
https://bit.ly/ABTestingIntuitionBusters  
© Kohavi, Deng, Vermeer 2022. This is the author's version of the work. It is posted here for your personal use.  

Not for redistribution. The definitive version will be published in KDD 2022 at https://doi.org/10.1145/3534678.3539160 
 

A/B Testing Intuition Busters 
Common Misunderstandings in Online Controlled Experiments

Ron Kohavi 
Kohavi  

Los Altos, CA  
ronnyk@live.com 

Alex Deng 
 Airbnb Inc 
Seattle, WA 

alexdeng@live.com 

Lukas Vermeer 
Vista 

Delft, The Netherlands 
lukas@lukasvermeer.nl 

ABSTRACT 

A/B tests, or online controlled experiments, are heavily used in 
industry to evaluate implementations of ideas. While the statistics 
behind controlled experiments are well documented and some 
basic pitfalls known, we have observed some seemingly intuitive 
concepts being touted, including by A/B tool vendors and 
agencies, which are misleading, often badly so. Our goal is to 
describe these misunderstandings, the “intuition” behind them, 
and to explain and bust that intuition with solid statistical 
reasoning. We provide recommendations that experimentation 
platform designers can implement to make it harder for 
experimenters to make these intuitive mistakes. 

CCS CONCEPTS 
General and Reference → Cross-computing tools and techniques →

Experimentation; Mathematics of computing → Probability and statistics 
→ Probabilistic inference problems → Hypothesis testing and confidence 
interval computation 
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1. Introduction 
Misinterpretation and abuse of statistical tests, 

confidence intervals, and statistical power have been 
decried for decades, yet remain rampant. 

 A key problem is that there are no interpretations of 
these concepts that are at once simple, intuitive, correct, 

and foolproof 
    -- Greenland et al (2016) 

 
A/B tests, or online controlled experiments (see appendix for 
references), are heavily used in industry to evaluate 
implementations of ideas, with the larger companies starting over 
100 experiment treatments every business day (Gupta, et al. 2019).  
While the statistics behind controlled experiments are well 
documented and some pitfalls were shared (Crook, et al. 2009, 
Dmitriev, Frasca, et al. 2016, Kohavi, Tang and Xu 2020, Dmitriev, 
Gupta, et al. 2017), we see many erroneous applications and 
misunderstanding of the statistics, including in books, papers, and 
software. The appendix shows the impact of these misunderstood 
concepts in courts and legislation.  
 
The concepts we share appear intuitive yet hide unexpected 
complexities. Although some amount of abstraction leakage is 
usually unavoidable (Kluck and Vermeer 2015), our goal is to 
share these common intuition busters so that experimentation 
platforms can be designed to make it harder for experimenters to 
misuse them.  Our contributions are as follows: 

• We share a collection of important intuition busters. 
Some well-known commercial vendors of A/B testing 
software have focused on “intuitive” presentations of 
results, resulting in incorrect claims to their users 
instead of addressing their underlying faulty intuitions. 
We believe that these solutions exacerbate the situation, 
as they reinforce incorrect intuitions. 

• We drill deeply into one non-intuitive result, which to 
the best of our knowledge has not been studied before: 
the distribution of the treatment effect under non-
uniform assignment to variants. Non-uniform 
assignments have been suggested in the statistical 
literature. We highlight several concerns. 

• We provide recommendations as well as deployed 
examples for experimentation platform designers to 
help address the underlying faulty intuitions identified 
in our collection. 
 

2. Motivating Example 
You win some, you learn some 

-- Jason Mraz 

GuessTheTest is a website that shares “money-making A/B test 
case studies.” We believe such efforts to share ideas evaluated 
using A/B tests are useful and should be encouraged. That said, 
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some of the analyses could be improved with the 
recommendations shared in this paper (indeed, some were already 
integrated into the web site based on feedback from one of the 
authors). This site is not unique and represents common industry 
practices in sharing ideas. We are using it as a concrete example 
that shows several patterns where the industry can improve.  

A real A/B test was shared on December 16, 2021, in 
GuessTheTest’s newsletter and website with the title: “Which 
design radically increased conversions 337%?” (O'Malley 2021). 
The A/B test described two landing pages for a website (the 
specific change is not important). The test ran for 35 days, and 
traffic was split 50%/50% for maximum statistical power. The 
surprising results are shown in Table 1 below. 
 

Table 1: Results of a real A/B Test 
Variant Visitors Conversion

s 
Conversion 
rate 

Lift 

Control 82 3 3.7% -- 
Treatment 75 12 16.0% 337% 

 
The analysis showed a massive lift of 337% for the Treatment with 
a p-value of 0.009 (using Fisher’s exact test, which is more 
appropriate for small numbers, the p-value is 0.013), which the 
article said is “far below the standard < 0.05 cut-off,” and with 
observed power of 97%, “well beyond the accepted 80% minimum.” 

Given the data presented, we strongly believe that this result 
should not be trusted, and we hope to convince the readers and 
improve industry best practices so that similar experiment results 
will not be shared without additional validation. Based on our 
feedback and feedback from others, GuessTheTest added that the 
experiment was underpowered and suggested doing a replication 
run. 
 

