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Abstract
We study the domain adaptation problem with
label shift in this work. Under the label shift con-
text, the marginal distribution of the label varies
across the training and testing datasets, while the
conditional distribution of features given the la-
bel is the same. Traditional label shift adaptation
methods either suffer from large estimation er-
rors or require cumbersome post-prediction cal-
ibrations. To address these issues, we first pro-
pose a moment-matching framework for adapting
the label shift based on the geometry of the in-
fluence function. Under such a framework, we
propose a novel method named Efficient Label
Shift Adaptation (ELSA), in which the adapta-
tion weights can be estimated by solving linear
systems. Theoretically, the ELSA estimator is√
n-consistent (n is the sample size of the source

data) and asymptotically normal. Empirically, we
show that ELSA can achieve state-of-the-art esti-
mation performances without post-prediction cal-
ibrations, thus, gaining computational efficiency.

1. Introduction
1.1. Background

Traditional supervised learning assumes that the training
and testing data are from the same joint distribution p(x, y),
where x are the features, and y is the label. Therefore, we
can apply the predictive model from the training data to
do inferences on the testing data. However, in many real-
world applications, the joint distribution p(x, y) may often
differ in the training and testing data, and this phenomenon
is called distributional shift (see Quinonero-Candela et al.
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2008). Thus, the knowledge learned from the training data
may no longer be appropriate to make predictions directly
from the testing data. This motivates the study direction
called unsupervised domain adaptation (see Kouw & Loog
2021), which aims to address the distributional shift between
the source domain ps(x, y) (i.e., training data) and the target
domain pt(x, y) (i.e., testing data), where the subscript s
and t represent source and target domain respectively.

In this work, we focus on studying the case of label shift,
also known as prior probability shift (see Moreno-Torres
et al. 2012). The label shift refers to the phenomenon that
the marginal distributions of the labels differ in the source
and target domains ps(y) ̸= pt(y) though the conditional
distributions of features given the label are the same in both
domains ps(x|y) = pt(x|y). Label shift aligns with the
anticausal learning setting (see Storkey 2009) where the
label y is the cause and the features x are the effects. For
example, in the task of disease diagnostic, suppose the label
y indicates whether a person has been infected, and x are
the observed symptoms. It is reasonable to assume the
identical conditional distributions p(x|y), as the infection-
on-symptoms mechanism should be the same. Consider
the source and target data are from two regions with and
without the corresponding prevention so that ps(y) ̸= pt(y).
Then with the same symptoms, people without prevention
are more likely to be infected by the disease compared to
those with good prevention (i.e., ps(y|x) ̸= pt(y|x)). Thus,
it is important to perform label shift adaptation to make the
trained predictive model applicable for the inference on the
target domain.

1.2. Problem Settings and Preparations

We first formally define the problem and notations. The
observable data consists of two parts: the labeled source
data {(xi, yi)}ni=1 and unlabeled target data {xi}n+m

i=n+1. A
generic notation ps(·) and pt(·) denotes distributions on the
source and target domain, respectively. The label y is a
k-class variable with support Y = {1, . . . , k} on the source
domain. The support on the target domain is a subset of Y ,
which implies the testing data do not contain new classes
that are not in the training data. The features are denoted by
x ∈ Rp, and x could be high-dimensional vector.
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Under the label shift context, ps(y|x) and pt(y|x) are gen-
erally different. Thus, a model trained using labeled source
data (i.e., p̂s(y|x)) is usually biased. Using such a model for
pt(y|x) will decrease prediction accuracy. If we have prior
knowledge about ps(y) and pt(y), we can use the following
Bayes formula to adjust the trained model for testing data:

pt(y = i|x) = pt(y = i,x)

pt(x)
=

pt(y = i,x)∑k
j=1 pt(x, y = j)

=

pt(y = i)

ps(y = i)
ps(y = i|x)

∑k
j=1

pt(y = j)

ps(y = j)
ps(y = j|x)

, i = 1, . . . , k. (1)

Equation (1) provides the insight on turning [ps(y =
1|x), . . . , ps(y = k|x)] into [pt(y = 1|x), . . . , pt(y =
k|x)]. The formula hinges on the knowledge of the im-
portance weights ω = (ω1, . . . , ωk), where ωi := pt(y =
i)/ps(y = i). Although we can estimate ps(y = i)
(i = 1, . . . , k) empirically, data from the target distribu-
tion are unlabeled; thus, we cannot simply take the em-
pirical distribution of pt(y) to estimate ω with the ratio
p̂t(y = i)/p̂s(y = i). Hence, we can convert addressing the
label shift into the estimation problem of ω.

1.3. Related Work and Existing Methods

In the literature, the label shift adaptation has attracted in-
creasing attention. The well-known methods include the
kernel-mean-matching approach (Zhang et al., 2013), the
generative adversarial training approach (Guo et al., 2020)
and importance re-weighting approaches (Maity et al., 2020;
Evans et al., 2021; Roberts et al., 2022). In this work, we
follow the research track of using importance re-weighting
to address the label shift problem. In the literature, there are
two popular types of importance weight estimation methods:
One is based on inverting a confusion matrix, and the other
is maximizing the likelihood function. In the following, we
will briefly review the two methods.

The confusion matrix method is based on solving a linear
equation. Under the label shift assumption, it holds∫

ω(y)ps(x, y)dy = pt(x), (2)

where ω(y) = pt(y)/ps(y). The black box shift estimation
(BBSE) method (see Lipton et al. 2018) replaces x with ŷ =
f(x) ∈ {1, . . . , k} in (2), where f(x) = argmaxyp̂s(y|x)
and p̂s(y|x) is a trained model. Then (2) becomes a linear
system where we can solve the importance weights by invert-
ing a confusion matrix. Azizzadenesheli et al. (2019) pro-
posed the regularized learning of label shift (RLLS) method.
The RLLS method added a regularized scheme to the BBSE
method by penalizing on ∥ω − 1∥, but the essence of the

RLLS method is the same as the BBSE, which is inverting
a confusion matrix.

The other type of method is based on maximizing the like-
lihood function. Saerens et al. (2002) proposed the maxi-
mum likelihood label shift (MLLS) method by maximizing∑n+m

i=n+1 log pt(xt) with respect to ω. An EM algorithm
was proposed to perform the maximum likelihood estima-
tion. However, the MLLS method needs the model ps(y|x)
to be correctly specified to ensure that the estimation is
consistent. Alexandari et al. (2020) showed that the MLLS
method performed poorly when ps(y|x) was fitted using
a vanilla neural network model. Alexandari et al. (2020)
further discovered that one could greatly improve the esti-
mation of the importance weights by calibrating the fitted
predictive model p̂s(y|x), but it remained unclear why cal-
ibration can help. Garg et al. (2020) provided theoretical
justifications for calibrating the predictive model by show-
ing maximizing likelihood is equivalent to minimizing a
KL divergence if the predictive model is calibrated. The
calibrated MLLS method outperforms the confusion matrix
methods (i.e., BBSE and RLLS) in estimation error.

1.4. Contributions and Outlines

The confusion matrix methods are easy to implement, but
the performances are less satisfactory than the calibrated
MLLS method. But the calibration procedure is non-trivial,
requiring further training and optimizations (e.g., Guo et al.
2017). Furthermore, there is more than one calibration
method, and the final results are sensitive to the choice of
the method.

This paper aims to find a solution combining the advantages
of both methods: achieving good performance while keep-
ing the procedure simple. We achieve this goal by proposing
a moment-matching estimator. The major contributions of
our work are summarized as follows:

1. We derive a novel moment-matching framework to
address the label shift problem. The proposed moment-
matching framework is based on the geometry of the
influence function under a semiparametric model. Un-
der the proposed moment-matching framework, we
develop the estimator for the importance weight ω.
It has been shown that our proposed estimators are
regular asymptotic linear (RAL) (see Tsiatis 2006).

2. We propose the efficient label shift adaptation (ELSA)
method for the importance weight estimation. We can
obtain the ELSA estimator by solving linear systems.
We prove that the ELSA estimator is

√
n-consistent,

We further show that the ELSA estimator satisfies the
asymptotic normality.

3. We conduct thorough numerical experiments to vali-
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date the performance of our proposed ELSA method.
The ELSA method outperforms the well-known meth-
ods: BBSE, RLLS, and MLLS. Furthermore, the ELSA
method has competitive performance and is more com-
putationally efficient than the calibrated MLLS method,
which is the best method in the literature (see Alexan-
dari et al. 2020).

The rest of the paper is organized as follows. In Section 2,
we formulate the label shift problem semiparametrically and
propose a moment-matching framework for estimating the
importance weights. Section 3 proposes the ELSA estimator
based on the aforementioned moment-matching framework;
we further prove that the ELSA estimator is consistent and
has an asymptotic normal distribution. Section 4 uses nu-
merical studies to compare the ELSA method with other
existing methods. Section 5 concludes the paper with some
discussions on future work.

2. Semiparametric Moment-Matching
Framework

This section proposes a novel moment-matching framework
for addressing the label shift problem. The framework is
based on the geometry of influence functions from a semi-
parametric model. More specifically, we need to derive the
function space perpendicular to the nuisance tangent space.
We refer readers to Section A of the appendix for prereq-
uisites and more details on the RAL estimator, influence
function, and geometry of function spaces.

In the first subsection, we unify the source and target dis-
tributions using one imaginary pooled distribution and de-
scribe the data with a semiparametric likelihood function. In
the second subsection, we derive the perpendicular space un-
der the semiparametric model. We then propose a moment-
matching framework for addressing the label shift from the
perpendicular space.

2.1. A Semiparametric Model

We can write the importance weight as a function of y as

ω(y;ω) :=
pt(y)

ps(y)
=

k∑
i=1

ωiI(y = i), y = 1, . . . , k,

where ω = (ω1, . . . , ωk). In the rest of the paper, we write
the importance weight function as ω(y) for short. Under the
unsupervised domain adaptation setting, the labeled data
from the source domain are independent of the unlabeled tar-
get data. The sample sizes of both data can be arbitrary and
unrelated, and the two distributions are not identically dis-
tributed. We introduce a binary variable r so that the source
and target distributions merge into one fictitious pooled dis-
tribution. We have a random triplet (x, y, r) in this pooled

distribution. A sample with r = 1 belongs to the source
domain and ps(x, y) = p(x, y|r = 1) and r = 0 verse visa.
Using this pooled distribution p(x, y, r), we can treat the
pooled data as independent and identically distributed.

