
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CATALYSTBENCH: A COMPREHENSIVE MULTI-TASK
BENCHMARK FOR ADVANCING LANGUAGE MODELS
IN CATALYSIS SCIENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

The discovery of novel catalytic materials is a cornerstone of chemical engineer-
ing and sustainable energy, yet it remains a complex, knowledge-intensive pro-
cess. While Large Language Models (LLMs) have demonstrated remarkable po-
tential in various scientific domains, their application to catalysis is hindered by
the lack of specialized, multi-dimensional benchmarks to guide their development
and evaluation. To bridge the critical gap, we introduce CatalystBench, a compre-
hensive and challenging benchmark meticulously constructed from scientific liter-
ature and public datasets, specifically designed to assess the capabilities of LLMs
in the nuanced domain of catalyst design. The tasks covered by this benchmark
dataset encompass the entire closed-loop process of catalyst development, includ-
ing reading comprehension, experimental analysis and scheme reasoning. Based
on this benchmark, we propose a Multi-head Full-task (MFT) domain-specific
fine-tuning method that employs coupling task-specific output heads. We sys-
tematically compare with other three distinct fine-tuning strategies: Single-Task
(ST), Full-Task (FT) and Multi-head Single-Task (MST). The extensive experi-
ments demonstrate that the MFT strategy consistently achieves the most substan-
tial performance improvements across all tasks, underscoring the effectiveness
of explicit multi-task architectures in complex scientific reasoning. The result-
ing CatalystLLM significantly outperforms a wide array of state-of-the-art open-
source and closed-source models on CatalystBench. We will publicly release both
the CatalystBench benchmark and the CatalystLLM model, providing the com-
munity with a robust evaluation framework and a powerful new tool to accelerate
AI-driven research in catalytic materials science.

1 INTRODUCTION

The advancement of catalysis is a cornerstone of modern science and industry, pivotal to achieving a
sustainable future Swanson et al. (2025); Fu et al. (2025); Zhang et al. (2025b); Song et al. (2025). In
general, the property of catalysts depends on the complex interplay of composition, crystal structure,
surface active sites and regulation strategies Zhu et al. (2017); Chen et al. (2020). Designing new
catalysts is therefore a formidable challenge: 1) Vast candidate space. The combination of multiple
chemical elements, possible crystal phases and surface terminations leads to an astronomical search
space, far beyond the reach of exhaustive experimental screening; 2) Separated knowledge sources.
High-fidelity theoretical datasets derived from density functional theory (DFT) calculations capture
key descriptors like adsorption energies and electronic properties Chanussot et al. (2021); Winther
et al. (2019), while experimental literature documents synthesis conditions, stability and measured
catalytic activities Chen et al. (2024). These two streams are often siloed, with no unified frame-
work linking them for systematic analysis Zhang et al. (2025a). 3) Lack of realistic evaluation
frameworks. Although AI methods have been applied to materials science, catalysis still lacks a
benchmark that reflects the stepwise workflow of catalyst design. The model development remains
fragmented and benchmarking across approaches is inconsistent.

Large Language Models (LLMs) have triggered a paradigm shift in “AI for Science” Abramson
et al. (2024); Merchant et al. (2023); Szymanski et al. (2023), achieving notable success in domains
such as bioengineering Luo et al. (2022); Edwards et al. (2021); Waisberg et al. (2024); Lamb et al.
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(2024), materials discovery Zhang et al. (2024b); Kristiadi et al. (2024) and industrial process opti-
mization Yang et al. (2023); Saka et al. (2024). However, their deployment in catalytic materials sci-
ence reveals a critical gap Wang et al. (2025b): existing benchmarks rarely reflect the multi-modal,
multi-stage workflows that characterize real catalyst R&D, where precise numerical regression, cat-
egorical decision making and open-ended mechanistic reasoning coexist within a single process.
We compare the limitations of current benchmarks in the material field across multiple dimensions
and conduct a detailed analysis in Appendix A.3. Models trained on homogeneous tasks or unified
output formats struggle to preserve accuracy across this spectrum, often suffering loss-landscape
interference between qualitatively different objectives.

Traditional workflow Automated workflow
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Organization
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Figure 1: Data-driven model for scientific research processes in the materials field.