3. Surprising Results Require Strong 
Evidence—Lower P-Values 

Extraordinary claims require 
 extraordinary evidence" (ECREE) 

-- Carl Sagan 

Surprising results make great story headlines and are often 
remembered even when flaws are found, or the results do not 
replicate. Many of the most cited psychology findings failed to 
replicate (Open Science Collaboration 2015). Recently, the term 
Bernoulli’s Fallacy has been used to describe the issue as a “logical 
flaw in the statistical methods” (Clayton 2021).  

While controlled experiments are the gold standard in science for 
claiming causality, many people misunderstand p-values. A very 
common misunderstanding is that a statistically significant result 
with p-value 0.05 has a 5% chance of being a false positive 
(Goodman 2008, Greenland, Senn, et al. 2016, Vickers 2009). A 
common alternative to p-values used by commercial vendors is 

 
1  Some authors prefer to use the semicolon notation; see discussion at: 
https://statmodeling.stat.columbia.edu/2013/03/12/misunderstanding-the-
p-value/#comment-143481 

“confidence,” which is defined as (1-p-value)*100%, and often 
misinterpreted as the probability that the result is a true positive. 

Vendors who sell A/B testing software and should know better, 
get this concept wrong. For example, Optimizely’s documentation 
equates p-value of 0.10 with “10% error rate” (Optimizely 2022):  

…to determine whether your results are statistically significant: how 
confident you can be that the results actually reflect a change in your 
visitors' behavior, not just noise or randomness… In statistical terms, 
it's 1-[p-value]. If you set a significance threshold of 90%...you can 
expect a 10% error rate. 

Book authors about A/B Testing also get it wrong. The book A/B 
Testing: The Most Powerful Way to Turn Clicks Into Customers 
(Siroker and Koomen 2013) incorrectly defines p-value:  

…we can compute the probability that our observed difference (-0.007) 
is due to random chance. This value, called the p-value... 

The book You Should Test That: Conversion Optimization for More 
Leads, Sales and Profit (Goward 2012) incorrectly states 

…when statistical significance (that is, it’s unlikely the test results are 
due to chance) has been achieved. 

Even Andrew Gelman, a Statistics professor at Columbia 
University, has gotten it wrong in one of his published papers (due 
to an editorial change) and apologized (Gelman 2014). 

The above examples, and several more in the appendix, show that 
p-values and confidence are often misunderstood, even among 
experts who should know better. What is the p-value then? The 
p-value is the probability of obtaining a result equal to or more 
extreme than what was observed, assuming that all the modeling 
assumptions, including the null hypothesis, 𝐻0 , are true 
(Greenland, Senn, et al. 2016). Conditioning 1  on the null 
hypothesis is critical and most often misunderstood. In 
probabilistic terms, we have 

p-value = 𝑃(Δ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑜𝑟 𝑚𝑜𝑟𝑒 𝑒𝑥𝑡𝑟𝑒𝑚𝑒|𝐻0 𝑖𝑠 𝑡𝑟𝑢𝑒) . 
 

This conditional probability is not what is being described in the 
examples above. All the explanations above are variations of the 
opposite conditional probability: what is the probability of the 
null hypothesis given the delta observed:  

𝑃(𝐻0 𝑖𝑠 𝑡𝑟𝑢𝑒 |Δ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) 

Bayes Rule can be used for inverting between these two, but the 
crux of the problem is that it requires the prior probability of the 
null hypothesis. Colquhoun (2017) makes a similar point and 
writes that “we hardly ever have a valid value for this prior.” 
However, in companies running online controlled experiments at 
scale, we can construct good prior estimates based on historical 
experiments.  

One useful metric to look at is the False Positive Risk (FPR), which 
is the probability that the statistically significant result is a false 
positive, or the probability that 𝐻0 is true (no real effect) when the 

https://en.wikipedia.org/wiki/Sagan_standard
https://www.google.com/url?q=https://statmodeling.stat.columbia.edu/2013/03/12/misunderstanding-the-p-value/%23comment-143481&sa=D&source=editors&ust=1644099970686800&usg=AOvVaw0oxhaKKZlaAAkISortu5XB
https://www.google.com/url?q=https://statmodeling.stat.columbia.edu/2013/03/12/misunderstanding-the-p-value/%23comment-143481&sa=D&source=editors&ust=1644099970686800&usg=AOvVaw0oxhaKKZlaAAkISortu5XB
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test was statistically significant (Colquhoun 2017).  Using the 
following terminology:  

• SS is a statistically significant result 
• 𝜶 is the threshold used to determine statistical significance 

(SS), commonly 0.05 for a two-tailed t-test.  
• 𝜷 is the type-II error (usually 0.2 for 80% power) 
• 𝝅 is the prior probability of the null hypothesis, that is 𝑃(𝐻0) 

 
 

Using Bayes Rule, we can derive the following (Wacholder, et al. 
2004, Ioannidis 2005, Kohavi, Deng and Longbotham, et al. 2014, 
Benjamin, et al. 2017): 

𝑃(𝐻0|𝑆𝑆) = 𝑃(𝑆𝑆|𝐻0) ∗
𝑃(𝐻0)

𝑃(𝑆𝑆)
   

=  
𝑃(𝑆𝑆|𝐻0)∗𝑃(𝐻0)

