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ABSTRACT

The rise of AI based person detection in safety critical applications such as driver-
less cars or security monitoring has lead to an explosion of machine learning
models and dataset research. At the same time, researchers have raised ques-
tion of bias in these models and datasets. Popular benchmark datasets like More
Inclusive Images for People (MIAP) and Berkeley DeepDrive (BDD) for person
detection suffer from both sampling and labeling biases. This has serious implica-
tions for autonomous vehicles and other fields that use these datasets. We conduct
an all-encompassing analysis to assess these datasets through the lens of algorith-
mic bias, looking at both dataset and model bias. To the best of our knowledge,
no study has delved into the realm of person detection in low-quality or crowded
pictures with this lens. The result is a novel analysis of bias in a real-world im-
age dataset. We find that 1) image manipulations frequently found in real-world
settings like image blurriness and 2) image detectors that are skewed to rely on
features like contrast or brightness both have significant negative impacts on fair-
ness for race, gender, and age demographics. These result can help guide future
designs of robust models in the object detection field and beyond.

1 INTRODUCTION

Machine learning (ML) has brought about a revolution in computer vision (CV). Tasks that were
once considered labor-intensive or even infeasible have become achievable through the progress of
CV research. Object detection, an important branch of CV, involves both locating an object within
an input image and classifying it. This is a fundamental task for ML-powered video surveillance,
autonomous vehicles, facial recognition systems and pedestrian detection (Fabbrizzi et al., 2022).

While modern object detection models exhibit a high degree of precision, they are not impervious to
biases within the data and models themselves. These inherent biases can influence the performance
and fairness of object detection outcomes (Fabbrizzi et al., 2022; Wang et al., 2019b;a; Hazirbas
et al., 2021; Goyal et al., 2022; Agarwal et al., 2021; Wang et al., 2020b; Meister et al., 2023).
Specifically, research has revealed disparities in the accuracy of person detection models for
individuals with darker skin tones or those partially concealed by other objects (Wilson et al.,
2019). In the context of autonomous vehicles, which have been involved in several high-profile
pedestrian deaths since 2018, minimizing bias is absolutely critical for public safety (Levin &
Wong; Biddle, 2023; Kerr, 2023; Cummings, 2023; Valdes-Dapena, 2024). Despite this, there is
worrying evidence that pedestrian detection systems do contain noticeable bias (Bae & Xu, 2023;
Althoupety et al., 2023; Katare et al., 2022). Therefore, it is imperative to conduct systematic
experiments into how object detection models behave in the context of human detection, while
simultaneously considering biases present in both the data and the models.

2 PROBLEM STATEMENT

Object detection is a ubiquitous task found across various domains, including agriculture, safety, and
retail. However, like any machine learning technique, object detection methods can inherit biases
that might disproportionately affect marginalized populations. Additionally, annotations can reflect
the biases of the people who produce them. Consequently, it is imperative to comprehensively assess
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these methods and the data fed into them for potential bias. While most of the works reviewed in
Section 2 focused on bias detection and mitigation, prior research has mainly revolved around gender
detection or portrait-like imagery. To the best of our knowledge, no study has delved into the realm
of person detection in low-quality or crowded pictures. In this study, we employ two datasets and
two object detectors to explore how biases in the image dataset and object detection models can
impact the outcomes of the object detection system with respect to fairness and performance.

3 BACKGROUND

3.1 OBJECT DETECTION TECHNIQUES

Real-world applications of object detection include autonomous driving and video surveillanceZou
et al. (2019). Traditional detectors, such as the [HOG Detector] (Dalal & Triggs, 2005), were built on
manually constructed features and lacked access to accurate image representation. The resurgence of
CNN’s popularity prompted researchers to implement this technology in the field of object detection
(Zou et al., 2019). In this work, Faster RCNN (Ren et al., 2015) and YOLO (Redmon et al., 2016)
will be used to examine the performance of both types of CNN-based object detection methods when
there is a bias in the data or model, since these two architectures are prevalent in the literature.

3.2 FAIRNESS METRICS

In this study, fairness definitions will be used to evaluate the performance of several object detection
techniques. Below, we discuss the most common fairness definitions in machine learning research:
Kusner et al. (2017); Dwork et al. (2012); Mehrabi et al. (2021); Corbett-Davies & Goel (2018);
Corbett-Davies et al. (2017); Hardt et al. (2016); Verma & Rubin (2018). In the ML literature, fair-
ness can be categorized as statistical fairness measures, similarity-based fairness measures according
to Verma and Rubin Verma & Rubin (2018).

Statistical conceptions of fairness serve as the foundation for assessing the fairness of machine
learning models utilizing the ground truth label and predicted outcome Verma & Rubin (2018).
Typically, these measurements are generated directly from the model outcome or confusion matrix
utilizing statistical metrics such as True Positive (TP), False Positive (FP), True Negative (TN),
False Negative (FN), Positive Predictive Value (PPV), True Positive Rate (TPR), False Discovery
Rate (FDR), and False Negative Rate (FNR) (see Appendix A.1 for definitions). Statistical fairness
measures are predicted based on outcomes and ground truth labels which are separated into positive
and negative categories. Depending on the context, positive and negative are defined differently.
For example, in the case of CT scans, the positive class could refer to malignant cases, whereas
the negative class refers to benign cases. In this dissertation, only statistical measures that apply to
the object detection space and do not typically include negative examples will be used, as negative
examples (images without specific classes) are not fed into the object detection pipeline.

Statistical methods like Statistical Parity (SP), Equalized Odds (EO), and Equal Opportunity (EOP)
assist researchers in quantitatively quantifying the results of ML models (see Appendix A.2. for
definitions). Their key advantage is that they are simple to compute. Nonetheless, these statistical
definitions may contradict one another, and there is no uniform definition applicable in every cir-
cumstance. In addition, they may not be suitable in applications that lack tabular data for identifying
positive and negative classes to compute statistical metrics.

Statistical fairness measures analyze only a subset of statistical metrics based on the sensitive data
attribute. Another category of definitions of fairness is based on the similarity of the occurrences,
assessing whether or not they had similar outcomes. In Appendix A.3, we define several popular
similarity-based fairness measures.

3.3 RELATED WORKS

Benchmarking datasets like ImageNet Deng et al. (2009), COCOLin et al. (2014), VPASCAL Ev-
eringham et al. (2010) were designed to represent the real world and ultimately improve the perfor-
mance of algorithms. However, this did not happen in the real world, as many of these datasets suffer
from the biases, such as labeling, framing, and representation or selection bias. For instance, in MS

2



Under review as a conference paper at ICLR 2024

COCO Lin et al. (2014), women occur in more indoor scenes and kitchen objects, whereas men
co-occur more with sports objects and in outdoor locations Wang et al. (2020a; 2021). ImageNet
Deng et al. (2009); Yang et al. (2020) also suffers from different types of biases. For instance, most
of the cars captured in this dataset are racing cars, which are not commonly found on the street.

Wilson et al. Wilson et al. (2019) investigated the inequality problem in object detection by using
Berkeley Deep Drive (BDD) Yu et al. (2018) dataset, which contains people with varying skin tones
and occlusions. Upon using the Fitzpatrick Skin tone Fitzpatrick (1988) in pedestrian detection
space, they noticed poor performance for individuals with darker skin tones (4-6). They designed
experiments to find out the possible source of this inequality. Wilson et al. Wilson et al. (2019)
aimed to investigate if times of day (night or day), occlusion, or the loss function leads to higher
accuracy for the majority group or not. They found that neither time of the day nor occlusion are
the primary source of the discrepancies. They were able to improve the disparities for dark skin
tone individuals by reweighting the loss functions carefully.

Balakrishnan et al. Balakrishnan et al. (2021) developed an experimental method to measure the
algorithmic bias of face analysis algorithms by directly manipulating the attributes of interest to
reveal the causal links between attribute variation and performance change. They aimed to measure
fairness to reveal causal connections between attributes of interest and algorithmic performance.
They created synthetic test images using StyleGAN Karras et al. (2019) and identified their gender
using annotators and classifiers to detect the biases. They found biases related to gender, hair length,
age, and facial hair.