To bridge this knowledge gap, we present CatalystBench, the first multi-task benchmark tailored for
catalysis science that explicitly unifies high-quality theoretical datasets and curated experimental
literature into a structured Q&A format. Beyond aggregating and filtering data, we perform domain-
specific curation and transformation so that each evaluation task directly corresponds to a stage in the
catalyst design lifecycle, as shown in Fig 1. Given that these tasks span text-based reasoning and nu-
merical property prediction, we propose a Multi-head Full-task Fine-tuning (MFT) strategy. It’s an
architecture adaptation where classification heads, regression heads and the language modeling head
are trained in parallel but decoupled from one another. This architectural decoupling is motivated by
the distinctive composition of catalyst design tasks, which uniquely combine high-precision numer-
ical prediction, categorical judgement and open-ended scientific reasoning within a single workflow.
While multi-head architectures have been explored in other areas of multi-task learning, this work
constitutes the first systematic empirical validation and ablation in the catalysis science domain. We
then evaluate our domain-adapted CatalystLLM against strong general and scientific-domain LLM
baselines on CatalystBench, finding that it achieves state-of-the-art performance across most task
categories. This not only validates the effectiveness of our benchmark and adaptation strategy, but
also yields insights into which aspects of catalyst-related reasoning remain challenging for current
LLMs. We highlight the primary contributions of this paper as follows:

• We introduce CatalystBench, the first multi-task benchmark for catalysis that integrates
theoretical simulation data and experimental literature into a unified and task-oriented for-
mat reflecting the actual catalyst design workflow.

• We develop a domain-specific adaptation strategy. The Multi-head Full-task Fine-tuning
(MFT) approach addresses the heterogeneous nature of catalyst-related tasks by decoupling
numerical prediction and language generation within the model architecture. We system-
atically compare four different fine-tuning strategies and demonstrate the superiority of the
MFT strategy.

• We conduct a comprehensive evaluation of CatalystLLM against multiple strong baseline
models, demonstrating its SOTA performance on our proposed benchmark. Our experi-
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ments and detailed analysis not only validate the effectiveness of our tuning strategies but
also yield valuable insights into the current strengths and weaknesses of LLMs in catalysis.

2 RELATED WORKS

2.1 BENCHMARKS IN CHEMISTRY AND MATERIAL SCIENCE

The increasing application of LLMs in scientific discovery has led to the emergence of numerous
benchmarks in chemistry and materials science. Initial efforts focused on assessing domain-specific
knowledge. For instance, ChemBench evaluate the ability of LLMs on a wide range of chemical
knowledge by constructing multiple-choice questions derived from textbooks and expert knowl-
edgeZhang et al. (2024a); Mirza et al. (2024). Similarly, MaScQA Zaki et al. (2024) assesses
the understanding of core materials science concepts using graduate-level exam questions, while
SCIBENCH Wang et al. (2023b) tests college-level scientific problem-solving abilities.

More recently, benchmarks have evolved to probe more specialized and complex abilities. Chem-
CoTBench Li et al. (2025) was specifically designed to evaluate the step-by-step chemical reasoning
of LLMs, moving beyond simple factual recall. For predictive tasks, LLM4Mat-Bench Rubungo
et al. (2025) provides a comprehensive suite for materials property prediction. Furthermore, Mat-
Tools Liu et al. (2025) uniquely evaluates the ability of LLMs to interact with and utilize materials
science software libraries. However, existing chemistry-focused LLM benchmarks either empha-
size theoretical molecular-level understanding or constrained problem solving and rarely integrate
the complementary knowledge from experimental scientific literature Guo et al. (2023); Li et al.
(2024); Zhang et al. (2024a); Xie et al. (2024). This omission is critical for catalysis, where real
catalyst surfaces often deviate substantially from the idealized models assumed in theoretical calcu-
lations Wang et al. (2023a) and design decisions depend heavily on synthesis conditions, stability
data and structure-activity trends reported experimentally. Table 4 compares representative existing
chemistry benchmarks with CatalystBench. CatalystBench addresses these gaps by combining high-
fidelity theoretical datasets with curated experimental literature in a unified, task-oriented evaluation
framework.

2.2 DOMAIN-SPECIFIC LLMS FOR CHEMISTRY AND MATERIALS SCIENCE

Beyond evaluating general models, a significant research direction involves creating specialized lan-
guage models for chemistry and materials science through domain-specific fine-tuning or continued
pre-training. Early efforts in this area often involved BERT-style encoder models Chithrananda
et al. (2020); Ock et al. (2023); Trewartha et al. (2022); Zhao et al. (2024). More recent studies
have shifted toward adaptive adjustments to large-scale generative LLMs. For example, ChemLLM
Zhang et al. (2024a) is instruction-tuned on a large set of templated Q&A pairs to handle diverse
chemical tasks conversationally and in the materials domain, DARWIN 1.5 Xie et al. (2024) adopts
a multi-stage training strategy combining Q&A fine-tuning with multi-task learning to internalize
complex materials knowledge. Other generative models include ChemFormer Irwin et al. (2022) for
reaction prediction and CrystaLLM Antunes et al. (2024) for generating novel crystal structures.