𝑃(𝑆𝑆|𝐻0)∗𝑃(𝐻0)+𝑃(𝑆𝑆|¬𝐻0)∗𝑃(¬𝐻0)
   

=
α ∗ 𝜋

α ∗  𝜋 +  (1 − 𝛽) ∗ (1 − 𝜋)
 

 
Several estimates of historical success rates (what the org believes 
are true improvements to the Overall Evaluation Criterion) have 
been published. These numbers may involve different accounting 
schemes, and we never know the true rates, but they suffice as 
ballpark estimates. The table below summarizes the 
corresponding implied FPR, assuming 𝜋 = 1 − success-rate , 
experiments were properly powered at 80%, and using a p-value 
of 0.05 but plugging in 0.025 into the above formula because only 
statistically significant improvements are considered successful in 
two-tailed t-tests. In practice, some results will have a 
significantly lower p-value than the threshold, and those have a 
lower FPR, while results close to the threshold have a higher FPR, 
as this is the overall FPR for p-value <= 0.05 in a two-tailed t-test 
(Goodman and Greenland 2007). Also, other factors like multiple 
variants, iterating on ideas several times, and flexibility in data 
processing increase the FPR due to multiple hypothesis testing. 

What Table 2 summarizes is how much more likely it is to have a 
false positive stat-sig result than what people intuitively think.  
Moving from the industry standard of 0.05 to 0.01 or 0.005 aligns 
with the threshold suggested by the 72-author paper (Benjamin, 
et al. 2017) for “claims of new discoveries.”  Finally, if the result of 
an experiment is highly unusual or surprising, one should invoke 
Twyman’s law—any figure that looks interesting or different is 
usually wrong (Kohavi, Tang and Xu 2020)—and only accept the 
result if the p-value is very low. 

In our motivating example, the lift to overall conversion was over 
300%. We have been involved in tens of thousands of A/B tests 
that ran at Airbnb, Booking, Amazon, and Microsoft, and have 
never seen any change that improves conversions anywhere near 
this amount. We think it’s appropriate to invoke Twyman’s law 
here. In the next section, we show that the pre-experiment power 
is about 3% (highly under-powered). Plugging that number in, 
even with the highest success rate of 33% from Table 2, we end up 

 
2 Permission to include statistic was given by Airbnb 

with an FPR of 63%, so likely to be false. Alternatively, to override 
such low power, if we want the false positive probability, 
𝑃(𝐻0|𝑆𝑆) to be 0.05, we would need to set the p-value threshold 
as follows:  

α/2 = 
0.05 ∗ (1 − 𝛽) ∗ (1 − 𝜋)

0.95 ∗ 𝜋
 

 
or α = 0.0016, much lower than the 0.009 reported. 
 
Table 2: False Positive Risk given the Success Rate, p-value 

threshold of 0.025 (successes only), and 80% power 
Company/ 
Source 

Success 
Rate 

FPR Reference 

Microsoft 33% 5.9% (Kohavi, Crook and 

Longbotham 2009) 
Avinash 
Kaushik 

20% 11.1% (Kaushik 2006) 

Bing 15% 15.0% (Kohavi, Deng and 

Longbotham, et al. 2014) 
Booking.com, 
Google Ads, 
Netflix 

10% 22.0% (Manzi 2012, Thomke, 

Experimentation Works: 

The Surprising Power of 

Business Experiments 

2020, Moran 2007) 
Airbnb Search 8% 26.4% https://www.linkedin.co

m/in/ronnyk2 
 
We recommend that experimentation platforms show the FPR or 
estimates of the posterior probability in addition to p-values, and 
that surprising results be replicated. At Microsoft, the 
experimentation platform, ExP, provides estimates that the 
treatment effect is not zero using Bayes Rule with priors from 
historical data.  In other organizations, FPR was used to set α. 

4. Experiments with Low Statistical Power 
are NOT Trustworthy 

When I finally stumbled onto power analysis… 
it was as if I had died and gone to heaven 

-- Jacob Cohen (1990) 

Statistical power is the probability of detecting a meaningful 
difference between the variants when there really is one, that is, 
rejecting the null when there is a true difference of δ . When 
running controlled experiments, it is recommended that we pick 
the sample size to have sufficient statistical power to detect a 
minimum delta of interest.  With an industry standard power of 
80%, and p-value threshold of 0.05, the sample size for each of two 
equally sized variants can be determined by this simple formula 
(van Belle 2002): 

𝑛 =  
16 𝜎2

δ2   

Where 𝑛 is the number of users in each variant, and the variants 
are assumed to be of equal size, 𝜎2 is the variance of the metric of 

https://www.linkedin.com/in/ronnyk/
https://www.linkedin.com/in/ronnyk/
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interest, and δ  is the sensitivity, or the minimum amount of 
change you want to detect.   

