumption on n, we have
√
k = o((p− q)n/k) = o(∆).

Technical contribution The major novelty of our analysis is using the polynomial φ. [MZ22b]
used a centering step to make the mean matrix nicely structured, while in our analysis, we used
polynomial approximation to address this issue. Another difference is that in [MZ22b], the centering
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step appears explicitly in the algorithm. By contrast, our polynomial approximation only appears in
the analysis — the algorithm is vanilla.

As a byproduct, we developed new techniques for studying eigenspace perturbation, a typical topic
in random matrix theory. Our high-level idea is “polynomial approximation + entrywise analysis”.
That is, we reduce the analysis of eigenspace perturbation to the analysis of a simple polynomial (of
matrix) under perturbation. We have more tools to deal with the latter.

1.5 Discussion and Future Directions

In this paper, we studied the behavior of vanilla-SVD in the SSBM, a benchmark signal-plus-noise
model widely studied in random matrix theory. We showed that vanilla-SVD indeed filters noise in
the SSBM. In fact, our analysis technique, ‘polynomial approximation + entrywise analysis’, is not
very limited to SSBM. A direct and interesting question yet to be answered is: Can our method be
extended to prove that vanilla-SVD works in the general SBM where partitions are not uniformly
sampled and edges appear with different probabilities? Moreover, our method may be useful for
analyzing some other realistic, probabilistic models such as the factor model — a model which has
been widely used in economics and model portfolio theory.

In the long term, it would be very interesting to understand the behavior of vanilla spectral algorithms
on real data: 1) Why does it succeed in some applications? 2) How could we fix it if it has failed in
other cases? A deeper understanding of vanilla spectral algorithms will provide guidelines for using
them in many machine learning tasks.

2 Preliminaries

Notations Let 1n denote the n-dimensional vector whose entries are all 1’s, and let Jn be the n×n
matrix whose entries are all 1’s. Let su denote the size of the cluster to which u belongs. For a matrix
A, A[i] denotes the row of A indexed by i, and Ai denotes the column indexed by i; λi(A) is the i-th
largest eigenvalue of A; let PAk

denote the orthogonal projection matrix onto the space spanned by

the first k eigenvectors of A. For a vector x ∈ Rn, ∥x∥ def
=

√
x21 + · · ·+ x2n denotes the Euclidean

norm.

Definition 2.1 (Matrix operator norms). Let A ∈ Rn×n. Define ∥A∥2
def
= max∥x∥=1 ∥Ax∥ and

∥A∥2→∞
def
= maxx:∥x∥=1 ∥Ax∥∞.

Proposition 2.1 (e.g., [CTP19]). For all matrices A,B ∈ Rn×n, it holds that (1) ∥A∥2→∞ =
maxi∈[n] ∥A[i]∥; (2) ∥AB∥2→∞ ≤ ∥A∥2→∞ ∥B∥2.

Proposition 2.2 (Weyl’s inequality). For all A,E ∈ Rn×n, we have |λi(A)− λi(A+ E)| ≤ ∥E∥2.
Proposition 2.3 (Norm of a random matrix [Vu18]). There is a constant C0 > 0. Let E be
a symmetric matrix whose upper diagonal entries eij are independent random variables where
eij = 1 − pij or −pij with probabilities pij and 1 − pij respectively, where pij ∈ [0, 1]. Let
σ2 := maxij{pij(1− pij)}. If σ2 ≥ C0 log n/n, then Pr[∥E∥2 ≥ C0σn

1/2] ≤ n−3.

Proposition 2.4 (Projection of a random vector, lemma 2.1 in [Vu18]). There exists a constant C1

such that the following holds. Let X = (ξ1, . . . , ξn) be a random vector in Rn whose coordinates ξi
are independent random variables with mean 0 and variance at most σ2 ⩽ 1. Assume furthermore
that the ξi are bounded by 1 in absolute value. Let H be a subspace of dimension d and let ΠHξ be
the length of the orthogonal projection of ξ onto H . Then Pr

[
ΠHX ≥ σ

√
d+ C1

√
log n

]
≤ n−3.

Proposition 2.5. For a ∈ [0, 2] and r ∈ N, if |a− 1| ≤ δ < 1
2r , then |ar − 1| ≤ 2rδ.

3 Analysis of Vanilla SVD Algorithm

Write si
def
= |Vi|. We say the partition V1, . . . , Vk is balanced if

(
1− 1

16 logn

)
n
k ≤ si ≤(

1 + 1
16 logn

)
n
k ,∀i ∈ [k]. By Chernoff bound, the partition V1, . . . , Vk is balanced with proba-

bility at least 1 − n−1; hence, we assume that the partition is balanced in the following argument.
Since σ2 ≥ C log n/n, the event ∥E∥ = O(

√
n) holds with high probability (see Proposition 2.3).
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Recall the decomposition into deviation term and noise term in Equation (1). We first state our
upper bound of the deviation term, which readily follows from the argument in Section 1.4, and the
complete proof is in Appendix B.