Historically, the performance of a model was measured using accuracy and other statistical metrics.
However, there is a need to develop fairness metrics that compute the consistency of model behav-
ior across different groups and attributes. Joo and Kärkkäinen Joo & Kärkkäinen (2020) used an
encoder-decoder network for image attribute manipulation to synthesize facial images varying in
the dimensions of gender and race. They used these images to compute the counterfactual fairness
of commercial computer vision classifiers by examining the degree to which these classifiers are
impacted by gender and racial cues.

To the best of our knowledge, our work differs from prior work in fairness in computer vision.
Specifically, we investigate algorithmic bias from the lends of the biased datasets and bias detectors
on for person detection in low-quality or crowded pictures. The following sections present our form
research questions, methodology, results, and discussion.

4 RESEARCH QUESTIONS

• RQ1 (biased dataset): In object detectors used for human detection, do state-of-the-art
visual bias modifications, such as gray scale conversion and blurriness, impact performance
and fairness between different demographic groups?

• RQ2 (biased models): In object detectors used for human detection, does a biased model
based on visual features such as size, contrast, and brightness impact performance and
fairness of outcomes between different demographic groups?

5 METHODOLOGY

In this section, we describe the datasets used in our experiments. Both were chosen because they
contain real-world images and prior work used them for bias research (Wilson et al., 2019).

5.1 MORE INCLUSIVE IMAGES FOR PEOPLE (MIAP)

Schumann et al. (2021) released a new subset of the popular Open Images dataset called More In-
clusive Images for People (MIAP) has over 100k more annotations than the original Open Images
dataset. MIAP is labelled with fair analysis in responsible AI projects in mind. Each annotated
bounding box includes age and gender information. In addition to the age and gender labels in-
cluded with MIAP, skin tone annotation was performed for this study. Each bounding box was ex-
tracted from MIAP, passed to Enhanced Deep Residual Networks for Single Image Super-Resolution
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(EDSR) to improve the resolution, and had the face detected using the Haar Cascades classifier (Vi-
ola & Jones, 2001). The Individual Typology Angle was calculated for each face and the resulting
values were mapped to light skin tone (LS), defined as individuals with a Fitzpatrick Scale score of
1 to 3, and dark skin tone (DS) labels, defined as individuals with a Fitzpatrick Scale score of 4 to 6
(Fitzpatrick, 1988). If no face was detected, the entry was labelled “unknown”.

5.2 BERKELEY DEEPDRIVE (BDD)

Berkeley DeepDrive (BDD) is an annotated dataset intended for object detection in autonomous
driving. Wilson et al. (2019) released a smaller version of this dataset consisting of images with skin
tone annotations using the Fitzpatrick scale.

5.3 ADDITIONAL VISUAL FEATURES

In addition to the human attribute features included in MIAP and BDD, size, contrast, and intensity
were computed using the following definitions inspired by the work of Sobti et al. (2021).

• Size: The bounding box is small if it is less than 4% of the total image area.

• Contrast: Contrast is computed using Equation 1 where Ibb and Ibackground stand for the
intensity of bounding box and intensity of background, respectively. A bounding box has a
low contrast if the contrast value is less than 0.4.

contrast =
Ibb − Ibackground

Ibackground
(1)

• Intensity: Intensity is computed using average mean values of pixels over all channels. A
bounding box is considered dark if the brightness is less than 90.

5.4 BIASED DATASETS

Figure 1: Illustration to show steps to make biased data set concerning size, brightness, and contrast.

While both the MIAP (Krasin et al., 2017) and BDD (Wilson et al., 2019; Yu et al., 2018) datasets
inherently harbor certain representation and labeling bias, this study introduces deliberate manual
augmentations to inject framing bias and scrutinize its impact on person detection outcomes. Among
the various perturbations, the most common practice is to convert images to grayscale or apply
blurriness (Wang et al., 2020b). Thus, we consider two bias manipulation techniques: 1. converting
images to grayscale and 2. introducing blurriness to bounding boxes containing people. Which
augmentation was applied to an image was chosen at random, as seen in Figure 1. Following data
preparation, visual features such as contrast, intensity, and size are computed for each bounding box.
Grayscale conversion and adding blurriness examples are shown in Figure 2.
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Figure 2: Examples of adding blurriness and grayscale conversion no a picture from MIAP dataset.

Figure 3: Detailed illustration of the experiment. We use this protocol for datasets and detectors.

5.5 SYNTHETIC BIASED DETECTORS

In addition to exploring the biased datasets, this study delves into the effects of biased object de-
tectors. Two base object detectors were used: You Only Look Once (YOLO) and FasterRCNN
(FRCNN). The YOLO implementation is based on the Keras-YOLOv3 repository 1. The Faster-
RCNN repositories are deprecated; while Mask-RCNN and Detectron represent newer iterations,
offering segmentation masks alongside bounding box predictions. This study employs the Mask-
RCNN Tensorflow implementation 2(He et al., 2017). Both were modified into biased version based
on the following processes.

Sobti et al. (2021) designed synthetic biased detectors that prioritize detection based on certain visual
features like size, contrast, or brightness. Unlike unbiased detectors, where detections are sampled
from a log-normal probability distribution to ensure equal detection chances, biased detectors can be
skewed towards certain attributes (Sobti et al., 2021). In our work, biased detectors are defined by
an adjustment made to non-maximum suppression (NMS), a post-processing step commonly used
in object detection tasks to remove duplicate detections, which now considers both visual attributes
and confidence scores.

5.6 EXPERIMENTAL DESIGN

This study explores the impact of both biased datasets and bias detectors on object detection. Vi-
sual attributes including contrast, size, and brightness are computed for each dataset, enabling the
categorization of images based on these attributes. The biased dataset is then created by applying
grayscale conversion and blurriness. Skin tone classification for the MIAP dataset is performed
using the method detailed in Section 5.1.

Four sets of experiments were conducted on each dataset, following the protocol depicted in Figure
3. The first experiment is the baseline, with normal object detectors and regular data. The second and
third experiments investigated the combination of normal data and biased detector and vice versa.

1https://github.com/experiencor/keras-yolo3
2https://github.com/matterport/Mask_RCNN
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The last experiment assessed the joint impact of biased detectors and biased datasets. Performance
and fairness were assessed with the Aequitas fairness toolkit (Saleiro et al., 2018).

6 RESULTS

6.1 EXPERIMENT 1: NORMAL DATA AND NORMAL OBJECT DETECTOR

Experiment 1 is the baseline phase of our study, without biases injected into the dataset or the de-
tector. Table 1 provides the performance metrics for the BDD dataset on both FRCNN and YOLO
detectors. Despite making up 99% of the dataset, ambiguous/unknown skintones had the lowest per-
formance of all groups, and were significant outperformed by both dark and light skin tones, which
combined only comprise 1% of the dataset. For visual attributes, FRCNN consistently demonstrates
superior performance to YOLO (average precision: 63% vs. 40%). Figure 4 demonstrates bias
metrics for the BDD dataset when utilizing FRCNN and YOLO detectors, respectively. Notably,
bias metrics remain consistent across different groups based on visual attributes such as contrast and
size for both detectors.

As seen in Figure 5 and Table 2 , for MIAP, unkown gender individuals exhibit by far the highest
FNR and FDR and lowest TPR for both FRCNN and YOLO. Male and female individuals had far
superior performance. Similarly, skin tone performance is consistent across all groups, with dark
skin receiving higher AP than light skin and light skin receiving higher AP than unknown skin
tones. For age, FRCNN excels with older individuals, while YOLO performs better with middle-
aged individuals. Overall, YOLO performed better, particularly for the annotated attributes (age,
gender, skin tones) and to a lesser degree for the visually-derived attributes (intensity, contrast).

According to Table 3 , individuals with light and dark skin tones only fulfill Fairness Through
Awareness (FTA) for both object detectors, while ‘Unknown’ skin tone upholds all fairness metrics
except FTA. Both object detectors show a consistent trend across fairness metrics. Low contrast and
low intensity objects pass more fairness metrics than high contrast or light objects.