For any sample from the pooled distribution, its likelihood
function is given by

L = {πps(x, y)}r {(1− π)pt(x)}1−r (3)

where π = Pr(r = 1). We can decompose the likelihood in
(3) as

L=πr(1−π)1−rps(x){ps(y|x)}r
{∫

ω(y)ps(y|x)dy

}1−r

(4)
In (4), ω are of interest while ps(y|x), ps(x), and π are nui-
sances. From a parametric perspective, one can estimate ω
using the maximum likelihood estimator (MLE) if ps(y|x)
is correct. As ps(x) and π are irrelevant with the MLE of ω,
if we were able to correctly specify ps(y|x), the likelihood
function could be reduced to L ∝

{∫
ω(y)ps(y|x)dy

}1−r
.

This is exactly the method proposed in Saerens et al. (2002).
However, The success of this method hinges on whether one
can correctly specify ps(y|x). If the ps(y|x) is misspecified,
the MLE of ω may not be consistent anymore.

To avoid such an issue, we can view the likelihood (3) from
a semiparametric perspective, where ps(y|x) is no longer
required to be a correctly specified parametric model. We
reformulate the likelihood (3) as

L = πr(1− π)1−r{ps(y)}r{p(x|y)}r

·

{∫
ω(y)p(x|y)ps(y)dy

}1−r

. (5)

We treat p(x|y), ps(y), and π in (5) as nuisances. Note
that we do not assume any parametric models for p(x|y)
and ps(y), and thus they are allowed to be nonparametric
functions from the infinite-dimensional space. Although
we rewrite the likelihood function using p(x|y) in (5), we
do not intend to estimate p(x|y). Here p(x|y) is solely
an intermediate component for deriving the perpendicular
space (as detailed in Section A of the appendix). The reason
for choosing p(x|y) is that p(x|y) is the same in both the
source and target distributions so that we do not need to
differentiate ps(y|x) and pt(y|x).

It is infeasible to compute the MLE of ω in (5) when we
assume a nonparametric (i.g., infinite-dimensional) model
for p(x|y). Instead, our solution is to geometrically blend
the parameter of interest with other nuisances so that we
can develop robust estimation methods even if the model
p(x|y) is misspecified with respect to nuisances. To be
more specific, we first compute the nuisance tangent spaces
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and find the function space perpendicular to all the nuisance
tangent spaces. The influence functions of estimators lay
in the perpendicular space. In addition to Section A of the
appendix, we refer to Bickel et al. (1998) and Tsiatis (2006)
for more details.

Based on the above semiparametric likelihood function in
(5), we will derive the nuisance tangent space and the per-
pendicular space in Section 2.2, which is essential for devel-
oping our label shift adaptation estimator.

2.2. Function Spaces and Moment Matching

Our main utilization of semiparametric models is to derive
the complement of the nuisance tangent space (i.e., the per-
pendicular space) Λ⊥. Based on the semiparametric theory
(Bickel et al., 1998; Tsiatis, 2006), this space corresponds to
the influence functions for estimating the parameter of inter-
est ω. In other words, every element in Λ⊥ corresponds to a
RAL estimator of ω. Also, this space indicates any function
that is not in this space should not be used for estimating ω
in the interest of efficiency. For example, if ϕ is an function
that ϕ ̸∈ Λ⊥, then one should not use ϕ but to use Π(ϕ|Λ⊥)
instead. Here

ϕ = ϕ−Π(ϕ|Λ⊥)︸ ︷︷ ︸
∈Λ

⊕Π(ϕ|Λ⊥)︸ ︷︷ ︸
∈Λ⊥

,

and Π(ϕ|Λ⊥) is the projection of ϕ onto the space Λ⊥.
This is because by using the projection Π(ϕ|Λ⊥), we can
improve the efficiency (i.e., empirically, decrease the MSE
of the estimator). Also, if ϕ ̸∈ Λ⊥, we cannot obtain a
RAL estimator, thus, making it difficult to characterize the
resulting estimator.

Our ultimate goal is to find a RAL estimator for ω, which
would enjoy the consistency and asymptotic normality prop-
erties (see Section A of the appendix). Achieving this goal
is equivalent to finding its corresponding influence function.
Because an influence function lays in a function space per-
pendicular to the nuisance tangent spaces, our goal becomes
to derive the perpendicular space, which is the main goal of
Theorem 2.1.

Theorem 2.1. Without a loss of generality, we fix wk

as wk = (1 −
∑k−1

i=1 wipi)/pk, and pk as pk = 1 −∑k−1
i=1 pi, where pi := Prs(y = i). The log-likelihood

function is given by r log(π) + (1 − r) log(1 − π) +∑k−1
i=1 rI(y = i) {log p(x|y = i) + log(pi)} + rI(y =

k) {log p(x|y = k) + log(1− p1 − · · · − pk−1)} + (1 −
r) log{p(x|y = 1)w1p1+p(x|y = 2)w2p2+· · ·+p(x|y =
k)(1 − w1p1 − · · · − wk−1pk−1)}. The nuisances are
p1, . . . , pk−1, p(x|y = 1),. . . , p(x|y = k), and π. Then,
the perpendicular space Λ⊥, which is orthogonal to all the

nuisance tangent spaces, is given by

Λ⊥ =

[
r

π

{
1−

k∑
i=1

ωiI(y = i)

}
E(h|y = k)+

{
r

π

×
k∑

i=1

ωiI(y= i)− 1−r

1−π

}
h(x) :Et(h)=0 ∈ Rk−1

]
. (6)

Letting φ(x, y, r;ω) be an influence function, it satisfies
E {φ(x, y, r;ω)} = 0 at ω = ω0. Because there is a
one-to-one relationship between influence function and ele-
ment in (6): φ(x, y, r;ω) = Cg(x, y, r;ω), where C is an
invertible constant matrix and g ∈ Λ⊥. We have

E {φ(x, y, r;ω)} = 0 ⇔ E {g(x, y, r;ω)} = 0. (7)

Equation (7) implies that solving the empirical version of
E {φ(x, y, r;ω)} = 0 is equivalent to solving the empir-
ical version of E {g(x, y, r;ω)} = 0. So, we can solve∑n+m

i=1 g(xi, yi, ri;ω) = 0 to estimate ω. The estimating
equation

∑n+m
i=1 g(xi, yi, ri;ω) = 0 can be further written

as

n+m∑
j=1

[
rj
π

{
1−

k∑
i=1

ωiI(yj = i)

}
E{h(x)|y = k}

+

{
rj
π

k∑
i=1

ωiI(yj = i)− 1− rj
1− π

}
h(xj)

]
= 0. (8)

To solve the equation, we can split (8) into two parts:
∑n+m

j=1
rj
π

{
1−
∑k

i=1 ωiI(yj= i)
}
E {h(x)|y=k}=0,∑n+m

j=1

{
rj
π

∑k
i=1 ωiI(yj= i)− 1−rj

1−π

}
h(xj)=0.

(9)
If both equations hold, then Equation (8) holds.

Because E {h(x)|y = k} is a constant, the first equation
of (9) is equivalent to

∑n
j=1

{
1−

∑k
i=1 ωiI(yj = i)

}
= 0.

This equation holds because we put the a constraint on ω̂i:∑k
i=1 ω̂ip̂i = 1, where p̂i is the proportion of observations

with label y = i in the source dataset. So, we only need to
achieve the second equation of (9), which directly leads to
the moment-matching framework described below.

Definition 2.2. (Moment Matching Framework) We call
the following equation the moment-matching framework for
label shift adaptation:

1

n

n∑
j=1

k∑
i=1

ωiI(yj = i)h(xj) =
1

m

n+m∑
j=n+1

h(xj). (10)

Equation (10) is the empirical version of Es {ω(y)h(x)} =
Et {h(x)}. Here h(x) ∈ Rk−1 is a function that satisfies
Et(h) = 0.
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In equation (10), one first finds a mapping x 7→ h(x) ∈
Rk−1, and then estimates the importance weights (i.e., ω)
by matching the first moment of h(x) on the target do-
main (i.e., Et {h(x)}) with a shifted first moment (i.e.,
Es {ω(y)h(x)}).

In the perpendicular space (6), we require h(x) to sat-
isfy Et {h(x)} = 0. However, we do not need this con-
straint when choosing h(x): for any h(x) ∈ Rk−1, we can
use h∗(x) = h(x) − Et {h(x)} to construct an element
g(x, y, r) ∈ Λ⊥ as Et {h∗(x)} = 0. Because we are sub-
tracting a constant on both sides of (10), using h∗(x) yields
the same estimator as h(x).
Remark 2.3. Different choices of h(x) lead to different
estimators, while a poor choice (e.g., h(x) is degenerate)
may fail to yield a valid estimator. It is worth noting that
if we let hBBSE(x) = [ps(y = 1|x), · · · , ps(y = k −
1|x)]⊤, the resulting estimator ω̂ is essentially equivalent
to the BBSE-soft (see Lipton et al. 2018) method when we
replace ps(y|x) with the estimated p̂s(y|x) (but subject to
the constraint that

∑k
i=1 p̂iω̂i = 1).

3. Efficient Label Shift Adaptation
The BBSE method is easy to implement as the core step
is only inverting a matrix. But the performance of the
BBSE method is not as good as the MLLS method pro-
posed in Alexandari et al. (2020). However, the MLLS
method requires an extra step of calibrating the predictive
model. There are many calibration procedures available,
and it is difficult to choose the calibration procedure when
different calibration methods give different results. More-
over, implementing the calibrated MLLS method is more
difficult than the BBSE method.

The question is: Can we find an alternative method based
on the perpendicular space (6) so that it can achieve good
performances and is still easy to implement and computa-
tionally efficient? We answer this question by proposing
the ELSA estimator, which does rely on calibration and is
computationally simple and efficient.

3.1. The Estimation Method

We propose hELSA(x) by

hELSA(x) =

{
Es

{
ω2(y)|x

}
π

+
Es{ω(y)|x}

1− π

}−1

µ̃(x),

(11)
where µ̃(x) := [ps(y = 1|x) − ps(y = k|x), . . . , ps(y =
k − 1|x) − ps(y = k|x)]T . The proposed hELSA(x)
is inspired by projecting the score function Sω :=
∂ log{L(x, y, r)}/∂ω(−k) onto the perpendicular space in
(6). The projection has a form c(x)/[Es

{
ω2(y)|x

}
/π +

Es{ω(y)|x}/(1− π)], where c(x) is a function depends on

x with complex structure. We replace c(x) with the µ̃(x)
for simple implementation. More details on the motivation
of hELSA(x) are given in Section B the appendix.

