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ABSTRACT

Contrastive visual pretraining based on the instance discrimination pretext task has
made significant progress. Notably, recent work on unsupervised pretraining has
shown to surpass the supervised counterpart for finetuning downstream applications
such as object detection and segmentation. It comes as a surprise that image
annotations would be better left unused for transfer learning. In this work, we
investigate the following problems: What makes instance discrimination pretraining
good for transfer learning? What knowledge is actually learned and transferred from
these models? From this understanding of instance discrimination, how can we
better exploit human annotation labels for pretraining? Our findings are threefold.
First, what truly matters for the transfer is low-level and mid-level representations,
not high-level representations. Second, the intra-category invariance enforced
by the traditional supervised model weakens transferability by increasing task
misalignment. Finally, supervised pretraining can be strengthened by following an
exemplar-based approach without explicit constraints among the instances within
the same category.

1 INTRODUCTION

Recently, a remarkable transfer learning result with unsupervised pretraining was reported on visual
recognition. The pretraining method MoCo (He et al., 2020) established a milestone by outperforming
the supervised counterpart, with an AP of 46.6compared to 42.4 on PASCAL VOC object detection.
Supervised pretraining has been the de facto standard for finetuning downstream applications, and
it is surprising that labels of one million images, which took years to collect (Deng et al., 2009),
appear to be unhelpful and perhaps even harmful for transfer learning. This raises the question of why
contrastive pretraining provides better transfer performance and supervised pretraining falls short.

The leading contrastive pretraining methods follow an instance discrimination pretext task (Doso-
vitskiy et al., 2015; Wu et al., 2018; He et al., 2020; Chen et al., 2020a), where the features of
each instance are pulled away from those of all other instances in the training set. Invariances are
encoded from low-level image transformations such as cropping, scaling and color jittering. With
such low-level induced invariances (Wu et al., 2018; Chen et al., 2020a), strong generalization has
been achieved to high-level visual concepts such as object categories on ImageNet. On the other
hand, the widely adopted supervised pretraining method optimizes the cross-entropy loss over the
predictions and the labels. As a result, training instances within the same category are drawn closer
while the training instances of different categories are pulled apart.

Toward a deeper understanding of why contrastive pretraining by instance discrimination performs so
well, we dissect the performance of both contrastive and supervised methods on a few downstream
tasks. Our study begins by studying the effects of pretraining image augmentations, which are shown
to be crucial for contrastive learning. We find that both contrastive and supervised pretraining benefit
from image augmentations for transfer performance, while contrastive models rely on these low-level
augmentations significantly. With proper augmentations, supervised pretraining may still prevail on
the downstream task of object detection on COCO and semantic segmentation on Cityscapes.

?Contributed equally to this work.
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We then examine the common belief that the high-level semantic information is the key to effective
transfer learning (Girshick et al., 2014; Long et al., 2015). On unsupervised pretraining with different
types of image sets, it is found that transfer performance is largely unaffected by the high-level
semantic content of the pretraining data, whether it matches the semantics of the target data or not.
Moreover, pretraining on synthetic data, whose low-level properties are inconsistent with real images,
leads to a drop in transfer performance. These results indicate that it is primarily low-level and
mid-level representations that are transferred. Additionally, we notice that unsupervised pretraining
on a much smaller dataset only marginally degrades the transfer performance.

We also delve deeply to understand the large margin (with AP 48.5 over 46.2) on VOC object
detection obtained by contrastive pretraining over supervised pretraining. First, detection errors
of both methods are diagnosed using the detection toolbox (Hoiem et al., 2012). It is found that
supervised pretraining is more susceptible than contrastive pretraining to localization error. Secondly,
to understand the localization error, we examine how effectively images can be reconstructed from
contrastive and supervised representations. The results show that supervised representations mainly
model the discriminative parts of objects, in contrast to the more holistic modeling of contrastive
representations pretrained to discriminate instances rather than classes. Both sets of experiments
suggest that there exists a greater misalignment of supervised pretraining to the downstream tasks,
which requires accurate localization and full delineation of the objects.

Based on these studies, we conclude that, in visual pretraining, not only it is less critical to transfer
high-level semantic information, but learning to discriminate among classes might be misaligned
with the downstream tasks. We thus hypothesize that the essential difference that makes supervised
pretraining weaker (and instance discrimination stronger) is the common practice of minimizing
intra-class variation. The crude assumption that all instances within one category should be alike in
the feature space neglects the unique information from each instance that may have significance in
downstream applications. To validate that overfitting semantics leads to weakened transferability, we
explore a new supervised pretraining method that does not explicitly embed instances of the same
class in close proximity of one another. Rather, we pull away the true negatives of each training
instance without enforcing any constraint on the positives. This respects the data distribution in a
manner that preserves the variations in the positives, and our new pretraining method is shown to
yield consistent improvements for both ImageNet classification and downstream transfer tasks.

We expect these findings to have broad implications over a variety of transfer learning applications.
As long as there exists any misalignment between the pretraining and downstream tasks (which is
true for most transfer learning scenarios in computer vision), one should always be careful about
overfitting to the supervised invariances defined by the pretraining labels. We further test on two
other transfer learning scenarios: few-shot image recognition and facial landmark prediction. Both of
them are found to align with the conclusions obtained from our previous study.