The derivation of the formula is useful for the rest of the section 
and the next section, so we will summarize its derivation (van 
Belle 2002). Given two variants of size 𝑛 each with a standard 
deviation of 𝜎 , we reject the null hypothesis that there is no 
difference between Control and Treatment (treatment effect is 
zero) if the observed value is larger than 𝑍1−𝛼/2*SE (e.g., 𝑍1−𝛼/2 

for 𝛼 = 0.05  in a two-tailed test is  𝑍0.975 = 1.96 ); 𝑆𝐸 , the 

standard error for the difference is 𝜎√2 𝑛⁄ . We similarly reject the 
alternative hypothesis that the difference is 𝛿  if the observed 
value is smaller than 𝑍1−𝛽*SE from 𝛿. (Without loss of generality, 
we evaluate the left tail of a normal distribution centered on a 
positive 𝛿 as the alternative; the same mirror computation can be 
made with a normal centered on −𝛿 .) The critical value is, 
therefore, when these two rejection criteria are equal (the 
approximation ignores rejection based on the wrong tail, 
sometimes called type III error, a very reasonable and common 
approximation): 
 

𝑍1−𝛼/2 ∗ SE =   𝛿 –  𝑍1−𝛽*SE                     Equation 1 
SE  =   𝛿/( 𝑍1−𝛽 + 𝑍1−𝛼/2)         Equation 2 

𝜎√2 𝑛⁄   =   𝛿/( 𝑍1−𝛽 + 𝑍1−𝛼/2) 

𝑛 =   2𝜎2( 𝑍1−𝛽 + 𝑍1−𝛼/2)2 𝛿2⁄  
 
For 80% power, 𝛽 = 0.2, 𝑍1−𝛽  =  0.84, and 𝑍1−𝛼/2  =  1.96, so 

the numerator is 15.68𝜎2, conservatively rounded to 16. Another 
way to look at Equation 2, is that with 80% power, the detectable 
effect, 𝛿, is 2.8SE (0.84SE+1.96SE). 
 
From our GuessTheTest motivating example, a conservative pre-
test statistical power calculation would be to detect a 10% relative 
change. In Optimizely’s survey (2021) of 808 companies, about 
half said experimentation drove 10% uplift in revenue over time 
from multiple experiments. At Bing, monthly improvements in 
revenue from multiple experiments were usually in the low single 
digits (Kohavi, Tang and Xu 2020, Figure 1.4). A large relative 
percentage, such as 10% for a single experiment, is conservative in 
that it will require a smaller sample than attempting to detect 
smaller changes. Assuming historical data showed 3.7% as the 
conversion rate (what we see for Control), we can plug-in 

𝜎2 = 𝑝 ∗ (1 − 𝑝) = 3.7% ∗ (1 − 3.7%) = 3.563% and 

𝛿 = 3.7% ∗ 10% = 0.37%  

The sample size recommended for each variant to achieve 80% 
power is therefore: 

16𝜎2/𝛿2 = 16 ∗ 3.563%/(0.37%)2 =  41,642 . 

The above-mentioned test was run with about 80 users per 
variant, and thus grossly underpowered even for detecting a large 
10% change.  

The power for detecting a 10% relative change with 80 users in 
this example is 3% (formula in the next section). With so little 

power, the experiment is meaningless. Gelman et al. (2014) show 
that when power goes below 0.1, the probability of getting the 
sign wrong (e.g., concluding that the effect is positive when it is 
in fact negative) approaches 50% as shown in Figure 1.  

 
Figure 1: Type S (sign) error of the treatment effect as a 
function of statistical power (Gelman and Carlin 2014) 

 
The general guidance is that A/B tests are useful to detect effects 
of reasonable magnitudes when you have, at least, thousands of 
active users, preferably tens of thousands (Kohavi, Deng and 
Frasca, et al. 2013).  
 
Table 3 shows the False Positive Risk (FPR) for different levels of 
power.  Running experiments at 20% power with similar success 
rate to Booking.com, Google ads, Netflix, or Airbnb search, more 
than half of your statistically significant results will be false 
positives! 
 

Table 3: False Positive Risk as in Table 2, but with 80% 
power, 50% power, and 20% power 

Company/ 
Source 

Success 
Rate 

FPR @ 
80% 
Power 

FPR @ 
50% 
Power 

FPR @ 
20% 
Power 

Microsoft 33% 5.9% 9.1% 20.0% 

Avinash 
Kaushik 

20% 11.1% 16.7% 33.3% 

Bing 15% 15.0% 22.1% 41.5% 

Booking.com, 
Google Ads, 
Netflix 

10% 22.0% 31.0% 52.9% 

Airbnb search 8% 26.4% 36.5% 59.0% 

 
Ioannidis (2005) made this point in a highly cited paper: Why Most 
Published Research Findings Are False. With many low statistical 
power studies published, we should expect many false positives 
when studies show statistically significant results. Moreover, 
power is just one factor; other factors that can lead to incorrect 
findings include: flexibility in designs, financial incentives, and 
simply multiple hypothesis testing. Even if there is no ethical 
concern, many researchers are effectively p-hacking.   
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A seminal analysis of 78 articles in the Journal Abnormal and 
Social Psychology during 1960 and 1961 showed that researchers 
had only 50% power to detect medium-sized effects and only 20% 
power to detect small effects (Cohen 1962).  With such low power, 
it is no wonder that published results are often wrong or 
exaggerated. In a superb paper by Button et al. (2013), the authors 
analyzed 48 articles that included meta-analyses in the 
neuroscience domain. Based on these meta-analyses, which 
evaluated 730 individual studies published, they were able to 
assess the key parameters for statistical power. Their conclusion: 
the median statistical power in neuroscience is conservatively 
estimated at 21%. With such low power, many false positive 
results are to be expected, and many true effects are likely to be 
missed! 