For the MIAP dataset, female individuals do not satisfy SP for either detector and fail both EOP
and FTA for FRCNN, while male individuals pass all fairness tests for both detectors. The unknown
gender group, however, fails all fairness metrics, reflecting its high FNR and FDR. For different
age groups, young and older individuals pass EO, EOP, and FTA for YOLO and EO and EOP for
FRCNN. The middle age group performs slightly better, passing all metrics except FTA for FRCNN.
Like gender, the unknown age group has the worst fairness performance, only passing SP for YOLO.
All skin tone groups pass EO and EOP for both FRCNN and YOLO. Dark skin tone individuals
additionally pass FTA for FRCNN and YOLO, and light skin tone individuals pass FTA for YOLO
alone. Conversely, unknown skin tone individuals pass SP for both detectors. A summary of results
can be seen in Table 4 . Overall, YOLO had better fairness results than FRCNN.

6.2 EXPERIMENT 2: BIASED DATA AND NORMAL OBJECT DETECTOR

Figure 6 and Table 5 present the performance outcomes of both object detectors on the biased
version of the BDD dataset. Both detectors exhibit considerably reduced performance, indicating
their vulnerability to the data augmentations we applied. The highest AP is associated with the dark
skin tone category, while the lowest AP is observed for the unknown skin tone group. Similar to
the previous experiment, the different visual attribute groups demonstrate roughly equivalent per-
formance. Across all attributes, the recall rates are low and the FNR is high. Despite its diminished
performance, FRCNN outperforms YOLO in terms of AP across all attributes.

Figure 7 highlights the performance of object detectors on the biased MIAP dataset across individ-
ual visual and non-visual attributes (see Table 6 for alternate presentation). Across all attributes,
YOLO performs better than FRCNN. As in Experiment 1, the lowest performance among the per-
sonal attributes for both detectors occurred with the unknown gender and unknown age categories.
Male/female, young/middle aged/older, and light skin/dark skin all have fairly comparable perfor-
mance for a given detector. However, YOLO performs worse on the unknown skin tone group
due to the lower recall and higher FNR. For visual attributes, both detectors perform best detecting
high-contrast and high-intensity objects.
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Table 7 lists the pass/fail status of fairness metrics and detectors on BDD. Notably, individuals with
dark and light skin tones do not meet any fairness measures compared to the reference group of
unknown skin tone. All other attribute groups retain the same performance as Experiment 1.

Unknown gender individuals in MIAP fail all fairness measures for both YOLO and FRCNN. This
contrasts with the female and male groups, which pass EO and EOP (males additionally pass SP).
Results are similar for age. The unknown age group fails all fairness metrics, while old and young
individuals pass EO and EOP for both detectors and middle-aged individuals pass EO, EOP, and
SP. Unknown skin tones perform much better: they pass SP, EO, and EOP, regardless of the object
detector. Among light and dark skin tone groups, FRCNN significantly outperformed YOLO. YOLO
failed to meet any fairness measures, while FRCNN achieved all except SP and FTA. Regarding
contrast and intensity groups, low-value groups have better results as they pass SP, EO, and EOP
while high-value groups only pass EO and EOP. Interestingly, in contrast to Experiment 1, both
detectors failed FTA for all groups and attributes. See Table 8 and Table 4 for a visual comparison.

6.3 EXPERIMENT 3: NORMAL DATA AND BIASED OBJECT DETECTOR

6.3.1 CONTRAST BIAS

Table 9 presents the performance of object detectors with injected contrast bias for single attributes
in BDD dataset. The highest performance is for dark skin tone individuals, closely followed by light
skin tone individuals. Similar to the first experiment, the ”Unknown” skin tone and visual attributes
show approximately the same APs. Low-contrast individuals have higher performance than low-
contrast ones. Intensity did not really make any difference in the case of APs. FRCNN displays
slightly better performance, aligning with results from the baseline experiment in 1 where contrast
bias was not present. According to Figure 8 , FRCNN has a lower FNR than YOLO, indicating
it has higher recall values on the BDD dataset. All FNR values are above 75% for both detectors.
FDR and TPR values are similarly low (less than 45%). All visual attributes have roughly the same
values for all metrics and detectors.

Table 10 displays the performance of object detectors on MIAP under contrast bias. FRCNN’s
performance ranges from 0.2 to 0.84. Among age and gender groups, the unknown groups exhibit
the lowest performance; this is also reflected in the high FNR and FDR rates seen in Figure 9 . The
performance across different skin tones is nearly uniform. High-contrast individuals outperform
their low-contrast counterparts. For intensity, dark objects achieve slightly higher APs due to their
better recalls. Smaller objects fare better than larger ones. Both skin tone and visual attributes yield
AP values between 0.6 and 0.7. When it comes to YOLO, performance varies between 0.2 and
0.9. The highest performance is attained by older individuals, while the lowest belongs to the age-
unknown group, followed by the gender-unknown groups. YOLO demonstrates higher recall values
than FRCNN, indicating a lower number of false negatives. Male and female individuals achieve
the same AP, but individuals without gender exhibit significantly lower performance. Similar to
FRCNN, objects with high contrast outperform those with low contrast, and those with high intensity
outperform their low-intensity counterparts.

Table 11 presents fairness measures for both object detectors while contrast bias is introduced.
Similar to the second experiment, light and dark skin tones did not meet fairness group measures,
but both detectors passed FTA. Unknown skin tone passed all metrics except FTA for both detectors.
Similar to the second experiment, groups with low value of contrast and intensity passed all metrics
except FTA, while groups with high value failed both SP and FTA.

According to Table 12 , YOLO passed most fairness measures for female individuals except SP,
while FRCNN failed both SP and FRCNN. Male individuals outperformed all other gender groups
as they passed all fairness metrics. The ‘Unknown’ age and ‘Unknown’ gender groups exhibited
poor fairness performance across both object detectors, as they are not preserved due to differences
between these groups and the reference group. Young and older individuals exhibited similar fair-
ness performances, with YOLO outperforming FRCNN and both detectors failed FTA. Light and
dark skin tone individuals also displayed a similar trend, with YOLO passing more fairness mea-
sures than FRCNN. For contrast, neither object detector passed the SP fairness measure for the
high-contrast group and FRCNN failed FTA, too. For the low intensity group, YOLO performed
better in passing all fairness measures. For high intensity, YOLO performed better as it only failed
SP while FRCNN failed both SP and FTA.
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6.3.2 INTENSITY BIAS

Table 13 illustrates the performance of object detectors under intensity bias for single attributes in
BDD dataset. Results of both object detectors align with the baseline experiment in Table 1 . The
highest performance is achieved by both dark and light skin tone individuals consistent with the
trend observed in the absence of bias. Other visual attributes have around 0.6 APs for FRCNN and
0.3 for YOLO. Furthermore, as seen in Figure 10 , FRCNN has lower FNR values, indicating higher
recall values than YOLO. FRCNN also has a higher TPR than YOLO (0.69 vs. 0.31).

Table 14 outlines performance under intensity bias for MIAP dataset. FRCNN’s best performance
for any attribute is for male individuals; however, it is still outperformed by YOLO, which achieves
0.90 AP for both male and female individuals. Neither FRCNN nor YOLO performs well on un-
known gender individuals. Both YOLO and FRCNN see their lowest performance among unknown
age individuals and much higher performance (¿0.8 AP) among middle-aged and older adult indi-
viduals. Dark, light, and unknown skin tones achieve roughly the same performance levels ( 0.60
AP) regardless of group or detector. Recall values consistently surpass precision, indicating lower
confidence in detections. In Figure 11(b) , YOLO has a higher TPR and lower FNR than FRCNN
for the MIAP dataset. FDR values remain consistent across all detectors and datasets.

As seen in Table 15 , when using a detector with intensity bias, light and dark skin tones did not meet
fairness measures except FTA. Unknown skin tone only failed the FTA metric across both detectors.
These results mirror those in Table 11 Contrast and intensity based groups, on the other hand, had
higher values pass only EO and EOP and lower values pass SP, EO, and EOP.

According to Table 16 , YOLO passed most fairness measures for female individuals except SP
while FRCNN failed both SP and FTA. Male individuals and middle-age individuals passed all
fairness metrics. The ‘Unknown’ age and ‘Unknown’ gender groups exhibited the worst fairness
performance across both object detectors. Young and older individuals as well as light and dark skin
tone individuals all exhibited the same pattern of fairness performances, passing all measures except
FTA for both detectors. For the high contrast group, both FRCNN and YOLO passed EO, EOP and
FTA; the low contrast group passed all fairness measures. The dark intensity group also passed all
fairness measures. For high intensity, YOLO performed better as it only failed SP while FRCNN
failed both SP and FTA.

