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Abstract

Few-shot named entity recognition (NER) has
shown remarkable progress in identifying en-
tities in low-resource domains. However, few-
shot NER methods still struggle with out-of-
domain (OOD) examples due to their reliance
on manual labeling for the target domain. To
address this limitation, recent studies enable
generalization to an unseen target domain with
only a few labeled examples using data augmen-
tation techniques. Two important challenges
remain: First, augmentation is limited to the
training data, resulting in minimal overlap be-
tween the generated data and OOD examples.
Second, knowledge transfer is implicit and in-
sufficient, severely hindering model generaliz-
ability and the integration of knowledge from
the source domain. In this paper, we propose a
framework, prompt learning with type-related
features (PLTR), to address these challenges.
To identify useful knowledge in the source do-
main and enhance knowledge transfer, PLTR
automatically extracts entity type-related fea-
tures (TRFs) based on mutual information cri-
teria. To bridge the gap between training and
OOD data, PLTR generates a unique prompt
for each unseen example by selecting relevant
TRFs. We show that PLTR achieves signifi-
cant performance improvements on in-domain
and cross-domain datasets. The use of PLTR
facilitates model adaptation and increases rep-
resentation similarities between the source and
unseen domains.1

1 Introduction

Named entity recognition (NER) aims to detect
named entities in natural languages, such as lo-
cations, organizations, and persons, in input text
(Zhang et al., 2022; Sang and Meulder, 2003; Yang
et al., 2017). This task has gained significant at-
tention from both academia and industry due to

∗Corresponding author.
1Our code is available at https://github.com/

WZH-NLP/PLTR.

its wide range of uses, such as question answering
and document parsing, serving as a crucial com-
ponent in natural language understanding (Nadeau
and Sekine, 2007; Ma and Hovy, 2016; Cui and
Zhang, 2019; Yamada et al., 2020). The availabil-
ity of labeled data for NER is limited to specific
domains, leading to challenges for generalizing
models to new domains (Lee et al., 2022; Cui et al.,
2021; Ma et al., 2022).

To overcome this issue, recent research focuses
on enabling models to effectively learn from a few
labeled examples in new target domains (Lee et al.,
2022; Ma et al., 2022; Das et al., 2022; Chen et al.,
2022a; Wang et al., 2022, 2023) or on exploring
data augmentation techniques, leveraging automati-
cally generated labeled examples to enrich the train-
ing data (Zeng et al., 2020). However, these meth-
ods still require manual labeling for target domains,
limiting their applicability in zero-shot scenarios
with diverse domains.

Recently, Yang et al. (2022) have explored a
new task, few-shot cross-domain NER, aiming to
generalize an entity recognizer to unseen target do-
mains using a small number of labeled in-domain
examples. To accomplish this task, a data augmen-
tation technique, named FactMix, has been devised.
FactMix generates semi-fact examples by replacing
the original entity or non-entity words in training
instances, capturing the dependencies between en-
tities and their surrounding context. Despite its
success, FactMix faces two challenges:
Augmentation is limited to the training data.
Since the target domain is not accessible during
training, FactMix exclusively augments the train-
ing data from the source domain. As a result, there
is minimal overlap between the generated exam-
ples and the test instances at both the entity and
context levels. For instance, only 11.11% of the
entity words appear simultaneously in both the gen-
erated data (by FactMix) and the AI dataset (target
domain). At the context level, as demonstrated
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(a) Average similarities between pairs of sentences.

In 1972 , LaHaye helped establish the Ins�tute for Crea�on
Research (ORG) at San Diego Chris�an College in El Cajon ,
California, along with Henry M. Morris (PER).

Science
(unseen)

CoNLL2003
(source)

ORG: The fledgling company , established in a ground-floor
office here over the last two weeks , has received venture
financing from Bessemer Venture Partners of Menlo Park.

PER: Along with Mayfiar at 277 for the tournament were
Steve Stricker , who had a 68 , and Duffy Waldorf , with a 66.

(b) Type-related features in the source domain.

Figure 1: (a) Average SBERT similarities (Reimers and Gurevych, 2019) between pairs of sentences that contain
the same type of entities. The source domain dataset is CoNLL2003 (Sang and Meulder, 2003); the target domain
datasets include AI, Music, and Science (Liu et al., 2021). In the “Cross-domain” setting, one sentence is from the
source domain and the other is from the target domain. In the “FactMix” setting, one sentence is from augmented
data by FactMix (Yang et al., 2022), and the other is from the target domain. In the “In-domain” setting, both
sentences are from the target domain. (b) Examples of type-related features in the source domain.

in Fig. 1(a), the average sentence similarity be-
tween the augmented instances and the test exam-
ples is remarkably low. These gaps pose severe
challenges in extrapolating the model to OOD data.
To address this problem, we incorporate natural
language prompts to guide the model during both
training and inference processes, mitigating the gap
between the source and unseen domains.
Knowledge transfer is implicit and insufficient.
Intuitively, better generalization to unseen domains
can be accomplished by incorporating knowledge
from the source domain (Ben-David et al., 2022).
However, in FactMix, the transfer of knowledge
from the source domain occurs implicitly at the rep-
resentation level of pre-trained language models.
FactMix is unable to explicitly identify the type-
related features (TRFs), i.e., tokens strongly asso-
ciated with entity types, which play a crucial role
in generalization. E.g., as illustrated in Fig. 1(b),
the words “established” and “along with” exhibit
a close relationship with organization and person
entities, respectively, in both domains. This knowl-
edge can greatly assist in recognizing organizations
and persons in the target domain.

