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ABSTRACT

Visual orientation detection helps navigation, especially without a reliable mag-
netic compass or GPS. Inspired by the neural mechanisms of the insect brain,
particularly the mushroom body (MB) and the central complex (CX), we propose
FlyOrien—a bio-inspired model for object orientation detection. The model mim-
ics the MB for random feature extraction, sparse coding and associative learning,
while the CX provides multi-clue sensory integration, enabling interpolation for
finer orientation representation. FlyOrien’s biologically plausible learning rule
allows one-shot learning, reducing the need for large datasets and repeated train-
ing. We tested FlyOrien on a dataset containing images labeled with orientations,
which introduce strong interferences because images of the same object have dif-
ferent labels. In this challenging context, FlyOrien achieves competitive perfor-
mance compared to convolutional neural networks (CNNs), significantly reducing
training time and computational resources. It also has the potential for real-world
applications like robotics, where incremental learning is essential.

1 INTRODUCTION

In a natural environment, many clues can indicate directions, such as the direction of the sun, the
skylight polarisation, upwind direction, and landmarks. Animals can use them for direction and
navigation (Heinzel 2017). Most of these clues are perceived by vision. Even simple insects can use
vision memory to remember the way home by finding a familiar direction that allows its route after
walking along the route once, the underlying mechanism has been partly explained with the Mush-
room body(Ardin et al., 2016), a learning center in insects (for a review, see [Modi et al.| (2020)).
Their lightweight neural circuits are faster than typical artificial neural networks (ANN) in remem-
bering orientations. Hence, we investigated these circuits for an architecture and learning rule to
retrieve orientation memory for vision signals.

Our intention to retrieve orientation is related to object pose estimation but focuses on the relative
directions between an observer and an object on the ground. A typical object pose estimation process
either has a planar feature reference for a flat face of the object or has a 3-dimensional (3D) reference,
such as a CAD model, for the shape of the object (Van de Ven et al.l 2022). With the reference, the
pose object in the image can be estimated. These types of models are applied in AprilTag (Olson,
2011)), human face orientation detection, and industrial robot piece picking (Fan et al| 2022). In
a natural environment, objects with a flat surface are not common, and animals also do not have
a predefined 3D reference. For the purpose of navigation on the ground, the relative horizontal
direction of an animal to an object is more important than the pose of the object. Hence, our model
focused on the relative horizontal direction but not pose estimation.

Assuming an observer always faces an object, with a reference direction, which could be true north,
there are three orientations: the angle the observer facing to o, the angle the object is facing to o,
and the relative angle between the two angles o — o. If we knew two of them, the third can be
computed. If 0 and 0 — o’ are known, it is an object-orienting problem. o’ and o — o’ are known, it
is an observer orienting problem. For simplification, in the object orienting problem, o is 0, and in
the object orienting problem o’ is 0. Hence, in our dataset, there is only one number as a label for
each sample, and the two problems are not distinguished explicitly in our paper. By discretizing the
range from 0° to 360° to multiple discrete values, the object orientation detection task can be set as
a multi-class classification problem.
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Figure 1: Schematics diagram of the MB and the simplified MB model in FlyOrien. (a) The MB of
a larval fruit fly Drosophila melanogaster, illustrating connections from sensors to the MB output
neurons. (b)The simplified MB model in FlyOrien. The dashed line frames the parts for random
feature extraction. Only weights between this part and “MBONSs” are adjust during learning.

There have been many models for finding objects’ orientation in the plane of the image but not
horizontally on the ground, for example, PSC (Yu & Dal [2023)), TIOE-Det (Ming et al., 2023)) and
ReDet (Han et al., [2021). These works are an extension of traditional object detection but use a
rotated bounding box, and treat the rotation angle as orientation. Their application includes aerial
images (Xia et al.| [2018)), scene text (Ma et al., 2018)), and industrial inspection (Wu et al.| [2022).
These methods typically involve deep networks requiring prolonged training time and random shuf-
fling of many data samples for training. For near-ground navigation using vision, a landmark object
typically has a fixed orientation relative to its surroundings. As a result, the angle within the view
plane is less important than the direction in which the object is facing the viewer.

An insect can remember the orientation of a landmark by looking at it once without buffering the
image data (Jeffery et al.| [2016). Hence, it is interesting to explore how insects can do it and use
its underlying mechanism for orientation retrieval or detection. Insect’s neural circuit is capable of
sparse coding without learning, and the resulting sparse representation reduces conflicts in learning
(Pearce & Bouton| [2001). The mushroom body (MB) (Figure[Ta)) of Drosophila is a typical example.
The neural system of Drosophila has been closely observed, 3D reconstructed, and analyzed for its
connectome(Li et al., 2020b). With the information, we can have a more accurate interpretation of
how it may work.

The MB receives multimodal sensory inputs that are preprocessed by upstream circuits and delivered
by the projection neurons (PNs)(Hallem & Carlsonl [2006; Stevens) 2016). Each Kenyon cell (KC)
in the MB receives the signals from a special combination of several PNs (typically 3 to 5) (Olsen
et al.,|2010), and the group of KCs together encode the signals in a sparse coding manner. Only a
small section of KCs, typically 5% to 15%, can fire at the same time, because a neuron called APL
(anterior paired lateral neuron) receives from all KCs and inhibits them(Caron et al., 2013). The
axons of the KCs pass through multiple compartments, each of which typically has one mushroom
body output neuron (MBON) for output and one Dopaminergic neuron for reward and learning mod-
ulation. Because the number of KCs is much larger than PNs and the sparse activities of KCs(Aso
et al.l 2014)), existing connections between KCs and MBON:S are less likely to be impacted by later
learning.