Recently, several high-impact works further expand the landscape of chemistry LLMs. Llasmol Yu
et al. (2024) leverages a high-quality instruction tuning dataset to significantly enhance chemical
reasoning capabilities. Translation between Molecules and Natural Language Edwards et al. (2022)
explores bidirectional mapping between molecular structures and textual descriptions, highlighting
LLMs’ potential for molecular communication. Instructmol Cao et al. (2023a) integrates multimodal
data sources to build a versatile, reliable molecular assistant for drug discovery.

However, current domain-specific LLMs are typically optimized for single-task formats or unified
output styles, focusing on either symbolic reasoning or purely structural prediction. In contrast,
complex scientific scenarios such as catalyst design require the combined ability to comprehend
domain literature, reason mechanistically and perform high-precision numerical prediction within
a single workflow. The comparison results in Table 5 reveal that most domain-specific large mod-
els show limited improvement in numerical prediction tasks, further highlighting the challenges of
current multi-task fine-tuning approaches. CatalystLLM tackles this challenge through a multi-head
architecture explicitly adapted to the mixed-task nature of catalysis, enabling parallel handling of
qualitative and quantitative tasks without mutual interference.
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3 THE CATALYSTBENCH BENCHMARK

3.1 OVERVIEW OF CATALYSTBENCH

In order to explore the abilities of LLMs in the field of materials science, we concentrate on three
fundamental capabilities: Understanding, Reasoning and Explaining. Fig 1 illustrates the data-
driven paradigm shift in the research process within the field of catalytic materials. In response to
this trend, the CatalystBench dataset combines theoretical simulations with scientific experimental
data to construct a series of tasks covering the entire process.

3.2 CATALYSTBENCH CONSTRUCTION

Experimental Data

Theoretical Data
Synthesis Extraction

Instruction: Given the synthesis method 

descrption, please answer the following 

questions: 

1. What are the target materials being 

prepared in this method?

2. …
Input: Synthesis of Cu/VG-Ar, Cu/VG, 

and Cu/GP: … control the Cu deposition 

amount.
Output: 

1. The target materials are Cu/VG-Ar, 

Cu/VG, and Cu/GP.

2. …

Property Prediction

Instruction: Predict the adsorption energy 

for CO of given SMILES catalyst.
Input: CH</s>Ti18Pd54 (2 1 0)</s>[C Ti 

Pd Pd hollow [Ti Pd Pd Pd Pd Pd Pd…]

 Output: -1.6033 eV

Instruction: Predict the Faradaic 

Efficiency for CO2 reduction reaction 

producing CO of given catalyst with 

specified regulation details.

Input: low-crystalline trimetallic AuCuIn 

catalyst
Output: 91.4%

Method Classification

Instruction: Given the regulation method 

descrption, What type of regulation is 

being used in this method? 

A. Alloy  B. Defect  C. Atomic level 

dispersion  D. Surface/interface 

modulation  E. Composite  F. Structure 

control

Input: Cu(111) nanoparticles with an 

average size of 5.5 +/- 0.9 nm were 

anchored on a conductive Cu-based metal-

organic framework (Cu-THQ)

Output: D. Surface/interface modulation.

Science Comprehension

Instruction: A non-noble metal 

electrocatalyst based on a copper-indium 

(Cu-In) alloy that selectively converts CO2 

to CO with a low overpotential is reported. 

Given the details about the catalyst, What 

are the improvements of this catalyst 

compared to the traditionalsystem?

Input: copper-indium (Cu-In) alloy

Output: Cu(111) nanoparticles are 

commonly used as active sites in electro-

catalysis due to their high surface energy 

and catalytic activity for CO2 reduction. 
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Catalyst 
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Figure 2: The process for CatalystBench construction and examples demonstration.

3.2.1 DATA COLLECTION AND ORGANIZATION

Material Extraction
(ME, 2480)

Synthesis Extraction
(SE, 6612)

Regulation Method 
Classification(RMC, 2364)

Faradaic Efficiency Prediction
(FEP, 2148)

Adsorption Prediction
(AP, 3000)

d-band Center 
Prediction(d-CP, 3000)

Formation Prediction
(FP, 3000)

Regulation Scheme 
Comprehension

(RSC, 4307)

Figure 3: The statistics of CatalystBench Multi-
Task Data.