To tackle this limitation, we introduce mutual
information criteria to extract informative TRFs
from the source domain. Furthermore, we con-
struct a unique prompt for each unseen instance by
selecting relevant TRFs. Intuitively, these gener-
ated prompts serve as distinctive signatures, linking
unfamiliar examples to the knowledge within the
source domain.
Contributions. In this paper, we present a frame-
work, named prompt learning with type-related
features (PLTR) for few-shot cross-domain NER,

to effectively leverage knowledge from the source
domain and bridge the gap between training and un-
seen data. As Fig. 2 shows, PLTR is composed of
two main phases: (i) type-related feature extraction,
and (ii) prompt generation and incorporation. To
identify valuable knowledge in the source domain,
PLTR uses mutual information criteria to extract
entity type-related features (TRFs). PLTR imple-
ments a two-stage framework to mitigate the gap
between training and OOD data. Firstly, given a
new example, PLTR constructs a unique sequence
by selecting relevant TRFs from the source domain.
Then, the constructed sequences serve as prompts
for performing entity recognition on the unseen
data. Finally, a multi-task training strategy is em-
ployed to enable parameter sharing between the
prompt generation and entity recognition. Similar
to FactMix, PLTR is a fully automatic method that
does not rely on external data or human interven-
tions. PLTR is able to seamlessly integrate with
different few-shot NER methods, including stan-
dard fine-tuning and prompt-tuning approaches.

In summary, our contributions are: (i) to the
best of our knowledge, ours is the first work to
study prompt learning for few-shot cross-domain
NER; (ii) we develop a mutual information-based
approach to identify important entity type-related
features from the source domain; (iii) we design
a two-stage scheme that generates and incorpo-
rates a prompt that is highly relevant to the source
domain for each new example, effectively mitigat-
ing the gap between source and unseen domains;
and (iv) experimental results show that our pro-
posed PLTR achieves state-of-the-art performance
on both in-domain and cross-domain datasets.
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Figure 2: An overview of PLTR. PLTR has two main phases: (i) type-related feature extraction, and (ii) prompt
generation and incorporation. Besides, we utilize a multi-task training strategy to enable parameter sharing between
prompt generation and incorporation.

2 Related work

Cross-domain NER. The task of cross-domain
NER aims to transfer NER models across diverse
text styles (Pan et al., 2013; Liu et al., 2021; Chen
et al., 2021; Lee et al., 2018; Yang et al., 2017;
Jia et al., 2019; Jia and Zhang, 2020; Zheng et al.,
2022; Zhang et al., 2022; Hu et al., 2023; Wang
et al., 2021). Yang et al. (2017) train NER models
jointly in the source and target domains, while Jia
et al. (2019) and Jia and Zhang (2020) leverage lan-
guage models for cross-domain knowledge transfer.
Zhang et al. (2022) introduce a modular learning
approach that decomposes NER into entity span de-
tection and type classification subtasks. However,
these methods still rely on NER annotations or raw
data in the target domain.
Few-shot NER and prompt-based learning. Few-
shot named entity recognition (NER) is the task of
identifying predefined named entities using only a
small number of labeled examples (Wiseman and
Stratos, 2019; Yang and Katiyar, 2020; Das et al.,
2022; Zeng et al., 2020; Ma et al., 2023). Var-
ious approaches have been proposed to address
this task. For instance, Huang et al. (2021) inves-
tigate the effectiveness of self-training methods
on external data using distance-based approaches,
where the label of the nearest neighbors is copied.
Zeng et al. (2020) involves generating counterfac-
tual examples through interventions to augment
the original dataset. Additionally, prompt-based
learning, which has gained prominence in natural
language processing, has also been applied to few-
shot NER (Cui et al., 2021; Ma et al., 2022; Lee
et al., 2022; Das et al., 2022; Chen et al., 2022b; Li
et al., 2022; Dong et al., 2023; Fang et al., 2023). In
particular, Das et al. (2022) incorporate contrastive

learning techniques with prompts to better capture
label dependencies. Furthermore, Ma et al. (2022)
develop a template-free approach to prompt NER,
employing an entity-oriented objective. Recently,
several studies have conducted analyses of the per-
formance of current large language models (LLMs),
such as the GPT series (Brown et al., 2020; Ope-
nAI, 2023), in the context of the few-shot NER
task (Gutierrez et al., 2022; Han et al., 2023; Sun
et al., 2023). Nevertheless, these investigations
have revealed a substantial performance gap be-
tween recent LLMs and state-of-the-art methods.
Consequently, due to their high running costs and
underwhelming performance, we do not consider
recent LLMs as the basic model of our proposed
framework (refer to Sec. 3.2). As mentioned in
Sec. 1, previous few-shot NER methods primarily
focus on in-domain settings and require manual
annotations for the target domain, which poses a
challenge for generalizing to OOD examples.