Lemma 3.1 (Upper bound of deviation term). Let C0 be the constant in Proposition 2.3. If the
partition is balanced and n ≥ 104 · C2

0
k2σ2

(p−q)2 , then with probability at least 1 − n−3 we have∥∥∥(PĜk
− I)Gu

∥∥∥ ≤ 0.04(p− q)
√
n/k,∀u ∈ V.

Section 3.1 and Section 3.2 lead to an upper bound of the noise term, and Section 3.3 is the proof of
main theorem.

3.1 An Approximation of PGk
and PĜk

In order to give some intuition on the choice of φ, we first analyze the spectrum of G, and the result
is summed up in Theorem 3.1.

The eigenvalues ofG Note thatG = H+q1n1
⊤
n , whereH =


(p−q)Js1

0 0 0

0 (p−q)Js2 0 0

0 0
. . . 0

0 0 0 (p−q)Jsk

.
Without loss of generality, assume that s1 ≥ s2 ≥ · · · ≥ sk. It is easy to see that the eigenvalues of
H are (p− q)s1, . . . , (p− q)sk, 0. Viewing G as a rank-one perturbation of H , we have the following
theorem that characterizes eigenvalues of G. Its proof, in Appendix C, readily follows from a theorem
in [BNS79], which studies eigenvalues under rank-one perturbation.

Theorem 3.1. Write si
def
= |Vi| and assume that s1 ≥ s2 ≥ · · · ≥ sk. Define δi

def
= λi(G)− (p−q)si,

then (1) δi ≥ 0 and
∑k

i=1 δi = nq; (2) λ1(G) ≥ nq+(p−q)nk , and hence
∑k

i=2 δi ≤ (p−q)(s1−n
k ).

The choice of the polynomial φ Let µ def
= (p− q)nk , and let ψ(t) be the quadratic polynomial such

that ψ(λ1(G)) = ψ(µ) = 1, ψ(0) = 0, i.e., ψ(t) def
= − 1

λ1(G)µ (t− λ1(G))(t− µ) + 1
def
= At2 +Bt,

where A = − 1
λ1(G)µ , B = 1

λ1(G) +
1
µ . Finally, let φ(t) def

= (ψ(t))r where r def
= log n.

Here we give some intuition for the choice of φ. Let Ĝ =
∑n

i=1 λ̂iviv
⊤
i be the spectral decomposition

of Ĝ. Then φ(Ĝ) =
∑n

i=1 φ(λ̂i)viv
⊤
i , PĜk

=
∑k

i=1 viv
⊤. The spectral decomposition of φ(Ĝ)−

PĜk
is φ(Ĝ)− PĜk

=
∑k

i=1(φ(λ̂i)− 1)viv
⊤ +

∑n
i=k+1 φ(λi)viv

⊤. Hence,∥∥∥φ(Ĝ)− PĜk

∥∥∥
2
= max{|φ(λ̂1)− 1|, . . . , |φ(λ̂k)− 1|, |φ(λ̂k+1)|, . . . , |φ(λ̂n)|}. (3)

Recall that λ̂i − λi(G) is bounded by Weyl’s inequality. Plus, when the partition is balanced,
Theorem 3.1 shows that the eigenvalues ofG is nicely distributed: Except for λ1(G), other eigenvalues
are all close to µ. Hence, our choice of φ makes

∥∥∥φ(Ĝ)− PĜk

∥∥∥
2

small, and thus φ(Ĝ) is a good
approximation of PĜk

. Formally, we have the following lemma.

Lemma 3.2 (Polynomial approximation). Assume that the partition is balanced and n ≥ 104 · C2
0 ·

k2·p·logn
(p−q)2 , where C0 is the constant in Proposition 2.3. Then with probability at least 1 − n−3, it

holds that for all x ∈ Rn, 1
2

∥∥∥PĜk
x
∥∥∥ ≤

∥∥∥φ(Ĝ)x∥∥∥ ≤ 3
2

∥∥∥PĜk
x
∥∥∥+ ∥x∥ /nlog logn, and 1

2 ∥PGk
x∥ ≤

∥φ(G)x∥ ≤ 3
2 ∥PGk

x∥ .

Proof. Let G =
∑k

i=1 λiuiu
⊤
i (resp., Ĝ =

∑n
i=1 λ̂iviv

⊤
i ) be the spectral decomposition of G (resp.,

Ĝ). We shall use the following claim.