2 AN ANALYSIS FOR VISUAL TRANSFER LEARNING

We study the transfer performance of pretrained models for a set of downstream tasks: object
detection on PASCAL VOC07, object detection and instance segmentation on MSCOCO, and
semantic segmentation on Cityscapes. Given a pretrained network, we re-purpose the network
architecture, and finetune all layers in the network with synchronized batch normalization. For
object detection on PASCAL VOC07, we use the ResNet50-C4 architecture in the Faster R-CNN
framework (Ren et al., 2015). Optimization takes 9k iterations on 8 GPUs with a batch size of 2
images per GPU. The learning rate is initialized to 0.02 and decayed to be 10 times smaller after
6k and 8k iterations. For object detection and instance segmentation on MSCOCO, we use the
ResNet50-C4 architecture in the Mask R-CNN framework (He et al., 2017). Optimization takes 90k
iterations on 8 GPUs with a batch size of 2 images per GPU. The learning rate is initialized to 0.02
and decayed to be 10 times smaller after 60k and 80k iterations as of the 1x optimization setting. For
semantic segmentation on Cityscapes, we use the DeepLab-v3 architecture (Chen et al., 2017) with
image crops of 512 by 1024. Optimization takes 40k iterations on 4 GPUs with a batch size of 2
images per GPU. The learning rate is initialized to 0.01 and decayed with a poly schedule. Detection
performance is measured by averaged precision (AP) and semantic segmentation performance is
measured by mean intersection over union (mIoU). Each pretrained model is also evaluated by
ImageNet classification of linear readoff on the last layer features.
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Table 1: The effects of pretraining image augmentations on the transfer performance for supervised
and unsupervised models. The strongest result for each downstream task is marked bold.

Pretraining Pytorch Augmentation ImageNet VOC07 COCO CityScapes
Acc AP APbox APseg mIoU

Supervised

+ RandomHorizontalFlip(0.5) 70.9 43.4 38.6 33.7 78.0
+ RandomResizedCrop(224) 1 77.5 45.5 38.9 33.9 78.7
+ ColorJitter(0.4, 0.4, 0.4, 0.1) 77.4 45.9 39.3 34.4 78.7
+ RandomGrayscale(p=0.2) 77.7 46.4 39.1 34.2 78.7
+ GaussianBlur(0.1, 0.2) 77.3 46.2 38.9 33.9 78.8

Unsupervised

+ RandomHorizontalFlip(0.5) 6.4 32.3 34.2 30.6 72.7
+ RandomResizedCrop(224) 53.0 43.2 36.8 32.3 76.6
+ ColorJitter(0.4, 0.4, 0.4, 0.1) 62.7 45.7 37.5 33.0 77.7
+ RandomGrayscale(p=0.2) 66.4 47.7 38.6 33.8 78.4
+ GaussianBlur(0.1, 0.2) 67.5 48.5 38.7 34.0 78.6

2.1 EFFECTS OF IMAGE AUGMENTATIONS ON PRETRAINING

Contrastive learning is shown to depend on intensive image augmentations (views) for ImageNet
classification. However, the effects of such image augmentations have not been carefully investigated
for the downstream transfer tasks. In this section, we provide a detailed analysis on the effects of
image augmentations for contrastive models, and supervised models as well.

We use MoCo-v2 (Chen et al., 2020b) for contrastive pretraining and the traditional cross entropy loss
for supervised pretraining with the ResNet50 architecture. Both types of pretraining are optimized
for 200 epochs with a cosine learning rate decay schedule for fair comparisons. The results are
summarized in Table 1. First, unsupervised contrastive models consistently benefit much more from
image augmentations than supervised models for ImageNet classification and all the transfer tasks.
Supervised models trained merely with horizontal flipping may perform well. Second, supervised
pretraining is found to also benefit from image augmentations such as color jittering and random
grayscaling, but it is negatively affected by Gaussian blurring to a small degree. Third, unsupervised
models outperform the supervised counterparts on PASCAL VOC, but underperform the supervised
models on COCO and Cityscapes when proper image augmentations are applied on supervised
models. This suggests that object detection on COCO and semantic segmentation on Cityscapes may
benefit more from high-level information than PASCAL VOC.

2.2 EFFECTS OF DATASET SEMANTICS ON PRETRAINING

The strong performance of self-supervised pretraining on the linear classification protocol for Im-
ageNet (He et al., 2020; Chen et al., 2020a) shows that the features capture high-level semantic
representations of object categories. In supervised pretraining, it is a common belief that this high-
level representation (Girshick et al., 2014; Long et al., 2015) is what transfers from ImageNet to
the downstream tasks. Here, we challenge this conclusion by studying the transfer of contrastive
models pretrained on images with little or no semantic overlap with the target dataset. These image
datasets include faces, scenes, and synthetic street-view images. We also investigate how the size of
the pretraining dataset affects transfer performance.