The field of few-shot cross-domain learning is
inspired by the rapid learning capability of humans
to recognize object categories with limited exam-
ples, known as rationale-based learning (Brown
et al., 2020; Shen et al., 2021; Chen et al., 2022a;
Baxter, 2000; Zhang et al., 2020). In the con-
text of NER, Yang et al. (2022) introduce the few-
shot cross-domain setting and propose a two-step
rationale-centric data augmentation method, named
FactMix, to enhance the model’s generalization
ability.

In this paper, we focus on few-shot cross-domain
NER. The most closely related work is Fact-
Mix (Yang et al., 2022). FactMix faces two chal-
lenging problems: (i) augmentation is limited to
the training data, and (ii) the transfer of knowledge
from the source domain is implicit and insufficient.



In our proposed PLTR, to identify useful knowl-
edge in the source domain, mutual information
criteria are designed for automatic type-related fea-
ture (TRF) extraction. In addition, PLTR generates
a unique prompt for each unseen example based on
relevant TRFs, aiming to reduce the gap between
the source and unseen domains.

3 Preliminaries

3.1 Task settings
A NER system takes a sentence x = x1, . . . , xn as
input, where x is a sequence of n words. It pro-
duces a sequence of NER labels y = y1, . . . , yn,
where each yi belongs to the label set Y selected
from predefined tags {Bt, It, St, Et, O}. The
labels B, I , E, and S indicate the beginning,
middle, ending, and single-word entities, respec-
tively. The entity type is denoted by t ∈ T =
{PER,LOC,ORG,MISC, . . .}, while O denotes
non-entity tokens. The source dataset and out-of-
domain dataset are represented by Din and Dood ,
respectively. Following Yang et al. (2022), we con-
sider two settings in our task, the in-domain setting
and the out-of-domain (OOD) setting. Specifically,
we first train a model Min using a small set of
labeled instances from Din. Then, for in-domain
and OOD settings, we evaluate the performance of
Min on Din and Dood, respectively.

3.2 Basic models
Since our proposed PLTR is designed to be model-
agnostic, we choose two popular NER methods,
namely standard fine-tuning and prompt-tuning re-
spectively, as our basic models. As mentioned in
Sec. 2, due to their high costs and inferior perfor-
mance on the NER task, we do not consider recent
large language models (e.g., GPT series) as our
basic models.
Standard fine-tuning method. We employ
pre-trained language models (PLMs) such as
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) to generate contextualized word em-
beddings. These embeddings are then input into a
linear classifier with a softmax function to predict
the probability distribution of entity types. The
process involves feeding the input token x into the
feature encoder PLM to obtain the corresponding
contextualized word embeddings h:

h = PLM(x), (1)

where h represents the sequence of contextualized

word embeddings derived from the pre-trained lan-
guage models. To recognize entities, we optimize
the cross-entropy loss LNER as:

LNER = −
N∑
c=1

yo,c log (po,c) , (2)

where N denotes the number of classes, y is a
binary indicator (0 or 1) indicating whether the
gold label c is the correct prediction for observation
o, and p is the predicted probability of c for o.
Prompt-tuning method. The prompt-tuning
method for NER tasks involves the use of mask-
and-infill techniques based on human-defined tem-
plates to generate label words. We adopt the recent
EntLM model proposed by Ma et al. (2022) as our
benchmark for this method. First, a label word set
Vl is constructed through label word engineering,
which is connected to the label set using a mapping
function M : Y → Vl. Next, entity tokens at entity
positions are replaced with the corresponding label
word M(yi). The resulting modified input is then
denoted as xEnt = {x1, . . . ,M (yi) , . . . , xn}.
The language model is trained by maximizing the
probability P

(
xEnt | x

)
. The loss function for

generating the prompt and performing NER is for-
mulated as:

LNER = −
N∑
i=1

logP
(
xi = xEnti | x

)
, (3)

where N represents the number of classes. The ini-
tial parameters of the predictive model are obtained
from PLMs.

4 Method

In this section, we present the two primary phases
of the proposed PLTR method, as depicted in Fig. 2:
(i) type-related feature extraction (see Sec. 4.1),
and (ii) prompt generation and incorporation (see
Sec. 4.2).

4.1 Type-related feature extraction
As mentioned in Sec. 1, type-related features
(TRFs), which are tokens strongly associated with
entity types, play a crucial role in the few-shot
cross-domain NER task. To extract these features,
we propose a mutual information based method for
identifying TRFs from the source domain. Here,
we define Si as a set that contains all sentences
from the source domain where entities of the i-
th type appear, and S\Si as a set that contains



sentences without entities of the i-th type. In our
method, we consider a binary variable that indi-
cates examples (texts) from Si as 1, and examples
from S\Si as 0. To find tokens closely related to
Si, we first calculate the mutual information be-
tween all tokens and this binary variable, and then
select the top l tokens with the highest mutual in-
formation scores. However, the mutual information
criteria may favor tokens that are highly associated
with S\Si rather than with Si. Thus, we introduce
a filtering condition as follows:

CS\Si
(wm)

CSi(wm)
≤ ρ, CSi(wm) > 0, (4)

where CSi(wm) represents the count of the m-
gram wm = xp, . . . , xp+m−1 in Si. CS\Si

(wm)
represents the count of this m-gram wm in all
source domains except for Si, and ρ is an m-gram
frequency ratio hyperparameter. By applying this
criterion, we ensure that wm is considered part of
the TRF set of Si only if its frequency in Si is sig-
nificantly higher than its frequency in other entity
types (S\Si). Since the number of examples in Si

is much smaller than the number of examples in
S\Si, we choose ρ ≥ 1 but avoid setting it to a
large value. This allows for the inclusion of fea-
tures that are associated with Si while also being
related to other entity types in the TRF set of Si. In
our experiments, we set ρ = 3 and only consider
1-gram texts for simplicity.

Note that the type-related feature extraction mod-
ule we designed is highly efficient with a compu-
tational complexity of O(|Din | · lavg · |T |), where
|Din |, lavg , and T represent the number of sen-
tences in the training dataset, the average sentence
length, and the entity type set, respectively. This
module is able to compute the mutual information
criteria in Eq. 4 for all entity types in T and each
token by traversing the tokens in every training
sentence just once.

4.2 Prompt generation and incorporation
To connect unseen examples with the knowledge
within the source domain, we generate and incorpo-
rate a unique prompt for each input instance. This
process involves a two-stage mechanism: first, rel-
evant TRFs are selected to form prompts, and then
these prompts are input into the PLM-based basic
model for entity label inference.
Automatic type-related feature selection. Given
an input sentence x and the extracted TRF set R,

we formulate the selection of relevant TRFs as a
cloze-style task for our PLM-based basic model
Mb (refer to Sec. 3.2). Specifically, we define the
following prompt template function f(·) with K
[MASK] tokens:

f(x) =

“x[SEP]type-related features:[MASK]...[MASK]”.
(5)

By inputting f(x) into Mb, we compute the hidden
vector h[MASK] of [MASK]. Given a token r ∈ R,
we compute the probability that token r can fill the
masked position:

p([MASK] = r|f(x))) = exp(r · h[MASK])∑
r̃∈R exp(r̃ · h[MASK])

, (6)

where r is the embedding of the token r in the PLM
Mb. For each [MASK], we select the token with
the highest probability as the relevant TRF for x,
while discarding any repeating TRFs. For example,
as illustrated in Fig. 2, for the sentence “Bolton’s
spokesperson told CBS News.”, the most relevant
TRFs include “Spokesmen”, “News” and “Corp”.

To train Mb for TRF selection, we define the
loss function Lgen as follows:

Lgen =

− 1

|Din |
∑

x∈Din

K∑
i=1

log p([MASK]i = ϕ(x, i)|f(x)), (7)

where ϕ(x, i) denotes the label for the i-th [MASK]
token in x. To obtain ϕ(x), we compute the Eu-
clidean distance between the PLM-based embed-
dings of each r ∈ R and each token in x, select-
ing the top-K features. Note that our designed
automatic selection process effectively filters out
irrelevant TRFs for the given input sentence, sub-
stantially reducing human interventions in TRF ex-
traction (refer to Sec. 7).
Prompt incorporation. To incorporate the en-
tity type information into prompts, we generate a
unique prompt given the selected relevant TRFs
R′(x) ⊆ R for input x. This is achieved using the
following prompt template function f ′(x):

f ′(x) =

“x[SEP]t1:R′(x, t1)[SEP]...[SEP]t|T |:R′(x, t|T |)”,
(8)

where ti ∈ T is the entity type name (e.g.,
PER or ORG). Given sentence x, R′(x, ti) ⊆
R′(x) represents selected TRFs related to entity
type ti. Note that, if R′(x, ti) = ∅, the entity
type name, and relevant TRFs R′(x, ti) are ex-
cluded from f ′(x). For example, as depicted in



# Instances

Dataset Train Dev Test Entity types

CoNLL2003 14,987 3,466 3,684 4
OntoNotes 59,924 8,528 8,262 18

TechNews - - 2,000 4
AI - - 431 14
Literature - - 416 12
Music - - 456 13
Politics - - 651 9
Science - - 543 17

Table 1: Statistics of the datasets used.

Fig. 2, the unique prompt f ′(x) corresponding to
x = “Bolton’s spokesperson told CBS News.” can
be represented as follows:

f ′(x) = “Bolton’s spokesperson told CBS News.

[SEP]PER:Spokesmen[SEP]ORG:News, Corp”.
(9)

Then, we input f ′(x) into Mb to recognize entities
in the given sentence x.

4.3 Joint training
To enable parameter sharing between prompt gen-
eration and incorporation, we train our model using
a multi-task framework. The overall loss function
is defined as follows:

L = α · L′
NER + (1− α) · Lgen , (10)

where L′
NER denotes the normalized loss function

for the NER task loss LNER (refer to Sec. 3.2). α
is the weight assigned to L′

NER with prompts as
inputs. The weight 1 − α is assigned to the loss
function Lgen for type-related feature selection. In
our experiments, we optimize the overall loss func-
tion using AdamW (Loshchilov and Hutter, 2019).
Sec. A.1 gives the detailed training algorithm of
PLTR.