Claim 3.1. The following holds with probability 1− n−3 (over the choice of E): for every i ∈ [k],∣∣∣φ(λ̂i)− 1
∣∣∣ < 1

2 , |φ(λi)− 1| < 1
2 ; and for every i = k + 1, . . . , n,

∣∣∣φ(λ̂i)∣∣∣ < n− log logn.
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Fix x ∈ Rn. On the one hand, 1
2 ≤ φ(λ̂i) ≤ 3

2 ,∀i ∈ [k], and hence

∥∥∥φ(Ĝ)x∥∥∥2 =

n∑
i=1

φ(λ̂i)
2⟨x, vi⟩2 ≥

k∑
i=1

φ(λ̂i)
2⟨x, vi⟩2 ≥

k∑
i=1

1

4
⟨x, vi⟩2 =

1

4

∥∥∥PĜk
x
∥∥∥2 ,

which means
∥∥∥φ(Ĝ)x∥∥∥ ≥ 1

2

∥∥∥PĜk
x
∥∥∥. On the other hand,

∥∥∥φ(Ĝ)x∥∥∥2 =

n∑
i=1

φ(λ̂i)
2⟨x, vi⟩2 ≤

k∑
i=1

(
3

2

)2

⟨x, vi⟩2+
n∑

i=k+1

⟨x, vi⟩2

n2 log logn
≤ 9

4

∥∥∥PĜk
x
∥∥∥2+ ∥x∥2

n2 log logn
.

Since
√
a+ b ≤

√
a +

√
b, we have

∥∥∥φ(Ĝ)x∥∥∥ ≤ 3
2

∥∥∥PĜk
x
∥∥∥ + ∥x∥

nlog log n . This establishes the first
part.

Note that ∥φ(G)x∥ =
√∑k

i=1 φ(λi)
2⟨x, ui⟩2 and we also have 1

2 ≤ φ(λi) ≤ 3
2 ,∀i ∈ [k], and thus

similar argument goes for G. This finishes the proof of Lemma 3.2.

It remains to prove Claim 3.1. The claim readily follows from the choice of φ and the fact that λi, λ̂i
are close. A complete proof can be found in Appendix C.

3.2 The Upper Bound of the Noise Term

According to Equation (1), in order to derive an upper bound of ∥PGk
Eu∥, it remains to bound∥∥∥(φ(Ĝ)− φ(G)

)
Eu

∥∥∥ from above. This is done by the following lemma.

Lemma 3.3. Let C0 be the constant in Proposition 2.3. Assume that the partition is balanced and
n ≥ (100 + C0)

2 · k2·p·log12 n
(p−q)2 . For every u ∈ V , it holds that

Pr
E

[∥∥∥(φ(Ĝ)− φ(G)
)
Eu

∥∥∥ ≤ C2(
√
kp log2 n) +

1

log n
)

]
≥ 1−O(n−2),

where C2
def
= 7 · 106 is a constant.

Combining Lemma 3.2 and Proposition 2.4, we get an upper bound of the noise term:

Lemma 3.4 (Upper bound of noise term). Let C0 be the constant in Proposition 2.3. Assume that
n ≥ (100 + C0)

2 · k2·p·log12 n
(p−q)2 . Then with probability at least 1 − O(n−1), we have

∥∥∥PĜk
Eu

∥∥∥ ≤
C3(

√
kp log2 n+

√
log n) for all u ∈ V , where C3 is a constant.

The proof of Lemma 3.3 is deferred to Section 4. We use it to prove Lemma 3.4 here.

Proof of Lemma 3.4. It follows from Lemma 3.2 that∥∥∥PĜk
Eu

∥∥∥ ≤ 2
∥∥∥φ(Ĝ)Eu

∥∥∥ ≤ 2
∥∥∥(φ(Ĝ)− φ(G)

)
Eu

∥∥∥+ 2 ∥φ(G)Eu∥

≤ 2
∥∥∥(φ(Ĝ)− φ(G)

)
Eu

∥∥∥+ 3 ∥PGk
Eu∥ .

By Proposition 2.4, with high probability at least 1−n−1, ∥PGk
Eu∥ is bounded by σ

√
k+C1

√
log n,

where C1 is a universal constant. Meanwhile, by Lemma 3.3 and union bound over all u, with
probability at least 1−O(n−1),

∥∥∥(φ(Ĝ)− φ(G)
)
Eu

∥∥∥ ≤ 7 · 106(
√
kp log2 n+ 1/ log n) for every

u ∈ V . Therefore, with probability 1−O(n−1), it holds that
∥∥∥PĜk

Eu

∥∥∥ ≤ 1.4× 107
√
kp log2 n+

3σ
√
k + 3C1

√
log n for all u ∈ V . Setting C3

def
= (1.4 × 107 + 3 + 3C1), we have the desired

result.
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3.3 Putting It Together

Now we are well-equipped to prove Theorem 1.1.

Proof of Theorem 1.1. Let C def
= (100+100C0+100C3)

2, where C0, C3 are the constants in Propo-
sition 2.3 and Lemma 3.4. By our assumption on n, we have (p− q)

√
n/k > 100C3(

√
kp log6 n+√

log n). It is easy to verify n satisfies the conditions in Lemma 3.4 and Lemma 3.1.