Fig 2 shows the construction process and spe-
cific examples of CatalystBench. For theoret-
ical simulation data, we select and integrate 8
publicly available catalytic datasets (Appendix
A)to quantitatively evaluate the Understand-
ing and Reasoning capabilities of LLMs. We
filter out key features from descriptors re-
lated to catalytic properties in public datasets,
such as SMILES strings. We design a set of
prompt templates to convert these features and
attributes into task-specified natural language
sentences. This leads to instructions that com-
bine inputs and expected outputs. For exam-
ple, the instruction of property prediction like:
‘Predict the adsorption energy for CO of given
SMILES catalyst.’ with input ‘Ti18Pd54’ and
our model should give the output ‘-1.6033 eV’, which can be converted to a numeric value.

Beyond basic understanding and reasoning, we further explore the model’s higher-order Explain-
ing capabilities, including deep understanding of catalytic regulation schemes documented in the
literature and accurate grasp of macro-level trends in specific catalytic fields. In this step, we ex-
tract catalyst regulation and synthesis schemes from scientific literature based on existing catalytic
knowledge frameworks. We use SciQAG Wan et al. (2024) to guide GPT-4o in interpreting a large
volume of regulation scheme texts, converting them into high-quality Q&A pairs. Then domain
experts perform annotation and filtering. The method details are described in Appendix A.4.
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3.2.2 CATALYST TASKS

The proportion of these three major categories is illustrated in the Fig 3. We examine these capa-
bilities by constructing 8 diverse and broadly acknowledged practical catalytic material tasks. The
dataset size for each task in CatalystBench is smaller than that of general benchmarks, reflecting
a common constraint in catalytic research: high-fidelity data acquisition is domain-specific and re-
quires substantial resources. To avoid data imbalance across tasks, we construct the entire dataset
based on the quantity of experimental data, prioritizing task breadth to ensure comprehensive cov-
erage of the entire process of the domain of catalyst design.

3.3 QUALITY ASSURANCE

To ensure the reliability and reproducibility of CatalystBench, we adopt a multi-tiered quality assur-
ance workflow across both theoretically simulated datasets and Q&A pairs generated from experi-
mental literature. Automated validation identifies and removes invalid or duplicate entries, followed
by expert review of a representative subset. For literature-derived Q&A, a rule-based filtering pro-
cess eliminates context questions, while multi-stage generation improves semantic accuracy and
diversity. The complete verification procedures and error samples are provided in Appendix A.5.

4 METHODOLOGY

4.1 BASE LANGUAGE MODEL

We compare the performance of the current open-source models on 3 representative tasks of
CatalystBench-full. From Table 5, ChemLLM Zhang et al. (2024a) has bridged this gap through
domain-specific instruction fine-tuning on ChemData, infusing the model with a solid chemical
foundation. Therefore, we choose ChemLLM-7B as the core base model for multi-task fine-tuning.

4.2 FINE-TUNING STRATEGIES

Our goal is to design a fine-tuning architecture that simultaneously harnesses cross-task synergies
and avoids performance degradation due to task heterogeneity. Fig 4a illustrates the 4 paradigms
investigated, with the Multi-head Full-task(MFT) strategy as our proposed solution.

Multi-Corpus

& ChemData

InterLM2-Chat

ChemLLM

Multi-task

CatalyticData

CatalystLLM

ChemLLM-MFT

(a) Overview of Cata-
lystLLM.

Shared ChemLLM Backbone

Original 

lm_head
Classifica

tion_head

Regression

_head

Last Hidden Layer

Task Layer

“Instruction + Question” + [Task_type]Input Layer

ChemLLM Backbone

lm_head

Last Hidden Layer

Task Layer

“Instruction + Question”Input Layer

Output Layer

“Cu-Au Nanowires”

“The method type is Alloy.”
Output Layer:

Answer
“The d-band center is -2.83 eV.”

Text

Generation

Information 

Extraction

Text 

Classification

Regression 

Prediction

“Cu-Au 

Nanowires”

The logits for 

type “Alloy”.

The logits for 

value “-2.83”.

ChemLLM-FT: Full-task fine-tuning method ChemLLM-MFT: Multi-head Full-task fine-tuning method

𝑡0 𝑡1 𝑡2 𝑡𝑛−1 𝑡0 𝑡1 𝑡2 𝑡𝑛−1

Task 1: 

Task 2: 

Task 3: 

Higher 

Accuracy

[MLP Layer] [MLP Layer]

(b) Comparison of model architectures between ChemLLM-FT and
ChemLLM-MFT method.