In practice, we can adopt a fitted model p̂s(y = j|x) to
replace ps(y = j|x). Then we have Ês{ω2(y)|x} =∑k

i=1 ω
2
i p̂s(y = i|x), Ês{ω(y)|x} =

∑k
i=1 ωip̂s(y =

i|x). Also we have ωk = (1 −
∑k−1

i=1 p̂iωi)/p̂k, where
p̂i (i = 1, . . . , k) is the proportion of source data with label
y = i. Directly from (10), we can estimate ω by solving the
following equation:

1

n

{
H(ω)Aω(−k)+H(ω)v

}
− 1

m
H∗(ω)1m×1=0, (12)

where ω(−k) := (ω1, . . . , ωk−1), H(ω) =

[ĥELSA(x1), . . . , ĥELSA(xn)], H∗(ω) =

[ĥELSA(xn+1), . . . , ĥELSA(xn+m)], A is a n × (k − 1)
matrix and the jth row of A corresponds to the jth
observation in the source data and is defined as

Aj· =



[1, 0, . . . , 0] , yj = 1,

[0, 1, . . . , 0] , yj = 2,

. . .

[0, . . . , 0, 1] , yj = k − 1,

[−p̂1/p̂k, . . . ,−p̂k−1/p̂k] , yj = k,

and v is a vector of length n whose jth entry vj = 1/p̂k if
yj = k, otherwise vj = 0 for j = 1, . . . , n. Here ĥELSA(x)
is obtained by replacing ps(y|x) in hELSA(x) with a fitted
p̂s(y|x).
Remark 3.1. We can find the solution ω̂(−k) to (12) by
minimizing the ℓ2-norm of the left side of (12):

∥∥∥ 1
n

{
H(ω)Aω(−k)+H(ω)v

}
− 1

m
H∗(ω)1m×1

∥∥∥2. (13)

The problem (13) can be solved with any optimizer.
Another approach is to find the solution ω by the
fix-point iteration: Given ω

(−k)
t = (ω1, . . . , ωk−1)t

at the t-th iteration, we can update it by ω
(−k)
t+1 =

{H(ωt)A}−1 {(n/m)H∗(ωt)1m×1 −H(ωt)v}. This
method only involves matrix inversion and we can obtain
the solution to (12) when {ω(−k)

t } converges.

3.2. Theoretical Results

In this part, we will establish the theoretical propriety of our
ELSA estimator. It can be shown that our estimator ω̂(−k)

(or equivalently ω̂) is a RAL estimator and thus enjoy the
asymptotic normality. We state the details in the following
theorem. The proofs are given in Section D of the appendix.
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Theorem 3.2. Letting

gp(x, y, r) =
r

π

{
1−

k∑
i=1

ωiI(y = i)

}
E(hELSA|y = k)

+

{
r

π

k∑
i=1

ωiI(y = i)− 1− r

1− π

}
hELSA(x),

where hELSA(x) is defined in (11). Under the assumption

that E
{
∂gp/∂ω

(−k)T
}∣∣

ω(−k)=ω
(−k)
0

is non-singular and

n/(n + m) → π ∈ (0, 1) as n → ∞, the proposed esti-
mator ω̂(−k), as the solution to (12), enjoys the following
proprieties:

1. (
√
n-consistent) ω̂(−k) = ω

(−k)
0 + op(1/

√
n), i.e. for

any small ϵ > 0, we can find a value N such that for
all n > N , Pr(

√
n∥ω̂(−k) − ω

(−k)
0 ∥ > ϵ) < ϵ.

2. (asymptotic normality) as n → ∞, it holds that
√
n
(
ω̂(−k) − ω

(−k)
0

)
d−→ N

(
0, πUVU⊤).

where U =

[
E

{
∂gp/∂ω

(−k)T
}∣∣

ω(−k)=ω
(−k)
0

]−1

and

V = E{gp(x, y, r;ω
(−k)
0 )gT

p (x, y, r;ω
(−k)
0 )}.

Remark 3.3. Note that the estimator ω̂(−k) does not include
ωk. As n → ∞, p̂j (j = 1, . . . , k) also converge to the
true values pj (j = 1, . . . , k). The estimator for the im-
portance weight for class y = k (i.e., ω̂k), which is given
by ω̂k = (1 −

∑k−1
i=1 p̂iω̂i)/p̂k is also consistent by the

Slutsky’s theorem.
Remark 3.4. The proposed estimator belongs to the family
of the Z-estimator, and the conditions in Theorem 3.2 are
standard regularity assumptions for the Z-estimator. More
details on the Z-estimator and its regularity assumptions can
be found in Chapter 5 in Vaart (1998).

4. Numerical Studies
In this section, we conduct numerical experiments to demon-
strate the efficacy of our proposed method on the label shift
problem. We summarize our experimental settings in the
following.

Datasets and Models. Our experiments are evaluated on
MNIST, CIFAR-10, and CIFAR-100. We adopt the same
settings in (Alexandari et al., 2020): For each dataset, ten
models are trained with different random seeds, and 10k
data samples of the training set are reserved as the source
dataset (so that it is not used for training the model.) The
models for MNIST have the same architectures as the ones
in (Azizzadenesheli et al., 2019) and those for CIFAR-10

and CIFAR-100 are the same as the models in (Geifman &
El-Yaniv, 2017).

Label Shift Mechanism. Dirichlet label shift is adopted
as our label shift mechanism. More specifically, we use a
Dirichlet distribution with concentration parameter α to gen-
erate the label distribution p(y) for the target dataset. Then
we create the target dataset by sampling with replacement
according to p(y). The label shift is more severe with a
smaller α. We will call α as the Dirichlet shift parameter in
the following studies.

Baseline Methods and Metric. We compare our proposed
method with three baseline methods: BBSE (Lipton et al.,
2018), RLLS (Azizzadenesheli et al., 2019) and the maxi-
mum likelihood method via an EM algorithm (Alexandari
et al., 2020; Garg et al., 2020) (we call it the MLLS method
in the rest of the paper). Furthermore, we consider boosting
the performance of the MLLS method by adopting predic-
tion calibrations. To evaluate the performance, we adopt the
mean squared error (MSE) between the true weights and the
estimated weights as the metric. In our experiments, for all
the settings, we run 20 trials for each model and, thus, 200
replications in total.

Due to the space limitation, in this section, we will focus on
the following three questions:

1. How’s the performance of our ELSA compared with
the baseline methods under different scenarios?

2. Would ELSA require calibrations?
3. How much computation efficiency does ELSA gain?

More experiments and detailed results are relegated to Sec-
tion C of the appendix.

4.1. ELSA Performs Better than Baseline Approaches

Our first experimental study focuses on the efficacy of our
proposed method under different sample sizes and shift
parameters. We mainly compare our proposed method with
the standard baseline methods, BBSE, RLLS, and MLLS. In
all the experiments, we keep the source and target datasets
with the same sample size and generate the two sets by
sampling with replacement.

Figure 1 illustrates the estimation results of our proposed
method on the three datasets under the different Dirichlet
shift parameters. We fix the sample size as n = m = 5000
while adjust α from {0.1, 0.3, 1.0, 3.0, 10.0}. The figures
show that our method has the most accurate estimation in
terms of the MSE. For example, in the case of MNIST
with α = 1.0, our method reduces the MSE from RLLS’s
1.567×10−3 to 8.78×10−4, which is almost 50% improve-
ment. Also, the MSE trends of our method are relatively
flat over different α: The MSE values are around 10−3 for
MNIST and CIFAR-10, and about 10−1 for CIFAR-100.
However, the MSE gets larger for the other methods while
α is closer to zero.
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Figure 1. MSE v.s. the degree of shift. We control the label shift by adjusting the Dirichlet shift parameter α. We fix the sample size as
5000. The solid curves represent the mean trimmed 5% and the shadow regions are 95% CI error band.
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Figure 2. MSE v.s. the sample size. We fix the Dirichlet shift parameter α as 1.0 for the three datasets. The solid curves represent the
mean trimmed 5%, and the shadow regions are 95% CI error band.

We also compare our method with the others on different
sample sizes. We fix α = 1.0 and allow the sample size
n = m ranging from {1500, 3000, 5000, 7500}. The results
are summarized in Figure 2. Our method consistently has
a lower MSE than the other three methods on MNIST and
CIFAR-10. For CIFAR-100, the estimation performance of
our method on 1500 samples is similar to the competitive
methods. But as the sample size increases, our method
performs better than the others.

4.2. Calibration is Not Necessary for ELSA

As it is studied in (Alexandari et al., 2020; Garg et al.,
2020), post-prediction calibration is an essential step for
the success of the MLLS method. In this study, we want to
examine whether calibration is necessary for our method.
Here we use calibration methods from temperature scaling
(TS), no-bias vector scaling (NBVS), bias-corrected tem-
perature scaling (BCTS), and vector scaling (VS). We refer
the readers to (Alexandari et al., 2020) for details of the
calibration methods. Also, we consider a none calibration
case in which only soft-max operation is adopted to map the
prediction score into [0, 1].

We study the combination of our proposed and the MLLS
methods over the five calibration methods. Figure 3
shows the corresponding estimation performance under the
datasets of MNIST and CIFAR-10. In the experiments, we
consider the sample size (n = m) and α pairs in (2000, 1.0),
(4000, 1.0), and (4000, 10.0). It can be seen that the MLLS
method with the none calibration has the poorest estimation
result. By performing the proper calibration, the MLLS
method’s estimation could improve. For example, in the
case of CIFAR-10 with sample size n = m = 4000 and
α = 1.0, the median MSE of the MLLS method with the
none calibration is 2.024 × 10−3 while reduced to about
7 × 10−4 by adding the BCTS calibration. However, the
performance of our method is very stable under different
calibrations and data settings. Even with the none calibra-
tion, our method has a competitive estimation as the best
result from the MLLS method. Thus, we conclude that the
post-prediction calibration is unnecessary for our proposed
method.

4.3. ELSA Achieves the High Accuracy Fast

In the end, we aim to examine the computation efficiency of
our method. The experiments are conducted on a MacBook
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Figure 3. The MSE boxplots under calibrations for ELSA and MLLS methods.
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Figure 4. The stacked barplot for the computation times of different
methods on CIFAR-10. The Dirichlet shift parameter α and sample
size are fixed as 0.1 and 10000, respectively. The MSE values are
the mean trimmed 5%.

Pro with a 2.9 GHz Dual-Core Intel Core i5 processor and
8 GB memory. We compare our method with the three base-
line methods, BBSE, RLLS, and MLLS, without calibration.
Additionally, for the MLLS method, we also consider its

combinations with TS, VS, BCTS, and NBVS calibrations.
We study the case with a dataset as CIFAR-10, sample size
m = n = 10000, and α = 0.1.

