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Abstract

Osteoporotic vertebral fractures (OVFs) increase the risk of future fractures, morbidity,
and mortality. However, manual interpretation of spinal radiographs is time-consuming
and challenging. To address this, we propose an automated tool for vertebral centroid
localization and classification in thoracolumbar sagittal spinal radiographs with varying
fields-of-view, automating the initial input required for currently available semi-automated
diagnostic tools and enhancing the efficiency of OVF assessment. To guide our model
in its learning, we tested four loss functions to encourage focus on the vertebral centroid
locations and to tailor our model to deal with limitations in our dataset, such as unlabeled
visible vertebrae, that will aid in its generalizability. Our best performing model achieved a
vertebral identification accuracy of 95.9% and a centroid localization RMSE for all correctly
classified vertebrae of 17.08 pixels. Future work will leverage the outputs of this model for
vertebral fracture detection in a fully-automated pipeline.
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1. Introduction

Osteoporotic vertebral fractures (OVFs) are the most common type of osteoporotic fracture
and indicate a higher risk of future osteoporotic fracture, morbidity, and mortality (Lentle
et al., 2019). However, two-thirds of osteoporotic vertebral fractures are asymptomatic
(Lenchik et al., 2004). Radiologists can have a significant impact on patient care through
early detection of these asymptomatic fractures (Lenchik et al., 2004). From a radiograph,
OVFs are currently detected through manual measurement of vertebral height loss, qualita-
tive assessment, or use of semi-automated software that requires manual input or adjustment
to analyze the radiograph (Lentle et al., 2019). Here we aim to develop the first step of
an automated analysis process by localizing and classifying each vertebral centroid; future
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work will examine the localized vertebrae for OVFs, either using existing semi-automated
tools (Birch et al., 2015) or a fully automated pipeline for fracture diagnosis.

Currently, radiographs are the gold standard modality for OVF diagnosis (Capdevila-
Reniu et al., 2021). Studies that localize and classify vertebrae in radiographs either used
multiple models for the task (Cina et al., 2021) or rely on a specific field-of-view (FOV)
within the input image, resulting in a model dependency on a particular vertebra always
being visible from which to align the labels of all other identified vertebrae with (Kim
et al., 2021, 2020; Sun et al., 2022; Fatima et al., 2022; Zou et al., 2023). The expectation
of a certain FOV (i.e., containing a certain vertebra) within the input image will prevent
these model from generalizing to other datasets. Instead, with this work, we aimed to: (1)
develop a singular model that can both classify and localize the centroid of each vertebra
for radiographs with varying FOV, and; (2) use dataset knowledge to tailor loss functions
for enhanced performance and increased generalizability.

2. Methodology

For this work, we used 2,593 sagittal spinal radiographs from the ongoing Rotterdam Study
(Hofman et al., 2015). Since two radiographs were often required to capture the full spine of
a participant, the radiographs contain varying FOV and some overlap. Vertebrae centroid
locations and labels were available for 13 vertebrae, from T4 to L4. However, each label was
only made on one radiograph per participant, regardless of whether the vertebra was also
visible on their other radiograph. More information on this dataset and our selection can
be found in Appendix A. For all models, a training, validation, and test split of 80/10/10%
was used. Each input image was resized to 264×264 pixels (px) and normalized using the
training data. From the coordinates of each vertebral centroid, heatmaps were created to
be used as targets for the models. These training targets (a 3D tensor) had dimensions
equivalent to the dimensions of the input image (264×264 px) times a depth of 13 (i.e., one
heatmap layer for each labeled vertebra). Each layer of this tensor consists of a Gaussian
heatmap with a hotspot centered at the location of the vertebral centroid.

The U-Net architecture was selected as the baseline algorithm and was trained with four
different loss functions, summarized in Appendix B: (1) UNet-Base served as the baseline for
comparison with MSE loss; (2) UNet-L1 increased the model’s focus on the regions directly
surrounding each vertebral centroid; (3) UNet-L2 built on L1 by adding higher penalties
for predicting centroids for vertebrae that were not visible within the input image and by
not penalizing predictions for vertebra that were visible but unlabeled, and; (4) UNet-L3
built on L2 further by aiming to discourage predictions of the same centroid location for
different vertebrae.