The Open Science Collaboration (2015) attempted to replicate 100 
studies from three major psychology journals, where studies 
typically have low statistical power. Of these, only 36% had 
significant results compared to 97% in the original studies.  

When the power is low, the probability of detecting a true effect 
is small, but another consequence of low power, which is often 
unrecognized, is that a statistically significant finding with low 
power is likely to highly exaggerate the size of the effect. The 
winner’s curse says that the “lucky” experimenter who finds an 
effect in a low power setting, or through repeated tests, is cursed 
by finding an inflated effect (Lee and Shen 2018, Zöllner and 
Pritchard 2007, Deng, et al. 2021). For studies in neuroscience, 
where power is usually in the range of 8% to 31%, initial treatment 
effects found are estimated to be inflated by 25% to 50% (Button, 
et al. 2013). 

Gelman and Carlin (2014) show that when power is below 50%, 
the exaggeration ratio, defined as the expectation of the absolute 
value of the estimate, divided by the true effect size, becomes so 
high as to be meaningless, as shown in Figure 2. 

 
Figure 2: Exaggeration ratio as a function of statistical 

power (Gelman and Carlin 2014) 
 
Our recommendation is that experimentation platforms should 
discourage experimenters from starting underpowered 
experiments. With high probability, nothing statistically 
significant will be found, and in the unlikely case (e.g., by multiple 

running iterations) a statistically significant result is obtained, it 
is likely to be a false positive with an overestimated effect size. 

5. Post-hoc Power Calculations are Noisy 
and Misleading  

This power is what I mean when I talk of  
reasoning backward 

-- Sherlock Holmes, A Study in Scarlet 
 
Given an observed treatment effect 𝛿, one can assume that it is 
the true effect and compute the “observed power” or “post-hoc 
power” from Equation 1 above as follows: 

 𝑍1−𝛽*SE   =   𝛿 − 𝑍1−𝛼/2 ∗ SE 

𝑍1−𝛽 =  𝛿 SE⁄ − 𝑍1−𝛼/2 

1 − 𝛽 =  Φ(𝛿 SE⁄ − 𝑍1−𝛼/2) 
 
The term 𝛿 SE⁄  is the observed Z-value used for the test statistic.  
It is hence 𝑍1−𝑝𝑣𝑎𝑙/2, and we can derive the ad-hoc power as 

1 − 𝛽 =  Φ(𝑍1−𝑝𝑣𝑎𝑙/2 − 𝑍1−𝛼/2). 

Note that power is thus fully determined by the p-value and 𝛼, 
and the graph is shown in Figure 3.  If the p-value is greater than 
0.05, then the power is less than 50% (technically as noted above, 
this ignores type-III errors, which are tiny).  
 

 
Figure 3: post-hoc power is determined by p-value 

 
In our motivating example, the p-value was 0.009, translating into 
Z of 2.61. Subtracting 1.96 gives 0.65, which translates into 74% 
post-power, which may seem reasonable.   

However, compare this number to the calculation in Section 4, 
where the pre-experiment power was estimated at 3%. In low-
power experiments, the p-value has enormous variation, and 
translating it into post-hoc power results in a very noisy estimate 
(a video of p-values in a low power simulation is at 
https://tiny.cc/dancepvals). Gelman (2019) wrote that “using 
observed estimated of effect size is too noisy to be useful.” 
Greenland (2012) wrote: “for a study as completed (observed), it is 
analogous to giving odds on a horse race after seeing the outcome” 
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and “post hoc power is unsalvageable as an analytic tool, despite 
any value it has for study planning.” 

A key use of statistical power is to claim that for a non-significant 
result, the true treatment effect is bounded by a small region of 
∓𝜀 because otherwise there is a high probability (e.g., 80%) that 
the observation would have been significant.  This claim holds 
true for pre-experiment power calculations, but it fails 
spectacularly for post-hoc, or observed power, calculations. 
In The Abuse of Power: The Pervasive Fallacy of Power Calculations 
for Data Analysis (Hoenig and Heisey 2001), the authors share 
what they call a “fatal logical flow” and the “power approach 
paradox” (PAP). Suppose two experiments gave rise to 
nonrejected null hypotheses, and the observed power was larger 
in the first than the second. The intuitive interpretation is that the 
first experiment gives stronger support favoring the null 
hypothesis, as with high power, failure to reject the null 
hypothesis implies that it is probably true. However, this 
interpretation is only correct for pre-experiment power. As shown 
above, post-hoc power is determined by the p-value and 𝛼, so the 
first experiment has a lower p-value, providing stronger support 
against the null hypothesis! 

Experimenters who get a non-significant result will sometimes do 
a post-hoc power analysis and write something like this: the non-
significant result is due to a small sample size, as our power was 
only 30%.  This claim implies that they believe they have made a 
type-II error and if only they had a larger sample, the null would 
be rejected. This is catch-22—the claim cannot be made from the 
data using post-hoc power, as a non-significant result will always 
translate to low post-hoc power. 