The MB has been model for olfactory associative learning or decision-making, during with odor
signals are sent to the MB by antennal lobe projection neurons. [Wessnitzer et al.| (2007)proposed a
model with Izhikevich neurons and an STDP learning rule for non-elemental associative learning.
Smith et al.| (2008) proposed an MB model with integrate-and-fire (IF) neurons and an activity-
dependent pre-synaptic facilitation (APDF) learning rule for associative learning. More recently,
Bennett et al.|(2021) modeled the MB with dopamine neurons for signaling reinforcement prediction
errors instead of reward to explain blocking experiments.

Biological experiments and computational neuroscience models suggest that the insect MB plays an
important role in insect navigation (Webb & Wystrach| [2016), such as visual homing. The visual
inputs to the mushroom body mainly from visual projection neurons (VPNs) nerved from the optic
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lobe and intermediate local visual interneurons (LVINs)(Ganguly et al.| |2024; |[Li et al., 2020a).
When a desert ant leaves its nest foraging, its pheromones vaporize away in high temperatures.
Hence, it has to rely on skylights and landmarks for navigation. |/Ardin et al.| (2016) proposed an MB
model, in which an ant sees the surrounding environment, and an MBON can indicate unfamiliarity
of the heading direction according to vision inputs. According to this model, an ant can learn
familiarity with scene orientation during the route leaving home, then go back by searching the most
familiar coming direction. Based on it, |[Zhu et al.| (2020) proposed a model with Leaky-Integrated-
Fire (LIF) neurons and a modified STDP learning rule to learn on an event-based camera (also
called dynamic vision sensor (DVS)) for visual homing. Although there are differences between
the connections, the MB are assumed to use similar ways for coding, and previous experiments has
shown it is functional (Ardin et al., [2016} |Dasgupta et al.,|2017; Wei et al., [2022} |Zhu et al., 2020).

The architecture of the MB has inspired researchers in computer science to propose models for
fundamental problems such as Locality Sensitive Hashing(LSH). Typical LSH algorithms reduce
the dimension of the original data for hashing (Gionis et al., [1999), FlyLSH (Dasgupta et al.,[2017)
algorithm increases the dimension in the first step by mapping data samples with a random sparse
binary projection matrix. It mimics the almost random connections from PNs to KCs (Caron et al.|
2013} Baltruschat et al., [2021; Hayashi et al), 2022). The mapping result is binarized by setting
the strongest dimensions to one and the others to zero, which is a form of the k-Winner-Take-All
(k-WTA) process. The resulting binary vector is the hash code. The FlyLSH algorithm performs
well in the nearest neighbor retrieval task of the images. The schematic plot of FlyLSH is presented
in the dashed line zone of Figure [Ib]

Another circuit that proved essential in navigation is the central complex (CX) (Honkanen et al.,
2019). The neurons in the CX form a ring attractor, and encode the information of heading direction
and homing direction in a group coding manner. It can merge multiple direction clues to find a
direction more accurately than relying on a single clue (Heinze, 2017). The neurons representing
different directions integrate heading directions with respect to movement speed, enabling the CX
to calculate and remember both the direction and distance from the nest (Stone et al., [2017; [Fran-
conville et al.,|2018)). Neuron activities predicted by computational neuroscience models with a ring
attractor match biological observations.

The function of the CX can be modeled and explained by the Continuous Attractor Neural Net-
work(CANN), which forms a ring attractor and neurons encode information in a group coding man-
ner(Wu et al.,[2016). When there is external signal input, the network generates a Gaussian-shaped
wave packet activity. The dynamics of CANN can function as a filter in time and space tendering
the jitters of input signals. For head direction coding, the head direction neurons in the brain are
interconnected through mutual feedback to form a one-dimensional CANN (Zhang}, [1996). The col-
lective activity of neurons in the network dynamically creates a Gaussian wave packet, with the peak
position of the wave packet encoding the head direction. As the head rotates, the wave packet in the
network can rotate accordingly due to sensory inputs and network dynamics, retaining information
about head direction.

The connectome of Drosophila shows that 22 out of 34 MBON types connect to the fan-shaped
body in the CX (Li et al.| 2020a)), which means the output of MBON contributes to the direction
memorized by the insect. This combination allows the coordination of these two functions: the MB
matches familiar vision inputs with long-term memory by synaptic plasticity, and the CX provides
a more continuous decision for direction steering.

Inspired by the MB and the CX, we proposed a model called FlyOrien for incremental learning of the
relative direction between an observer and an object given a side view of the object. We also propose
biologically plausible learning rules that enable one-shot learning and incremental learning with
FlyOrien, reducing training time and computational resource requirements. The model is different
from CNNss in that: (1) there is no convolution layer, (2) it has a very wide coding layer with random
untrained weights for sparse coding, and (3) it uses a learning rule for low interference learning with
sparse coding. We demonstrate FlyOrien’s effectiveness in a dataset we modified for an object
orientation task and a real-world robotic orientation task. Experiments show that FlyOrien is more
efficient than traditional artificial neural networks, as it only needs a single epoch training to achieve
Top-5 accuracy comparable to CNNs that typically converge after 100 epochs.
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The paper is structured as follows: Section 2]introduces the details of the model, Section [3| pretenses
the experiments, including experiments with a modified dataset (Section[3.1)) and data from a robot
in a real-world environment (Section [3.2).