Write ∆
def
= 0.8(p − q)

√
n/k. We aim to show that for every u, v ∈ V : if u, v ∈ Vℓ for some

ℓ, then
∥∥∥PĜk

Ĝu − PĜk
Ĝv

∥∥∥ ≤ ∆/4; otherwise,
∥∥∥PĜk

Ĝu − PĜk
Ĝv

∥∥∥ ≥ ∆. Then by calling
ClusterByDistance, alg. 1 recovers all large clusters correctly.

Let ε(u) def
=

∥∥∥PĜk
Ĝu −Gu

∥∥∥. According to the argument in Section 1.4, it suffices to show that

ε(u) ≤ 0.1(p− q)
√
n/k for all u ∈ V . We further decompose ε(u) into noise term and deviation

term, i.e., ε(u) ≤ noise(u) + dev(u), where noise(u)
def
=

∥∥PĜEu

∥∥ and dev(u)
def
=

∥∥(PĜ − I)Gu

∥∥.
By Lemma 3.4 and Lemma 3.1, with probability at least 1−O(n−1), the following hold for all u ∈ V :
(1) noise(u) ≤ C3(

√
kp log2 n +

√
log n) ≤ 0.01(p − q)

√
n/k; (2) dev(u) ≤ 0.04(p − q)

√
n/k.

Therefore, with probability at least 1−O(n−1), we indeed have ε(u) ≤ 0.1(p− q)
√
n/k,∀u ∈ V .

This completes the proof.

4 Proof of Lemma 3.3: Entrywise Analysis

This section is dedicated to proving Lemma 3.3.

Since both (φ(Ĝ) − φ(G)) and E are symmetric, we have
∥∥∥(φ(Ĝ)− φ(G))Eu

∥∥∥ ≤∥∥∥E(φ(Ĝ)− φ(G))
∥∥∥
2→∞

. The high-level idea is to write E(φ(Ĝ) − φ(G)) as a sum of ma-

trices, where each matrix is of the form EtSQ such that ∥Q∥2 = O(1). This way, we have
∥EtSQ∥2→∞ ≤ ∥EtS∥2→∞ ·O(1), and ∥EtS∥2→∞ is bounded by a lemma from [MZ22b].

Let D def
= ψ(Ĝ)− ψ(G) = A(EG+GE + E2) +BE and write F def

= ψ(G), F̂
def
= ψ(Ĝ). Then

φ(Ĝ)− φ(G) = ψ(Ĝ)r − ψ(G)r = (F +D)r − F r

= F r−1D + F r−2DF̂ + · · ·+ FDF̂ r−2︸ ︷︷ ︸
def
=M

+DF̂ r−1,

where the last step is a decomposition based on the first location of D in the product terms. And

DF̂ r−1 = D(D + F )r−1 = Dr +DFF̂ r−2 +D2FF̂ r−3 + · · ·+Dr−1F︸ ︷︷ ︸
def
=M ′

.

That is, E(φ(Ĝ)− φ(G)) = EM + EDr + EM ′. We bound the three terms respectively.

Here we first list some definitions and estimations of the quantities involved.

• According to Proposition 2.3, with probability at least 1− n−3, we have ∥E∥2 ≤ C0σ
√
n,

where C0 is a constant. In the following argument, we always assume this holds.

• µ def
= (p− q)n/k. By our assumption on n, we have µ ≥ (100 + C0)

√
np log6 n.

• A = − 1
λ1(G)µ , B = ( 1

λ1(G) +
1
µ ), r = log n; λ1(G) > µ, and thus B ≤ 2

µ , |A| ≤
1
µ2 .

• By Claim 3.1, ∥F∥2 ≤ 1+ 1
4 logn ,

∥∥∥F̂∥∥∥
2
≤ 1+ 1

4 logn . By Proposition 2.5, ∥F∥t2 ,
∥∥∥F̂∥∥∥t

2
≤

2,∀t ≤ log n.
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Upper bound of ∥EM∥2→∞ Note that ∥EF tD∥2→∞ ≤ ∥EF∥2→∞ ∥F∥t−1
2 ∥D∥2, and

∥F∥t−1
2 ≤ 2 for all t ≤ r. Moreover, ∥D∥2 ≤ |A|(2 ∥E∥2 ∥G∥2 + ∥E∥22) + B ∥E∥2 ≤

3
∥E∥2

µ +
∥E∥2

2

µ2 + ≤ 4
∥E∥2

µ ≤ 4(log6 n)−1 < 1
log3 n

. And the following lemma gives an upper
bound of ∥EF∥2→∞.

Lemma 4.1. PrE
[
∥EF∥2→∞ ≤ 10(

√
kp log n+

√
log n)

]
≥ 1− 2n−2.