Consistently with the prior section, we use MoCo-v2 for contrastive pretraining and dedicated training
pipeline for the supervised models on various datasets. Please refer to the Table 2 captions for detailed
information about the annotation labels in each dataset. For the smaller datasets, we increase the
number of training epochs and maintain the effective number of optimization iterations. The results
are summarized in Table 2. First, it can be seen that, except for the results on the synthetic dataset
Synthia, the transfer learning performance of contrastive pretraining is relatively unaffected by the
pretraining image data, while supervised pretraining depends on the supervised semantics. Second,
all the supervised networks are negatively impacted by the change of pretraining data except when
the pretraining data has the same form of supervision as the target task, such as the Synthia and

1We optimally set the scale parameter to 0.08 for supervised pretraining and 0.2 for unsupervised pretraining.
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Table 2: Transfer performance with pretraining on various datasets. “ImageNet-10%” denotes
subsampling 1/10 of the images per class on the original ImageNet. “ImageNet-100” denotes
subsampling 100 classes in the original ImageNet. Supervised pretraining uses the labels in the
corresponding dataset, and unsupervised pretraining follows MoCo-v2. Supervised models for
CelebA and Places are trained with identity and scene categorization supervision, while supervised
models for COCO and Synthia are trained with semantic bounding box and segmentation supervision
for detection and segmentation networks, respectively.

Pretraining Pretraining
Data #Imgs Anno ImageNet VOC07 COCO Cityscapes

Acc AP APbox APseg mIoU

Supervised

ImageNet 1281K object 77.3 46.2 38.9 34.0 78.8
ImageNet-10% 128K object 57.8 42.4 37.7 33.1 77.7
ImageNet-100 124K object 50.9 42.0 37.1 32.5 77.0

Places 2449K scene 52.3 39.1 36.6 32.2 77.6
CelebA 163K identity 30.3 37.5 36.4 32.2 76.5
COCO 118K bbox 57.8 53.3 39.1 34.0 78.3
Synthia 365K segment 30.2 40.2 37.3 32.9 76.5

Unsupervised

ImageNet 1281K object 67.5 48.5 38.7 34.0 78.6
ImageNet-10% 128K object 58.9 45.5 38.6 33.9 78.1
ImageNet-100 124K object 56.5 45.6 38.3 33.6 77.8

Places 2449K scene 57.1 46.7 38.4 33.6 78.8
CelebA 163K identity 40.1 45.3 37.5 33.0 76.8
COCO 118K bbox 50.6 46.1 38.4 33.7 78.3
Synthia 365K segment 13.5 37.4 36.1 31.7 75.6

the Cityscapes datasets both sharing pixel-level annotations for semantic segmentation. Third, with
the smaller amounts of pretraining data in ImageNet-10% and ImageNet-100, the advantage of
unsupervised pretraining becomes more pronounced in relation to supervised models, which suggests
stronger ability for generalization with less data for contrastive models.

Contrastive pretraining on faces and scenes achieves almost the same transfer results as pretraining
on ImageNet. Since the face dataset has almost no semantic overlap with the VOC and COCO objects
(besides the human category), transfer of high-level representations can be seen as extraneous. We
further test unsupervised pretraining on the synthetic dataset Synthia (Ros et al., 2016), which exhibits
low-level statistics different from real images. With this model, there is a substantial performance
drop. We can therefore conclude that instance discrimination pretraining mainly transfers low-level
and mid-level representations. In Table 2, we also test the linear readoff on ImageNet-1K classification
using various pretrained models. These models perform very differently, suggesting that the last-layer
features learned by contrastive training still overfit to the training data semantics.

2.3 TASK MISALIGNMENT AND INFORMATION LOSS

A strong high-level representation is not critical for effective transfer, but this itself does not explain
why contrastive pretraining yields better performance than supervised pretraining, specifically for
object detection on PASCAL VOC. We notice that a larger performance gap exists on AP75 than on
AP50

2, which suggests that supervised pretraining is weaker at precise localization. For additional
analysis, we use the detection toolbox (Hoiem et al., 2012) to diagnose detection errors. Figure 1
compares the error distributions of the transfer results on three example categories. We find that the
detection errors of supervised pretraining models are more frequently the result of poor localization,
where low IoU bounding boxes are mistakenly taken as true positives.

For further examination, we compare image reconstruction from the features of supervised and
contrastive models. This reconstruction is performed by inverting the layer4 features (dimension of
7× 7× 2048) using the deep image prior (Ulyanov et al., 2018). Specifically, given an image input
x0, we optimize a reconstruction network rθ to produce a reconstruction x that is close to the input

2please refer to the Appendix for detailed metrics on detection.
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Figure 1: Analyzing detection error using the detection toolbox (Hoiem et al., 2012) on PASCAL
VOC. Distribution of top-ranked false positive (FP) types for finetuning with supervised and unsu-
pervised methods. Supervised pretraining models more frequently result in localization errors than
unsupervised pretraining models. Each FP is categorized into 1 of 4 types: Loc—poor localization;
Sim—confusion with a similar category; Oth—confusion with a dissimilar object category; BG—a
FP that fires on background.