Figure 4: Overview of fine-tuning strategies and final CatalystLLM
1) Single-task: We fine-tune the LLMs using a training set of each specific task, which allows us to
assess the models’ ability to adapt to individual tasks and establish a baseline for a fair comparison.
We obtain a fine-tuned model for each task in this setup, named ‘ChemLLM-ST’.

2) Multi-head Single-task: Considering the inherent differences in the attributes of different tasks,
we adopt a shared LLM backbone and three task-specific prediction head structures. We obtain a
fine-tuned model for each task in this setup, named ‘ChemLLM-MST’.
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3) Full-task: we fine-tune the LLMs using a mixture of all training datasets from 8 tasks, as shown
in Fig 4b. The single instruction-following generative head is trained jointly on all 8 CatalystBench
tasks. The single instruction follows the generation header (original lm head) during joint training
across all 8 CatalystBench tasks, with all task outputs routed to a unified generation decoder. We
obtain one fine-tuned model to perform all the tasks in this setup, named ‘ChemLLM-FT’.

4) Multi-head Full-task: The MFT method extends FT method by decoupling the output space. As
shown in Fig 4b, the task type token τ is appended to the end of the input sequence, where τ directly
controls which dedicated prediction head is activated after the final hidden representation h[tn−1].
Here, tn−1 denotes the last non-padding token position in the encoded input, while h[tn−1] represents
the corresponding context embedding generated by the shared ChemLLM backbone Transformer
network. For classification tasks, h[tn−1] is fed into a task-specific MLP classification head, produc-
ing a probability distribution over predefined categories. For regression tasks, the same h[tn−1] input
is processed by a regression head optimized for mean squared error, generating a single continuous
value. In the original generation task, decoding proceeds directly via the original lm head without
architectural modifications, enabling the model to generate domain-specific explanatory text.

By training the shared backbone jointly across all tasks while isolating output modalities, MFT
method alleviates the interference between loss landscapes of qualitatively different tasks. In prac-
tice, we balance their contributions via a weighted composite loss and compare the impact of loss-
function in Appendix B.6. This approach leverages cross-domain feature learning that is critical in
catalytic material research, while preserving the precision of task-specific inference.

5 EXPERIMENTAL SETUP

5.1 BASELINE MODELS

For the sake of fairness, We select 15% of the data for each task in CatalystBench as the test
set, according to catalyst material type. Then we compare the performance of different LLMs on
CatalystBench-test, including open-source models of comparable scale, such as LLaMA-2 Touvron
et al. (2023), Mistral Jiang et al. (2024), ChatGLM GLM et al. (2024) and Qwen3-8B Bai et al.
(2023), as well as closed-source models with strong instruction-following capabilities, such as GPT-
3.5 Ye et al. (2023), GPT-4 Achiam et al. (2023) and deepseek. Additionally, for regression tasks
involving the prediction of material properties, we introduce comparisons with competitive ML
algorithms. We select some SOTA baseline models, such as CatBERTa Ock et al. (2023) and GAP-
CatBERTa Ock et al. (2024) from OC20 dataset and ML algorithm such as GPTchem Jablonka et al.
(2024). For certain tasks, we directly use the ML results from the original dataset papers Gao et al.
(2023). We provide a detailed introduction of these baseline models in Appendix B.

5.2 FINE-TUNING SETUP

To achieve efficient fine-tuning, we adopt Low-Rank Adaptation (LoRA) to reduce the computa-
tional cost with a rank of 8, a scale factor of 16.0 and a dropout rate of 0.1. We fine-tune all linear
modules. The training uses the AdamW optimizer with a learning rate of 5e-5, combined with a
linear decay scheduler with warm-up. Additionally, we further enhance training speed and model
robustness through techniques such as bf16 mixed precision and Flash Attention-2.

5.3 EVALUATION PROTOCOL

We employ a suite of tailored evaluation metrics. For the Text Classification and Information Ex-
traction tasks, we report both Accuracy and the balanced F1-score to account for potential class
imbalances. For the Regression tasks, we use MAE and R2 score to measure predictive accuracy.