Given the strong evidence that post-hoc power is a noisy and 
misleading tool, we strongly recommend that experimentation 
systems (e.g., https://abtestguide.com/calc) not show it at all. 
Instead, if power calculations are desired, such systems should 
encourage their users to pre-register the minimum effect size of 
interest ahead of experiment execution, and then base their 
calculations on this input rather than the observed effect size. At 
Booking.com, the deployed experimentation platform—
Experiment Tool—asks users to enter this information when 
creating a new experiment. 

6. Minimize Data Processing Options in 
Experimentation Platforms 

Statistician: you have already calculated the p-value? 
Surgeon: yes, I used multinomial logistic regression. 

Statistician: Really? How did you come up with that? 
Surgeon: I tried each analysis on the statistical software 

 dropdown menus, and that was the one  
that gave the smallest p-value 

-- Andrew Vickers (2009) 
 
In an executive review, a group presented an idea that, they said, 
was evaluated in an A/B test and resulted in a significant increase 
to a key business metric. When one of us (Kohavi) asked to see 
the scorecard, and the metric’s p-value was far from significant.  
Why did you say it was statistically significant, he asked?  The 

response was that it was statistically significant once you turn on 
the option for extreme outlier removal.  We had inadvertently 
allowed users to do multiple-comparisons and inflate type-I error 
rates. 
Outlier removal must be blind to the hypothesis. André (2021) 
showed that outlier removal within a variant (e.g., removal of the 
1% extreme values, determined for each variant separately), rather 
than across the data, can result in false-positive rates as high as 
43%. 

Optimizely’s initial A/B system was showing near-real-time 
results, so their users peeked at the data and chose to stop when 
it was statistically significant, a procedure recommended by the 
company at the time.  This type of multiple testing significantly 
inflates the type-I error rates (Johari, et al. 2017).  

Flexibility in data collection, analysis, and reporting dramatically 
increases actual false-positive rates (Simmons, Nelson and 
Simonsohn 2011).  The culprit is researcher degrees of freedom, 
which include: 

1. Should more data be collected, or should we stop now? 
2. Should some observations be excluded (e.g., outliers, bots)? 
3. Segmentation by variables (e.g., gender, age, geography) and 

reporting just those as statistically significant.  

The authors write that “In fact, it is unacceptably easy to publish 
‘statistically significant’ evidence consistent with any 
hypothesis.” 

Gelman and Loken (2014) discuss how data-dependent analysis, 
called the “garden of forking paths,” leads to statistically 
significant comparisons that do not hold up. Even without 
intentional p-hacking, researchers make multiple choices that 
lead to a multiple-comparison problem and inflate type-I errors.  
For example, Bem’s paper (2011) providing evidence of 
extrasensory perception (ESP) presented nine different 
experiments and had multiple degrees of freedom that allowed 
him to keep looking until he could find what he was searching for. 
The author found statistically significant results for erotic 
pictures, but performance could have been better overall, or for 
non-erotic pictures, or perhaps erotic pictures for men but not 
women. If results were better in the second half, one could claim 
evidence of learning; if it’s the opposite, one could claim fatigue. 

For research, preregistration seems like a simple solution, and 
organizations like the Center for Open Science support such 
preregistrations.  

For experimentation systems, we recommend that data processing 
should be standardized.  If there is a reason to modify the standard 
process, for example, outlier removal, it should be pre-specified as 
part of the experiment configuration and there should be an audit 
trail of changes to the configuration, as is done at Booking.com.  
Finally, the benefit in doing A/B testing in software is that 
replication is much cheaper and easier. If insight leads to a new 
hypothesis about an interesting segment, pre-register it and run a 
replication study.  

https://abtestguide.com/calc
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7. Beware of Unequal Variants 
The difference between theory and practice 

 is larger in practice than the difference 
 between theory and practice in theory  

--  Benjamin Brewster 
 
In theory, a single control can be shared with several treatments, 
and the theory says that a larger control will be beneficial to 
reduce the variance (Tang, et al. 2010). Assuming equal variances, 
the effective sample size of a two-sample test is the harmonic 

mean  1/(
1

𝑁𝑇
+

1

𝑁𝐶
).  When there is one control taking a proportion 

𝑥  of users and 𝑘  equally sized treatments with size 
1−𝑥

𝑘
, the 

optimal control size should be chosen by minimizing the sum 
𝑘

1−𝑥
+

1

𝑥
.  We differentiate to get  

𝑘

(1 − 𝑥)2 −
1

𝑥2 . 

 
The optimal control proportion x is the positive solution to  

(𝑘 − 1)𝑥2 + 2𝑥 − 1 = 0 , which is 
1

√𝑘+1
 . 

For example, when k = 3, instead of using 25% of users for all four 
variants, we could use 36.6% for control and 21.1% for the 
treatments, making control more than 1.5x larger. When k = 9, 
control would get 25% and each treatment only 8.3%, making 
control 3 times the size of treatment.  

Ramp-up is another scenario leading to more extreme unequal 
treatment vs. control sample size. When a treatment starts at a 
small percentage, say 2%, the remaining 98% traffic may seem to 
be the obvious control. 