Input image Supervised MoCo Input imageSimCLRInstDist Supervised MoCoSimCLRInstDist

Figure 2: Image reconstruction by feature inversion. We use the method of deep image prior (Ulyanov
et al., 2018) to reconstruct images by a pretrained network. Contrastive models allow for holistic
reconstruction over the entire image, while supervised models lose information in many regions.

x0 in the embedding space of a pretrained encoding network f(·),
minθE(f(x), f(x0)), x = rθ(z0). (1)

The input z0 to the reconstruction network rθ(·) is fixed spatial noise, and the distance function E(·)
is implemented as the L2 distance. The architecture of rθ(·) is an autoencoder network with six
blocks for both the encoder and decoder, as detailed in the appendix. With this inversion method, we
observe how well a pretrained network g(·) can recover image pixels from the features.

We visualize the reconstructions for both the supervised and contrastive pretrained networks. The
investigated contrastive models include InstDisc, MoCo and SimCLR to show the generality of the
results. In Figure 2, it is apparent that the contrastive network provides more complete reconstructions
spatially, while the supervised network loses information over large regions in the images, likely
because its features are mainly attuned to the most discriminative object parts, which are central to
the classification task, rather than objects and images as a whole. The resulting loss of information
may prevent the supervised network from detecting the full envelope of the object.

In Figure 2, we notice that for the contrastive models, the images are reconstructed at the correct
scale and location. Though instance discrimination encodes invariances through spatial and scale
transformations, features learned this way are still sensitive to these factors (Chen et al., 2020a). A
possible explanation is that in order to make one instance unique from all other instances, the network
strives to preserve as much information as possible. We also notice that the contrastive models find it
difficult to reconstruct the hue color accurately. This is likely due to the broad space of colors and the
intensive augmentations during pretraining.
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Table 3: Exemplar-based supervised pretraining which does not enforce explicit constraints on the
positives. It shows consistent improvements over the MoCo baselines by using labels.

Methods ImageNet VOC07 COCO Cityscapes
Acc AP APbox APseg mIoU

MoCo-v1 60.8 46.6 38.5 33.6 78.4
Exemplar-v1 64.6 (+3.8) 47.2 (+0.6) 39.0 (+0.5) 34.1 (+0.5) 78.9 (+0.5)
MoCo-v2 67.5 48.5 38.7 34.0 78.6
Exemplar-v2 68.9 (+1.4) 48.8 (+0.3) 39.4 (+0.7) 34.4 (+0.4) 78.8 (+0.2)

3 A BETTER SUPERVISED PRETRAINING METHOD

Annotating one million images in ImageNet provides rich semantic information which could be
useful for downstream applications. However, traditional supervised learning minimizes intra-class
variation by optimizing the cross-entropy loss between predictions and labels. By doing so, it focuses
on the discriminative regions (Singh & Lee, 2017) within a category but at the cost of information loss
in other regions. A better supervised pretraining method should instead pull away features of the true
negatives for each instance without enforcing explicit constraints on the positives. This preserves the
unique information of each positive instance while utilizing the label information in a weak manner.

We propose a new supervised pretraining method inspired by exemplar SVM (Malisiewicz et al.,
2011), which trains an individual SVM classifier to separate each instance from its negatives. Unlike
the original exemplar SVM which represents positives non-parametrically and negatives parametri-
cally, our pretraining scheme models all instances in an non-parametric fashion in a spirit similar
to instance discrimination (Wu et al., 2018). Concretely, we follow the framework of momentum
contrast (He et al., 2020), where each training instance xi is augmented twice to form xqi and xki ,
which are fed into two encoders for embedding, qi = fq(x

q
i ), ki = fk(x

k
i ). Please refer to MoCo (He

et al., 2020) for details about the momentum encoders. But instead of discriminating from all other
instances (Wu et al., 2018), the loss function uses the labels yi to filter the true negatives,

Lqi = −log
exp(qTi ki/τ)

exp(qTi ki/τ) +
∑
yj 6=yi exp(qTi kj/τ)

, (2)

where τ is the temperature parameter. We set the baselines to be MoCo-v1 and MoCo-v2, and denote
our corresponding methods as Exemplar-v1 and Exemplar-v2. Temperature τ = 0.07 is used for
Exemplar-v1, and τ = 0.1 is used for Exemplar-v2 with ablations in the appendix. Experimental
results are presented in Table 3. By filtering true negatives using semantic labels, our method
consistently improves classification performance on ImageNet and transfer performance for all
downstream tasks. This is in contrast to traditional supervised learning, where ImageNet performance
is improved and its transfer performance is compromised. We note that the ImageNet classification
performance of our exemplar-based training, 68.9%, is still far from the traditional supervised
learning result of 77.3%. This leaves room for future research on even better classification and
transfer learning performance.

4 IMPLICATIONS FOR OTHER TRANSFER LEARNING SCENARIOS

The presented studies focus on the transfer scenario of ImageNet pretraining. For other downstream
applications, the nature of the task misalignment may differ. Thus, we additionally consider two
other transfer learning scenarios to study the implications of overfitting to the supervised pretraining
semantics and how it can be improved by our exemplar-based pretraining.