Figure 4 illustrates the trade-off between computation and
estimation over different methods. We rank the methods
based on their trimmed mean MSE after removing 5% out-
liers, and the upper method is with smaller MSE. We used
the stacked barplot to show the accumulated computation
time, separated into the stages of post-prediction calibration
and label shift adaptation. Note that for all the methods with
none calibration, the time at the calibration stage is for the
data reformatting and the soft-max operation. It can be seen
that the top 3 methods (our ELSA, the MLLS method with
VS, and BCTS calibrations) have the MSE values reduced
by about 70% compared with the 4th method (the MLLS
method with NBVS calibration). Within the top 3 methods,
our method uses the shortest time (less than 2.5 seconds)
to finish the whole process, while the MLLS method with
VS calibration costs over 20 seconds and with BCTS costs
about 10 seconds. Thus, our method could achieve high
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accuracy with the fastest computation.

5. Discussion
We propose a moment-matching framework for adapting the
label shift for constructing an asymptotic linear estimator.
Furthermore, we propose the ELSA estimator by using a
novel mapping for x (i.e., hp(x)) in the moment-matching
procedure; the resulting estimator has a competitive perfor-
mance even without calibrating the predictive models. The
proposed method is also simple to implement and computa-
tionally efficient. So, it is especially useful when calibration
is difficult (e.g., different calibration methods do not agree)
or one needs to frequently adapt to label shift. For future
research, one research question would be to find the optimal
mapping function for x. Other research questions include
extending the semiparametric framework to a more general
label shift setting like the open set label shift (see Garg et al.
2022).
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Appendix

A. Background
Here we briefly introduce the asymptotically linear estimator and the influence function. Suppose we have independent and
identically distributed data Z = {Z1, . . . , Zn}, and the goal is to estimate β ∈ Rq. If there exists a q-dimensional random
vector φq×1(Z) such that

n1/2
(
β̂n − β0

)
= n−1/2

n∑
i=1

φ(Zi) + op(1), (14)

then we call β̂n, as a function Z, is an asymptotic linear estimator, and we say φ(Z) is the influence function of β̂n. For
example, if β = E(Z), then the sample mean β̂n =

∑n
i=1 Zi/n is an asymptotic linear estimator with influence function

φ(Z) = Z − β. For an asymptotically linear estimator, using the central limit theorem, we have n1/2
(
β̂n − β0

)
d−→

N (0, E(φφT )), given that E(φφT ) is finite nonsingular. Generally, there is a one-to-one relationship between the influence
function and the corresponding asymptotically linear estimator. Given an influence function, we can obtain the corresponding
estimator by solving

n∑
i=1

φ(zi; β̂n) = 0, (15)

which is the empirical version of E {φ(Z;β)} = 0. So, we can construct an asymptotic linear estimator by finding an
influence function.

To find an influence function, we can start with the Hilbert space of the mean-zero functions of the same length of the
parameter β. In other words, the whole space of all possible functions. But we want to further narrow down from the whole
space to a subspace that contains desirable candidates. To achieve this goal, we need to partition the whole space using the
nuisance tangent space.

Here we discuss the notation of nuisance tangent space non-technically. The likelihood function can be decomposed into
two parts: for one part, we use parametric models; for the other part, we do not assume parametric models (i.e., we use
non-parametric models). For each nonparametric model, we can derive an individual nuisance tangent space; thus, after
deriving all the individual nuisance tangent spaces for each nonparametric model, we combine them together to form a
nuisance tangent space for the semiparametric model. The nuisance tangent space is a subspace of the whole Hilbert space.

After deriving the nuisance tangent space, an estimator of the parameters (that belong to the parametric models) correlates
with the nuisance tangent space in the following manner: To be an influence function, a function needs to be orthogonal to
the nuisance tangent space. Thus, the perpendicular space to the nuisance tangent space contains all the influence functions.
Under some regularity conditions, we can choose an element from the perpendicular space, which can serve as the influence
function.

In our strategy to address the label shift problem, we aim to find an asymptotic linear estimator for the importance weight
ω = (ω1, . . . , ωk). To achieve this goal, we first derive the nuisance tangent space. Then, we derive the perpendicular space,
which is orthogonal to the nuisance tangent space. We will see that the perpendicular space leads to a moment-matching
framework for addressing the label shift. The basis for all the aforementioned derivations is the semiparametric likelihood,
which is the focus of the next subsection.

B. Motivations for hELSA(x)

The motivation of the hELSA(x) function starts from the score function with respect to ω(−1) = (ω1, . . . , ωk−1), and
denoted by Sω(x). The i-th element of the score function is given by

[Sω(x)]i ∝
ps(x)

pt(x)
{ps(y = i|x)− ps(y = k|x)} , i = 1, . . . , k − 1.

We could use Sω(x) directly to construct an influence function for a RAL estimator. But we can improve efficiency
(i.e., reducing estimation error) by projecting it to the perpendicular space Λ⊥. Prioritizing computational efficiency and
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Table 1. Method comparison on MNIST with Dirichlet shift. The value is the mean MSE trimmed 5% extreme values. The bold values
under the same setting (column) are the top-3 results.

Calibration Adaptation Setting: (Sample Size n, Shift Parameter α)
(500, 0.1) (500, 1.0) (1500, 0.1) (1500, 1.0) (4500, 0.1) (4500, 1.0)

None

BBSE-hard 2.048E-02 1.260E-02 7.301E-03 3.937E-03 3.841E-03 1.661E-03
RLLS-hard 1.886E-02 1.250E-02 6.932E-03 3.921E-03 3.721E-03 1.659E-03
BBSE-soft 1.744E-02 1.050E-02 6.997E-03 3.178E-03 3.748E-03 1.334E-03
RLLS-soft 1.618E-02 1.039E-02 6.749E-03 3.178E-03 3.588E-03 1.335E-03
MLLS 2.312E-02 1.167E-02 9.177E-03 4.839E-03 4.661E-03 3.156E-03
ELSA 3.588E-03 7.474E-03 1.610E-03 2.394E-03 6.020E-04 9.317E-04

BCTS

BBSE-soft 1.733E-02 1.041E-02 6.636E-03 3.113E-03 3.352E-03 1.264E-03
RLLS-soft 1.653E-02 1.033E-02 6.379E-03 3.113E-03 3.237E-03 1.265E-03
MLLS 3.556E-03 6.290E-03 1.456E-03 2.235E-03 7.500E-04 1.016E-03
ELSA 3.612E-03 7.284E-03 1.674E-03 2.342E-03 5.876E-04 8.419E-04

NBVS

BBSE-soft 1.761E-02 1.055E-02 6.833E-03 3.177E-03 3.395E-03 1.286E-03
RLLS-soft 1.686E-02 1.047E-02 6.587E-03 3.178E-03 3.277E-03 1.287E-03
MLLS 7.056E-03 7.197E-03 2.428E-03 2.459E-03 1.473E-03 1.043E-03
ELSA 3.587E-03 7.438E-03 1.619E-03 2.408E-03 5.917E-04 8.676E-04

TS

BBSE-soft 1.638E-02 1.010E-02 6.439E-03 3.037E-03 3.389E-03 1.263E-03
RLLS-soft 1.520E-02 1.001E-02 6.240E-03 3.034E-03 3.270E-03 1.263E-03
MLLS 2.199E-02 9.362E-03 8.106E-03 2.894E-03 3.823E-03 1.347E-03
ELSA 3.519E-03 7.000E-03 1.635E-03 2.292E-03 5.919E-04 8.503E-04

VS

BBSE-soft 1.869E-02 1.044E-02 6.756E-03 3.141E-03 3.351E-03 1.296E-03
RLLS-soft 1.784E-02 1.037E-02 6.530E-03 3.141E-03 3.251E-03 1.296E-03
MLLS 4.639E-03 6.672E-03 1.535E-03 2.339E-03 7.481E-04 1.030E-03
ELSA 3.681E-03 7.143E-03 1.583E-03 2.364E-03 6.520E-04 8.682E-04

feasibility, we approximate the projection Π(Sω(x)|Λ⊥) with

Π(Si(x) | Λ⊥) ∝ κ(x)Si(x),

where κ(x) is a ”bridging” function that needs to satisfy

1− κ(x)

κ(x)
= Et

{
1− Pr(R = 1|Y,X)

Pr(R = 1|Y,X)
|x
}
.

Under the label shift assumption, we further have

1− κ(x)

κ(x)
=

1− π

π
Et

{
pt(Y )

ps(Y )
|x
}
.

Next we will show tht the proposed function hELSA(x) is proportional to κ(x)Si(x). Because κ(x)Si(x) =

κ(x)
ps(x)

pt(x)
{ps(y = i|x)− ps(y = k|x)}, we only need to verify that the denominator of hELSA(x) is proportional to the

reciprocal κ(x)
ps(x)

pt(x)
: the denominator of hELSA(x) is

Es(ρ
2 | x)
π

+
Es(ρ | x)
1− π

∝ pt(x)

ps(x)

1− κ(x)

κ(x)

1

1− π
+

pt(x)

ps(x)

1

1− π

∝ pt(x)

ps(x)

1

κ(x)
.

11



Efficient Label Shift Adaptation

Table 2. Prediction improvement comparison on MNIST with Dirichlet shift. The value is the mean delta accuracy trimmed 5% extreme
values. The bold values under the same setting (column) are the top-3 results.

Settings (500, 0.1) (500, 1.0) (1500, 0.1) (1500, 1.0) (4500, 0.1) (4500, 1.0)

None

BBSE-hard 5.598e-02 1.064e-02 5.614e-02 1.064e-02 5.736e-02 1.130e-02
RLLS-hard 5.600e-02 1.073e-02 5.610e-02 1.064e-02 5.738e-02 1.130e-02
BBSE-soft 5.709e-02 1.169e-02 5.639e-02 1.139e-02 5.763e-02 1.176e-02
RLLS-soft 5.713e-02 1.164e-02 5.643e-02 1.139e-02 5.768e-02 1.175e-02
MLLS 5.840e-02 1.038e-02 5.636e-02 9.563e-03 5.750e-02 9.889e-03
ELSA 5.922e-02 1.207e-02 5.737e-02 1.134e-02 5.857e-02 1.166e-02

BCTS

BBSE-soft 5.467e-02 1.093e-02 5.552e-02 1.296e-02 5.750e-02 1.417e-02
RLLS-soft 5.480e-02 1.093e-02 5.558e-02 1.296e-02 5.757e-02 1.417e-02
MLLS 5.709e-02 1.200e-02 5.711e-02 1.312e-02 5.844e-02 1.409e-02
ELSA 5.802e-02 1.180e-02 5.794e-02 1.317e-02 5.931e-02 1.437e-02

NBVS

BBSE-soft 5.447e-02 1.158e-02 5.537e-02 1.309e-02 5.723e-02 1.417e-02
RLLS-soft 5.451e-02 1.156e-02 5.542e-02 1.309e-02 5.729e-02 1.417e-02
MLLS 5.753e-02 1.238e-02 5.659e-02 1.313e-02 5.825e-02 1.413e-02
ELSA 5.871e-02 1.249e-02 5.763e-02 1.332e-02 5.930e-02 1.434e-02

TS

BBSE-soft 5.607e-02 1.384e-02 5.611e-02 1.348e-02 5.732e-02 1.402e-02
RLLS-soft 5.611e-02 1.387e-02 5.621e-02 1.347e-02 5.734e-02 1.402e-02
MLLS 5.827e-02 1.422e-02 5.714e-02 1.352e-02 5.820e-02 1.405e-02
ELSA 5.947e-02 1.460e-02 5.789e-02 1.356e-02 5.924e-02 1.422e-02

VS

BBSE-soft 5.158e-02 9.067e-03 5.479e-02 1.230e-02 5.742e-02 1.407e-02
RLLS-soft 5.169e-02 9.067e-03 5.482e-02 1.230e-02 5.746e-02 1.407e-02
MLLS 5.467e-02 9.800e-03 5.613e-02 1.253e-02 5.827e-02 1.411e-02
ELSA 5.598e-02 1.004e-02 5.723e-02 1.265e-02 5.953e-02 1.430e-02

C. Additional Experiments
In this section, we conducted additional experiments to evaluate the performance of our proposed method.