Therefore, by union bound, we have the following holds with probability at least 1− n−1:

∥EM∥2→∞ ≤ r · 10(
√
kp log n+

√
log n) · 2 · 1

log3 n
≤ 40(

√
kp+ 1)

log n
. (4)

Upper bound of ∥EDr∥2→∞ Since ∥D∥2 <
1

log3 n
, we have

∥EDr∥2→∞ ≤ ∥E∥2→∞ ∥D∥r2 ≤
√
n · (log3 n)− logn <

1

n
. (5)

Lemma 4.2 (Upper bound of ∥EM ′∥2→∞). With probability 1− O(n−2) (over the choice of E),
we have ∥EM ′∥2→∞ ≤ 6C2

√
kp log2 n, where C2 = 106 is a constant.

Finally, combining Equation (4), Equation (5), and the above lemma, we conclude that with probability
at least 1−O(n−2),∥∥∥E(φ(Ĝ)− φ(G))

∥∥∥
2→∞

≤ 40(
√
kp+ 1)

log n
+

1

n
+ 6C2

√
kp log2 n ≤ 7C2(

√
kp log2 n+

1

log n
).

This establishes Lemma 3.3.

Proofs of Lemma 4.1 and Lemma 4.2 are deferred to Appendix D.
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A Useful inequalities

Proposition A.1 (Chernoff bound). Let X1, . . . , Xm be i.i.d random variables that can take values
in {0, 1}, with E[Xi] ≤ p for 1 ≤ i ≤ m. Then it holds that

Pr

[∣∣∣∣∣
n∑

i=1

Xi −mp

∣∣∣∣∣ ≥ t

]
≤ exp

(
− 3t2

mp

)
.

Proposition A.2 (Hoeffding bound). Let X1, . . . , Xm be independent random variables such that
ai ≤ X1 ≤ bi, and write S def

=
∑m

i=1Xi. Then it holds that

Pr [|S −E [S]| > t] ≤ 2 exp

(
− 2t2∑m

i=1(bi − ai)2

)
.

Definition A.1. Let X be a Bernoulli random variable with parameter p, i.e., Pr [X = 1] =

p,Pr [X = 0] = 1 − p. The random variable Y def
= X − p = X − E [X] is called centered

Bernoulli random variable with parameter p.

Proposition A.3 (Adapted from [MZ22b]). Let S ∈ Rn×n, and let E = (ξij) be an n×n symmetric
random matrix, where

{ξij : 1 ≤ i ≤ j ≤ n}
are independent, centered Bernoulli random variables with parameter at most α for all i, j. Suppose
that every entry of S takes value in [−β, β], and each column of S has at most γ non-zero entries.
Then for every t ∈ [log n], it holds that

Pr
[∣∣(EtS)ij

∣∣ > (log n)5tCt

]
= O(n−4),∀i, j ∈ [n],

where
Ct

def
= 500β

√
α
√
γ ·

(
100

√
nα

)t−1
.

By union bound,
Pr

[∥∥EtS
∥∥
2→∞ >

√
n(log n)5tCt

]
= O(n−2).

Remark A.1. The parameter α is determined by E, which equals to p in our case. The above bound
is particularly useful when β, γ are small, that is, we want the matrix S to have either small entries or
sparse columns.

Proposition A.4 (Proposition 2.5 restated). For a ∈ [0, 2] and r ∈ N, if |a− 1| ≤ δ < 1
2r , then

|ar − 1| ≤ 2rδ.

Proof. Let x = a− 1 ∈ [−δ, δ]. If 0 ≤ a ≤ 1, we have 1 ≥ ar = (1 + x)r ≥ 1 + rx ≥ 1− rδ. If
1 < a < 1 + 1/r, then 0 < x < 1/r and hence

1 ≤ ar = (1 + x)r =

r∑
i=0

(
r

i

)
xi ≤

r∑
i=0

rixi <

∞∑
i=0

(rx)i =
1

1− rx
= 1 +

rx

1− rx
≤ 1 + 2rδ.

B Bounding the Deviation Term

Proof of Lemma 3.1. Our assumption on n implies that (p − q)n/k > 100C0σ
√
n. By Proposi-

tion 2.3, with probability at least 1− n−3, we have

∥E∥2 ≤ C0σ
√
n ≤ 0.01(p− q)n/k.

According to Equation (2) and su ≥ n
2k , we have∥∥(PĜ − I)Gu

∥∥ ≤
2 ∥E∥2√

su
≤ 0.04(p− q)n/k.
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C Polynomial Approximation

The proof of Theorem 3.1 rely on the following result on rank-one pertuebation.
Proposition C.1 (Eigenvalues under rank-one perturbation, Theorem 1 in [BNS79]). Let C =
D + ρzzT , where D is diagonal, ∥z∥2 = 1. Let d1 ≥ d2 ≥ · · · ≥ dn be the eigenvalues of D, and
let d̃1 ≥ d̃2 ≥ · · · ≥ d̃n be the eigenvalues of C. Then

d̃i = di + ρµi, 1 ≤ i ≤ n,

where
∑n

i=1 µi = 1 and 0 ≤ µi ≤ 1.