4.1 FEW-SHOT RECOGNITION

The first scenario is transfer learning for few-shot image recognition on the Mini-ImageNet
dataset (Vinyals et al., 2016), where the pretext task is image recognition on the base 64 classes, and
the downstream task is image recognition on five novel classes with few labeled images per class,
either 1-shot or 5-shot. For the base classes, we split their data into training and validation sets to
evaluate base task performance. The experimental setting largely follows a recent work (Chen et al.,
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Table 4: 5-way few-shot recognition on Mini-ImageNet.

Methods Base classes Novel classes
Acc 1-shot 5-shot

Baseline 82.3 51.75± 0.80 74.27± 0.63
Supervised 83.6 54.60± 0.80 74.50± 0.65
MoCo-v2 75.3 52.14± 0.73 73.30± 0.59

Exemplar-v2 79.9 55.33± 0.75 77.18± 0.61

Table 5: Facial landmark pre-
diction on MAFL.

Methods Landmark error
Scratch 24.6%

Supervised 6.3%
MoCo-v2 5.8%

Exemplar-v2 5.8%

MoCo ExemplarSupervised MoCo ExemplarSupervised MoCo ExemplarSupervised

Figure 3: Visual results of transfer learning for facial landmark prediction.

2019) for transfer learning. The pretrained network learned from the base classes is fixed, and a linear
classifier is finetuned for 100 rounds on the output features for the novel classes.

As in our previous transfer learning study, we compare three pretraining methods: supervised cross
entropy, unsupervised MoCo-v2 and supervised Exemplar-v2. Each method is trained with MoCo-v2
augmentations and optimized for 2000 epochs with a cosine learning rate decay scheduler for fair
comparison. In finetuning the downstream task, since there exists much variance in the feature norms
from different pretrained networks, we cross-validate the best learning rate for each method on the
validation classes. Note that adding an additional batch normalization layer is problematic because as
few as only 5 images (5-way 1-shot case) are available during finetuning.

We use the backbone network of ResNet18 (Chen et al., 2019) for the experiments. Results are
shown in Table 4. Due to different optimizers and number of training epochs, our supervised
pretraining protocol is stronger than the baseline protocol (Chen et al., 2019), leading to better
results. The unsupervised pretraining method MoCo-v2 is weaker for both the base classes and
the novel classes, suggesting that the pretraining task and the downstream task are well aligned
semantically. Our exemplar-based approach obtains improvements over MoCo-v2 on the base classes,
while outperforming the supervised baselines on the novel classes. This demonstrates that removing
the explicit constraints on intra-class instances generalizes the model for better transfer learning on
few-shot recognition.

4.2 FACIAL LANDMARK PREDICTION

We next consider the transfer learning scenario from face identification to facial landmark prediction
on CelebA (Liu et al., 2018) and MAFL (Zhang et al., 2014). The pretext task is face identification
on CelebA, and the downstream task is to predict five facial landmarks on the MAFL dataset. The
facial landmark prediction is evaluated by the average euclidean distance of landmarks normalized by
the inter-ocular distance.

As in the prior studies, we compare three pretraining methods: supervised cross entropy, unsupervised
MoCo-v2 and supervised Exemplar-v2. Each method is trained with MoCo-v2 augmentations and
optimized for 1400 epochs with a cosine learning rate decay scheduler. For landmark transfer,
we finetune a two-layer network that maps the spatial output of ResNet50 features to landmark
coordinates. The two-layer network contains a 1× 1 convolutional layer that reduces 2048 channels
to 128 and a fully connected layer, interleaved with LeakyReLU and batch normalization layers. We
finetune all layers end-to-end for 200 epochs with a learning rate of 0.02 and a batch size of 128.

The experimental results are summarized in Table 5. Unsupervised pretraining by MoCo-v2 outper-
forms the supervised counterpart for this transfer, suggesting that the task misalignment between
face identification and landmark prediction is large. In other words, faces corresponding to the
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same identity hardly reveal information about their poses. Our proposed exemplar-based pretraining
approach weakens the influence of the pretraining semantics, leading to results that maintain the
transfer performance of MoCo-v2. Qualitative results are displayed in Figure 3.

5 RELATED WORKS

Since the marriage of the ImageNet dataset (Deng et al., 2009) and deep neural networks (Krizhevsky
et al., 2012), supervised ImageNet pretraining has proven to learn generic representations that
facilitate a variety of applications such as high-level detection (Girshick et al., 2014; Sermanet et al.,
2013) and segmentation (Long et al., 2015), low-level texture synthesis (Gatys et al., 2015), and style
transfer (Gatys et al., 2016). ImageNet pretraining also works amazingly well under a large domain
gap for medical imaging (Mormont et al., 2018) and depth estimation (Liu et al., 2015). The good
transferability of ImageNet pretrained networks has been extensively studied (Agrawal et al., 2014;
Azizpour et al., 2015). The transferability across each neural network layer has also been quantified
for image classification (Yosinski et al., 2014), and a reduction of dataset size was found to have
only a modest effect on transfer learning using AlexNet (Huh et al., 2016). In addition, a correlation
between ImageNet classification accuracy and transfer performance has been reported (Kornblith
et al., 2019), and the benefit of ImageNet pretraining has been shown to become marginal when the
target task has a sufficient amount of data (He et al., 2019).