5 Experiments

We aim to answer the following research questions:
(RQ1) Does PLTR outperform state-of-the-art fine–
tuning methods on the few-shot cross-domain NER
task? (Sec. 6.1) (RQ2) Can PLTR be applied to
prompt-tuning NER methods? (Sec. 6.2) Micro F1
is adopted as the evaluation metric for all settings.

5.1 Datasets
Detailed statistics of both in-domain and out-of-
domain datasets are shown in Table 1.
In-domain dataset. We conduct in-domain ex-
periments on the CoNLL2003 dataset (Sang and

Meulder, 2003). It consists of text in a style similar
to Reuters News and encompasses entity types such
as person, location, and organization. Additionally,
to examine whether PLTR is extensible to different
source domains and entity types, we evaluate PLTR
using training data from OntoNotes (Weischedel
et al., 2013) (refer to Sec. A.3). OntoNotes is an
English dataset consisting of text from a wide range
of domains and 18 types of named entities, such as
Person, Event, and Date.
Out-of-domain datasets. We utilize the OOD
dataset collected by Liu et al. (2021), which in-
cludes new domains such as AI, Literature, Music,
Politics, and Science. The vocabulary overlaps
between these domains are generally small, indicat-
ing the diversity of the out-of-domain datasets (Liu
et al., 2021). Since the model trained on the source
domain dataset (CoNLL2003) can only predict per-
son, location, organization, and miscellaneous en-
tities, we assign the label O to all unseen labels in
the OOD datasets.

5.2 Experimental settings and baselines

We compare PLTR with recent baselines in the
following two experimental settings:
Fine-tuning. Following Yang et al. (2022), we em-
ploy the standard fine-tuning method (Ori) based
on two pre-trained models with different parameter
sizes: BERT-base, BERT-large, RoBERT-base, and
RoBERT-large. All backbone models are imple-
mented using the transformer package provided by
Huggingface.2 For fine-tuning the NER models in a
few-shot setting, we randomly select 100 instances
per label from the original dataset (CoNLL2003)
to ensure model convergence. The reported per-
formance of the models is an average across five
training runs.
Prompt-tuning. Similar to Yang et al. (2022),
we adopt the EntLM model proposed by Ma et al.
(2022) as the benchmark for prompt-tuning. The
EntLM model is built on the BERT-base or BERT-
large architectures. We conduct prompt-based ex-
periments using a 5-shot training strategy (Ma et al.,
2022). Additionally, we select two representative
datasets, TechNews and Science, for the OOD test
based on the highest and lowest word overlap with
the original training domain, respectively.

Additionally, we include a recent data augmenta-
tion method CF (Zeng et al., 2020) and the state-

2https://huggingface.co/models

https://huggingface.co/models


In-domain Fine-tuning Results

Backbone Ori CF FactMix PLTR

BERT-base-cased 54.03 77.71 80.10 82.05*
BERT-large-cased 65.38 81.11 83.04 83.75*
RoBERTa-base 48.53 82.74 85.33 86.40*
RoBERTa-large 65.70 85.20 86.91 88.03*

Table 2: In-domain fine-tuning results (Micro F1) on
CoNLL2003. ∗ indicates a statistically significant dif-
ference (t-test, p<0.05) when compared to FactMix

of-the-art cross-domain few-shot NER framework
FactMix (Yang et al., 2022) as baselines in both
of the above settings. Note that, we report the re-
sults of FactMix’s highest-performing variant for
all settings and datasets.

5.3 Implementation details

Following Yang et al. (2022), we train all models
for 10 epochs and employ an early stopping crite-
rion based on the performance on the development
dataset. The AdamW optimizer (Loshchilov and
Hutter, 2019) is used to optimize the loss functions.
We use a batch size of 4, a warmup ratio of 0.1,
and a learning rate of 2e-5. The maximum input
and output lengths of all models are set to 256.
For PLTR, we search for the optimal loss weight
α from {0.1, 0.25, 0.5, 0.75, 0.9}. The frequency
ratio hyperparameter ρ is set to 3 for all domains.

6 Experimental results

To answer RQ1 and RQ2, we assess the perfor-
mance of PLTR on both in-domain and cross-
domain few-shot NER tasks. This evaluation is
conducted in two settings: a fine-tuning setting
with 100 training instances per type, and a prompt-
tuning setting with 5 training instances per type.