2 MODEL

Our model, or FlyOrien, consists of two parts: a simplified MB model with firing-rate neurons and a
modified associative learning rule, and a simplified CX modeled with a modified CANN. The former
can learn the orientation of multiple objects, more specifically, associating a view of an object with
an orientation angle. The latter merges multiple outputs of the former and provides a finer output.
We also proposed a biologically plausible learning rule so that the MB model can learn images by
only looking at them once.

For convenience of application, we simplified the MB and CX for a minimal model functioning in
learning object orientation. It ignores neuron’s morphology, uses firing-rate neuron models instead
of spiking neuron models, ignores dynamics inside neurons, and treats synapses between neurons as
a linear mapping. However, there are still neural dynamics by neuron interactions in the simplified
CX and synaptic plasticities by a biologically plausible learning rule from KCs to MBONS in the
simplified MB.

2.1 SIMPLIFIED MUSHROOM BODY MODEL

The simplified MB has three layers including projection neurons (Figure[Ib). The first layer consists
of ”PNs” conveying preprocessed images. The second layer consists of "KCs” encoding images.
The third layer consists of "MBONs” outputting the likelihood of angles.

2.1.1 DATA PREPROCESSING

Insect sensory inputs are preprocessed before sending to KCs by PNs. The preprocessing can in-
volve dimension reduction, noise reduction, normalization, and gain control (Gopfert & Robert,
2002). The actual preprocessing of visual signals in insects can be complex. The neural circuits
in the optic lobe play an important role in processing vision in moving (Mauss et al., 2017), then
visual information is projected to the MB by posterior lateral protocerebrum PNs (p pPNs) (Li et al.,
2020c). Despite this, previous models suggest that the architecture of the mushroom body (MB)
can process and learn from images without the need for complex feature extraction but directly on
pixel-level information(Ardin et al.l 2016} Dasgupta et al.,2017).

As a simple approximation to the optic lobe, which adjusts contrast through lateral inhibition, the
first step of our model normalizes inputs. After normalization, the mean pixel intensity of each image
is set to 0. The image is then flattened to allow for the model’s use across different modalities. Given
adataset (X, y), where X € R"*?, each row represents a sample x € R%, n is the number of sample
points, and d is the dimension of a sample point. A sample is shifted by the mean value Z of x before
being passed to the PNs:

X=x-—1, (D

_ d . . . . .
where T = )., z;/d, i is an index for the sample dimensions.

2.1.2 NETWORK ARCHITECTURE

FlyOrien uses a simplified PN-KC connection and WTA for encoding samples. The synaptic weights
from PN to KC are noted as a matrix Wpk € R7%?, where ¢ is the number of “KCs”. The elements
of Wpk are random and binary, following a Bernoulli distribution, that is, wpi; ~ Bernoulli(p),
where j is the index of “KC” and p = b/d is the probability of connection and b represents the
expectation of how many “PNs” are connected to a “KC”. In our experiments, b is set to 0.1d so that
p = 0.1. With Wpk, the input to “KCs” follows:

z = WpkX, 2

In the MB, the APL neuron induces lateral inhibition on KCs, allowing only the most strongly
activated KCs to become active. FlyOrien approximates this WTA mechanism by keeping top h
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activating “KCs” retain their output values, while others are set to zero:

3)

=) % if z; is one of the h largest entries in z;
771 0 otherwise

where h directly controls the sparseness of the coding and j is a local index here for which “KC”. In
our experiments, i = 0.05¢g. After WTA, the output of “KCs” is z = (21, 22, ..., 2j, - . ., 24) € R

Since a “KC” that is always active provides little useful information, we implemented a threshold to
disable such “KCs”. The threshold we used is 0.25, meaning that if a “KC” remains active in more
than one-quarter of the images, its output is always 0.

The synaptic weights from “KCs” to “MBONSs” are presented as a matrix Wko € R"*9, where m
is the number of “MBONSs”. The activities of “MBONs* are:

y = Wkoz, “4)

The activity of each “MBON” is the likelihood of corresponding orientation given data sample x.

2.1.3 LEARNING RULE

The MB is an associative learning center in insects. Associative learning is a type of classic con-
ditioning that associates two stimuli or events. In the context of our model, the two stimuli are an
image sample and the object orientation on the image. From an aspect of view in machine learn-
ing, we can interpret associative learning as supervised learning. Insects can continuously associate
sensory stimuli with valences or behaviors, and the connections between KCs and MBONSs play an
important role in this process. In our model, learning occurs solely through adjusting the weights
Wxko between these two layers.

We applied two variations of Hebbian rule (Hebb) [1949) for updating Wi, which are referred to as
Method 1 and 2, respectively. Method 1 treats learning as a progress to converge and adjusts a weight
multiple times, while Method 2 treats the learning as an instant progress and a weight can only be
adjusted once. In both methods, all weights between "KCs” and the "MBONSs” are initialized to 0.
During training, when an image x and a label y is provided, x is sparsely coded by the “KCs” as z,
and y is presented by corresponding “MBONSs” in a one-hot manner.

With a method 1, for each x and y, every activating “KC” and the “MBON” connects according to
the activity of the “KC™:

w - o (Z; — wkowrj) + wkok;  if “MBON” k is the label and “KC” j actives,
KOki =Y wgkok y otherwise.

®)

where wkoy; is the weight from jth “KC” to kth “MBON?”, «y; is the learning rate, which typically
starts from 1 and decays according to the rule ax; = (1 — 107%)ay; if the corresponding synapse is
updated. Please note that weights from inactivating “KCs” are not updated. Learning ends when all
images are looped once.

Different from Method 1, Method 2 updates Wk in a binary manner. More specifically, for each x
and y, weights between activating "KCs” and the corresponding "MBON” are set to 1.