Beyond ImageNet transfer, there has been an effort to discover the structures and relations among
tasks for general transfer learning (Silver & Bennett, 2008; Silver et al., 2013). Taskonomy (Zamir
et al., 2018) builds a relation graph over 22 visual tasks and systematically studies the task similarities.
In (Standley et al., 2019), task cooperation and task competition are quantitatively measured to
improve transfer learning. Similar phenomena are observed that task misalignment may lead to
negative transfer (Wang et al., 2019) and that the number of layers that tasks may share depends on
the task similarity (Vandenhende et al., 2019). Other works (Dwivedi & Roig, 2019; Tran et al., 2019)
explore alternative methods to measure the structure and similarity between tasks.

While most works study transfer learning based on supervised pretraining, our work focuses on
analyzing transfer learning based on unsupervised pretraining, particularly on contrastive learning
with the instance discrimination task (Dosovitskiy et al., 2015; Wu et al., 2018; He et al., 2020;
Chen et al., 2020a). Over the years, the research community has achieved significant progress on
self-supervised learning (Doersch et al., 2015; Doersch & Zisserman, 2017; Zhang et al., 2016;
Gidaris et al., 2018; 2020) and contrastive learning (Oord et al., 2018; Zhuang et al., 2019; Tian
et al., 2019; Hénaff et al., 2019; Zhao et al., 2020), closing the gap with supervised learning for
ImageNet classification. More recent works (Goyal et al., 2019; Kolesnikov et al., 2019; Caron et al.,
2019) make the attempts to scale unsupervised learning to uncurated data beyond ImageNet. Along
with this, several research on contrastive learning (He et al., 2020; Misra & Maaten, 2020) report
superior transfer results against the supervised counterparts on downstream tasks such as detection,
segmentation and pose estimation. However, little is understood about why contrastive pretraining
leads to improved transfer learning performance. Our work is the first to shed light on this, and it
uses this understanding to elevate the performance of supervised pretraining.

6 CONCLUSION

This work provides an analysis for visual transfer learning to understand the recent advances of
contrastive learning with the instance discrimination pretext task. Through this understanding, we
also explore ways to better exploit the annotation labels for pretraining. Our main findings that help
to understand the transfer are as follows:

• When finetuning the network over all layers end-to-end with thousands of data, it is mainly
low- and mid-level representations that are transferred, not high-level representations. This
suggests that contrastive representations learned on various datasets share a low- and mid-
level representation which performs similarly and adapts quickly towards the target problem.

• The output features from contrastive models are not agnostic to the pretrained datasets, as
they are still overfit to the high-level semantics of the dataset being trained on.
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• Contrastive models learned by the instance discrimination pretext task contain rich informa-
tion for reconstructing pixels from the output features. In order to discriminate among all
instances, the network appears to learn a holistic encoding over the entire image.

• For supervised pretraining, the intra-class invariance encourages the network to focus on
discriminative patterns and disregards patterns uninformative for classification. This may
lose information which could be useful for the target task when there is task misalignment.
An exemplar-SVM style pretraining scheme based on the instance discrimination framework
is shown to improve generalization for downstream applications.

We expect these findings to have broad implications on other transfers. Our experiments on two other
transfer scenarios confirm the generalization ability of the study. We hope that the presented studies
provide insights that inspire better pretraining methods for transfer learning.
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A EFFECTS OF PRETRAINING AND FINETUNING ITERATIONS

We also conduct experiments to examine the effects of pretraining optimization epochs and finetuning
iterations. We show results in Figure 4, and find that longer optimization during pretraining consis-
tently improves detection transfer for both supervised and unsupervised models. This suggests that
overfitting is not an issue for either pretraining method. Unsupervised pretraining is seen to converge
much faster during pretraining, and supervised pretrained models tend to converge faster in the initial
iterations of detection finetuning but may not converge optimally.

We notice that supervised pretraining benefits from more optimization epochs. To explore the limit of
supervised pretraining, we investigate larger numbers of supervised pretraining epochs. In Table 6,
supervised pretraining continues to improve performance until 800 epochs, but may suffer from
overfitting as indicated by the performance on ImageNet classification. For detection transfer, the
improved supervised pretraining still falls short MoCo on AP and AP75, while it outperforms MoCo
on AP50. This may possibly be due to the superior semantic classification ability of supervised
models. Further discussion of the results are beyond the scope of the paper.

Epochs of pretraining Iters of finetuning
Figure 4: Performance at intermediate pretraining checkpoints and finetuning checkpoints.

Table 6: Longer supervised pretraining for object detection transfer on PASCAL VOC.

Pretraining
Epochs

ImageNet VOC07 detection VOC0712 detection
Acc AP AP50 AP75 AP AP50 AP75

90 75.5 45.4 76.3 47.0 54.8 82.1 60.4
200 77.3 46.0 76.7 48.3 55.4 82.3 61.6
400 77.8 47.7 78.0 50.7 56.1 82.9 62.8
800 77.7 47.6 77.5 51.0 56.4 82.7 62.9

MoCo 67.5 48.5 76.8 52.7 56.9 82.2 63.5

B EFFECTS OF IMAGE AUGMENTATIONS ON PRETRAINING

We show full results of object detection on PASCAL VOC07, object detection and instance segmenta-
tion on MSCOCO, and semantic segmentation on Cityscapes in Table 7.
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Table 7: The effects of pretraining image augmentations on the transfer performance for supervised
and unsupervised models.