6.1 Results on few-shot fine-tuning (RQ1)

Table 2 and 3 show the in-domain and cross-domain
performance in the fine-tuning setting, respectively.
Based on the results, we have the following obser-
vations: (i) PLTR achieves the highest Micro F1
scores for all datasets and settings, indicating its
superior performance. For instance, when using
RoBERTa-large as the backbone, PLTR achieves an
88.03% and 75.14% F1 score on the CoNLL2003
and TechNews datasets, respectively. (ii) PLTR sig-
nificantly outperforms the previous state-of-the-art
baselines in both in-domain and cross-domain
NER. For example, PLTR exhibits a 1.46% and
10.64% improvement over FactMix, on average,

on in-domain and cross-domain datasets, respec-
tively. (iii) Few-shot cross-domain NER is notably
more challenging than the in-domain setting, as all
methods obtain considerably lower F1 scores. The
performance decay in TechNews is smaller than in
other domains, due to its higher overlap with the
training set. In summary, PLTR demonstrates its
effectiveness in recognizing named entities from
both in-domain and OOD examples. The use of
type-related features (TRFs), along with the incor-
poration of prompts based on TRFs, are beneficial
for in-domain and cross-domain few-shot NER.

6.2 Results on few-shot prompt-tuning (RQ2)

To explore the generalizability of PLTR, we report
in-domain and OOD results for the prompt-tuning
setting in Table 4 and 5, respectively. We obtain the
following insights: (i) Due to data sparsity, the over-
all performance for the prompt-tuning setting is
considerably lower than the results of 100-shot fine–
tuning. (ii) Even with only 5-shot training instances
per entity type, PLTR achieves the highest perfor-
mance and outperforms the state-of-the-art base-
lines by a significant margin, demonstrating the
effectiveness and generalizability of PLTR. For ex-
ample, in the in-domain and cross-domain datasets,
PLTR achieves an average improvement of 11.58%
and 18.24% over FactMix, respectively. In sum-
mary, the PLTR framework not only effectively
generalizes fine-tuning-based NER methods to un-
seen domains, but also attains the highest F1 scores
in the prompt-tuning setting.

7 Analysis

Now that we have answered our research ques-
tions, we take a closer look at PLTR to analyze its
performance. We examine whether the prompts
are designed appropriately. Besides, we study
how the number of training samples and selected
type-related features influence the performance
(Sec. A.2), how PLTR affects representation simi-
larities between the source and target domains, and
whether PLTR is extensible to different source do-
mains and entity types (Sec. A.3). Furthermore, we
provide insights into the possible factors that limit
further improvements.
Ablation studies. To investigate the appropriate-
ness of our prompt design, we conduct ablation
studies on few-shot cross-domain NER in both fine-
tuning and prompt-tuning settings. The results are
presented in Table 6. In the “NP” variant, prompts



OOD Fine-tuning Results OOD Fine-tuning Results

Backbone Dataset Ori CF FactMix PLTR Dataset Ori CF FactMix PLTR
BERT-base-cased

TechNews

41.46 61.20 65.20 67.39*

Music

10.46 19.33 19.49 23.86*
BERT-large-cased 52.63 67.51 69.98 70.51* 12.00 19.64 19.97 27.84*
RoBERTa-base 44.88 71.83 73.62 75.06* 11.78 22.24 23.75 30.52*
RoBERTa-large 51.76 73.11 74.89 75.14* 14.44 21.13 22.93 30.26*

BERT-base-cased

AI

15.88 22.49 24.67 28.41*

Politics

21.38 41.84 43.60 44.97*
BERT-large-cased 18.62 26.00 26.25 30.25* 29.77 43.37 43.84 45.85*
RoBERTa-base 18.63 32.03 32.09 33.87* 26.81 44.12 44.66 47.56*
RoBERTa-large 23.27 28.76 30.06 31.97* 28.56 45.87 45.05 48.35*

BERT-base-cased

Literature

12.85 22.89 25.70 27.39*

Science

12.41 25.67 29.72 31.78*
BERT-large-cased 17.53 24.96 26.25 27.83* 16.05 28.75 27.88 31.19*
RoBERTa-base 15.05 28.21 28.89 30.80* 14.17 33.33 34.13 34.87*
RoBERTa-large 19.20 25.43 26.76 31.02* 17.25 31.36 32.39 35.08*

Table 3: OOD fine-tuning results (Micro F1) over six datasets. ∗ indicates a statistically significant difference (t-test,
p<0.05) when compared to FactMix.

In-domain Prompt-tuning Results

Backbone EntLM CF FactMix PLTR

BERT-base-cased 54.00 55.61 59.19 63.50*
BERT-large-cased 60.37 56.49 60.80 70.46*

Table 4: In-domain prompt-tuning results (Micro F1)
on CoNLL2003. ∗ indicates a statistically significant
difference (t-test, p<0.05) when compared to FactMix.

are removed during test-time inference. In this
case, the F1 scores across all datasets and settings
suffer a significant drop compared to our proposed
PLTR. This demonstrates the crucial role of in-
corporating prompts during both the training and
inference processes. In the “RDW” and “REW”
variants, prompts are constructed using randomly
selected words from the source domain and the
given example, respectively. The performance of
both the “RDW” and “REW” model variants con-
sistently falls short of PLTR, indicating that PLTR
effectively identifies important knowledge from
the source domain and establishes connections be-
tween unseen examples and the knowledge within
the source domain.