6.4 EXPERIMENT 4: BIASED DATA AND BIASED OBJECT DETECTOR

6.4.1 CONTRAST BIAS

Table 17 presents the performance for BDD. Both YOLO and FRCNN exhibit significantly lower
performance than in baseline experiments. While the numbers differ from baseline experiment, the
trend remains consistent, where dark and light skin tone individuals achieves higher APs compared
to Unknown groups and groups based on visual attributes. Across all visual attributes, performance
is fairly uniform for both object detectors. Overall, FRCNN yields higher numbers than YOLO,
although notably smaller than baseline experiments.

Table 18 shows that for all groups, FRCNN performs at less than 0.4, with the highest performance
observed in male and older individuals. Notably, many groups display low precision, indicating
high values of both FP and FN. All skin tone groups exhibit similar performances, all below 0.3.
YOLO performance scores are slightly better, ranging between 0.12 and 0.64. The highest scores
among gender groups are on male individuals, while among age groups, older individuals take the
lead, followed by middle-aged individuals. In the context of skin tone, light and dark skin tones
show similar performance in both object detectors. Interestingly, the detectors exhibit divergent
behaviors concerning object size. FRCNN performs better on smaller objects, whereas YOLO excels
at detecting larger objects. Performance is better for larger objects, given their higher recall values.

Table 19 outlines the fairness status for both detectors in the presence of contrast biases within
both object detectors regarding the BDD dataset. Both Light skin tone and Dark skin tone fail all
metrics across both object detectors. Unknown gender groups pass all metrics except FTA. High
value groups in both contrast and intensity only passed EO and EOP while low value in both passed
also SP. Only FRCNN passes the False Tolerance Achievement (FTA) metric, while YOLO lags
behind in all other metrics. None of the groups passed FTA, similar to Table 7 .
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Table 20 indicates that female individuals meet EO and EOP. Male individuals meet SP, EO, and
EOP. The unknown gender individual again fails all fairness measures. These results are mirrored
among the age groups. Older and young individuals pass EO and EOP for both detectors; middle
age groups meet SP, EO, and EOP; unknown ages fail all fairness metrics. Conversely, individuals
with unknown skin tone hold SP, EO, and EOP, regardless of the object detectors used. Among light
and dark skin tone groups, FRCNN significantly outperformed YOLO. YOLO failed to meet any
fairness measures, while FRCNN achieved all except SP and FTA. Regarding contrast and intensity
groups, low-value groups have better results as they pass SP, EO, and EOP while high value groups
only pass EO and EOP. It is interesting that in comparison to Table 4 both detectors have lower
performance and they failed FTA for all different groups and attributes.

6.4.2 INTENSITY BIAS

Table 21 reveals that FRCNN displays low performance for all groups. Both dark and light skin tone
groups exhibit better performance than the unknown skin tone group, but are still significantly lower
than in baseline experiments. The primary reason for FRCNN’s low performance across attributes
is that many ground truth boxes are not detected, leading to a high number of false negatives and
subsequently, low recall values. More detail can be seen in Figure 14 . YOLO’s performance
similarly suffers from this issue, with AP values even lower than FRCNN’s for all attributes.

Table 22 demonstrates FRCNN’s performance to be less than 0.4, primarily due to low recall values.
Overall, the best performance is observed in the older age group and the male group. Significant
differences are evident between age and gender groups and their unknown counterparts. For visual
attributes, minimal differences exist between groups, all of which exhibit low performance. YOLO’s
AP scores are superior to FRCNN’s, even though they remain moderate. The best performance in
YOLO is observed among older individuals, and the worst among unknown age groups. Concerning
the skin tone attribute, the unknown group performs worse than others. The two detectors display
a disparity in size attribute statistics, with FRCNN performing better on small objects and YOLO
excelling at detecting large objects.

Table 23 provides fairness measures for both object detectors with the introduction of intensity bias.
Similar to Table 15 , light and dark skin tones did not meet fairness measures except FTA. Unknown
skin tone only failed FTA metric across both detectors. Contrast and intensity based groups have
similar results as higher values passed only EO and EOP and lower values passed SP, EO, and EOP.

Table 24 presents fairness values for the MIAP dataset across both detectors. Female individuals
do not meet SP fairness metrics for both detectors and FTA for FRCNN. Male and unknown gender
groups got completely opposite fairness results. Among age groups, Middle individuals perform
better than others, only failing the FTA metric for FRCNN, while older individuals fall behind in
the FTA and SP. Similar to the ”unknown” gender groups, the ”Unknown” age group failed all
fairness metrics. Dark and light skin tones exhibit better performance with the FRCNN detector,
while YOLO fails all fairness metrics except FTA and FRCNN only fails SP. Non-reference groups
for contrast and intensity display similar results for both detectors, failing FTA and SP metric. Large
objects fail all metrics except FTA for YOLO and meet EO and EOP for FRCNN while small objects
only failed FTA for both detectors.

7 DISCUSSION

7.1 INSIGHTS INTO OBJECT DETECTION AND BIAS

Our analyses show that the MIAP dataset, with its emphasis on individual-centric scenarios, and
the BDD dataset, showcasing diverse environmental conditions, benefit from different approaches.
FRCNN performed the best on the BDD dataset, potentialyl due to its segmentation of the feature
space into region proposals and subsequent accumulation of detections. Conversely, for the MIAP
dataset, YOLO performed best. This may be because of YOLO’s ability to process images in a
single step, encompassing both classification and localization; YOLO may also have benefited from
higher image quality within MIAP.
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7.2 RQ1: IMPLICATIONS OF BIASED DATA FOR OBJECT DETECTION

Framing bias introduced via grayscale conversion and blurring emerged is a potent source of per-
formance degradation. Both transformations can naturally occur in image processing or real-world
capture scenarios. This may lead to them being seen as benign, but our work shows that the biases
they introduce are impactful. The ensuing decline in recall values, primarily due to elevated false
negatives, has significant implications for domains like autonomous vehicles, where subtle shifts in
data quality yield major impacts on object detection effectiveness. It is paramount to improve the
robustness and generalization capabilities of detection methodologies. Furthermore, there is a need
for tailored approaches to better detect and annotate underrepresented and unknown groups.

7.3 RQ2: MODEL BIAS AND ITS IMPACTS

The introduction of bias based on visual attributes like contrast, intensity, and size led to intriguing
outcomes. Impressively, FRCNN exhibited consistent performance, akin to the baseline experiment,
affirming its resilience against model-induced bias. Surprisingly, the variations in impact across bias
types were marginal between the two detectors. In all scenarios, performance erosion was evident
for unknown groups characterized by age, gender, or skin tone, denoting compromised precision.
The bias metrics unveiled a strong link between amplified data bias and the augmentation of false
negative rates and the reduction in true positive rates.

7.4 RQ1 & RQ2: COMBINED INFLUENCES OF BIASES

The final phase of our study was an examination of the combined impact of both biased data and
biased detectors on person detection outcomes. Across attributes encompassing contrast, intensity,
and size, both object detectors demonstrated diminished performance relative to the baseline experi-
ment. Additionally, both detectors exhibited worse results for unknown groups associated with age,
gender, or skin tone, indicative of diminished precision in detections. Intriguingly, the type of bias
injected into the model did not exert significant difference in the overall outcomes. Nevertheless,
pronounced fluctuations in false negative rates and true positive rates underscored the prevalence of
missed detections and low-confidence predictions versus the baseline scenario.

8 CONCLUSION

The synthesis of our study underscores the intricate interplay between bias, fairness, and object de-
tection. These findings advocate for a holistic approach that traverses data collection, pre-processing,
model conception, and evaluation to address biases effectively. The ethical dimensions of biased AI
systems necessitate unwavering attention to ensure equitable and ethical deployment. The assimila-
tion of transparent and interpretable AI techniques, coupled with collaborative endeavors, will foster
the development of fair and unbiased AI systems in harmony with societal norms and values.
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A APPENDIX I: ACCURACY AND FAIRNESS DEFINITIONS

A.1 STATISTICAL METRICS

In this section we will describe statistical metrics metrics. We will give the common definition and
then situate it in the object detection context.