Pytorch Augmentation
Supervised Unsupervised

ImageNet VOC07 detection ImageNet VOC07 detection
Acc AP AP50 AP75 Acc AP AP50 AP75

+ RandomHorizontalFlip(0.5) 70.9 43.4 74.0 44.5 6.4 32.3 58.3 31.4
+ RandomResizedCrop(224) 77.5 45.5 76.2 47.4 53.0 43.2 71.2 45.4
+ ColorJitter(0.4, 0.4, 0.4, 0.1) 77.4 45.9 76.7 48.0 62.7 45.7 74.4 48.6
+ RandomGrayscale(p=0.2) 77.7 46.4 77.3 49.0 66.4 47.7 76.0 51.5
+ GaussianBlur(0.1, 0.2) 77.3 46.2 76.8 48.9 67.5 48.5 76.8 52.7

Supervised Unsupervised
COCO detection COCO segmentation COCO detection COCO segmentation

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

38.6 58.5 41.7 33.7 55.1 35.9 34.2 52.7 36.7 30.6 49.9 32.4
38.9 59.3 41.6 34.0 55.7 36.0 36.8 56.1 39.7 32.3 52.9 34.4
39.3 59.6 42.3 34.4 56.1 36.4 37.5 56.9 40.5 33.0 54.0 35.0
39.1 59.2 42.0 34.2 55.6 36.4 38.6 58.0 41.9 33.8 54.8 36.0
38.9 59.1 41.8 33.9 55.4 35.9 38.7 58.1 42.0 34.0 55.1 36.4

Supervised Unsupervised
Cityscapes Segmentation

mIoU mAcc aAcc mIoU mAcc aAcc
78.0 85.2 96.0 72.7 81.3 95.3
78.7 85.6 96.1 76.6 84.2 95.9
78.7 85.9 96.1 77.7 85.2 96.0
78.7 85.6 96.1 78.4 85.7 96.1
78.8 85.8 96.1 78.6 85.7 96.2

C EFFECTS OF DATASET SEMANTICS ON PRETRAINING

We report full transfer performance with pretraining on various datasets in Table 8. We also provide a
visualization of various datasets for training these models in Figure 5.

D DETAILS ON IMAGE RECONSTRUCTION BY INVERTING FEATURES

D.1 METHOD DETAILS

We use the same architecture for the reconstruction network rθ(·) as in the original deep image
prior paper. It is an encoder-decoder network with the following architecture. Let Cmk denote
a Convolution-BatchNorm-LeakyReLU layer with k channels and m × m spatial filters; CDm

k
denote a Convolution-Downsample-BatchNorm-LeakyReLU layer, and CUmk denote a Convolution-
BatchNorm-LeakyReLU-Upsample layer. We use a stride of 2 for both the upsampling and down-
sampling layers.

Encoder: CD7
16−C7

16−CD7
32−C7

32−CD5
64−C5

64−CD5
128−C5

128−CD3
128−C3

128−CD3
128−C3

128

Decoder: C7
16−CU7

16−C7
32−CU7

32−C5
64−CU5

64−C5
128−CU5

128−C3
128−CU3

128−C3
128−CU3

128

The input z0 ∈ RH×W×32 is initialized with uniform noise between 0 and 0.1. For each image, the
optimization takes 3000 iterations of an Adam optimizer with a learning rate of 0.001.

D.2 EVALUATING RECONSTRUCTIONS BY PERCEPTUAL METRICS

To measure the reconstruction quality quantitatively, we calculate the perceptual distance between
the reconstruction and the input image, using a deep learning based approach (Zhang et al. (2018))
with a SqueezeNet network. We randomly select one image per class from the ImageNet validation
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Table 8: Transfer performance with pretraining on various datasets. “ImageNet-10%” denotes
subsampling 1/10 of the images per class on the original ImageNet. “ImageNet-100” denotes
subsampling 100 classes in the original ImageNet. Supervised pretraining uses the labels in the
corresponding dataset, and unsupervised pretraining follows MoCo-v2. Supervised models for
CelebA and Places are trained with identity and scene categorization supervision, while supervised
models for COCO and Synthia are trained with semantic bounding box and segmentation supervision
for detection and segmentation networks, respectively.