Proof of Theorem 3.1. Let χi ∈ {0, 1}V be the indicator vector for Vi, i.e., χi(u) = 1 iff u ∈ Vi. It is
easy to see that the eigenvectors of H are 1√

s1
χ1, . . . ,

1√
sk
χk. Write U =

(
1√
s1
χ1, . . . ,

1√
sk
χk

)
∈

RV×V , D = diag((p − q)s1, . . . , (p − q)sk, 0, . . . , 0), then we have H = UDU⊤. Note that
1n = U(

√
s1, . . . ,

√
sn)

⊤, and hence

G = H + q1n1
⊤
n = U(D + ρzz⊤)U⊤,

where ρ = nq, z = 1√
n
(
√
s1, . . . ,

√
sn)

⊤. This means the eigenvalues of G are the same as those of
D + ρzz⊤. Since ∥z∥ = 1, Item 1 follow directly from Proposition C.1. To see Item 2, we use the
Rayleigh quotient characterization of the largest eigenvalue:

λ1(G) = max
v

v⊤Gv

∥v∥2
≥ 1⊤

nG1n

n
=

∑
u,v∈X Guv

n
=
n2q + (p− q) · (s21 + · · ·+ s2k)

n

≥ nq + (p− q)
n

k
.

where the last inequality follows from n
k = 1

k

∑k
i=1 si ≤

√∑k
i=1 s

2
i /k,

Proof of Claim 3.1. The assumption on n in Lemma 3.2 implies that µ = (p−q)n/k ≥ 100C0σ
√
n ·

log n. By Weyl’s inequality, we have∣∣∣λ̂i − λi

∣∣∣ ≤ ∥E∥2 ≤ C0σ
√
n ≤ µ

100 log n
,∀i ∈ [n].

Meanwhile, by Theorem 3.1,

|λi − µ| ≤ |λi(G)− (p− q)si|+ |(p− q)si − µ| ≤ (p− q)n/k

16 log n
+

(p− q)n/k

16 log n
≤ µ

8 log n
.

for i = 2, 3, . . . , k. Hence, write ε def
= µ

6 logn , we have

1.
∣∣∣λ̂1 − λ1

∣∣∣ ≤ ε;

2. λ2, . . . , λk, λ̂2, . . . , λ̂k ∈ [µ− ε, µ+ ε];

3. for every i ≥ k + 1,
∣∣∣λ̂i∣∣∣ ≤ ε.

First, ψ(λ1) = 1 according to the definition of ψ, and hence φ(λ1) = 1. As for λ̂1,∣∣∣ψ(λ̂1)− 1
∣∣∣ = ∣∣∣ψ(λ̂i)− ψ(λ1)

∣∣∣ ≤ |A|ε2 + |2Aλ1 +B|ε (by definition of ψ)

≤ ε2

λ1µ
+
ε

µ
(since 2Aλ1 +B =

1

λ1
− 1

µ
≥ − 1

µ
)

≤ 1

36 log2 n
+

1

6 log n
(as

ε

µ
=

1

6 log n
)

<
1

4 log n
.
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Consequently, |φ(λ̂1)− 1| < 2r
4 logn ≤ 1/2 by Proposition 2.5.

Next, for a ∈
{
λ2, . . . , λk, λ̂2, . . . , λ̂k

}
, the argument is similar:

|ψ(a)− 1| = |ψ(a)− ψ(µ)| ≤ |A|ε2 + |2Aµ+B|ε ≤ ε2

λ1µ
+
ε

µ
<

1

4 log n
,

where the second inequality follows from 2Aµ+B = 1
µ − 1

λ1
≤ 1

µ . This yields |φ(a)− 1| ≤ 1/2

by Proposition 2.5.

Finally, for i ≥ k + 1, it holds that∣∣∣ψ(λ̂i)∣∣∣ ≤ |A|ε2 +Bε =
ε2

λ1µ
+
ε

µ
<

1

4 log n
,

which means
∣∣∣φ(λ̂i)∣∣∣r =

∣∣∣ψ(λ̂i)∣∣∣r < (
1

4 logn

)logn

< n− log logn.

D Bounding the Noise Term

Proof of Lemma 4.1. The lemma readily follows from the following entrywise bound and Chernoff
bound.

Claim D.1 (Entries of ψ(G)). For every u, v ∈ X , if u, v ∈ Vℓ for some ℓ, then 0 ≤ Fuv ≤ 5k
n ;

otherwise, |Fuv| ≤ 10
n .