1 if “MBON” £ is the label and “KC” j actives,
WKOkj = (6)

WKOk;  Otherwise.

Hence, there is no mechanism to weaken weights in Method 2. In other words, there is no forgetting
on a synaptic level.

The output of the above half model is the likelihood of multi-class labels. This part of the model
was evaluated in the experiment with and without the second half.

2.2 CANN WITH MULTIPLE INPUTS

Unlike a typical multi-class classification dataset where there are no correlations between labels, our
dataset exhibits correlations between labels, allowing outputs from “MBONs” to be interpolated for
finer orientation resolution. As reviewed in the introduction, in insects, multiple MBONs nerves to
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Figure 2: In our model, the continuous Attractor Neural Network (CANN) is functional as a lower-
pass spatial filter and interpolator of the “MB” outputs. The “MB” outputs are fed to corresponding
neurons in the CANN, which has neurons representing finer directions. The neurons, their lateral
exhortatory connections, and global inhibitory connections form a ring attractor together.

the fan-shaped body in the CX. As CANN has been proved to be a simplified model of CX, we built
the second half of FlyOrien by modifying CANN to receive multiple outputs from “MBONs”(Fig

2).

The CANN for CX describes a ring attractor by multiple interconnected neurons. Every neuron is
allocated with an orientation, stimulates neurons nearby and inhibits all neurons. Their input dy-
namics is denoted as U (o, t) and described based on the orientation o instead explicitly by neurons:

AU (o, t)
ot

T =—-U(o,t) + p/ J(0,0)r(d, t)dx' 4+ I¢**(o,t) (7

1/./

Where 7 is the time constant for the population dynamics, which is on the order of 1ms (Gutkin
et al.| [2003), p = h/(27) is the neural density and h is the number that orientation is discretized,
I°%(0,t) is the input to the neuron at o at time t. .J(0,0') = 22 exp(—|o — o' |>/2a?) presents

T V2rma
the excitatory connections from the neuron at o’ to the neuron at o, where a = 0.1 is the half-width

of the range of excitatory connections. (o, t) is the firing rate of neurons:

Ulo,t)?
1+kp [U(0,t)2do

r(o,t) = (®)
where k = 0.1 is the degree of the inhibition. The contribution of inhibitory connection is achieved
indirectly through the divisive normalization in equation [§]

The output of the simplified MB model is fed to the CANN by the term I¢**(o,t), where o cor-
responds to the labels of “MBONSs”. As shown in Fig [2] there are more neurons in CANN than
MBON:Ss for finer directions, and each MBON outputs to a corresponding neuron for the same di-
rection. Thus with the dynamics of CANN, CANN can integrate information from multiple outputs
from the “MBONSs”, and predict finer orientations.

Thus, we can add more neurons in CANN to interpolate for a finer resolution output. The model is
implemented with Python and attached in supplementary material.

3 EXPERIMENTS

We tested the model on a dataset for object orientation learning and a dataset from a robot for real-
world evaluation. There are two types of tasks: retrieval and prediction. Please note the retrieval
task tests the ability of the models to associate images with their corresponding orientations, thus the
same images are presented in the test. Computation is conducted on a desktop workstation with the
12th Gen Intel ® Core ™;i7-12700 Processor, 32GB RAM, and the NVIDIA® GeForce RTX ™3090.
We compared our model with typical convolutional neural networks (CNNs) in object orientation
retrieving and prediction, and our model trained on CPU can even achieve better performance 7 to
45 times faster in training time than CNNs trained in GPU.
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3.1 OBIECT ORIENTATIONS LEARNING IN COIL DATASET

Our model was evaluated on a dataset modified from COIL-100 dataset (Nene et al., |1996)) along
with baseline models. The original dataset contains 100 objects captured at 72 different orientations
and in total 7200 images which are labeled with the object. The size of the original image is 128 x
128, for each of the images, there are 128 x 128 x 3 = 49152 channels of values as the image is
RGB colored. We modified the dataset by associating the images with object orientation instead of
the object. Thus, different objects can associated with the same label, while the same objects are
labeled differently, and there is strong interference while a model is trained on this modified dataset.

Because there is no correlation between samples with the same label in this dataset, cross-validation
is unsuitable for this task. This is a key distinction from typical datasets. In most classification
tasks, samples with the same label share similar features, allowing for knowledge generalization
across those samples. However, this is not the case in our dataset. Since samples with the same label
are not correlated, cross-validation, which typically evaluates generalization within samples of the
same label, becomes less meaningful. As we will show later, both baseline models and our proposed
model have achieved near-zero accuracy with cross-validation (Figure[A3] Table [A6).

We divided this dataset into two groups according to whether the object is axisymmetric and
without a textured pattern, resulting in COIL-100-Ordinary(COIL-100-O) group and COIL-100-
Axisymmetric(COIL-100-AS) group. For COIL-100-0O, the objects are not axisymmetric or have
clear textured patterns. For COIL-100-AS, the objects are axisymmetric without views of a clear
textured pattern. In COIL-100-AS, different views of the same object are so similar that human
eyes cannot even distinguish them. We present views of two objects (Figure[3), the first row is from
COIL-100-0, and the second row is from COIL-100-AS.

3.1.1 RETRIEVAL TASK BY THE SIMPLIFIED MB

The first experiment on COIL is the retrieval of object orientation. This experiment does not dis-
criminate between the training set and the testing set. Instead, the model should retrieve the angle
of objects in the previously viewed image. It is conceptually simple, but because the same object
shares the same features but has different labels for orientation, there is interference when a typical
ANN learns the orientations. The Top-5 criterion is applied to retrieval accuracy. That is, if the
correct label is in the Top-5 predicted labels by a model, this model predicts correctly.