Given the non-factual features of the semantic Q&A task, we develop a multi-dimensional evaluation
protocol. This protocol begins by calculating the STS score, which measures the sentence-level
semantic similarity between the generated answer and the reference answer. To assess the domain
expertise of the answers, we employ a model-based evaluation framework M. Bran et al. (2024)
where both gpt-4o and deepseek-r1 are prompted to score the generated answers on a scale from 1-10
across three criteria: reasonableness, accuracy and Usability. Finally, we conduct human evaluation
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Model ME SE RMC FEP AP d-CP FP
ACC F1 ACC F1 ACC F1 R2 MAE R2 MAE R2 MAE R2 MAE

Closed-source LLMs
claude-3 0.93 0.95 0.84 0.90 0.58 0.72 0.30 6.73 0.37 3.58 0.33 4.21 0.39 5.24
Gemini-2.5 0.97 0.98 0.87 0.91 0.66 0.80 0.29 3.19 0.34 4.15 0.36 5.78 0.40 4.98
gpt-3.5 0.89 0.93 0.78 0.86 0.49 0.62 0.28 5.25 0.35 4.20 0.34 4.50 0.38 5.41
gpt-4o 0.96 0.98 0.88 0.92 0.69 0.81 0.36 3.10 0.43 3.05 0.41 3.35 0.46 4.02
gpt-4.1 0.98 0.99 0.91 0.95 0.75 0.85 0.56 2.51 0.61 2.40 0.59 2.15 0.65 2.68

Open-source LLMs
deepseek-v3 0.92 0.95 0.83 0.89 0.61 0.74 0.33 4.20 0.40 3.55 0.38 3.85 0.43 4.45
LLaMA2-7B 0.83 0.86 0.73 0.79 0.39 0.50 0.25 4.47 0.24 4.63 0.34 3.79 0.35 4.12
Qwen3-8B 0.86 0.91 0.74 0.83 0.42 0.54 0.26 4.59 0.31 3.85 0.32 3.49 0.36 4.26
Mistral-7B 0.88 0.92 0.76 0.84 0.44 0.57 0.29 3.09 0.37 3.49 0.36 4.14 0.39 5.15
ChatGLM3-6B 0.84 0.90 0.74 0.83 0.45 0.57 0.33 4.87 0.39 3.07 0.37 3.48 0.41 4.38
ChemLLM 0.93 0.95 0.79 0.88 0.52 0.66 0.45 2.80 0.63 2.05 0.54 2.36 0.64 2.75
Darwin1.5 0.91 0.94 0.79 0.89 0.50 0.64 0.44 2.81 0.59 3.13 0.54 2.42 0.68 2.01
CatalystLLM 0.98 0.99 0.89 0.94 0.81 0.89 0.73 1.72 0.81 1.24 0.73 1.49 0.80 1.34

Table 1: The performance of CatalystLLM with other LLMs on tasks with factual answers. The best
model is in bold font and the second-best is underlined.

on a random subset of the test dataset, with domain experts providing the final judgment on the
model’s practical applicability and domain-specific correctness(Details in Appendix C).

6 RESULTS AND ANALYSIS

6.1 COMPARISON OF FINE-TUNING STRATEGIES

Figure 5: Comparison of the impact of different
fine-tuning strategies on task performance. Base-
ST serves as the baseline model and the bar chart
shows the performance differences between differ-
ent models on specific tasks.

After fine-tuning the ChemLLM-7B model, we
evaluate their performance on CatalystBench-
test for each task. In Fig 5, we compare
task performance to identify how different fine-
tuning strategies influence the results. The
results show that the MFT strategy achieves
the best performance, with the highest av-
erage performance improvement rate relative
to the ST baseline, reaching 12.44%. This
indicates that combining multi-task learning
with task-specific output heads is more effec-
tive than applying either technique in isola-
tion. Among these, MT fine-tuning resulted in
an average improvement of 9.24%, while task-
specific output head design achieve an aver-
age improvement of only 5.13%. This high-
lights that coupling architectures help tailor the
model’s outputs for a specific task format, but
the impact is limited without multi-task train-
ing. When all tasks share underlying semantic features, the model can leverage these features to
learn shared and transferable representations. We name the final ChemLLM-MFT model as Cata-
lystLLM, an open-source foundational LLM specifically designed for catalytic science. We provide
a detailed analysis of the suitability of MFT architecture for catalytic process tasks in Appendix B.1.

6.2 MAIN BENCHMARK RESULTS

We evaluate the performance of LLMs on catalytic tasks on CatalystBench-test and report the results
in Table 1 and Table 2. Table 1 compares the performance of CatalystLLM with other LLMs on tasks
with factual answers. The results show that CatalystLLM achieve the best performance across all
7 tasks and 12 metrics, significantly outperforming general LLMs of similar scale. Compared to
ChemLLM, CatalystLLM demonstrates a significant improvement in its capabilities to understand
and apply catalytic knowledge, highlighting the effectiveness of multi-task catalytic data fine-tuning.
ChemLLM and Darwin1.5 outperform top general models on most metrics. This indicates that
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specialized models can learn more precise chemical named entities, reaction conditions and critical
features in complex structure-activity relationships through fine-tuning in specific domains.