We decompose F = F ′ + F ′′, where F ′ is the intra-cluster part, i.e., F ′
uv = Fuv if u, v ∈ Vℓ for

some ℓ, and F ′
uv = 0 otherwise. Since for every column of F ′

v, its non-zero entries are identical
and at most 5k/n by the above claim. Hence, every entry of EF ′ equals to the sum of at most
2n/k independent, centered Bernoulli variables with parameter p, scaled by some factor at most
5k
n . By Chernoff bound, PrE

[
|(EF ′)uv| > 10

√
kp log n/n

]
≤ n−4,∀u, v ∈ V , and we have

PrE
[
∥EF ′∥2→∞ ≤ 10

√
kp log n

]
≥ 1− n−2 by union bound. Analogously, by Hoeffding bound,

PrE
[
∥EF ′′∥2→∞ ≤ 10

√
log n

]
≥ 1− n−2. Since ∥EF∥2→∞ ≤ ∥EF ′∥2→∞ + ∥EF ′′∥2→∞, the

lemma follows from the above two inequalities and union bound.

Proof of Claim D.1. Write λ = λ1(G) and recall that (i) (p− q)su ≤ 2µ for all u (ii) nq+µ ≤ λ ≤
nq + (p− q)s1 < nq + 2µ, (iii) λ > p · µ. Assume that u, v ∈ Vℓ for some ℓ. Then

Fuv = AG⊤
uGv +BGuv = −nq

2 + (p2 − q2)su
λµ

+

(
1

λ
+

1

µ

)
p

=
−nq2 − (p2 − q2)su + (p− q)(λ+ µ) + q(λ+ µ)

λµ

=
q(µ+ λ− nq) + (p− q)(λ+ µ− (p+ q)su)

λµ
.

Since λ− nq ≥ µ, the numerator is at least

2qµ+ (p− q)(λ+ µ− (p+ q)su) = (p− q) (2qn/k + λ+ µ− (p+ q)su) .

Because su ≤ 2n/k, λ ≥ nq + (p− q)n/k, we have

2qn/k + λ+ µ− (p+ q)su > 2qn/k + nq + (p− q)2n/k − (p+ q)2n/k = (n− 2n/k)q ≥ 0,

which means Fuv ≥ 0. Meawhile,

Fuv ≤ q(µ+ λ− nq)

λµ
+

(p− q)(λ+ µ)

λµ
,

where the first term is at most 3q
λ ≤ 3

n by (ii); second term is at most 2(p−q)
µ ≤ 2k

n . Therefore,
|Fuv| ≤ 5k

n .
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For the second part, assume that u, v are not in the same cluster. Then

Fuv = AG⊤
uGv +BGuv = −nq

2 + (pq − q2)(su + sv)

λµ
+

(
1

λ
+

1

µ

)
q.

Hence,

|Fuv| ≤
∣∣∣∣q(λ+ µ− nq)

λµ

∣∣∣∣+ ∣∣∣∣q(p− q)(su + sv)

λµ

∣∣∣∣ .
By (ii), the first term is at most 3q

λ < 3
n ; by (i), the second term is at most 4q

λ ≤ 4
n ; hence,

|Fuv| ≤ 10
n .

Upper bound of ∥EM ′∥2→∞ (Proof of Lemma 4.2) Write L def
= A(EG+GE), R

def
= AE2+BE.

Then DtF = (L+R)tF = RtF +Rt−1LF +Rt−2LDF + · · ·+RLDt−2 +LDt−1F . It suffices
to derive a good upper bound of ∥EηL∥2→∞ and ∥EηF∥2→∞, as Rw can be further expressed as
sum of powers of E. This is done by the following lemma:

Lemma D.1. The following holds with probability 1−O(n−2) over the choice ofE: for all η ≤ log n,
it holds that

• ∥EηL∥2→∞ ≤ C2

√
kp(100

√
np)η−1 log5η n,

• ∥EηF∥2→∞ ≤ C2

√
kp(100

√
np)η−1 log5η n,

where C2
def
= 106 is an absolute constant.

Specifically,

EDtF = ERtF +

t−1∑
i=0

ERiLDt−1−iF

= E

t∑
j=0

(
t

j

)
AjBt−jEj+tF︸ ︷︷ ︸
def
=Mt

+

t−1∑
i=0

E

i∑
j=0

(
i

j

)
AjBi−jEi+jLDt−1−iF︸ ︷︷ ︸

def
=Nt

.