In training, the learning rules proposed in Section [2.1.3] were ap-
plied to our model. With the learning rule, our model only loops

c

z — =

through the dataset once. Differently, baseline models were trained %O_B /, [ =

for 200 epochs. They were optimized with the Adam optimizer im-  § //“”

. . . © 0.6 [

plemented in PyTorch with default parameters. The loss function 3 /

for gradient descent was cross entropy provided by PyTorch with ~ o« [ / P A——
3 —— method1 on ~100-¢

default parameters. So2 / / method2 on COIL-100-0
° / —— method1 on COIL-100-AS
= —— method2 on COIL-100-AS

=4
o

More KCs, more accurate. We evaluated the influence of the

number of active KCs on retrieval accuracy. As the number of ® The number of adiive KGs
KCs increases, the accuracy of our methods improves across both . .
datasets, approaching convergence when the number of KCs is Figure 4: Accuracy with dif-
close to 10,000 (Figure @ ferent number of KCs.

Retrieval accuracy of the simplified MB As our model’s performance converges around 10,000
KCs, we used models with 10,240 KCs for comparison with the baselines. This choice is in favor of
common multiples of powers of 2 and 10 and also aligns with biological plausibility (Abdelrahman
et al], 2021). Figure [AT] and [A2] show the Top-5 active MBONS for every object in an example
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Figure 5: Accuracy and loss in the retrieval task on COIL-100-O and COIL-100-ax.

orientation in COIL. The first column is an example orientation, the second column is the corre-
sponding Top-5 MBONs with weights learned by method 1, and the third column shows the results
from method 2. FlyOrien achieves more than 90% accuracy across both datasets in retrieving the
orientation of a viewed object after a single learning instance.

Baselines take much longer training time for the same performance. We compared the accu-
racy, training time, and incremental learning ability of our two methods with CNNs like AlexNet
(Krizhevsky et al.,[2012), GoogleNet (Szegedy et al.,[2015), VGG16(Simonyan & Zisserman, |2014),
ResNet50 (He et al., 2016)), as illustrated in Table [I| The accuracy and loss change of increasing
epochs for the baselines is shown in Figure 5] In Figure [5a] and our methods are displayed as
horizontal lines because they only need to be learned once. Other models take 1.6 to 80.6 times
longer for a similar performance. Please note that we did not accelerate our model on GPU.

Table 1: Retrieval accuracy (%) and training time (s) of the simplified MB and baselines.

COIL-100-O COIL-100-AS
Method Platform Acc Time Acc Time
Method 1 CPU 92.93 112 97.65 47
Method 2 CPU 91.26 61 97.86 47
AlexNet GPU 97.77 873 86.22 131
GoogleNet GPU 9277 1845 | 35.01 273
VGG16 GPU 9791 10390 | 71.05 1537
ResNet50 GPU 97.92 4317 | 9530 639
MobileNet GPU 99.89 947 79.81 166
Shufflenet GPU 99.51 1651 83.55 289

Incremental learning ability We trained FlyOrien incrementally and calculated accuracy on previ-
ously trained objects to assess the model’s incremental learning ability. Specifically, after training on
all images of an object, we evaluate the model’s accuracy on every object that has been learned. The
results, shown in Appendix Figures to indicate that our model can acquire new knowledge
without forgetting previously learned knowledge, even for axisymmetric objects that are challenging
for humans. Appendix Figure [A6|shows the results in the dimension of time along with results by
baseline models in an incremental learning setup. It demonstrates that while all baseline models
experience catastrophic forgetting over 10 iterations of optimization, our model is nearly unaffected
by the trained order of samples.

3.1.2 PREDICTION ACCURACY OF THE SIMPLIFIED MB AND CX

The first half of FlyOrien outputs label likelihoods in a multi-class classification setup. However,
for real-world applications, we aim for more precise predictions. This experiment evaluates the
capability of the full FlyOrien model, combined with CANN, to predict orientations with a finer
resolution than that used in training. For ease of evaluation, we divided the data based on object
orientations, with 72 evenly distributed orientations, alternating between the training and testing
sets.

For a fair comparison, we also integrated the baseline models with CANN, resulting in two setups:
models with and without CANN. In the first setup, without CANN, orientations in the testing set
cannot be predicted directly, so the adjacent angle is used as the correct prediction criterion. In
the second setup, although the baseline models only predict orientations in the testing set, with
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CANN, the orientations in the training set can be predicted, so the Top-5 criterion for multi-class
classification is applied. It is important to note that the evaluation criteria differ between these two
setups, and comparisons are valid only within the same setup.

With the first setup and Method 2, the simplified MB in our model outperforms baselines (Table 2}
second and third rows). The accuracy of the simplified MB is 95.34% on the testing set while the
best baseline is AlexNet with 91.28% accuracy. With the second setup and Method 2, the simplified
MB with CANN, or the full FlyOrien model, has the highest training accuracy 98.95%, while not
best for testing accuracy, 66.57%. A possible reason is that the simplified MB tends to output a
bimodal distribution, and there is a second set of large likelihood peaks on the opposite side of the
orientation, which moves the peak of CANN away from the correct orientation.

Table 2: Accuracy (%) of FlyOrien and four baselines.