To assess the models using the test set, two key metrics were used: (1) the percentage of
correctly classified vertebrae (vertebral ID accuracy) and; (2) the centroid location RMSE
for all correctly classified vertebrae. To calculate the first metric, the centroid location
for each heatmap layer was extracted and compared to the corresponding ground truth
centroid location. If the difference was less than half the average distance between two
neighboring ground truth centroids for that image, then the model was considered to have
correctly classified the vertebra because the centroid prediction for that vertebra was within
the boundary of the target vertebra with the same label. The second metric only uses
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the centroids of correctly classified vertebra, as incorrectly classified vertebra could have
predicted centroids in the center of a vertebra with a different ground truth label, but if
assessed instead against the vertebra with the same label as the prediction, the error will be
artificially inflated because it will be comparing with a centroid located on another vertebra.

3. Results

The results for each model are displayed in Table 1, with UNet-L2 as the best perform-
ing model. For context, the average distance between the ground-truth centroids of two
consecutive vertebrae is 326±125 px (N=260), allowing us to conclude that our centroid
predictions are in relatively-central locations for each vertebra. This can also be verified
visually with the sample illustrations of results from UNet-L2 presented in Appendix C.

Table 1: Evaluation for each model calculated with a test set of 260 radiographs.

Model Vertebra ID Accuracy Centroid Location RMSE

UNet-Base 89.6 % 20.28 px
UNet-L1 94.7 % 17.17 px
UNet-L2 95.9 % 17.08 px
UNet-L3 95.2 % 19.65 px

4. Discussion and Conclusion

As expected, encouraging improved accuracy near the hotspots (i.e., vertebrae centroids)
within each heatmap by tailoring the loss function, led to an improvement of at least 5%
in the vertebral ID accuracy over the UNet-Base model. Further tailoring the loss function
to improve robustness to how this dataset was labeled (i.e., with some visible vertebrae left
unlabeled) proved beneficial; we noted that the dataset often contained vertebrae at the
beginning or end of the labeled vertebrae set that had no labels for a particular image, and
the proposed loss function accommodated missing labels in model output layers (L2 and
L3). This encouraged the model to go beyond our labels and make predictions for vertebrae
left unlabeled, which is how we would like the model to behave for all future images.
Tailoring a loss function in this manner could be a valuable approach for other applications
in which annotations are occasionally missing. However, when further tailoring the loss to
avoid predicting centroid locations for two or more unique vertebrae on the same vertebra
(L3), this led to a decrease in performance. This issue may be better addressed with basic
post-processing heuristics.

Thus, we have successfully developed a single model for the task of detecting and classi-
fying vertebral centroids in sagittal spinal radiographs with varying FOV and incorporated
additional prior knowledge about our dataset into the loss function to further boost per-
formance and increase generalizability as the model knows to label all vertebrae it detects
instead of expecting the gaps in our dataset. Future work will focus on extracting region
of interests (ROIs) based on our model’s centroid predictions, to perform subsequent ver-
tebra segmentation and fracture detection, providing medical staff with a fully-automated
pipeline for efficient assessment of the spine.
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tures: A diagnostic challenge in the 21st century. Revista Cĺınica Española, 221:118–124,
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Appendix A. Dataset

For this work, we used a subset of data from the ongoing Rotterdam Study (Hofman et al.,
2015). This study began in 1990, with participants all living within the Ommoord district
in the city of Rotterdam, the Netherlands, and involves the collection of multiple health
measurements from each participant every few years, including a sagittal spinal radiograph.
The study has several cohorts, three of which we selected data. The first cohort (RSI) began
in 1990 and includes 7,983 participants aged 55 years or older. The second (RSII) began
in 2000 and includes 3,011 participants aged 55 years or older. The third (RSIII) began in
2006 and includes 3,932 participants aged 45-54 years. Scans were taken for each cohort
every few years.