There are several reasons why this seemingly intuitive direction 
fails in practice: 
 

1. Triggering. As organizations scale experimentation, they run 
more triggered experiments, which give a stronger signal for 
smaller populations, great for testing initial ideas and for 
machine learning classifiers (Kohavi, Tang and Xu 2020, 
Chapter 20, Triggering). It is practically too hard to share a 
control and compute for each treatment whether to trigger, 
especially for experiment treatments that start at different 
times and introduce performance overhead (e.g., doing 
inference on both control and treatment to determine if the 
results differ in order to trigger). 

2. Because of cookie churn, unequal variants will cause a larger 
percentage of users in the smaller variants to be 
contaminated and be exposed to different variants (their 
probability of being re-randomized into a larger variant is 
higher than to their original variant).  If there are 
mechanisms to map multiple cookies to users (e.g., based on 
logins), this mapping will cause sample-ratio mismatches 
(Kohavi, Tang and Xu 2020, Fabijan, et al. 2019). 

3. Shared resources, such as Least Recently Used (LRU) caches 
will have more cache entries for the larger variant, giving it 
a performance advantage (Kohavi, Tang and Xu 2020).  

 
Here we raise awareness of an important statistical issue 
mentioned in passing by Kohavi et al (2012). When distributions 
are skewed, in an unequal assignment, the t-test cannot maintain 

the nominal Type-I error rate on both tails. When a metric is 
positively skewed, and the control is larger than the treatment, 
the t-test will over-estimate the Type-I error on one tail and 
under-estimate on the other tail because the skewed distribution 
convergence to normal is different. But when equal sample sizes 
are used, the convergence is similar and the Δ(observed delta) is 
represented well by a Normal- or t-distribution. 
 
Two common sources of skewness are 1) heavy-tailed 
measurements such as revenue and counts, often zero-inflated at 
the same time; and 2) binary/conversion metric with very small 
positive rate. We ran two simulated A/A studies. In the first study, 
we drew 100,000 random samples from a heavy-tailed 
distribution, D1, of counts, like nights booked at a reservation site. 
This distribution is both zero inflated (about 5% nonzero) and a 
skewed non-zero component, with a skewness of 35. The second 
study drew 1,000,000 samples from a Bernoulli distribution, D2, 
with a small p of 0.01%, which implies a skewness of 100.  

In each study, we allocated 10% samples to the treatment. We then 
compared two cases: in one, the control also allocated 10%; in the 
second, the remaining 90% were allocated to the control. We did 
10,000 simulation trials and counted number of times 𝐻0  was 
rejected at the right tail and left tail at 2.5% level for each side (5% 
two-sided). Skewness of Δ  and metric value from the 10% 
treatment group are also reported.      

Table 4 shows the results with the following observations: 
1. The realized Type-I error is close to the nominal 2.5% rate 

when control is the same size as treatment. 
2. When control is larger, Type-I error at the left tail is greater 

than 2.5%, while smaller than 2.5% at the right tail.  
3. Skewness of the Δ  is very close to 0 when control and 

treatment are equally sized. It is closer to the skewness of 
treatment metric when control is much larger.  
 

Table 4: Type I errors at left and right tails from 10,000 
simulation runs for two skewed distributions 

Distri- 
bution 

Variants Type-I 
Left tail 

Type-I 
Right 
tail 

Skewness 
ofΔ 

Skewness 
of 10% 
variant 

D1 10%/10% 2.35% 2.30% 0.0142 0.36 
10%/90% 5.42% 0.85% 0.2817 0.36 

D2 10%/10% 2.63% 2.63% -0.0018 0.32 
10%/90% 5.75% 0.96% 0.2745 0.32 

 

Skewness of a metric decreases with the rate of √𝑛 as the sample 
size increases. Kohavi, Deng, et al. (2014)  recommended that 
sample sizes for each variant large enough such that the skewness 

of metrics be no greater than 1/√355  = 0.053. Because the 
skewness of Δ is more critical for the t-test, note how in equally 
sized variants, the skewness is materially smaller.  Table 4 shows 
that even when the skewness of the metric itself is above 0.3, the 
skewness of these Δ for equal sized cases were all smaller than 
0.053. Because the ratio of skewness is so high (e.g., 
0.2817/0.0142=~19.8), achieving the same skewness, that is, 
convergence to normal, with unequal variants requires 19.82  ≈

400 times more users. 



KDD ’22, August 14-18, 2022, Washington DC, USA Ron Kohavi, Alex Deng, & Lukas Vermeer 
 

 

For experiment ramp-up, where the focus is to reject at the left tail 
so we can avoid degradation of experiences to users, using a much 
larger control can lead to higher-than-expected false rejections, so 
a correction should be applied (Boos and Hughes-Oliver 2000). For 
using a shared control to increase statistical power, the real 
statistical power can be lower than the expected. For a number of 
treatments ranging from two to four, the reduced variance from 
using the optimal shared control size is less than 10%. We do not 
think this benefit justifies all the potential issues with unequal 
variants, and therefore recommend against the use of a large 
(shared) control.  

8.  Summary 
We shared five seemingly intuitive concepts that are heavily touted 
in the industry, but are very misleading. We then shared our 
recommendations for how to design experimentation platforms to 
make it harder for experimenters to be misled by these. The 
recommendations were implemented in some of the deployed 
platforms in our organizations. 
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A/B Testing Intuition Busters: Appendix

Introduction 
This appendix provides additional support and useful 
references to several sections in the main paper. 
 