Original Model Original Model + CANN

Model Training Testing Training Testing
Simplified MB 98.86 95.34 98.95 66.57
AlexNet 92.27 91.28 83.88 20.34
GoogleNet 11.59 2.78 3.35 5.56
VGGI16 94.41 90.84 90.33 81.45
ResNet50 94.06 90.94 85.82 81.96
MobileNet 95.09 94.44 78.21 77.56
Shufflenet 71.37 79.06 55.77 54.49

We also evaluated the training accuracy and testing accuracy of our model and baseline models on
the COIL-100-O dataset with altered contrast in images. For more details, see Section[A.2.3]

3.2 DETECTION ACCURACY ON REAL OBJECTS COLLECTED BY A QUADRUPED ROBOT

To simulate an animal finding directions, two experiments were conducted
on a quadruped robot. In experiment 1, the robot finds a familiar object
or landmark in the environment and makes an angle judgment around the
landmark 360°. In the second experiment, in the empty scene with no suit-
able objects or landmarks to be surrounded, the angle is according to its
own orientation. Each sample collected a total of 360 images, with each
image size of 128 x 128 pixels. Compared with the test of re-designed
datasets, the angle interval of the testing set of this experiment has changed
from 10° to 1°, which is more dense and more consistent with the random-
ness of the angle and position of the robot in the real scene.

Figure 6: A quadruped
robot looks at a land-
In this experiment, a robot motion control and image sampling algorithm mark.

was designed to realize the robot sampling from different angles during

the 360° rotation around the object (Figurd6). The robot rotates around an object, taking one photo
per degree with its head camera, for a total of 360 photos. The binocular fisheye cameras on the
robot’s head have a 180° field of view. Through the official camera calibration algorithm built into
the robot, the corrected photos are transmitted in real time during the sampling process. The image
from both the left and right eyes is 800x928. We will extract the image from the left eye for use in
the subsequent experiment, compressing it to 128x128.

Object’s orientation by vision from robot

The photos of every ten degrees are selected as the training data set, the rest are taken as the testing
set, and the nearest ten degrees are taken as the label for the accuracy test. Cups, foam boxes, and
plants were sampled and tested for accuracy. The uncropped data sets were also tested (Figure7).
It can be observed that the robot’s Top-5 object orientation accuracy is over 96%, and the Top-2
accuracy is over 80% (Table [3). The performance remains relatively stable on the dense testing set
with 1° intervals.

Robot’s orientation by vision to the environment

In this experiment, the robot can rotate in circles only by setting rotational speed. The robot was
made to rotate itself once for sampling in three different scenes: lab 1, lab 2, and corridor(Fig[g).
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Figure 7: Sampled images of a cup, a foam box, and a plant at 0°, 90°, 180°, and 270° (Top: original
view from the robot, Bottom: cropped view on objects for orientation.)

Table 3: Accuracy of network trained with a single data set.

Object cup foam box | plant | cup (in scene) | foam box (in scene) | plant (in scene)
acc(Top-2) | 80.56 82.93 83.33 88.89 87.83 91.11
acc(Top-5) | 97.78 97.56 96.67 98.89 97.72 98.89

The sampling method is the same as in the previous experiment. The robot achieved an orientation
accuracy of over 96% when choosing Top-5 activated MBONSs, and over 80% when choosing Top-2
activated MBONS (Tabled). The performance remains relatively stable on the dense testing set with
1° intervals.

Training network testing on complex data sets

The six image datasets from the Object’s orientation experiments were combined into Dataset 1.
The three image datasets from the Robot’s orientation experiments were combined into Dataset 2.
Finally, Dataset 1 and Dataset 2 were merged into Dataset 3 to test the neural network’s stability in
long-term learning. By comparing Tabld3| with Tables 3] and 4} and by comparing Dataset 3 with
Dataset 1 and Dataset 2, it can be observed that the accuracy of neural network was not significantly
affected by the change in the data set from single to complex. This indicates that the neural network
has good stability for long-term learning.

4 DISCUSSION AND CONCLUSION

Inspired by the neural circuits of insects, particularly the MB and CX, we proposed FlyOrien, a
bio-inspired model for incremental learning of object orientation. The model mimics the MB’s
sparse coding and associative learning while utilizing the CX to integrate multiple sensory inputs
to refine orientation detection. FlyOrien is designed to learn object orientations efficiently after a
single exposure, and because it mimics the sparse coding of MB, it has the potential to generalize
to multimodal inputs, such as posture, olfactory, and directional cues, which will be investigated in
further research.

FlyOrien was tested on open-source datasets and real-world robotic tasks, demonstrating strong
performance in estimating object orientations and handling ego motion in complex scenes. Its ability
to learn incrementally, without large datasets or extensive training, highlights its suitability for real-
time applications.

Without relying on convolutional layers, FlyOrien learns object orientation efficiently without catas-
trophic forgetting, benefiting from its large number of pattern detectors and sparse coding. For in-
stance, samples in COIL-100-AS with the same label are very similar, so subtle features, such as
specific patterns, are crucial for orientation detection, but CNNs are not optimized for this. CNNs
generalize by learning from fewer images and using shared weights to capture relationships between
local features. Convolutional kernels in the first layer detect low-level features, but this generaliza-

DRENEY- ML

Figure 8: Sampling images of labl, lab2, and corridor at 0°, 90°, 180°, and 270°
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Scene lab1 lab2 | corridor || Original Method | dataset 1 | dataset2 | dataset 3
acc(Top-2) | 91.41 | 87.52 | 83.17 acc(Top-2) 77.31 79.72 79.14
acc(Top-5) | 98.53 | 99.31 | 93.32 acc(Top-5) 96.00 88.98 95.13

Table 4: Accuracy on a single dataset Table 5: Accuracy on a complex situation

tion can overshadow rare or unique patterns, risking them being forgotten. In contrast, MB-like ar-
chitectures excel at identifying these subtle features and preventing forgetting by maintaining fixed
connections after learning. In our model, many “KCs,” each connected to only a few pixels, act as
specialized pattern detectors. Unlike CNNs, which apply the same filters across regions, FlyOrien
uses more filters simultaneously, detecting intricate details in a single pass. This key difference
enables FlyOrien to perform better and learn faster in our tasks.