• True Positive (TP): it refers to the number of cases from a positive class that are accurately
predicted as positive examples. This measure indicates the number of accurately predicted
bounding boxes in object detection tasks.

• False Positive (FP): it refers to the number of cases from a negative class that were in-
correctly forecasted as positive. In object detection, this statistic indicates the number of
predicted bounding boxes for classes that do not include any objects.

• True Negative (TN): it is the number of examples from a negative class that were ac-
curately predicted as negative occurrences. The majority of object detection benchmark
datasets only contain images in which the target object is present.

• False Negative (FN): it denotes the number of examples from a positive class that are
incorrectly categorised as negative occurrences. This measure indicates the number of
missed bounding boxes in an object detection situation.

• Positive Predictive Value (PPV): it measures how frequently predicted bounding boxes
are predicted accurately in the class they belong to.

• True Positive Rate (TPR): it is the likelihood that, based on the actual bounding boxes in
the images, a certain number of them are properly predicted.

• False Discovery Rate (FDR): it quantifies the frequency with which predicted bounding
boxes are wrongly identified and do not include the object class given to them.

• False Negative Rate (FNR): it quantifies the likelihood that an actual bounding box may
be overlooked by object identification models.

A.2 STATISTICAL FAIRNESS MEASURES

In the following section, we will describe some of the most common statistical fairness measures
that are derived from these measurements.

• Statistical Parity (SP): A classifier is deemed fair if the likelihood of a favorable outcome
is the same for both privileged and unprivileged groupsDwork et al. (2012).

• Equalized Odds (EO): A classifier based on this metric accurately predicts positive out-
comes for members of the positive and negative classes with the same probability for priv-
ileged and unprivileged groups. In conclusion, the classifier must have the same TPR and
FPR for privileged and non-privileged groups Hardt et al. (2016).

• Equal Opportunity (EOP): A fair classifier will accurately predict the positive cases for
both privileged and unprivileged groups with the same probability. That is, TPR is the same
for privileged and non-privileged groups.Hardt et al. (2016).

A.3 SIMILARITY-BASED FAIRNESS MEASURES

• Causal Discrimination: A classifier is considered fair based on this metric if it assigns the
same categorization to any two objects with identical features X Verma & Rubin (2018);
Galhotra et al. (2017).

• Fairness Through Awareness: A classifier is fair if cases with identical metric values
receive identical predictions. The citation format is Dwork et al. (2012).

• Fairness by ignorance: A classifier that does not include the protected attribute in its
decision-making process is regarded fair Corbett-Davies & Goel (2018).
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B APPENDIX II: RESULTS TABLES

B.1 EXPERIMENT 1: NORMAL DATA AND NORMAL OBJECT DETECTOR

B.1.1 PERFORMANCE

Table 1: BDD performance analysis across single attributes either visual or demographic.
Attribute FRCNN YOLO

Attr Group Attr Value AP Precision Recall F1 AP Precision Recall F1
Skin tone Unknown 0.6 0.74 0.67 0.71 0.3 0.72 0.37 0.49
Skin tone DS 0.94 0.93 0.94 0.94 0.96 0.97 0.97 0.97
Skin tone LS 0.9 0.84 0.92 0.88 0.92 0.93 0.94 0.93
Contrast high 0.59 0.74 0.66 0.7 0.34 0.76 0.39 0.51
Contrast low 0.63 0.75 0.69 0.72 0.35 0.74 0.41 0.53
Intensity dark 0.62 0.75 0.69 0.72 0.34 0.74 0.39 0.51
Intensity light 0.62 0.74 0.69 0.71 0.4 0.74 0.46 0.57

Table 2: MIAP performance analysis across single attributes either visual or demographic
Attribute FRCNN YOLO

Attr Group Attr Value AP Precision Recall F1 AP Precision Recall F1
Gender Predominantly Feminine 0.78 0.81 0.81 0.81 0.93 0.85 0.97 0.91
Gender Predominantly Masculine 0.84 0.81 0.87 0.84 0.93 0.86 0.96 0.91
Gender Unknown 0.32 0.31 0.64 0.39 0.32 0.35 0.65 0.45
Age Middle 0.82 0.81 0.85 0.83 0.93 0.86 0.96 0.91
Age Older 0.81 0.82 0.83 0.83 0.96 0.88 0.98 0.93
Age Unknown 0.23 0.26 0.60 0.31 0.20 0.28 0.57 0.31
Age Young 0.80 0.81 0.84 0.82 0.94 0.85 0.98 0.91
Skin tone DS 0.63 0.43 0.79 0.55 0.74 0.50 0.95 0.66
Skin tone LS 0.59 0.46 0.72 0.56 0.74 0.53 0.92 0.67
Skin tone Unknown 0.61 0.55 0.76 0.64 0.67 0.63 0.81 0.71
Contrast high 0.66 0.61 0.79 0.68 0.74 0.67 0.86 0.75
Contrast low 0.57 0.48 0.75 0.58 0.65 0.56 0.83 0.67
Intensity dark 0.63 0.53 0.80 0.64 0.68 0.61 0.85 0.71
Intensity light 0.59 0.51 0.74 0.60 0.68 0.59 0.84 0.69

(a) BDD bias metrics FRCNN

(b) BDD bias metrics YOLO

Figure 4: Experiment 1 bias metrics visualization for BDD. Photo courtesy of author.

15



Under review as a conference paper at ICLR 2024

(a) MIAP bias metrics FRCNN

(b) MIAP bias metrics YOLO

Figure 5: Experiment 1 bias metrics visualization for MIAP. Photo courtesy of author.

B.1.2 FAIRNESS

Table 3: Fairness analysis of BDD dataset in first experiment with reference group of unknown skin
tone individuals with low contrast, low intensity, and small size.

Attribute YOLO FRCNN
Attr Group Attr Value SP EO EOP FTA SP EO EOP FTA
Skin tone DS ✓ ✓
Skin tone LS ✓ ✓
Skin tone Unknown ✓ ✓ ✓ ✓ ✓ ✓
Contrast high ✓ ✓ ✓ ✓
Contrast low ✓ ✓ ✓ ✓ ✓ ✓
Intensity dark ✓ ✓ ✓ ✓ ✓ ✓
Intensity light ✓ ✓ ✓ ✓ height

Table 4: Fairness analysis of MIAP dataset in first experiment with reference group of Middle-aged
male individuals with unknown skin tone, low-contrast, low intensity, and small size.

Attribute FRCNN YOLO
Attr Group Attr Value SP EO EOP FTA SP EO EOP FTA
Gender Predominantly Feminine ✓ ✓ ✓ ✓
Gender Predominantly Masculine ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gender Unknown
Age Middle ✓ ✓ ✓ ✓ ✓ ✓ ✓
Age Older ✓ ✓ ✓ ✓ ✓
Age Unknown ✓
Age Young ✓ ✓ ✓ ✓ ✓
Skin tone DS ✓ ✓ ✓ ✓ ✓ ✓
Skin tone LS ✓ ✓ ✓ ✓ ✓
Skin tone Unknown ✓ ✓ ✓ ✓ ✓ ✓
Contrast high ✓ ✓ ✓ ✓ ✓
Contrast low ✓ ✓ ✓ ✓ ✓ ✓ ✓
Intensity dark ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Intensity light ✓ ✓ ✓ ✓ ✓
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B.2 EXPERIMENT 2: BIASED DATA AND NORMAL OBJECT DETECTOR

B.2.1 PERFORMANCE

Table 5: BDD performance analysis across single attributes either visual or demographic
Attribute FRCNN YOLO

Attr Group Attr Value AP Precision Recall F1 AP Precision Recall F1
Skin tone Unknown 0.22 0.71 0.25 0.35 0.10 0.69 0.12 0.17
Skin tone DS 0.45 0.91 0.45 0.60 0.43 0.91 0.44 0.59
Skin tone LS 0.38 0.82 0.39 0.53 0.44 0.95 0.44 0.60
Contrast high 0.23 0.72 0.26 0.37 0.12 0.76 0.14 0.21
Contrast low 0.22 0.71 0.25 0.36 0.11 0.71 0.14 0.19
Intensity dark 0.23 0.72 0.26 0.37 0.11 0.72 0.14 0.20
Intensity light 0.22 0.70 0.24 0.33 0.12 0.73 0.14 0.20
Size small 0.23 0.71 0.25 0.36 0.11 0.72 0.14 0.20