There are many references for A/B tests, or online controlled 
experiments (Kohavi, Tang and Xu 2020, Luca and Bazerman 
2020, Thomke 2020, Georgiev 2019, Kohavi, Longbotham, et 
al. 2009, Goward 2012, Siroker and Koomen 2013); (Box, 
Hunter and Hunter 2005, Imbens and Rubin 2015, Gerber and 
Green 2012). 
 
Statistical concepts that are misunderstood have not only 
caused businesses to make incorrect decisions, hurting user 
experiences and the businesses themselves, but have also 
resulted in innocent people being convicted of murder and 
serving years in jail. 
In courts, incorrect use of conditional probabilities is called 
the Prosecutor’s fallacy and “The use of p-values can also 
lead to the prosecutor’s fallacy” (Fenton, Neil and Berger 
2016). Sally Clark and Angela Cannings were convicted of the 
murder of their babies, in part based on a claim presented by 
eminent British pediatrician, Professor Meadow, who 
incorrectly stated that the chance of two babies dying in 
those circumstances are 1 in 73 million (Hill 2005). The Royal 
Statistical Society issued a statement saying that the “figure 
of 1 in 73 million thus has no statistical basis” and that “This 
(mis-)interpretation is a serious error of logic known as 
Prosecutor’s Fallacy” (2001).   
 
In the US, right turn on red was studied in the 1970s but 
“these studies were underpowered” and the differences on 
key metrics were not statistically significant, so right turn on 
red was adopted; later studies showed “60% more pedestrians 
were being run over, and twice as many bicyclists were 
struck” (Reinhart 2015). 

Surprising Results Require Strong 
Evidence—Lower P-Values 
Eliason (2018) shares 16 popular myths that persist despite 
evidence they are likely false.  In the Belief in the Law of Small 
Numbers (Tvesrky and Kahneman 1971), the authors take the 
reader through intuition busting exercises in statistical 
power and replication.   
 
Additional examples where concepts are incorrectly stated 
by people or organizations in the field of A/B testing include:  
 
Until December 2021, Adobe’s documentation stated that  

The confidence of an experience or offer represents the 
probability that the lift of the associated experience/offer 
over the control experience/offer is “real” (not caused by 
random chance). Typically, 95% is the recommended level 
of confidence for the lift to be considered significant. 

This statement is wrong and was likely fixed after a LinkedIn 
post from one of us that highlighted this error. 
 
The book Designing with Data: Improving the User Experience 
with A/B Testing (King, Churchill and Tan 2017) incorrectly 
states 

p-values represent the probability that the difference you 
observed is due to random chance 

 
GuessTheTest defined confidence incorrectly (GuessTheTest 
2022) as 

A 95% confidence level means there’s just a 5% chance the 
results are due to random factors -- and not the variables 
that changed within the A/B test 

The owner is in the process of updating its definitions based 
on our feedback. 
 
The web site AB Test Guide (https://abtestguide.com/calc/) 
uses the following incorrect wording when the tool is used, 
and the result is statistically significant:  

You can be 95% confident that this result is a consequence 
of the changes you made and not a result of random 
chance 

 
The industry standard threshold of 0.05 for p-value is stated 
in medical guidance  (FDA 1998, Kennedy-Shaffer 2017). 

Minimize Data Processing Options in 
Experimentation Platforms 
Additional discussion of ESP following up on Bem’s paper 
(2011) are in Schimmack et. al. (2018). 
 
In Many Analysts, One Data Set: Making Transparent How 
Variations in Analytic Choices Affect Results (Silberzhan, et al. 
2018), the authors shared how 29 teams involving 61 analysts 
used the same data set to address the same research question.  
Analytic approaches varied widely, and estimated effect sizes 
ranged from 0.89 to 2.93.  Twenty teams (69%) found a 
statistically significant positive effect, and nine teams (31%) 
did not.  Many subjective decisions are part of the data 
processing and analysis and can materially impact the 
outcome.  
 
In the online world, we typically deal with a larger number 
of units than in domains like psychology. Simmons et al. 
(2011) recommend at least 20 observations per cell, whereas 
in A/B testing we recommend thousands to tens of thousands 
of users (Kohavi, Deng, et al. 2013). On the one hand, this 
larger sample size results in less dramatic swings in p-values 
because experiments are adequately powered, but on the 
other hand online experiments offer more opportunities for 
optional stopping and post-hoc segmentation, which suffer 
from multiple hypothesis testing. 

https://www.linkedin.com/feed/update/urn:li:activity:6864709480177917954?commentUrn=urn%3Ali%3Acomment%3A%28activity%3A6864709480177917954%2C6864811760902393856%29
https://www.linkedin.com/feed/update/urn:li:activity:6864709480177917954?commentUrn=urn%3Ali%3Acomment%3A%28activity%3A6864709480177917954%2C6864811760902393856%29
https://abtestguide.com/calc/


KDD ’22, August 14-18, 2022, Washington DC, USA Kohavi, Deng, and Vermeer 
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Resources for Reproducibility 
The key tables and simulations are available for 
reproducibility at https://bit.ly/ABTestingIntuitionBustersExtra . 
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