Co-author FK selected data from the first four scanning periods of RSI (RSI-1, RSI-2,
RSI-3, RSI-4), the second scanning period of RSII (RSII-2), and the first scanning period
of RSIII (RSIII-1). This selection was made by first identifying all scans that contained
a vertebral fracture that had also already been labeled and then selecting a non-fractured
scan from a different patient of the same sex and with a ±1 year age difference within the
same cohort and scan period; with this we have 1,312 scan selections. Participants usually
have two radiographs per session, to capture vertebrae T4 to L4, giving us a total of 2,593
radiographs. These radiographs often overlap and have varying FOV. In addition, older
radiographs are typically scanned copies of physical radiographic film, occasionally with
markings, that have reduced image quality.

Vertebrae centroid locations and labels were also available within the study for vertebrae
T4 to L4, totaling 13 vertebrae. However, these labels were only made on one radiograph
per patient per scan period, regardless of whether the vertebra is also visible on the other
radiograph of the rest of the spine.
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Appendix B. Loss Functions

Table 2: Loss functions used for each trained model.

Loss Loss Description Formula Purpose

MSE
Uniform weight for
all pixel errors.

f(y) =
1

N

N∑
i=1

(yi − ŷi)
2

where N represents the number of pixels in the 3D
heatmap for an image, yi represents the ground truth
value, and ŷi represents the predicted value.

Baseline for
comparison.

L1

Pixels that had a
ground truth value
of 0.5 or greater (on
a scale of 0.0 to 1.0)
had their squared
error weighted by a
value of 10. Once
the error is
weighted, the mean
is calculated.

f(y) =
1

N

N∑
i=1

Xi

Xi =

{
(yi − ŷi)

2 × 10, if yi ≥ 0.5

(yi − ŷi)
2, otherwise

Encourages
focus on
learning the
areas directly
around the
centroids.

L2

L1 with the addition
of all errors in layers
where no vertebrae
are visible weighted
by a value of 5, and
no loss calculation
for layers
before/after the
first/last vertebra in
a consecutively
labeled segment.

f(y) =
1

N

13∑
j=1

Lj∑
i=1

Xi,j

Hj =

Lj∑
i=1

yi,j

Xi,j =


(yi,j − ˆyi,j)

2 × 10, if yi,j ≥ 0.5

(yi,j − ˆyi,j)
2 × 5, if Hj , Hj+1, Hj−1 = 0

(yi,j − ˆyi,j)
2 × 0, if Hj = 0, Hj+1 ∨Hj−1 ≥ 0

(yi,j − ˆyi,j)
2, otherwise

where Lj represents the pixels in a single heatmap layer
j, i defines the current pixel within a heatmap layer,
and Hj indicates whether the ground truth heatmap
layer j contains a centroid or not.

Suppresses
predictions of
centroids in
layers where
there are no
visible labeled
vertebrae and
prevents
penalization
of centroid
predictions in
visible but
unlabeled
vertebrae.

L3

L2 with all layers
receiving a weighting
of 10 in the location
where pixels have a
ground truth value
of 0.5 or greater in
any layer.

Same as L2 with one minor change:

Xi,j =


(yi,j − ˆyi,j)

2 × 10, if yi,j ≥ 0.5 for any j

(yi,j − ˆyi,j)
2 × 5, if Hj , Hj+1, Hj−1 = 0

(yi,j − ˆyi,j)
2 × 0, if Hj = 0, Hj+1 ∨Hj−1 ≥ 0

(yi,j − ˆyi,j)
2, otherwise

Discourages
predictions of
the same
centroid
location for
different
vertebrae.
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Appendix C. Sample Images

(a) (b) (c) (d)

Figure 1: Example predictions from best performing model UNet-L2 with: (a) correct
predictions, (b) an extra correct prediction (T12), (c) a missing prediction (L2), and (d)
two predictions (T12 and L1) on one vertebrae.
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