Table 6: MIAP performance analysis across single attributes either visual or demographic
Attribute FRCNN YOLO

Attr Group Attr Value AP Precision Recall F1 AP Precision Recall F1
Gender Predominantly Feminine 0.33 0.80 0.35 0.49 0.57 0.89 0.59 0.71
Gender Predominantly Masculine 0.38 0.79 0.40 0.53 0.55 0.89 0.57 0.69
Gender Unknown 0.12 0.31 0.23 0.14 0.14 0.40 0.26 0.21
Age Middle 0.36 0.79 0.38 0.51 0.55 0.89 0.57 0.69
Age Older 0.38 0.80 0.39 0.53 0.65 0.90 0.67 0.77
Age Unknown 0.08 0.26 0.21 0.11 0.08 0.31 0.21 0.13
Age Young 0.35 0.83 0.36 0.51 0.57 0.87 0.60 0.71
Skin tone DS 0.27 0.43 0.36 0.31 0.52 0.59 0.66 0.63
Skin tone LS 0.27 0.48 0.35 0.33 0.53 0.63 0.65 0.64
Skin tone Unknown 0.24 0.53 0.30 0.32 0.32 0.69 0.37 0.48
Contrast high 0.28 0.60 0.33 0.40 0.40 0.73 0.47 0.57
Contrast low 0.22 0.47 0.30 0.28 0.34 0.63 0.42 0.50
Intensity dark 0.24 0.51 0.31 0.32 0.32 0.65 0.39 0.49
Intensity light 0.25 0.51 0.31 0.32 0.38 0.67 0.46 0.54
Size large 0.18 0.29 0.30 0.17 0.49 0.51 0.64 0.57
Size small 0.27 0.62 0.31 0.39 0.35 0.74 0.39 0.51

(a) BDD bias metrics FRCNN

(b) BDD bias metrics YOLO

Figure 6: Experiment 2 bias metrics visualization for BDD. Photo courtesy of author.
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(a) MIAP bias metrics FRCNN

(b) MIAP bias metrics YOLO

Figure 7: Experiment 2 bias metrics visualization for MIAP. Photo courtesy of author.

B.2.2 FAIRNESS

Table 7: Fairness analysis of BDD dataset in second experiment with reference group of unknown
skin tone individuals with low contrast, low intensity, and small size.

Attribute YOLO FRCNN
Attr Group Attr Value SP EO EOP FTA SP EO EOP FTA
Skin tone DS
Skin tone LS
Skin tone Unknown ✓ ✓ ✓ ✓ ✓ ✓
Contrast high ✓ ✓ ✓ ✓
Contrast low ✓ ✓ ✓ ✓ ✓ ✓
Intensity dark ✓ ✓ ✓ ✓ ✓ ✓
Intensity light ✓ ✓ ✓ ✓

Table 8: Fairness analysis of MIAP dataset in the second experiment with a reference group of
Middle-aged male individuals with unknown skin tone, low-contrast, low intensity, and small size.

Attribute FRCNN YOLO
Attr Group Attr Value SP EO EOP FTA SP EO EOP FTA
Gender Predominantly Feminine ✓ ✓ ✓ ✓
Gender Predominantly Masculine ✓ ✓ ✓ ✓ ✓ ✓
Gender Unknown
Age Middle ✓ ✓ ✓ ✓ ✓ ✓
Age Older ✓ ✓ ✓ ✓
Age Unknown
Age Young ✓ ✓ ✓ ✓
Skin tone DS ✓ ✓
Skin tone LS ✓ ✓
Skin tone Unknown ✓ ✓ ✓ ✓ ✓ ✓
Contrast high ✓ ✓ ✓ ✓
Contrast low ✓ ✓ ✓ ✓ ✓ ✓
Intensity dark ✓ ✓ ✓ ✓ ✓ ✓
Intensity light ✓ ✓ ✓ ✓
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B.3 EXPERIMENT 3: NORMAL DATA AND BIASED OBJECT DETECTOR

B.3.1 CONTRAST BIAS PERFORMANCE

Table 9: BDD performance analysis across single attributes either visual or demographic based on
contrast bias

Attribute FRCNN YOLO
Attr Group Attr Value AP Precision Recall F1 AP Precision Recall F1
Skin tone Unknown 0.60 0.74 0.67 0.71 0.30 0.72 0.37 0.49
Skin tone DS 0.94 0.93 0.94 0.94 0.96 0.93 0.96 0.95
Skin tone LS 0.90 0.84 0.92 0.88 0.91 0.91 0.94 0.93
Contrast high 0.59 0.74 0.66 0.70 0.34 0.77 0.39 0.51
Contrast low 0.63 0.75 0.69 0.72 0.34 0.73 0.41 0.53
Intensity dark 0.62 0.75 0.69 0.72 0.33 0.74 0.39 0.51
Intensity light 0.62 0.74 0.69 0.71 0.38 0.73 0.46 0.56
Size small 0.62 0.75 0.69 0.72 0.34 0.74 0.41 0.53

Table 10: MIAP performance analysis across single attributes either visual or demographic based
on contrast bias

Attribute FRCNN YOLO
Attr Group Attr Value AP Precision Recall F1 AP Precision Recall F1
Gender Predominantly Feminine 0.78 0.81 0.81 0.81 0.90 0.85 0.97 0.90
Gender Predominantly Masculine 0.84 0.81 0.87 0.84 0.90 0.85 0.96 0.90
Gender Unknown 0.32 0.31 0.64 0.39 0.27 0.35 0.65 0.45
Age Middle 0.82 0.81 0.85 0.83 0.90 0.85 0.96 0.90
Age Older 0.81 0.82 0.83 0.83 0.92 0.86 0.98 0.92
Age Unknown 0.23 0.26 0.60 0.31 0.17 0.28 0.57 0.31
Age Young 0.80 0.81 0.84 0.82 0.90 0.85 0.98 0.91
Skin tone DS 0.63 0.42 0.79 0.55 0.61 0.50 0.95 0.66
Skin tone LS 0.59 0.46 0.72 0.56 0.60 0.53 0.92 0.67
Skin tone Unknown 0.61 0.54 0.76 0.64 0.61 0.63 0.81 0.71
Contrast high 0.66 0.60 0.79 0.68 0.67 0.67 0.86 0.75
Contrast low 0.57 0.47 0.75 0.58 0.56 0.56 0.83 0.67
Intensity dark 0.63 0.53 0.80 0.64 0.62 0.60 0.85 0.71
Intensity light 0.59 0.51 0.74 0.60 0.59 0.58 0.83 0.69
Size large 0.35 0.25 0.55 0.28 0.41 0.38 0.88 0.53
Size small 0.71 0.63 0.81 0.71 0.68 0.69 0.83 0.75

(a) BDD bias metrics FRCNN

(b) BDD bias metrics YOLO

Figure 8: Experiment 3 bias metrics visualization for BDD while injecting contrast biases into the
object detector. Photo courtesy of author.
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(a) MIAP bias metrics FRCNN

(b) MIAP bias metrics YOLO

Figure 9: Experiment 3 bias metrics visualization for MIAP while injecting contrast biases into the
object detector. Photo courtesy of author.

B.3.2 CONTRAST BIAS FAIRNESS

Table 11: Fairness analysis of BDD dataset in the third experiment with reference group of unknown
skin tone individuals with low contrast, low intensity, and small size. Here biased detector is created
based on the contrast attribute.

Attribute YOLO FRCNN
Attr Group Attr Value SP EO EOP FTA SP EO EOP FTA
Skin tone DS ✓ ✓
Skin tone LS ✓ ✓
Skin tone Unknown ✓ ✓ ✓ ✓ ✓ ✓
Contrast high ✓ ✓ ✓ ✓
Contrast low ✓ ✓ ✓ ✓ ✓ ✓
Intensity dark ✓ ✓ ✓ ✓ ✓ ✓
Intensity light ✓ ✓ ✓ ✓

Table 12: Fairness analysis of MIAP dataset in third experiment with reference group of Middle-
aged male individuals with unknown skin tone, low-contrast, low intensity, and small size.Here
biased detector is created based on contrast attribute.