Additionally, to explore the efficacy of type-
related feature selection (refer to Sec. 4.2), we con-
ducted an evaluation of PLTR (BERT-base) using
various frequency ratios ρ (in Eq. 4). The results
are presented in Table 7. As the value of ρ in-
creases, TRFs extracted using Eq.4 become less
closely associated with the specified entity type
but become more prevalent in other types. When
the value of ρ is raised from 3 to 9, we observed
only a slight decrease in the F1 scores of PLTR.
When the value of ρ is raised to 20, the F1 score of
PLTR drops, but still surpasses the state-of-the-art
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Figure 3: Influence of training instances on TechNews
and Science (BERT-base).

baseline FactMix. These results indicate that PLTR
effectively identifies relevant TRFs for OOD exam-
ples, considerably mitigating human interventions
in the feature extraction process.
The influence of training samples. To examine
the impact of the number of training samples, we
compare the performance of PLTR and FactMix on
few-shot cross-domain NER using 100, 300, and
500 training samples per entity type. Fig. 3 dis-
plays the results based on the BERT-base-cased
model. PLTR exhibits the largest improvements
over FactMix when the dataset comprises only 100
training instances per entity type, as opposed to
the 300 and 500 training instances scenarios. Fur-
thermore, PLTR consistently outperforms the prior
state-of-the-art approach, FactMix, across all exper-
imental settings with varying numbers of training
examples, demonstrating its superiority.
Analysis of sentence similarities. In our analysis
of sentence similarities, we investigate the impact
of PLTR on the representation similarities between
the source and target domains. We compute the



OOD Prompt-tuning Results OOD Prompt-tuning Results

Backbone Dataset EntLM CF FactMix PLTR Dataset EntLM CF FactMix PLTR

BERT-base-cased TechNews 47.16 52.36 52.44 60.99* Science 15.70 18.32 18.62 20.90*
BERT-large-cased 52.53 48.32 48.64 61.64* 15.32 15.34 16.80 19.77*

Table 5: OOD prompt-tuning results (Micro F1) on TechNews and Science. ∗ indicates a statistically significant
difference (t-test, p<0.05) when compared to FactMix.

OOD Fine-tuning Results OOD Prompt-tuning Results

Dataset FactMix NP RDW REW PLTR FactMix NP RDW REW PLTR

TechNews 65.09 66.16 66.01 66.10 67.39 52.44 54.01 55.90 56.46 60.99
Science 29.72 29.84 30.02 30.06 31.50 18.62 18.78 18,72 19.19 20.90

Table 6: Ablation studies on TechNews and Science.

Frequency ratio ρ

Model Dataset 3 5 7 9 20

FactMix AI 24.67 24.67 24.67 24.67 24.67
PLTR 28.41 26.36 26.61 26.42 25.70

FactMix Science 29.72 29.72 29.72 29.72 29.72
PLTR 31.78 30.07 30.11 30.58 29.91

Table 7: Influence of frequency ratio (ρ) on AI and
Science (BERT-base, fine-tuning).
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Figure 4: Analysis of sentence similarities on AI, Music,
and Science (BERT-base, fine-tuning).

average SBERT similarities for sentence represen-
tations in PLTR (BERT-base) between the source
and target domains; the results are presented in
Fig. 4. With the prompts generated by PLTR, the
representation similarities between the source and
unseen domains noticeably increase. This is, PLTR
facilitates a more aligned and connected represen-
tation space, mitigating the gap between the source
and target domains.
Error analysis. Although our proposed PLTR out-
performs state-of-the-art baselines, we would like
to analyze the factors restricting further improve-
ments. Specifically, we compare the performance
of PLTR (BERT-base) on sentences of different
lengths in the test sets of the CoNLL2003 (In-
domain), AI, and Science datasets. The results
of the standard fine-tuning setting are provided in

Sentence length

Dataset < 25 25–35 > 35 Avg.

In-domain 80.12 81.25 84.12 82.05
AI 25.86 24.71 29.65 28.41
Science 23.86 29.62 32.87 31.78

Table 8: Error analysis on sentence lengths in test sets
(BERT-base, fine-tuning).

Table 8. We observe that the F1 scores of PLTR on
sentences with more than 35 words (“> 35”) are
substantially higher than the overall F1 scores. In
contrast, the F1 scores on sentences with 25 to 35
words (“25–35”) or less than 25 words (“< 25”)
consistently fall below the overall F1 scores. This
suggests that it may be more challenging for PLTR
to select TRFs and generate appropriate prompts
with less context.

8 Conclusions

In this paper, we establish a new state-of-the-art
framework, PLTR, for few-shot cross-domain NER.
To capture useful knowledge from the source do-
main, PLTR employs mutual information criteria
to extract type-related features. PLTR automat-
ically selects pertinent features and generates a
unique prompt for each unseen example, bridging
the gap between domains. Experimental results
show that PLTR not only effectively generalizes
standard fine-tuning methods to unseen domains,
but also demonstrates promising performance when
incorporated with prompt-tuning-based approaches.
Additionally, PLTR substantially narrows the dis-
parity between in-domain examples and OOD in-
stances, enhancing the similarities of their sentence
representations.