While FlyOrien offers significant benefits, it is sensitive to pixel-level changes, affecting perfor-
mance when objects deform or lighting varies. Addressing these limitations is a key area for future
research, particularly by incorporating the optic lobe which is crucial for dynamic vision processing.
Extending the CX model to a two-dimensional CANN could also improve navigation in complex,
unmapped environments, enhancing FlyOrien’s robustness for more sophisticated spatial tasks.

FlyOrien’s lightweight design, free from GPU dependence, allows it to run effectively on small
devices like drones and robots, making it ideal for resource-constrained tasks like object tracking,
navigation, and surveillance, where low power consumption and computational efficiency are criti-
cal.

In practical applications, FlyOrien presents minimal risks. Its use in autonomous robots can improve
navigation and object recognition without needing extensive computational resources. However, en-
suring transparency and human oversight in deployment is crucial. When used for navigation or
surveillance in public spaces, it’s important to respect privacy and operate within ethical guidelines.
FlyOrien’s efficiency on small robots makes it ideal for search and rescue, environmental monitor-
ing, and industrial automation. With safeguards in place, FlyOrien can positively contribute to these
fields without significant risks.
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A APPENDIX

A.1 ALGORITHM

A.1.1 ALGORITHM FOR DATA PREPROCESSING AND NETWORK ARCHITECTURE

Algorithm 1 Data Preprocessing and Network Architecture in the simplified MB

Input: Dataset (X, y) where X € R"*¢
Output: Activation of “MBONSs” z for labels’ likelihood
Initialize weights Wpy € RI*4, wpk;; ~ Bernoulli(p)
Initialize “KCs” activation mask: v =1
Initialize weights Wxo € R™*4
/I Step 1: Normalize Inputs
for each sample x € X do
Compute mean T = 5 Z?Zl T
9:  Shift the sample: X = x — T
10: end for
11: for each sample x € X do
12:  // Step 2: Activation and outputs of “KCs”
13:  Compute “KCs” activation: z = WpgX
14:  Keep top h activating KCs, whose indexes are entries of u
15:  foreach j € udo

S A A

16: if z; is one of the h largest entries in z then
17: /Z\j = 2V

18: else

19: Z; =0

20: end if

21:  end for

22: /] Step 3: Optionally disable over-activating “KCs”
23:  for each j € udo

24: if KC j response to more than 1/4 samples then
25: v = 0

26: end if

27:  end for

28:  // Step 4: Activation and outputs of “MBONs”

29:  Compute “MBONS” activities: y = Wkoz

30:  // Step 5: Learning Rule

31:  Method 1: Hebbian Learning with continuous Weights
32:  for each active KC j do

33: if k is the label y then

34: Update weights: wkor; < @(Z; — Wkokj) + WKOk;
35: end if

36: end for

37:  Decay learning rate: < (1 —107%)«
38:  Method 2: Hebbian Learning with Binary Weights
39:  for each active KC j do