Attribute FRCNN YOLO
Attr Group Attr Value SP EO EOP FTA SP EO EOP FTA
Gender Predominantly Feminine ✓ ✓ ✓ ✓ ✓
Gender Predominantly Masculine ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gender Unknown
Age Middle ✓ ✓ ✓ ✓ ✓ ✓ ✓
Age Older ✓ ✓ ✓ ✓ ✓
Age Unknown ✓
Age Young ✓ ✓ ✓ ✓ ✓
Skin tone DS ✓ ✓ ✓ ✓ ✓ ✓
Skin tone LS ✓ ✓ ✓ ✓ ✓
Skin tone Unknown ✓ ✓ ✓ ✓ ✓ ✓
Contrast high ✓ ✓ ✓ ✓ ✓
Contrast low ✓ ✓ ✓ ✓ ✓ ✓ ✓
Intensity dark ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Intensity light ✓ ✓ ✓ ✓ ✓
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B.3.3 INTENSITY BIAS PERFORMANCE

Table 13: BDD performance analysis across single attributes either visual or demographic based on
intensity bias.

Attribute FRCNN YOLO
Attr Group Attr Value AP Precision Recall F1 AP Precision Recall F1
Skin tone Unknown 0.60 0.74 0.67 0.71 0.30 0.72 0.37 0.49
Skin tone DS 0.94 0.93 0.94 0.94 0.96 0.95 0.96 0.96
Skin tone LS 0.90 0.84 0.92 0.88 0.91 0.92 0.94 0.93
Contrast high 0.59 0.74 0.66 0.70 0.34 0.76 0.39 0.51
Contrast low 0.63 0.75 0.69 0.72 0.35 0.74 0.41 0.53
Intensity dark 0.62 0.75 0.69 0.72 0.33 0.74 0.39 0.51
Intensity light 0.62 0.74 0.69 0.71 0.39 0.74 0.46 0.57
Size small 0.62 0.75 0.69 0.72 0.34 0.74 0.41 0.53

Table 14: MIAP performance analysis across single attributes either visual or demographic based
on intensity bias

Attribute FRCNN YOLO
Attr Group Attr Value AP Precision Recall F1 AP Precision Recall F1
Gender Predominantly Feminine 0.78 0.81 0.81 0.81 0.90 0.85 0.97 0.90
Gender Predominantly Masculine 0.84 0.81 0.87 0.84 0.90 0.85 0.96 0.90
Gender Unknown 0.32 0.31 0.64 0.39 0.27 0.35 0.65 0.45
Age Middle 0.82 0.81 0.85 0.83 0.90 0.85 0.96 0.90
Age Older 0.81 0.82 0.83 0.83 0.93 0.87 0.98 0.92
Age Unknown 0.23 0.26 0.60 0.31 0.18 0.28 0.57 0.31
Age Young 0.80 0.81 0.84 0.82 0.90 0.85 0.98 0.91
Skin tone DS 0.63 0.42 0.79 0.55 0.62 0.50 0.95 0.66
Skin tone LS 0.59 0.46 0.72 0.56 0.61 0.53 0.92 0.67
Skin tone Unknown 0.61 0.54 0.76 0.64 0.62 0.63 0.81 0.71
Contrast high 0.66 0.60 0.79 0.68 0.68 0.67 0.86 0.75
Contrast low 0.57 0.47 0.75 0.58 0.58 0.56 0.83 0.67
Intensity dark 0.63 0.53 0.80 0.64 0.62 0.60 0.85 0.71
Intensity light 0.59 0.51 0.74 0.60 0.61 0.59 0.84 0.69
Size large 0.35 0.25 0.55 0.28 0.45 0.38 0.88 0.53
Size small 0.71 0.63 0.81 0.71 0.69 0.69 0.83 0.75

(a) BDD bias metrics FRCNN

(b) BDD bias metrics YOLO

Figure 10: Experiment 3 bias metrics visualization for BDD while injecting intensity biases into the
object detector. Photo courtesy of author.
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(a) MIAP bias metrics FRCNN

(b) MIAP bias metrics YOLO

Figure 11: Experiment 3 bias metrics visualization for MIAP while injecting intensity biases into
the object detector. Photo courtesy of author.

B.3.4 INTENSITY BIAS FAIRNESS

Table 15: Fairness analysis of BDD dataset in third experiment with reference group of unknown
skin tone individuals with low contrast, low intensity, and small size.Here biased detector is created
based on intensity attribute.

Attribute YOLO FRCNN
Attr Group Attr Value SP EO EOP FTA SP EO EOP FTA
Skin tone DS ✓ ✓
Skin tone LS ✓ ✓
Skin tone Unknown ✓ ✓ ✓ ✓ ✓ ✓
Contrast high ✓ ✓ ✓ ✓
Contrast low ✓ ✓ ✓ ✓ ✓ ✓
Intensity dark ✓ ✓ ✓ ✓ ✓ ✓
Intensity light ✓ ✓ ✓ ✓

Table 16: Fairness analysis of MIAP dataset in third experiment with reference group of Middle-
aged male individuals with unknown skin tone, low-contrast, low intensity, and small size. Here
biased detector is created based on intensity attribute.

Attribute FRCNN YOLO
Attr Group Attr Value SP EO EOP FTA SP EO EOP FTA
Gender Predominantly Feminine ✓ ✓ ✓ ✓ ✓
Gender Predominantly Masculine ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gender Unknown ✓
Age Middle ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Age Older ✓ ✓ ✓ ✓ ✓ ✓
Age Unknown ✓
Age Young ✓ ✓ ✓ ✓ ✓ ✓
Skin tone DS ✓ ✓ ✓ ✓ ✓ ✓
Skin tone LS ✓ ✓ ✓ ✓ ✓ ✓
Skin tone Unknown ✓ ✓ ✓ ✓ ✓ ✓ ✓
Contrast high ✓ ✓ ✓ ✓ ✓ ✓
Contrast low ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Intensity dark ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Intensity light ✓ ✓ ✓ ✓ ✓
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B.4 EXPERIMENT 4: BIASED DATA AND BIASED OBJECT DETECTOR

B.4.1 CONTRAST BIAS PERFORMANCE

Table 17: BDD performance analysis across single attributes either visual or demographic based on
contrast bias

Attribute FRCNN YOLO
Attr Group Attr Value AP Precision Recall F1 AP Precision Recall F1
Skin tone Unknown 0.22 0.71 0.25 0.35 0.10 0.69 0.12 0.17
Skin tone DS 0.45 0.91 0.45 0.60 0.43 0.91 0.44 0.59
Skin tone LS 0.38 0.82 0.39 0.53 0.43 0.95 0.44 0.60
Contrast high 0.23 0.72 0.26 0.37 0.12 0.76 0.14 0.21
Contrast low 0.22 0.71 0.25 0.36 0.11 0.71 0.14 0.20
Intensity dark 0.23 0.72 0.26 0.37 0.11 0.72 0.14 0.20
Intensity light 0.22 0.70 0.24 0.33 0.12 0.73 0.14 0.20
Size small 0.23 0.71 0.25 0.36 0.11 0.72 0.14 0.20

Table 18: MIAP performance analysis across single attributes either visual or demographic based
on contrast bias.