C.1. Performances under Different Sample Sizes and Shifts

In this part, we explore the performances of our proposed method under different sample sizes and shifts. We study on the
three datasets: MNIST, CIFAR-10 and CIFAR-100. The model setting are the same as the ones in Section 4. As for the label
shift mechanism, besides the Dirichlet shift, we also consider the “tweak-one” shift (Lipton et al., 2018), in which the the
prior of the 4th class is ρ and the other classes’ priors are (1− ρ)/(k − 1) with total class number as k. We consider the
competitve methods from the followings:

• BBSE-hard and BBSE-soft (Lipton et al., 2018)
• RLLS-hard and RLLS-soft (Azizzadenesheli et al., 2019)
• MLLS (Alexandari et al., 2020; Garg et al., 2020)

We add the post-prediction calibrations to the adaptation methods except BBSE-hard and RLLS-hard, and the calibration
methods include BCTS, NBVS, TS, VS. Thus, we totally do the performance comparison over 22 methods.

In our comparison, we consider two metrics: the first one is the weight MSE, i.e. ∥ω̂ − ω∥2; another is the prediction
improvement, which is the delta accuracy of the domain-adapted model relative to the original model. The numerical results
are summarized in Table 1-12. For Dirichlet shift, we consider the shift parameter α ∈ {0.1, 1.0}; and for tweakone shift,
we allow the shift parameter ρ ∈ {0.01, 0.9}. We range the sample size n ∈ {500, 1500, 4500}. Note that for the cases with
CIFAR-100, we don’t include the results with sample size n = 500. Because when n = 500, some classes will have zero
sample in the testing datasets.

First of all, it can be seen that, without calibration, our proposed method could always have the best estimation performance
than the other methods and the improvements are very significant. For example, for the CIFAR-10 dataset, our method
could reduce about 50% MSE under Dirichlet shift and under tweakone shift with ρ = 0.9. By adding the post-prediction
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Table 3. Method comparison on CIFAR-10 with Dirichlet shift. The value is the mean MSE trimmed 5% extreme values. The bold values
under the same setting (column) are the top-3 results.

Calibration Adaptation Setting: (Sample Size n, Shift Parameter α)
(500, 0.1) (500, 1.0) (1500, 0.1) (1500, 1.0) (4500, 0.1) (4500, 1.0)

None

BBSE-hard 2.508E-02 1.197E-02 8.058E-03 4.288E-03 2.614E-03 1.559E-03
RLLS-hard 2.240E-02 1.175E-02 7.271E-03 4.261E-03 2.522E-03 1.557E-03
BBSE-soft 2.073E-02 8.784E-03 6.237E-03 3.490E-03 2.317E-03 1.198E-03
RLLS-soft 1.881E-02 8.690E-03 5.770E-03 3.465E-03 2.255E-03 1.194E-03
MLLS 3.490E-02 9.183E-03 2.342E-02 4.991E-03 1.673E-02 2.565E-03
ELSA 2.790E-03 5.801E-03 8.887E-04 2.154E-03 3.851E-04 7.279E-04

BCTS

BBSE-soft 2.083E-02 8.705E-03 6.369E-03 3.420E-03 2.247E-03 1.106E-03
RLLS-soft 1.885E-02 8.613E-03 6.027E-03 3.395E-03 2.148E-03 1.100E-03
MLLS 2.941E-03 5.116E-03 9.181E-04 2.133E-03 5.229E-04 7.503E-04
ELSA 3.190E-03 5.655E-03 9.579E-04 2.080E-03 3.748E-04 7.041E-04

NBVS

BBSE-soft 2.116E-02 8.849E-03 6.384E-03 3.396E-03 2.250E-03 1.120E-03
RLLS-soft 1.938E-02 8.762E-03 6.149E-03 3.373E-03 2.164E-03 1.115E-03
MLLS 6.038E-03 5.722E-03 2.791E-03 2.310E-03 1.372E-03 8.431E-04
ELSA 3.075E-03 5.775E-03 8.751E-04 2.116E-03 3.657E-04 7.004E-04

TS

BBSE-soft 2.060E-02 8.738E-03 6.385E-03 3.459E-03 2.336E-03 1.191E-03
RLLS-soft 1.833E-02 8.617E-03 5.906E-03 3.429E-03 2.263E-03 1.188E-03
MLLS 3.491E-02 9.200E-03 2.462E-02 5.252E-03 1.833E-02 2.684E-03
ELSA 2.737E-03 5.742E-03 8.904E-04 2.101E-03 3.819E-04 7.167E-04

VS

BBSE-soft 2.092E-02 9.043E-03 6.375E-03 3.410E-03 2.252E-03 1.110E-03
RLLS-soft 1.910E-02 8.935E-03 6.028E-03 3.384E-03 2.162E-03 1.104E-03
MLLS 4.222E-03 5.835E-03 1.082E-03 2.205E-03 4.899E-04 7.624E-04
ELSA 3.873E-03 5.935E-03 9.983E-04 2.089E-03 3.664E-04 7.050E-04

calibration, all the four methods (BBSE-soft, RLLS-soft, MLLS and ELSA) get improved, while MLLS and ELSA would
usually be included in the top-3 results. Note the estimation performances of our proposed method are very stable under
different calibrations, but MLLS’s performance significantly relies on the calibration method. For example, for the MNIST
dataset, MLLS could reach 3.556× 10−3 MSE with BCTS while the MSE deteriorates to 2.199× 10−2 when adopting TS.
However, for our proposed method, the MSEs are always about 3.5× 10−3 regardless the calibrations. Thus, we believe our
proposed method could consistently achieve the high accuracy.

C.2. Computation Efficiency Study

In this section, we conduct additional experiments to validate the computation efficiency of our method. First of all, we
show that even the proper calibration could improve the accuracy, the computation is costly. We record the computation
time over different calibrations. We focus on the CIFAR-10 dataset and use the Dirichlet shift with α = 0.1. We range the
sample size from 2000 to 10000. The results are shown in Table 13. It can be seen that the computation time increases
almost linearly with the sample size. VS is the most computational intensive method and then follows by BCTS.

From our previous performance comparison study and the experiments in (Alexandari et al., 2020), it has been observed
that MLLS with BCTS would often reach the state-of-the-art performance. Hence, we will mainly compare our method
with MLLS with none and BCTS calibrations. Note that as both MLLS and our ELSA are iterative methods, thus, in the
following, we will examine the computation efficiency and estimation accuracy per iteration. In the experiment, we study on
CIFAR-10 and CIFAR-100. We adopt the Dirichlet shift and set sample size n = 10000, shift parameter α = 0.1. The other
settings are the same as those in Section 4. The results are shown in Figure 5. It can be seen that our method (ELSA) could
reach the lowest MSE even without the post-prediction calibration. The convergence of ELSA is very fast and within 1-2
iterations. In terms of the computation time, ELSA costs almost the same time as MLLS without calibration. Although the
BCTS calibration could improve the estimation performance for MLLS, the computation for the calibration is costly. Thus,
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Table 4. Prediction improvement comparison on CIFAR-10 with Dirichlet shift. The value is the mean delta accuracy trimmed 5% extreme
values. The bold values under the same setting (column) are the top-3 results.

Settings (500, 0.1) (500, 1.0) (1500, 0.1) (1500, 1.0) (4500, 0.1) (4500, 1.0)

None

BBSE-hard 6.182e-02 1.722e-02 6.520e-02 1.926e-02 6.467e-02 1.881e-02
RLLS-hard 6.151e-02 1.711e-02 6.525e-02 1.926e-02 6.470e-02 1.880e-02
BBSE-soft 6.293e-02 1.729e-02 6.580e-02 1.946e-02 6.514e-02 1.867e-02
RLLS-soft 6.296e-02 1.727e-02 6.589e-02 1.947e-02 6.523e-02 1.867e-02
MLLS 6.538e-02 1.811e-02 6.689e-02 1.964e-02 6.551e-02 1.859e-02
ELSA 6.787e-02 1.844e-02 6.900e-02 1.981e-02 6.756e-02 1.906e-02

BCTS

BBSE-soft 6.324e-02 2.080e-02 6.828e-02 2.472e-02 6.873e-02 2.480e-02
RLLS-soft 6.313e-02 2.078e-02 6.830e-02 2.473e-02 6.871e-02 2.480e-02
MLLS 6.729e-02 2.169e-02 6.988e-02 2.496e-02 6.962e-02 2.503e-02
ELSA 6.804e-02 2.196e-02 7.050e-02 2.512e-02 6.981e-02 2.511e-02

NBVS

BBSE-soft 6.287e-02 2.024e-02 6.876e-02 2.452e-02 6.847e-02 2.423e-02
BBSE-soft 6.269e-02 2.027e-02 6.884e-02 2.452e-02 6.847e-02 2.424e-02
MLLS 6.682e-02 2.124e-02 7.044e-02 2.478e-02 6.940e-02 2.428e-02
ELSA 6.802e-02 2.162e-02 7.097e-02 2.498e-02 6.976e-02 2.439e-02

TS

BBSE-soft 6.458e-02 1.833e-02 6.781e-02 2.016e-02 6.721e-02 1.992e-02
RLLS-soft 6.447e-02 1.831e-02 6.779e-02 2.019e-02 6.726e-02 1.991e-02
MLLS 6.798e-02 1.891e-02 6.947e-02 2.044e-02 6.815e-02 2.013e-02
ELSA 6.869e-02 1.871e-02 7.013e-02 2.071e-02 6.869e-02 2.023e-02

VS

BBSE-soft 6.053e-02 1.909e-02 6.749e-02 2.447e-02 6.841e-02 2.490e-02
RLLS-soft 6.036e-02 1.909e-02 6.750e-02 2.445e-02 6.840e-02 2.490e-02
MLLS 6.467e-02 2.004e-02 6.930e-02 2.475e-02 6.960e-02 2.520e-02
ELSA 6.438e-02 2.011e-02 6.997e-02 2.475e-02 6.983e-02 2.516e-02

we think our proposed method is efficient in terms of computation and estimation accuracy.