Notably, general LLMs perform exceptionally well in tasks such as ME, SE and RMC tasks. For
instance, gpt-4.1 achieves higher accuracy and F1-scores than CatalystLLM in the SE task. However,
in numerical regression prediction tasks, there is a significant gap in capability between general
models and specialized models, indicating that general LLMs currently can not accurately perform
prediction tasks which require deep scientific reasoning and quantitative calculations. For numerical
regression tasks, we also compare the results of CatalystLLM and traditional single-task competitive
ML algorithms in Appendix B.5.

Model STS LLM Scores Experts @100
Scores gpt-4o deepseek-r1 Score

Closed-source LLMs
claude-3 0.73 0.74 0.73 0.46
Gemini-2.5 0.74 0.75 0.76 0.47
gpt-3.5 0.71 0.69 0.71 0.41
gpt-4o 0.73 0.71 0.72 0.46
gpt-4.1 0.72 0.85 0.88 0.56

Open-source LLMs
deepseek-v3 0.73 0.84 0.86 0.57
LLaMA2-7B 0.63 0.57 0.52 0.39
Qwen3-8B 0.62 0.70 0.72 0.47
Mistral-7B 0.66 0.68 0.42 0.42
ChatGLM3-6B 0.61 0.58 0.60 0.38
ChemLLM 0.68 0.64 0.68 0.54
Darwin1.5 0.67 0.59 0.61 0.49
CatalystLLM 0.79 0.82 0.86 0.75

Table 2: The performance of CatalystLLM with
other LLMs in semantic understanding tasks. The
best model is in bold font and the second-best is
underlined.

Table 2 compares the performance of Cata-
lystLLM with other LLMs in semantic un-
derstanding tasks, including multi-dimensional
evaluation metrics. In all three evaluation di-
mensions, CatalystLLM achieves the optimal
or suboptimal results, demonstrating the poten-
tial of domain-specific fine-tuning to enhance
answer quality. Additionally, the STS scores of
general LLMs are typically higher than those
of open-source models, reflecting the superior
answer generation capabilities. General LLMs
typically have higher LLM Scores, while spe-
cialized models including CatalystLLM have
relatively higher expert scores. This reflects
two phenomenons: 1) Top general models gen-
erate answers that are fluent, logically clear and
comprehensive, which aligns with the prefer-
ences of gpt-4o and deepseek-r1; 2) General models are prone to scientific hallucinations in spe-
cialized fields like catalytic science Xu et al. (2024). These answers may contain incorrect catalyst
performance analyses or explanations that conflict with physical chemistry principles and such er-
rors can only be identified by domain experts. We provide an error example of LLM-score and
expert scores in Appendix C.2. Additionally, we provide case studies to highlight the impact of
CatalystLLM’s domain expertise on catalytic materials scientists in Appendix C.3.

6.3 ABLATION STUDY

We compare the impact of different dataset settings and experimental settings on model capabilities
to explore the key factors that determine LLM domain capabilities. In the experimental setup, all
models are based on the optimal MFT architecture.

6.3.1 COLLABORATIVE EFFECTS OF TASK COMBINATIONS

Text-Data Chemistry-Data Text-Data Chemistry-Data Text-Data Chemistry-Data

Figure 6: The experiments on collaborative effects of task combinations.

We investigate the potential collaborative relationship among different types of tasks under multi-
task learning framework. We remove regression tasks, classification tasks and information extraction
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tasks from the training data separately and then evaluate the corresponding performance. As shown
in Fig 6, compared to the Full-MFT baseline, the performance of all ablation models decrease on
the corresponding tasks. Additionally, we divide these tasks into two groups based on the type of
input data: Text data and Chemical data and compare the collaborative effects of tasks within and
between groups.

Intra-group tasks exhibit strong synergistic effects. For example, when RMC data is removed,
the performance of other tasks within the same group decreases significantly. This indicates that
learning “how to regulate” (RMC) provides critical contextual knowledge for LLM to understand
“how effective the regulation is” (FEP) and “the significance of the regulation scheme” (RSC).