Attribute FRCNN YOLO
Attr Group Attr Value AP Precision Recall F1 AP Precision Recall F1
Gender Predominantly Feminine 0.33 0.8 0.35 0.49 0.55 0.88 0.59 0.71
Gender Predominantly Masculine 0.38 0.79 0.4 0.53 0.54 0.88 0.57 0.69
Gender Unknown 0.12 0.31 0.23 0.14 0.12 0.4 0.27 0.21
Age Middle 0.36 0.79 0.38 0.51 0.53 0.88 0.57 0.69
Age Older 0.38 0.8 0.39 0.53 0.64 0.89 0.67 0.76
Age Unknown 0.08 0.26 0.21 0.11 0.07 0.31 0.21 0.13
Age Young 0.35 0.83 0.36 0.51 0.56 0.87 0.6 0.71
Skin tone DS 0.27 0.43 0.36 0.31 0.45 0.59 0.66 0.62
Skin tone LS 0.27 0.48 0.35 0.33 0.45 0.63 0.65 0.64
Skin tone Unknown 0.24 0.53 0.3 0.32 0.29 0.69 0.37 0.48
Contrast high 0.28 0.6 0.33 0.4 0.38 0.72 0.47 0.57
Contrast low 0.22 0.47 0.3 0.28 0.3 0.62 0.42 0.5
Intensity dark 0.24 0.51 0.31 0.32 0.3 0.65 0.4 0.49
Intensity light 0.25 0.51 0.31 0.32 0.34 0.66 0.46 0.54
Size large 0.18 0.29 0.3 0.17 0.36 0.51 0.64 0.57
Size small 0.27 0.62 0.31 0.39 0.33 0.74 0.39 0.51

(a) BDD bias metrics FRCNN

(b) BDD bias metrics YOLO

Figure 12: Experiment 4 bias metrics visualization for BDD while injecting contrast biases into the
object detector. Photo courtesy of author.

23



Under review as a conference paper at ICLR 2024

(a) MIAP bias metrics FRCNN

(b) MIAP bias metrics YOLO

Figure 13: Experiment 4 bias metrics visualization for MIAP while injecting contrast biases into the
object detector. Photo courtesy of author.

B.4.2 CONTRAST BIAS FAIRNESS

Table 19: Fairness analysis of BDD dataset in fourth experiment with reference group of unknown
skin tone individuals with low contrast, low intensity, and small size. Contrast bias is injected to the
detector.

Attribute YOLO FRCNN
Attr Group Attr Value SP EO EOP FTA SP EO EOP FTA
Skin tone DS
Skin tone LS
Skin tone Unknown ✓ ✓ ✓ ✓ ✓ ✓
Contrast high ✓ ✓ ✓ ✓
Contrast low ✓ ✓ ✓ ✓ ✓ ✓
Intensity dark ✓ ✓ ✓ ✓ ✓ ✓
Intensity light ✓ ✓ ✓ ✓

Table 20: Fairness analysis of MIAP dataset with reference group of Middle-aged male individuals
with unknown skin tone, low-contrast, low intensity, and small size. Contrast bias is injected to the
detector.

Attribute FRCNN YOLO
Attr Group Attr Value SP EO EOP FTA SP EO EOP FTA
Gender Predominantly Feminine ✓ ✓ ✓ ✓
Gender Predominantly Masculine ✓ ✓ ✓ ✓ ✓ ✓
Gender Unknown
Age Middle ✓ ✓ ✓ ✓ ✓ ✓
Age Older ✓ ✓ ✓ ✓
Age Unknown
Age Young ✓ ✓ ✓ ✓
Skin tone DS ✓ ✓
Skin tone LS ✓ ✓
Skin tone Unknown ✓ ✓ ✓ ✓ ✓ ✓
Contrast high ✓ ✓ ✓ ✓
Contrast low ✓ ✓ ✓ ✓ ✓ ✓
Intensity dark ✓ ✓ ✓ ✓ ✓ ✓
Intensity light ✓ ✓ ✓ ✓
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B.4.3 INTENSITY BIAS PERFORMANCE

Table 21: BDD performance analysis across single attributes either visual or demographic based on
intensity bias

Attribute FRCNN YOLO
Attr Group Attr Value AP Precision Recall F1 AP Precision Recall F1
Skin tone Unknown 0.22 0.71 0.25 0.35 0.10 0.69 0.12 0.17
Skin tone DS 0.45 0.91 0.45 0.60 0.45 0.96 0.45 0.61
Skin tone LS 0.38 0.82 0.39 0.53 0.43 0.95 0.44 0.60
Contrast high 0.23 0.72 0.26 0.37 0.12 0.75 0.14 0.21
Contrast low 0.22 0.71 0.25 0.36 0.11 0.71 0.14 0.20
Intensity dark 0.23 0.72 0.26 0.37 0.11 0.72 0.14 0.20
Intensity light 0.22 0.70 0.24 0.33 0.11 0.73 0.14 0.20
Size small 0.23 0.71 0.25 0.36 0.11 0.72 0.14 0.20

Table 22: MIAP performance analysis across single attributes either visual or demographic based
on intensity bias.

Attribute FRCNN YOLO
Attr Group Attr Value AP Precision Recall F1 AP Precision Recall F1
Gender Predominantly Feminine 0.33 0.80 0.35 0.49 0.56 0.88 0.59 0.71
Gender Predominantly Masculine 0.38 0.79 0.40 0.53 0.54 0.88 0.57 0.69
Gender Unknown 0.12 0.31 0.23 0.14 0.12 0.40 0.27 0.21
Age Middle 0.36 0.79 0.38 0.51 0.54 0.88 0.57 0.69
Age Older 0.38 0.80 0.39 0.53 0.63 0.89 0.67 0.76
Age Unknown 0.08 0.26 0.21 0.11 0.07 0.31 0.21 0.13
Age Young 0.35 0.83 0.36 0.51 0.56 0.87 0.60 0.71
Skin tone DS 0.27 0.43 0.36 0.31 0.46 0.59 0.66 0.62
Skin tone LS 0.27 0.48 0.35 0.33 0.46 0.63 0.65 0.64
Skin tone Unknown 0.24 0.53 0.30 0.32 0.29 0.69 0.37 0.48
Contrast high 0.28 0.60 0.33 0.40 0.38 0.72 0.47 0.57
Contrast low 0.22 0.47 0.30 0.28 0.30 0.62 0.42 0.50
Intensity dark 0.24 0.51 0.31 0.32 0.30 0.65 0.40 0.49
Intensity light 0.25 0.51 0.31 0.32 0.35 0.66 0.46 0.54
Size large 0.18 0.29 0.30 0.17 0.38 0.51 0.64 0.57
Size small 0.27 0.62 0.31 0.39 0.33 0.74 0.39 0.51

(a) BDD bias metrics FRCNN

(b) BDD bias metrics YOLO

Figure 14: Experiment 4 bias metrics visualization for BDD while injecting intensity biases into the
object detector. Photo courtesy of author.
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(a) MIAP bias metrics FRCNN

(b) MIAP bias metrics YOLO

Figure 15: Experiment 4 bias metrics visualization for MIAP while injecting intensity biases into
the object detector. Photo courtesy of author.

B.4.4 INTENSITY BIAS FAIRNESS

Table 23: Fairness analysis of BDD dataset in fourth experiment with reference group of unknown
skin tone individuals with low contrast, low intensity, and small size. Intensity bias is injected to the
detector.

Attribute YOLO FRCNN
Attr Group Attr Value SP EO EOP FTA SP EO EOP FTA
Skin tone DS ✓ ✓
Skin tone LS ✓ ✓
Skin tone Unknown ✓ ✓ ✓ ✓ ✓ ✓
Contrast high ✓ ✓ ✓ ✓
Contrast low ✓ ✓ ✓ ✓ ✓ ✓
Intensity dark ✓ ✓ ✓ ✓ ✓ ✓
Intensity light ✓ ✓ ✓ ✓

Table 24: Fairness analysis of MIAP dataset with reference group of Middle-aged male individuals
with unknown skin tone, low-contrast, low intensity, and small size. Intensity bias is injected to the
detector.

Attribute FRCNN YOLO
Attr Group Attr Value SP EO EOP FTA SP EO EOP FTA
Gender Predominantly Feminine ✓ ✓ ✓ ✓ ✓
Gender Predominantly Masculine ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gender Unknown
Age Middle ✓ ✓ ✓ ✓ ✓ ✓ ✓
Age Older ✓ ✓ ✓ ✓ ✓
Age Unknown
Age Young ✓ ✓ ✓ ✓ ✓
Skin tone DS ✓ ✓ ✓ ✓
Skin tone LS ✓ ✓ ✓
Skin tone Unknown ✓ ✓ ✓ ✓ ✓ ✓
Contrast high ✓ ✓ ✓ ✓
Contrast low ✓ ✓ ✓ ✓ ✓ ✓
Intensity dark ✓ ✓ ✓ ✓ ✓ ✓ ✓
Intensity light ✓ ✓ ✓ ✓
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