D. Proofs
D.1. Proof of Theorem 2.1

We first state the full version of the theorem, adding the nuisance spaces into the theorem.

Theorem. Without a loss of generality, we replace wk with wk = (1 −
∑k−1

i=1 wipi)/pk, and replace pk with pk =

1−
∑k−1

i=1 pi, where pi := Prs(y = i). The log-likelihood function is given by r log(π)+(1−r) log(1−π)+
∑k−1

i=1 rI(y =
i) {log p(x|y = i) + log(pi)}+rI(y = k) {log p(x|y = k) + log(1− p1 − · · · − pk−1)}+(1−r) log{p(x|y = 1)w1p1+
p(x|y = 2)w2p2 + · · · + p(x|y = k)(1 − w1p1 − · · · − wk−1pk−1)}. The nuisances are p1, . . . , pk−1, p(x|y = 1),. . . ,
p(x|y = k), and π. Then the nuisance tangent spaces are

1. the nuisance tangent space with respect to p(x|y = j) is given by Λj = {rI(y = j)gj(x)+(1− r)pt(y = j|x)gj(x) :

gj(x) ∈ Rk−1,
∫
gj(x)p(x|y = j)dx = 0}, for j = 1, . . . , k.

2. The nuisance tangent space with respect to pj is given by Λpj =
(
[r{I(y = j)/pj−I(y = k)/(1− p1 − · · · − pk−1)}+

(1− r)ωj{p(x|y = j)− p(x|y = k)}/pt(x)]b : b ∈ Rk−1
)
, for j = 1, . . . , k − 1.

3. The nuisance tangent space with respect to π is given by Λπ =
[
{r/π − (1− r)/(1− π)}a : a ∈ Rk−1

]
.

Then, the perpendicular space Λ⊥, which is orthogonal to Λj (j = 1, . . . , k), Λpj (j = 1, . . . , k), and Λπ , is given by

Λ⊥ =

[
r

π

{
1−

k∑
i=1

ωiI(y = i)

}
E(h|y = k) +

{
r

π

k∑
i=1

ωiI(y = i)− 1− r

1− π

}
h(x) : Et(h) = 0 ∈ Rk−1

]
.
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Table 5. Method comparison on CIFAR-100 with Dirichlet shift. The value is the mean MSE trimmed 5% extreme values. The bold
values under the same setting (column) are the top-3 results.

Calibration Adaptation Setting: (Sample Size n, Shift Parameter α)
(1500, 0.1) (1500, 1.0) (4500, 0.1) (4500, 1.0)

None

BBSE-hard 8.969 4.304 1.871 0.687
RLLS-hard 5.284 2.072 0.945 0.405
BBSE-soft 4.595 2.637 1.413 0.488
RLLS-soft 4.429 1.563 0.761 0.309
MLLS 3.451 1.504 2.020 0.737
ELSA 1.086 2.328 0.288 0.207

BCTS

BBSE-soft 3.955 2.353 1.085 0.365
RLLS-soft 5.130 1.618 0.683 0.262
MLLS 0.430 0.255 0.220 0.133
ELSA 0.686 0.861 0.125 0.141

NBVS

BBSE-soft 3.772 2.451 1.093 0.360
RLLS-soft 5.484 1.583 0.692 0.264
MLLS 0.722 0.387 0.269 0.158
ELSA 0.768 0.812 0.133 0.142

TS

BBSE-soft 3.700 2.500 1.107 0.391
RLLS-soft 6.193 1.847 0.782 0.278
MLLS 1.758 0.949 0.806 0.396
ELSA 0.920 0.683 0.127 0.136

VS

BBSE-soft 3.808 2.321 1.078 0.357
RLLS-soft 5.749 1.574 0.716 0.268
MLLS 0.500 0.334 0.190 0.134
ELSA 0.958 0.598 0.131 0.134

Proof. The likelihood function is

πr(1− π)1−r
k−1∏
i=1

{p(x | y = i)pi}rI(y=i) {p(x | y = k)(1− p1 − · · · − pk−1)}rI(y=k)

{p(x | y = 1)w1p1 + p(x | y = 2)w2p2 + · · ·+ p(x | y = k)(1− w1p1 − · · · − wk−1pk−1)}1−r
.

The log-likelihood is

r log(π) + (1− r) log(1− π) +

k−1∑
i=1

rI(y = i) {log p(x | y = i) + log(pi)}+

rI(y = k) {log p(x | y = k) + log(1− p1 − · · · − pk−1)}+
(1− r) log {p(x | y = 1)w1p1 + p(x | y = 2)w2p2 + · · ·+ p(x | y = k)(1− w1p1 − · · · − wk−1pk−1)}

The nuisance tangent space with respect to p(x | y = j) is

Λj =

{
rI(y = j)gj(x) + (1− r)pt(y = j | x)gj(x) : gj(x) ∈ Rk−1,

∫
gj(x)p(x | y = j)dx = 0

}
,

for j = 1, . . . , k. The nuisance tangent space for pj = ps(y = j) is

Λpj
=

[(
r

{
I(y = j)

pj
− I(y = k)

1− p1 − · · · − pk−1

}
+ (1− r)

p(x | y = j)− p(x | y = k)

pt(x)
wj

)
b : b ∈ Rk−1

]
,
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Table 6. Prediction improvement comparison on CIFAR-100 with Dirichlet shift. The value is the mean delta accuracy trimmed 5%
extreme values. The bold values under the same setting (column) are the top-3 results.

Settings (1500, 0.1) (1500, 1.0) (4500, 0.1) (4500, 1.0)

None

BBSE-hard 0.145 0.119 0.161 0.142
RLLS-hard 0.136 0.120 0.171 0.153
BBSE-soft 0.151 0.128 0.164 0.148
RLLS-soft 0.141 0.127 0.177 0.160
MLLS 0.138 0.119 0.140 0.122
ELSA 0.195 0.152 0.213 0.173

BCTS

BBSE-soft 0.229 0.185 0.249 0.208
RLLS-soft 0.214 0.182 0.255 0.214
MLLS 0.247 0.204 0.257 0.216
ELSA 0.263 0.205 0.272 0.222

NBVS

BBSE-soft 0.227 0.182 0.246 0.207
RLLS-soft 0.211 0.179 0.253 0.212
MLLS 0.245 0.200 0.255 0.213
ELSA 0.261 0.204 0.270 0.220

TS

BBSE-soft 0.227 0.184 0.243 0.205
RLLS-soft 0.208 0.179 0.249 0.210
MLLS 0.251 0.207 0.255 0.214
ELSA 0.259 0.204 0.268 0.219

VS

BBSE-soft 0.221 0.175 0.249 0.207
RLLS-soft 0.205 0.172 0.254 0.212
MLLS 0.239 0.194 0.261 0.216
ELSA 0.256 0.197 0.272 0.222

where j = 1, . . . , k − 1. The nuisance tangent space with respect to π is

Λπ =

{{
r

π
− 1− r

1− π

}
a : a ∈ Rk−1

}
.

The orthogonal space has a general form

r

k∑
i=1

I(y = i)fi(x) + (1− r)h(x).

Because it is orthogonal to Λj for j = 1, . . . , k

E
{
r2I(y = j)fTj (x)gj(x) + (1− r)2pt(y = j | x)hT(x)gj(x)

}
=πEs

{
I(y = j)fTj gj

}
+ (1− π)Et

{
I(y = j)hTgj

}
= 0

for j = 1, . . . , k. The previous equation implies that

πpjfj(x) + (1− π)pjwjh(x) = πpjE {fj(x) | y = j}+ (1− π)pjwjE {h(x) | y = j} (16)

for j = 1, . . . , k. Similarly, this element is orthogonal to Λpj

E

{
r2

pj
I(y = j)fj(x)−

r2

1− p1 − · · · − pk−1
I(y = k)fk(x) + (1− r)2

p(x | y = j)− p(x | y = k)

pt(x)
wjh(x)

}
=πE(fj | y = j)− πE(fk | y = k) + (1− π)wjE {h(x) | y = j} − (1− π)wjE {h(x) | y = k} = 0,

(17)

for j = 1, . . . , k − 1. Equation (17) implies that

πpjE {fj(x) | y = j}+ (1− π)wjpjE {h(x) | y = j} = πpjE {fk(x) | y = k}+ (1− π)wjpjE {h(x) | y = k} (18)
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Table 7. Method comparison on MNIST with tweakone shift. The value is the mean MSE trimmed 5% extreme values. The bold values
under the same setting (column) are the top-3 results.

Calibration Adaptation Setting: (Sample Size n, Shift Parameter ρ)
(500, 0.01) (500, 0.9) (1500, 0.01) (1500, 0.9) (4500, 0.01) (4500, 0.9)

None

BBSE-hard 9.903E-03 2.468E-02 2.911E-03 1.341E-02 1.155E-03 7.261E-03
RLLS-hard 9.893E-03 2.164E-02 2.910E-03 1.237E-02 1.155E-03 6.991E-03
BBSE-soft 7.735E-03 2.297E-02 2.256E-03 9.890E-03 9.310E-04 4.213E-03
RLLS-soft 7.715E-03 2.065E-02 2.256E-03 9.288E-03 9.310E-04 4.161E-03
MLLS 8.275E-03 2.001E-02 2.622E-03 9.132E-03 1.046E-03 5.777E-03
ELSA 7.128E-03 4.157E-03 2.116E-03 1.707E-03 8.722E-04 8.473E-04

BCTS

BBSE-soft 7.415E-03 2.363E-02 2.217E-03 9.650E-03 8.864E-04 4.448E-03
RLLS-soft 7.396E-03 2.137E-02 2.217E-03 9.063E-03 8.864E-04 4.396E-03
MLLS 6.757E-03 1.991E-03 2.105E-03 7.603E-04 8.237E-04 3.925E-04
ELSA 6.932E-03 3.447E-03 2.110E-03 1.792E-03 8.579E-04 8.847E-04

NBVS

BBSE-soft 7.723E-03 2.343E-02 2.271E-03 9.859E-03 9.128E-04 4.477E-03
RLLS-soft 7.717E-03 2.137E-02 2.271E-03 9.294E-03 9.128E-04 4.421E-03
MLLS 7.138E-03 5.809E-03 2.146E-03 1.784E-03 8.338E-04 6.836E-04
ELSA 7.171E-03 3.554E-03 2.145E-03 1.863E-03 8.793E-04 8.864E-04