40: if & is the label y then

41: Set weight: wkog; < 1
42: end if

43:  end for

44: end for
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A.2 EXPERIMENTS

A.2.1 TopP-5 ACTIVE MBONS FOR THE WHOLE DATASET
Object Original Top5 active Top5 active Object Original Top5 active Top5 active
angle MBONSs(method1) MBONs(method2) angle MBONs(method1) MBONSs(method2)
45 45, 30, 40, 25, 215 45, 30, 25, 40, 215 310, 315, 320, 120, 305 310, 315, 320, 120, 305
30 30, 35, 25, 20, 40 30, 35, 40, 20, 25 255,265,260,270,275 255,265,275,260,160
115 115, 110, 145, 255, 180 115, 145, 150, 110, 255 220,215,225,230,210 220,215,225,230,210
74 75, 80, 70, 310, 85 75, 80, 310, 70, 85 50,55,45,65,60 50,55,65,45,40
. 225 225, 45, 40, 220, 35 225, 40, 45, 35, 220 165,185,195,160,170 165,185,195,170,160
ﬂ 25 25, 20, 10,15, 30 425, 20, 10, 15, 35 230, 255, 250, 225, 0 125, 215, 225, 230, 250
B 80 80, 75, 85, 90, 70 80, 75, 85, 90, 95 190, 195, 200, 180, 205 190, 195, 200, 180, 170
160 160, 165, 155, 185, 150 160, 150, 155, 165, 185 170, 165, 160, 175,155 170, 165, 160, 145, 155
165 165, 190, 170, 160, 195 165, 190, 170, 160, 200 20, 15, 25, 30, 10 20, 15, 25, 30, 10
n 130 130, 135, 140, 125, 120 130, 135, 125, 140, 120 215, 210, 50, 220, 90 210, 215, 290, 230, 265
. 220 220, 215, 225, 230,210 220, 215, 225, 230, 210 25, 10, 30, 20, 5 25, 10, 30, 20, 5
. 205 205, 245, 215, 70, 220 205, 215, 245, 200, 220 190, 185, 195, 210, 175 185, 190, 205, 210, 195
-_—
. 60 60, 65, 55, 40, 15 60, 65, 55, 40, 15 155, 175, 160, 145,170 155, 175, 145, 170, 160
. 45 45, 40, 50, 35, 30 45, 40, 50, 35, 55 25,10, 30, 5, 20 25,10, 30, 20, 5
. 170 170,175, 165, 180, 185 170, 175, 165, 180, 185 145, 150, 140, 135, 130 145, 150, 140, 320, 130
. 15 15,10, 5,20,0 15,10, 5, 20,0 55, 60, 70, 85, 80 55, 60, 70, 85, 40
210 210, 205, 200, 215, 195 210, 205, 200, 195, 215 125, 120, 115, 130, 135 125, 120, 115, 130, 135
. 175 175, 170, 180, 165, 160 175, 180, 170, 165, 185 185, 180, 190, 165, 175 185, 180, 190, 165, 175
E 260 260, 265, 250, 255,280 260, 250, 265, 285, 290 170, 175, 165, 180, 0 170, 175, 165, 180, 185
= 0 0, 5, 10, 50, 15 0,5, 10, 15, 50 35, 20, 30, 25, 40 35, 20, 25, 30, 15
210 210, 200, 215, 190, 195 210, 200, 190, 215, 195 80, 85, 100, 75, 90 80, 85, 100, 75, 90
310 310, 305, 315, 300,295 310, 305, 315, 295, 300 45, 35, 40, 50, 10 45, 35, 40, 10, 50
- 285 285, 280, 290, 265, 275 285, 280, 290, 275, 240 15, 20, 10, 5, 25 15, 20, 10, 5, 25
n 145 145, 130, 135, 175, 140 145, 135, 130, 90, 140 80, 75, 85, 70, 45 80, 75, 85, 70, 45
. 355 355, 0, 350, 15, 0 355, 350, 0, 10, 15 150, 155, 5, 160, 25 150, 155, 185, 25, 160
10 10, 25, 20, 15, 5 10, 20, 15, 25, 5 130, 140, 270, 105, 110 130, 140, 135, 230, 125
ﬁ 35 35, 20, 315, 30, 15 35, 15, 25, 30, 20 325, 315, 275, 330, 335 325, 315, 275, 350, 335
. 340 340, 345, 290, 95, 90 345, 340, 290, 350, 285 295, 205, 225, 325, 245 295, 205,325, 330, 225
. 305 305, 275, 295, 290, 300 305, 275, 310, 300, 295 250, 255, 75, 235, 265 260, 255, 75, 265, 235
. 70 70, 65, 75, 90, 95 70, 75, 65, 90, 80 15, 20, 10, 5, 25 15, 20, 10, 5, 25

Figure Al: Top-5 active MBONSs and the original orientations for all objects(Partl).
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We show all objects at an example orientation in Figure [AT|and [A2] The first column is the actual
orientation of the object, the second column is top 5 active MBONs found by method 1, the third
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Figure A2: Top 5 active MBONS and the original orientations for all objects(Part2).
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A.2.2 CROSS-VALIDATION

Model Best accuracy on testing set | Best accuracy on training set
AlexNet 0.00 92.37
GoogleNet 0.00 87.32
VGG16 0.00 97.36
ResNet50 0.00 96.53

Table A6: Cross-validation on our modified dataset results in O testing accuracy.
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Figure A3: Cross-validation on our modified dataset results in 0 testing accuracy.
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INCREMENTAL LEARNING ABILITY
objects using FlyOrien. Both method 1 and method 2 can keep good memory of old objects, thus

From Figure[A4]to Figure [A5] we show the accuracy change of learned objects when learning new
have good incremental learning ability.

Under review as a conference paper at ICLR 2025
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(b) Accuracy with Method 2
19

and test the object in sequence. For deep neural networks, it lost memory of old objects when

In Figure[A6] we show the first four objects’ accuracy change when learning new objects. We train
learning new objects. In contrast, FlyOrien performs well in this situation.

object being retrieved. (a) Accuracy using Method 1. (b) Accuracy using Method 2. Results are

represents the index of the object being trained on, and each column represents the index of the
shown for the first 29 objects only.

Figure A4: Accuracy of specific objects in COIL-100-O during incremental learning. Each row
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Figure A5: Accuracy of specific objects in COIL-100-AS during incremental learning. Each row
represents the index of the object being trained on, and each column represents the index of the
object being retrieved. (a) Accuracy using Method 1. (b) Accuracy using Method 2. Results are
shown for the first 12 objects only.
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Figure A6: Accuracy of the first four objects for incremental learning.
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A.2.4 ACCURACY FOR UNFAMILIAR ORIENTATIONS
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Figure A7: Accuracy of train set and testing set. FlyOrien’s accuracy can reach a high level in
one-shot learning, without longtime training like other baselines
A.2.5 ACCURACY WITH CONTRAST CHANGES

Table A7: Accuracy(%) and training time(s) of our methods and four baselines when the image
contrast changes on COIL-100-O.

Method 1 | Method 2 | AlexNet | GoogleNet | VGGI6 [ ResNet50
Device CPU GPU
Training accuracy 92.93 91.26 90.45 85.60 96.30 96.18
Test accuracy 74.01 73.96 76.55 23.00 64.21 57.95
Difference 18.92 17.30 13.90 62.60 32.09 38.23
Training time 157.83 78.26 870.68 1850.24 10255.02 | 4300.81

In this task, the training set consists of original images, while the testing set contains images with
modified contrast. The significant drop in test accuracy compared to training accuracy suggests
overfitting. GoogleNet, VGG16, and ResNet50 exhibited more overfitting compared to our model,
while AlexNet demonstrated less overfitting. Therefore, both our model and AlexNet displayed
greater robustness in handling contrast changes.
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