Note that |AjBw−j | ≤ 2w · µ−(w+j) ≤ 2w · (100√np log6 n)−(w+j). It follows that for every
t ∈ [r − 1],

∥Mt∥2→∞ ≤
t∑

j=0

(
t

j

)
|AjBt−j |

∥∥Et+j+1F
∥∥
2→∞

≤
t∑

j=0

(
t

j

)
2t · (100√np log6 n)−(t+j) · C2

√
kp · (100√np)t+j log5(t+j) n

≤ C2

√
kp · 2t

t∑
j=0

(
t

j

)
(log n)−(t+j)

= C2

√
kp · 2t(log n)−t · (1 + 1

log n
)t ≤ C2

√
kp,
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where the second inequality is by Lemma D.1, and the last step follows from Proposition 2.5.
Similarly, for every t ∈ [r − 1],

∥Nt∥2→∞ ≤
t−1∑
i=0

i∑
j=0

(
i

j

)
|AjBi−j |

∥∥Ei+j+1L
∥∥
2→∞

∥∥Dt−1−iF
∥∥
2

≤ 2

t−1∑
i=0

i∑
j=0

(
i

j

)
|AjBi−j |

∥∥Ei+j+1L
∥∥
2→∞

≤ 2

t−1∑
i=0

i∑
j=0

(
i

j

)
2i · (100√np log6 n)−(i+j) · C2

√
kp · (100√np)i+j log5(i+j) n

≤ 2C2

√
kp

t−1∑
i=0

2i
i∑

j=0

(
t

j

)
(log n)−(i+j)

≤ 2C2

√
kp · t ≤ 2C2

√
kp · log n,

where the second inequality follows from
∥∥Dt−1−iF

∥∥
2

≤ 2, and the third inequality is by
Lemma D.1. In sum,

∥EM ′∥2→∞ ≤
r−1∑
t=1

(∥Mt∥2→∞ + ∥Nt∥2→∞)
∥∥∥F̂∥∥∥r−1−t

2
≤ 6C2

√
kp log2 n, (6)

where in the last inequality we also use
∥∥∥F̂∥∥∥t

2
≤ 2.

It remains to prove Lemma D.1; the proof draws on the entrywise bound in Proposition A.3.

Proof of Lemma D.1. Fix an η ≤ log n. Write s∗ def
= n/k for the ease of notation. Observe that

EηL = A(Eη+1G + EηGE) = A(Eη+1H + EηHE) + Aq(Eη+1Jn + EηJnE). We can apply
Proposition A.3 to Eη+1H and EηH , with α = p, β = p− q, γ = 2s∗. That is, with probability at
least 1−O(n−2),∥∥EjH

∥∥
2→∞ ≤ 500(log n)5j

√
n(p− q)

√
p
√
2s∗ · (100√np)j−1 for j = η, η + 1.

Our assumption on n yields µ ≥ C
√
np log6 n; moreover, |A|(p − q) ≤ p−q

µ2 ≤ 1/s∗ · 1
µ ≤

1/s∗ · (C√np log6 n)−1. Therefore,∥∥A(Eη+1H + EηHE)
∥∥
2→∞

≤ A
(∥∥Eη+1H

∥∥
2→∞ + ∥EηH∥2→∞ ∥E∥2

)
≤ 1

s∗
· (C√np log6 n)−1 · 500(log n)5η+5 ·

√
n · √p ·

√
2s∗

(
(100

√
np)

η
+ (100

√
np)

η−1
C0σ

√
n
)

≤ 500000
√
np/s∗(log n)5η(100

√
np)η−1. (7)

Similarly, by applying Proposition A.3 to EjJn with α = p, β = 1, γ = n, we have, with probability
at least 1−O(n−2),∥∥EjJn

∥∥
2→∞ ≤ 500(log n)5j · √p · n · (100√np)j−1

, j = η, η + 1.

Since |Aq| = q
λ · 1

µ ≤ 1
n · (C

√
n log6 n)−1, we have∥∥Aq(Eη+1Jn + EηJnE)
∥∥
2→∞

≤ |Aq|
(∥∥Eη+1Jn

∥∥
2→∞ + ∥EηJn∥2→∞ ∥E∥2

)
≤ 1

n
· (C√np log6 n)−1 · 500 · (log n)5η+5 · n ·

(
(100

√
np)

η
+ (100

√
np)

η−1
C0σ

√
n
)

≤ 500000
√
p(log n)5η(100

√
np)η−1. (8)
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Combining Equation (7) and Equation (8), we have, with probability at least 1 − O(n−2),
∥EηL∥2→∞ ≤ C2

√
np/s∗(log n)5η(100

√
np)η−1 where C2

def
= 106.

For the second part, we decompose F = F ′+F ′′, where F ′ is the intra-cluster part, i.e., F ′
uv = Fuv if

u, v ∈ Vℓ for some ℓ; andF ′
uv = 0 otherwise. Equipped with Claim D.1, we can apply Proposition A.3

on EηF ′ (with α = p, β = 10/s∗, γ = 2s∗), and EηF ′′ (with α = p, β = 5
n , γ = n):

∥EηF∥2→∞ ≤ ∥EηF ′∥2→∞ + ∥EηF ′′∥2→∞

≤ 20000 log5η
√
n
√
p

(
10

s∗
·
√
2s∗ +

10

n
·
√
n

)
(100

√
n)η−1

≤ C2(log n)
5η
√
np/s∗(100

√
n)η−1,

where the second inequality holds with probability at least 1−O(n−2). The lemma follows from a
union bound over all η ≤ log n.
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