TS

BBSE-soft 7.380E-03 2.201E-02 2.173E-03 9.866E-03 8.838E-04 4.553E-03
RLLS-soft 7.368E-03 1.988E-02 2.173E-03 9.262E-03 8.838E-04 4.498E-03
MLLS 7.253E-03 1.600E-02 2.223E-03 5.479E-03 8.633E-04 2.559E-03
ELSA 6.828E-03 3.612E-03 2.065E-03 1.793E-03 8.562E-04 8.844E-04

VS

BBSE-soft 7.460E-03 2.386E-02 2.239E-03 9.917E-03 9.179E-04 4.716E-03
RLLS-soft 7.457E-03 2.152E-02 2.239E-03 9.301E-03 9.179E-04 4.650E-03
MLLS 6.947E-03 2.943E-03 2.129E-03 8.531E-04 8.269E-04 4.348E-04
ELSA 7.030E-03 3.598E-03 2.123E-03 1.762E-03 8.853E-04 9.053E-04

Equations (16) and (18) imply that

πpjfj(x) = πpjE {fk(x) | y = k}+ (1− π)wjpjE {h(x) | y = k} − (1− π)pjwjh(x),

and

fj(x) = E {fk(x) | y = k}+ 1− π

π
wjE {h(x) | y = k} − 1− π

π
wjh(x) (19)

and

r

k−1∑
j=1

I(y = j)fj(x) =r

k−1∑
j=1

I(y = j)E {fk(x) | y = k} − r

k−1∑
j=1

1− π

π
I(y = j)wjh(x)

+ r

k−1∑
i=1

1− π

π
wjI(y = j)E {h(x) | y = k} .

Also

fk(x) = E {fk(x) | y = k}+ 1− π

π
wkE {h(x) | y = k} − 1− π

π
wkh(x)

and

rI(y = k)fk(x) = rI(y = k)E {fk(x) | y = k}+ r
1− π

π
wkI(y = k)E {h(x) | y = k} − r

1− π

π
wkI(y = k)h(x).
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Table 8. Prediction improvement comparison on MNIST with tweakone shift. The value is the mean delta accuracy trimmed 5% extreme
values. The bold values under the same setting (column) are the top-3 results.

Settings (500, 0.01) (500, 0.9) (1500, 0.01) (1500, 0.9) (4500, 0.01) (4500, 0.9)

None

BBSE-hard 1.311e-03 4.993e-02 2.474e-03 5.033e-02 3.262e-03 5.317e-02
RLLS-hard 1.311e-03 4.936e-02 2.474e-03 4.995e-02 3.262e-03 5.302e-02
BBSE-soft 1.267e-03 5.218e-02 2.548e-03 5.438e-02 3.281e-03 5.625e-02
RLLS-soft 1.267e-03 5.162e-02 2.548e-03 5.399e-02 3.281e-03 5.618e-02
MLLS 1.022e-03 5.669e-02 1.815e-03 5.667e-02 2.632e-03 5.637e-02
ELSA 1.267e-03 5.867e-02 2.422e-03 5.881e-02 3.195e-03 6.018e-02

BCTS

BBSE-soft -6.667e-04 5.253e-02 2.800e-03 5.759e-02 3.783e-03 6.102e-02
RLLS-soft -6.444e-04 5.229e-02 2.800e-03 5.744e-02 3.783e-03 6.089e-02
MLLS 8.889e-05 6.233e-02 2.785e-03 6.379e-02 3.800e-03 6.472e-02
ELSA 1.111e-04 6.124e-02 2.770e-03 6.262e-02 3.756e-03 6.442e-02

NBVS

BBSE-soft -2.444e-04 5.198e-02 2.719e-03 5.716e-02 3.775e-03 6.098e-02
RLLS-soft -2.444e-04 5.162e-02 2.719e-03 5.690e-02 3.775e-03 6.085e-02
MLLS 5.778e-04 6.167e-02 2.689e-03 6.338e-02 3.689e-03 6.445e-02
ELSA 5.111e-04 6.064e-02 2.726e-03 6.242e-02 3.726e-03 6.440e-02

TS

BBSE-soft 2.244e-03 5.387e-02 3.311e-03 5.792e-02 3.921e-03 6.159e-02
RLLS-soft 2.244e-03 5.331e-02 3.311e-03 5.767e-02 3.921e-03 6.146e-02
MLLS 2.711e-03 6.387e-02 3.296e-03 6.524e-02 3.943e-03 6.549e-02
ELSA 2.533e-03 6.278e-02 3.311e-03 6.337e-02 3.921e-03 6.518e-02

VS

BBSE-soft -2.400e-03 5.087e-02 2.126e-03 5.724e-02 3.832e-03 6.062e-02
RLLS-soft -2.400e-03 5.067e-02 2.126e-03 5.693e-02 3.832e-03 6.046e-02
MLLS -2.156e-03 6.071e-02 2.141e-03 6.350e-02 3.805e-03 6.482e-02
ELSA -2.267e-03 6.009e-02 2.207e-03 6.250e-02 3.844e-03 6.471e-02

So,

r

k∑
i=1

I(y = i)fi(x) = r

k∑
i=1

I(y = i)E {fk(x) | y = k}+ r
1− π

π

k∑
i=1

wiI(y = i)E {h | y = k}

− r
1− π

π

k∑
i=1

wiI(y = i)h(x)

(20)

Next, we want to find E {fk(x) | y = k}, taking conditional expectation E(· | y = j) on both sides of (19) gives

πE(fj | y = j) = πE(fk | y = k)− (1− π)wjE {h(x) | y = j}+ (1− π)wjE {h(x) | y = k}

thus

π

k−1∑
j=1

pjE(fj | y = j) =π

k−1∑
j=1

pjE(fk | y = k)− (1− π)

k−1∑
j=1

wjpjE (h | y = j)

+ (1− π)

k−1∑
j=1

wjpjE {h(x) | y = k}

Because the expectation is zero

π

k−1∑
i=1

piE (fi(x) | y = i) + π(1− p1 − · · · − pk−1)E {fk(x) | y = k}+ (1− π)

k−1∑
i=1

wipiE {h(x) | y = i}

+(1− π)

(
1−

k−1∑
i=1

wipi

)
E {h(x) | y = k} = 0.

(21)

We have
πE (fk | y = k) + (1− π)E (h | y = k) = 0
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Table 9. Method comparison on CIFAR-10 with tweakone shift. The value is the mean MSE trimmed 5% extreme values. The bold values
under the same setting (column) are the top-3 results.

Calibration Adaptation Setting: (Sample Size n, Shift Parameter ρ)
(500, 0.01) (500, 0.9) (1500, 0.01) (1500, 0.9) (4500, 0.01) (4500, 0.9)

None

BBSE-hard 8.587E-03 7.757E-02 2.980E-03 2.577E-02 9.673E-04 9.601E-03
RLLS-hard 8.277E-03 6.795E-02 2.962E-03 2.387E-02 9.673E-04 9.333E-03
BBSE-soft 6.433E-03 6.309E-02 2.216E-03 2.024E-02 6.637E-04 8.716E-03
RLLS-soft 6.268E-03 5.800E-02 2.205E-03 1.961E-02 6.637E-04 8.683E-03
MLLS 6.213E-03 1.171E-01 2.351E-03 7.724E-02 9.129E-04 6.918E-02
ELSA 5.729E-03 3.817E-03 1.990E-03 1.562E-03 6.161E-04 5.878E-04

BCTS

BBSE-soft 6.349E-03 6.278E-02 2.172E-03 1.827E-02 6.749E-04 7.112E-03
RLLS-soft 6.223E-03 5.694E-02 2.163E-03 1.769E-02 6.749E-04 7.037E-03
MLLS 5.242E-03 6.489E-03 1.788E-03 2.392E-03 5.669E-04 1.169E-03
ELSA 5.648E-03 4.147E-03 1.942E-03 1.391E-03 6.065E-04 5.022E-04

NBVS

BBSE-soft 6.465E-03 6.713E-02 2.170E-03 1.801E-02 6.816E-04 7.088E-03
RLLS-soft 6.334E-03 6.172E-02 2.161E-03 1.760E-02 6.816E-04 7.031E-03
MLLS 5.469E-03 1.333E-02 1.857E-03 4.281E-03 5.731E-04 2.325E-03
ELSA 5.877E-03 4.356E-03 1.968E-03 1.604E-03 6.125E-04 5.496E-04

TS

BBSE-soft 6.457E-03 6.357E-02 2.172E-03 2.078E-02 6.603E-04 9.362E-03
RLLS-soft 6.282E-03 5.885E-02 2.163E-03 2.023E-02 6.603E-04 9.342E-03
MLLS 6.445E-03 1.457E-01 2.400E-03 1.034E-01 9.904E-04 9.584E-02
ELSA 5.674E-03 3.963E-03 1.955E-03 1.303E-03 6.105E-04 5.115E-04

VS

BBSE-soft 6.436E-03 6.561E-02 2.173E-03 1.822E-02 6.885E-04 6.906E-03
RLLS-soft 6.308E-03 5.929E-02 2.164E-03 1.772E-02 6.885E-04 6.833E-03
MLLS 5.438E-03 9.515E-03 1.832E-03 2.615E-03 5.643E-04 1.232E-03
ELSA 5.717E-03 4.904E-03 1.953E-03 1.425E-03 6.157E-04 5.214E-04

and

E(fk | y = k) = −1− π

π
E (h | y = k) . (22)

By inserting (22) into (20), the generic element in the perpendicular space is

r

k∑
i=1

I(y = i)fi(x) + (1− r)h(x) (23)

=r

k∑
i=1

I(y = i)E (fk | y = k) + r
1− π

π

k∑
i=1

wiI(y = i)E (h | y = k) (24)

− r
1− π

π

k∑
i=1

wiI(y = i)h(x) + (1− r)h(x) (25)

=rE (fk | y = k) + r
1− π

π

k∑
i=1

wiI(y = i)E (h | y = k) (26)

− r
1− π

π

k∑
i=1

wiI(y = i)h(x) + (1− r)h(x) (27)

=− r
1− π

π
E(h | y = k) + r

1− π

π

k∑
i=1

wiI(y = i)E(h | y = k) (28)
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Table 10. Prediction improvement comparison on CIFAR-10 with tweakone shift. The value is the mean delta accuracy trimmed 5%
extreme values. The bold values under the same setting (column) are the top-3 results.