Limitations

While PLTR achieves a new state-of-the-art perfor-
mance, it has several limitations. First, the number
of type-related features for prompt construction
needs to be manually preset. Second, PLTR re-
lies on identifying TRFs, which are tokens strongly
associated with entity types. Extracting and incor-
porating more complex features, such as phrases,
represents a promising direction for future research.
In the future, we also plan to incorporate PLTR
with different kinds of pre-trained language mod-
els, such as autoregressive language models.

Ethics statement

The paper presents a prompt-based method for rec-
ognizing named entities in unseen domains with
limited labeled in-domain examples. However, the
constructed prompts and model-predicted results
still have a considerable amount of misinformation.
Besides, the reliance on black-box pre-trained lan-
guage models raises concerns. Hence, caution and
further research are required prior to deploying this
method in real-world applications.
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A Appendix

A.1 Training algorithm of PLTR
Algorithm 1 gives the detailed training algorithm
of PLTR. To start, we establish a basic model Mb

based on Pre-trained Language Models (PLM) and
initialize its parameters Θ (lines 1-2). To capture
knowledge from the source domain, PLTR iden-
tifies type-related features using mutual informa-
tion criteria (line 3). Next, given an input sen-
tence x ∈ Din , PLTR automatically selects rele-
vant TRFs R′(x) ⊆ R by formulating the selection
process as a cloze-style task for Mb (line 7). Fur-
thermore, to incorporate entity type information
into prompts, PLTR constructs a unique prompt

Algorithm 1 Training Algorithm for PLTR.

Require: The source dataset Din; the basic model
Mb with parameters Θ; the frequency ratio
ρ; the number of selected type-related features
K; the loss weight α; the number of epochs
epoch .

Ensure: The extracted type-related features R and
the trained basic model M′

b;
1: Establish the basic model Mb;
2: Initialize model parameters Θ;
3: Extract type-related features R for all entity

types from the source dataset Din (Eq. 4);
4: while i ≤ epoch do
5: for Sample a batch X ⊆ Din do
6: for all sentences x ∈ X do
7: Select relevant TRFs R′(x) for in-
8: put x (Eq. 5 and 6);
9: Transform x into the prompt tem-

10: plate f ′(x) (Eq. 8);
11: Input f ′(x) into Mb for prediction;
12: end for
13: Update Θ by optimizing L (Eq. 10);
14: end for
15: end while

f ′(x) for each input x, and these prompts are then
fed into Mb for entity recognition (lines 8-9). Fi-
nally, we iteratively refine the parameters Θ by
jointly optimizing two loss functions: the NER
task loss function L′

NER and the TRF selection
loss function Lgen (line 11). Note that, during in-
ference, PLTR generates a unique prompt for each
sentence within the unseen target domain using ex-
tracted TRFs R. In this way, knowledge from the
source domain is explicitly integrated into both the
training and inference phases.

A.2 Influence of the number of selected
type-related features

We evaluate PLTR based on BERT-base in fine-
tuning setting, with the number of selected relevant
type-related features K varying from 10 to 60. The
results are shown in Fig. 5. Our observations in-
dicate that as the number of type-related features
increases, the performance (F1 score) of PLTR ini-
tially improves because the model incorporated
with more features is able to encode more useful
knowledge from the source domain. But notice that
the performance drops when the number of type-
related features is too large. In our experiments, we
set the number of type-related features to 40 on all



Source: CoNLL2003 Source: OntoNotes

Setting Model Dataset PER LOC ORG MISC Avg. PER LOC ORG EVENT Avg.

OOD
Fine-tuning
Results

FactMix TechNews 85.65 59.45 59.31 24.66 65.20 56.96 16.06 41.84 – 44.11
PLTR 86.00 71.34 59.93 26.25 67.39 86.14 18.33 57.71 – 65.31

FactMix Science 35.43 31.28 24.46 23.58 29.72 13.60 15.84 22.66 3.77 17.15
PLTR 36.27 39.38 36.57 29.99 31.78 38.51 16.79 23.20 7.61 27.46

OOD
Prompt-tuning
Results

FactMix TechNews 82.88 55.05 39.82 16.12 52.44 77.66 16.20 38.92 – 53.19
PLTR 87.91 56.73 42.69 29.21 60.99 79.27 20.26 42.67 – 54.91

FactMix Science 29.87 23.17 8.47 14.30 18.62 33.14 3.96 7.54 2.90 19.83
PLTR 38.51 23.19 10.46 14.33 20.90 34.98 11.83 17.27 6.67 22.32

Table 9: Influence of source domains (BERT-base). In TechNews, there are no annotations for "EVENT" entities.
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Figure 5: Influence of the number of selected rele-
vant type-related features (K) on AI (BERT-base, fine-
tuning).

datasets.

A.3 Influence of source domains
We explore the performance of our proposed PLTR
when trained on data from different source do-
mains, i.e., CoNLL2003 and OntoNotes. Results
in both the fine-tuning and prompt-tuning settings
are shown in Table 9. Our observations indicate
that our proposed PLTR consistently outperforms
FactMix when trained on different domains. For in-
stance, PLTR achieves an average improvement of
5.42% and 4.22% over FactMix for "LOC" entities
when using CoNLL2003 and OntoNotes as source
datasets, respectively. This highlights PLTR’s ca-
pacity to extend to various source domains and
entity types.