Pretraining Data #Imgs Annotation
Supervised Unsupervised

ImageNet VOC07 detection ImageNet VOC07 detection
Acc AP AP50 AP75 Acc AP AP50 AP75

ImageNet 1281K object 77.3 46.2 76.8 48.9 67.5 48.5 76.8 52.7
ImageNet-10% 128K object 57.8 42.4 73.5 43.1 58.9 45.5 74.4 48.0
ImageNet-100 124K object 50.9 42.0 72.4 43.3 56.5 45.6 73.9 48.5
Places 2449K scene 52.3 39.1 70.0 38.7 57.1 46.7 74.9 50.2
CelebA 163K identity 30.3 37.5 66.1 36.9 40.1 45.3 72.4 48.4
COCO 118K bbox 57.8 53.3 80.3 59.5 50.6 46.1 74.5 49.4
Synthia 365K segment 30.2 40.2 70.3 40.2 13.5 37.4 65.0 37.2

Supervised Unsupervised
COCO detection COCO segmentation COCO detection COCO segmentation

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

38.9 59.1 41.8 33.9 55.4 35.9 38.7 58.1 42.0 34.0 55.1 36.4
37.7 57.5 40.5 33.1 54.3 35.1 38.6 58.0 41.7 33.9 54.9 36.0
37.1 56.6 40.1 32.5 53.3 34.5 38.3 57.7 41.6 33.6 54.5 35.5
36.6 56.3 39.1 32.2 53.1 34.1 38.4 58.0 41.3 33.6 54.5 35.7
36.4 55.5 39.4 32.2 52.2 34.5 37.5 56.5 40.3 33.0 53.5 35.3
39.1 58.9 42.3 34.0 55.5 36.2 38.4 58.0 41.6 33.7 54.6 35.8
37.3 57.1 40.4 32.9 53.8 35.0 36.1 55.0 38.6 31.7 51.9 33.7

Supervised Unsupervised
Cityscapes Segmentation

mIoU mAcc aAcc mIoU mAcc aAcc
78.8 85.8 96.1 78.6 85.7 96.2
77.7 85.0 96.0 78.1 85.6 96.1
77.0 84.5 95.9 77.8 85.2 96.1
77.6 85.0 96.0 78.8 86.2 96.1
76.5 84.3 95.9 76.8 84.4 95.9
78.3 85.5 96.0 78.3 85.6 96.1
76.5 84.1 95.9 75.6 83.6 95.8
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ImageNet

CelebA SYNTHIA

COCOPascal VOC

Places

Figure 5: Example images of various datasets used for the pretraining study.

set for 1000 images in total. The average distance of reconstructions using MoCo is 5.59, while it is
6.43 for the supervised network. We provide a scatter plot of perceptual distance from individual
reconstructions. In Figure 6, we can see that the reconstructions generated by MoCo are generally
closer to the original images than those generated by the supervised method.

0 200 400 600 800 1000
Index of image

2

4

6

8

Perceptual Distance

Supervised
MoCo

Figure 6: Perceptual distance between the reconstruction and the original image on 1000 validation
images.

E MORE RESULTS ON EXEMPLAR-BASED SUPERVISED PRETRAINING

We show full transfer performance of our proposed Exemplar-based supervised pretraining in Table 9.

Since our Exemplar pretraining uses a different set of parameters from MoCo, we provide an ablation
study over the parameter k and τ for ImageNet linear readout in Table 10.
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Table 9: Exemplar-based supervised pretraining which does not enforce explicit constraints on the
positives. It shows consistent improvements over the MoCo baselines by using labels.

Methods ImageNet VOC07 detection Cityscapes segmentation
Acc AP AP50 AP75 mIoU mAcc aAcc

MoCo-v1 60.8 46.6 74.9 50.1 78.4 85.6 96.1
Exemplar-v1 64.6 47.2 76.0 50.6 78.9 86.0 96.2

MoCo-v2 67.5 48.5 76.8 52.7 78.6 85.7 96.2
Exemplar-v2 68.9 48.8 77.2 53.1 78.8 85.9 96.2

Methods COCO detection COCO segmentation
AP AP50 AP75 AP AP50 AP75

MoCo-v1 38.5 58.3 41.6 33.6 54.8 35.6
Exemplar-v1 39.0 58.7 42.0 34.0 55.4 36.3

MoCo-v2 38.7 58.1 42.0 34.0 55.1 36.4
Exemplar-v2 39.4 59.1 42.7 34.4 55.9 36.5

Table 10: An ablation study of parameter k and τ for MoCo and Exemplar pretraining.

Methods k τ ImageNet acc
MoCo-v1 65536 0.07 60.8
MoCo-v1 1M 0.07 60.9

Exemplar-v1 1M 0.07 64.6
Exemplar-v1 1M 0.1 63.9

MoCo-v2 65536 0.2 67.5
MoCo-v2 1M 0.1 66.9
MoCo-v2 1M 0.2 67.8

Exemplar-v2 1M 0.07 68.1
Exemplar-v2 1M 0.1 68.9
Exemplar-v2 1M 0.2 67.9

F ADDITIONAL RESULTS OF DIAGNOSING DETECTION ERROR

We provide a full analysis over 20 object categories on the VOC07 test set. For each category, a pie
chart is given to show the distribution of four kinds of errors in top-ranked false positives. For each
category, the false positives are chosen to be within the top N detections, where N is chosen to be
the number of ground truth objects in each category. The four types of false positives include: poor
localization (Loc), confusion with similar objects (Sim), confusion with other VOC objects (Oth), or
confusion with background or unlabeled objects (BG). In Figure 7, we compare the error distribution
between the MoCo results and supervised results. It is apparent that detection results from the MoCo
pretrained model exhibits a smaller proportion of localization errors.
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Figure 7: Distribution of four types of false positives for each category.
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