Settings (500, 0.01) (500, 0.9) (1500, 0.01) (1500, 0.9) (4500, 0.01) (4500, 0.9)

None

BBSE-hard 5.489e-03 1.480e-01 7.630e-03 1.580e-01 7.793e-03 1.650e-01
RLLS-hard 5.511e-03 1.479e-01 7.630e-03 1.580e-01 7.793e-03 1.650e-01
BBSE-soft 5.422e-03 1.526e-01 7.615e-03 1.589e-01 7.886e-03 1.648e-01
RLLS-soft 5.467e-03 1.526e-01 7.615e-03 1.590e-01 7.886e-03 1.648e-01
MLLS 6.000e-03 1.627e-01 7.630e-03 1.617e-01 7.980e-03 1.633e-01
ELSA 6.244e-03 1.676e-01 7.844e-03 1.676e-01 8.005e-03 1.690e-01

BCTS

BBSE-soft 7.733e-03 1.599e-01 1.156e-02 1.701e-01 1.232e-02 1.772e-01
RLLS-soft 7.733e-03 1.598e-01 1.157e-02 1.700e-01 1.232e-02 1.772e-01
MLLS 8.533e-03 1.728e-01 1.181e-02 1.757e-01 1.230e-02 1.782e-01
ELSA 8.467e-03 1.739e-01 1.184e-02 1.773e-01 1.236e-02 1.794e-01

NBVS

BBSE-soft 6.956e-03 1.559e-01 1.108e-02 1.684e-01 1.166e-02 1.760e-01
RLLS-soft 6.956e-03 1.559e-01 1.108e-02 1.683e-01 1.166e-02 1.759e-01
MLLS 7.600e-03 1.700e-01 1.122e-02 1.744e-01 1.168e-02 1.766e-01
ELSA 7.733e-03 1.728e-01 1.113e-02 1.764e-01 1.171e-02 1.790e-01

TS

BBSE-soft 5.511e-03 1.592e-01 7.719e-03 1.656e-01 7.926e-03 1.722e-01
RLLS-soft 5.533e-03 1.593e-01 7.719e-03 1.655e-01 7.926e-03 1.722e-01
MLLS 6.156e-03 1.712e-01 7.822e-03 1.706e-01 7.884e-03 1.726e-01
ELSA 6.111e-03 1.730e-01 7.881e-03 1.732e-01 7.958e-03 1.749e-01

VS

BBSE-soft 7.067e-03 1.551e-01 1.124e-02 1.689e-01 1.269e-02 1.772e-01
RLLS-soft 7.067e-03 1.551e-01 1.124e-02 1.689e-01 1.269e-02 1.772e-01
MLLS 7.600e-03 1.684e-01 1.139e-02 1.754e-01 1.275e-02 1.788e-01
ELSA 7.844e-03 1.711e-01 1.144e-02 1.767e-01 1.270e-02 1.799e-01

−

{
r
1− π

π

k∑
i=1

wiI(y = i)− (1− r)

}
h(x) (29)

∝ r

π

{
1−

k∑
i=1

wiI(y = i)

}
E(h | y = k) +

{
r

π

k∑
i=1

wiI(y = i)− 1− r

1− π

}
h(x), (30)

where wk = (1− p1w1 − · · · − pk−1wk−1)/pk and pk = 1− p1 − · · · − pk−1.

D.2. Proof of Theorem 3.2

Theorem. Letting

gp(x, y, r) =
r

π

{
1−

k∑
i=1

ωiI(y = i)

}
E(hELSA|y = k)

+

{
r

π

k∑
i=1

ωiI(y = i)− 1− r

1− π

}
hELSA(x),

where hELSA(x) is defined in (11). Under the assumption that E
{
∂gp/∂ω

(−k)T
}∣∣

ω(−k)=ω
(−k)
0

is non-singular and

n/(n+m) → π ∈ (0, 1) as n → ∞, the proposed estimator ω̂(−k), as the solution to (12),

1. is
√
n-consistent: ω̂(−k) = ω

(−k)
0 + op(1/

√
n). That is, for any small ϵ > 0, we can find a value N such that for all

n > N , Pr(
√
n∥ω̂(−k) − ω

(−k)
0 ∥ > ϵ) < ϵ.

2. has an asymptotic normal limit as n → ∞, we have
√
n
(
ω̂(−k) − ω

(−k)
0

)
d−→ N

(
0, πUVU⊤).
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Table 11. Method comparison on CIFAR-100 with tweakone shift. The value is the mean MSE trimmed 5% extreme values. The bold
values under the same setting (column) are the top-3 results.

Calibration Adaptation Setting: (Sample Size n, Shift Parameter ρ)
(1500, 0.01) (1500, 0.9) (4500, 0.01) (4500, 0.9)

None

BBSE-hard 2.755 29.304 0.390 5.229
RLLS-hard 1.246 28.798 0.230 3.942
BBSE-soft 1.750 14.294 0.286 3.399
RLLS-soft 0.944 28.426 0.183 3.262
MLLS 0.966 7.295 0.480 3.822
ELSA 1.182 5.640 0.130 1.068

BCTS

BBSE-soft 1.864 12.403 0.225 2.638
RLLS-soft 0.937 40.160 0.159 3.207
MLLS 0.169 1.725 0.079 1.099
ELSA 0.408 2.698 0.089 0.400

NBVS

BBSE-soft 2.074 12.004 0.223 2.571
RLLS-soft 0.981 37.647 0.159 3.072
MLLS 0.222 2.239 0.091 1.024
ELSA 0.548 2.562 0.091 0.453

TS

BBSE-soft 1.788 13.292 0.232 2.765
RLLS-soft 0.988 49.960 0.169 4.078
MLLS 0.578 4.378 0.204 2.438
ELSA 0.412 2.207 0.086 0.409

VS

BBSE-soft 1.654 10.533 0.218 2.543
RLLS-soft 0.961 36.722 0.158 3.355
MLLS 0.192 2.333 0.073 1.155
ELSA 0.631 2.669 0.086 0.430

where U =

[
E

{
∂gp/∂ω

(−k)T
}∣∣

ω(−k)=ω
(−k)
0

]−1

and V = E{gp(x, y, r;ω
(−k)
0 )gT

p (x, y, r;ω
(−k)
0 )}.

Proof. Recall that the proposed estimator is derived from

0 =

n+m∑
i=1

gp(xi, yi, ri; ω̂
(−k)).

We can do Tyler expansion at ω0, then we have

0 =

n+m∑
i=

gp(xi, yi, ri;ω
(−k)
0 ) +

{
n+m∑
i=1

∂gp(ω
(−k)∗)

∂ω(−k)T

}(
ω̂(−k) − ω

(−k)
0

)
.

With mild regularity assumptions, we have

1

n+m

{
n+m∑
i=1

∂gp(ω
(−k)∗)

∂ω(−k)T

}
p−→ E

{
∂gp(x, y, r;ω0)

∂ω(−k)T

}
,

and by the nonsingularity assumption{
1

n+m

n+m∑
i=1

∂gp(ω
(−k)∗)

∂ω(−k)T

}−1

p−→
[
E

{
∂gp(x, y, r;ω0)

∂ω(−k)T

}]−1

.
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Table 12. Prediction improvement comparison on CIFAR-100 with tweakone shift. The value is the mean delta accuracy trimmed 5%
extreme values. The bold values under the same setting (column) are the top-3 results.

Settings (1500, 0.01) (1500, 0.9) (4500, 0.01) (4500, 0.9)

None

BBSE-hard 0.115 0.208 0.135 0.230
RLLS-hard 0.116 0.182 0.147 0.244
BBSE-soft 0.122 0.223 0.140 0.245
RLLS-soft 0.122 0.186 0.152 0.256
MLLS 0.108 0.214 0.111 0.219
ELSA 0.147 0.303 0.160 0.322

BCTS

BBSE-soft 0.172 0.355 0.194 0.393
RLLS-soft 0.171 0.285 0.199 0.398
MLLS 0.190 0.413 0.201 0.427
ELSA 0.193 0.432 0.207 0.452

NBVS

BBSE-soft 0.171 0.345 0.194 0.381
RLLS-soft 0.168 0.275 0.199 0.386
MLLS 0.188 0.395 0.200 0.414
ELSA 0.192 0.432 0.206 0.452

TS

BBSE-soft 0.173 0.356 0.192 0.387
RLLS-soft 0.172 0.254 0.196 0.384
MLLS 0.192 0.412 0.199 0.418
ELSA 0.193 0.429 0.204 0.447

VS

BBSE-soft 0.165 0.345 0.194 0.393
RLLS-soft 0.163 0.276 0.198 0.395
MLLS 0.183 0.397 0.202 0.427
ELSA 0.186 0.430 0.207 0.456

Table 13. The computation time (second) for different calibration methods on CIFAR-10. The Dirichlet shift parameter α is fixed as 0.1.

Calibration Sample Size
2000 5000 10000

TS 0.671 1.420 2.826
VS 4.655 13.330 22.812

NBVS 1.125 2.457 4.687
BCTS 2.035 4.296 9.508

Therefore,

√
n+m

(
ω̂(−k) − ω

(−k)
0

)
=−

{
1

n+m

n+m∑
i=1

∂gp(ω
(−k)∗)

∂ω(−k)T

}−1{
1√

n+m

n+m∑
i=1

gp(xi, yi, ri;ω
(−k)
0 )

}

=−
[
E

{
∂gp(x, y, r;ω0)

∂ω(−k)T

}]−1
{

1√
n+m

n+m∑
i=1

gp(xi, yi, ri;ω
(−k)
0 )

}
+ op(1)

Because gp(x, y, r;ω
(−k)) is an element in a mean-zero function space, we have

E
{
gp(x, y, r;ω

(−k))
}
= 0,

we immediately deduce that the influence function of ω̂(−k) is given by

φ(x, y, r) = −
[
E

{
∂gp(x, y, r;ω0)

∂ω(−k)T

}]−1

gp(xi, yi, ri;ω
(−k)
0 ).
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Figure 5. MSE v.s. Iterations. We adopt the Dirichlet shift and set sample size n = 10000, shift parameter α = 0.1.

By the property of the RAL estimator (as described in Section A), we have

√
n+m

(
ω̂(−k) − ω

(−k)
0

)
d−→ N (0,UVU⊤),

where

U =

[
E

{
∂gp/∂ω

(−k)T
}∣∣

ω(−k)=ω
(−k)
0

]−1

and
V = E{gp(x, y, r;ω

(−k)
0 )gT

p (x, y, r;ω
(−k)
0 )}.

By the assumption that n/(n+m) → π as n → ∞, we have

√
n
(
ω̂(−k) − ω

(−k)
0

)
=

√
n√

n+m

√
n+m

(
ω̂(−k) − ω

(−k)
0

)
d−→ N

(
0, πUVU⊤) .

Thus, we have finished the second part of the theorem. Because we have prove the asymptotic normality of the proposed
estimator, immediately we have

ω̂(−k) − ω
(−k)
0 = op

(
1√

n+m

)
= op

(
1√
n

)
.
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