Inter-group tasks exist certain degree of synergistic effects. For example, in the “MFT w/o
Regression” setting, the performance of the RMC and RSC tasks is also affected to some extent. This
reveals a deeper phenomenon of domain-specific fine-tuning model: it does not merely memorize
input-output patterns from training data but construct an overall knowledge model of the catalytic
domain. CatalystLLM can span different data modalities, such as chemical formulas and natural
language, thereby aiding decision-making in other tasks.

6.3.2 THE IMPACT OF INPUT FORMAT ON MODEL PERFORMANCE

Figure 7: The impact of input format on model
performance.

To investigate the advantages of Catalyst-
Bench, we investigate the impact of input data
format on the performance of LLMs. The ex-
periments aim to compare two input strate-
gies: one provided only unstructured core in-
formation, while the other provided structured
and complete input. The two input strategies
and related generated prompts are shown in
the Appendix E.2. As shown in Fig 7, given
the same amount of information, the quality
and format of input data are key factors de-
termining the upper limit of LLMs’ perfor-
mance in professional tasks, especially in the
chemical representation of catalysts. The sin-
gle SMILES string sequence can only provide
a macro-level representation, while structured
knowledge allows the model to learn the quan-
tity and connection methods of internal atoms,
thereby learning potential structure-activity re-
lationships.

7 CONCLUSION AND DISCUSSION

This work presents CatalystBench, a comprehensive benchmark dataset covering crucial processes
in catalytic science and systematically demonstrates the effectiveness of multi-head full-task fine-
tuning in adapting to complex scientific tasks. Building upon this foundation, we develop Cata-
lystLLM, a high-performance specialized language model tailored for the field of catalysis. Our
experiments demonstrate the superiority of CatalystLLM over existing LLM models and highlight
the pivotal role of CatalystBench in enhancing performance. Further analytical experiments also
provide crucial insights for developing LLM models for catalytic materials.

CatalystLLM attains SOTA performance, yet certain limitations remain. Its knowledge scope is con-
strained by the coverage of the CatalystBench dataset, potentially reducing predictive accuracy for
catalytic materials outside this range. While the 7B-parameter scale balances efficiency and capabil-
ity, larger models may exhibit superior reasoning and learning capacity. Furthermore, the inclusion
of data from existing literature introduces potential bias related to source selection. Future work will
aim to broaden CatalystBench to encompass a wider variety of catalytic systems and tasks, enhance
CatalystLLM’s downstream inference and embed the model within a closed-loop catalyst discov-
ery framework, enabling AI predictions to directly inform synthesis and characterization, thereby
accelerating the development of novel materials.
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REPRODUCIBILITY STATEMENT

We ensure reproducibility by providing all necessary resources for others to replicate our experi-
ments. Specifically:

1) Benchmark Data and Experiment Setup: All datasets used in experiments and detailed data pro-
cessing steps are publicly accessible. The experimental setup is also provided, including hyperpa-
rameters, evaluation metrics and the benchmarking environment.

2) Source code: The code used for data processing and benchmarking experiments is provided in
the supplementary materials, containing all scripts required to reproduce the experiments described
in the paper.

By providing these resources, we aim to achieve full reproducibility of our research findings and
facilitate subsequent studies based on this work. Detailed information required for reproduction can
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A DATA CONSTRUCTION

We introduce the various sources of CatalystBench data, describe the specific tasks within each
category and clarify the complete process used to compile this dataset.

Ability Task Task Type Datasets Dataset Type #count Evaluation
Metrics

Understanding

Material Extraction
(ME) Generation ElectroCatalytic

Reduction(1 & 2) Experimental Data 2,480 Accuracy,
F1 score

Synthesis Extraction
(SE) Generation

ElectroCatalytic
Reduction(1 & 2),

Solution-based
synthesis dataset

Experimental Data 6,612

Regulation Method
Classification(RMC) Classification ElectroCatalytic

Reduction(1 & 2) Experimental Data 2,364

Reasoning

Faradaic Efficiency
Prediction(FEP) Prediction ElectroCatalytic

Reduction(1 & 2) Experimental Data 2,148
R2,

MAE
Adsorption Prediction

(AP) Prediction OC20-Dense,
SACs Dataset Theoretical Simulation 3,000

d-band Center
Prediction(d-CP) Prediction

SACs Dataset,
Catalysis-Hub,

Catalytic Material
Database(CMD)

Theoretical Simulation 3,000

Formation Prediction
(FP) Prediction

SACs Dataset,
Material Project,

Catalytic Material
Database(CMD)

Theoretical Simulation 3,000

Explaining Regulation Scheme
Comprehension(RSC) Generation ElectroCatalytic

Reduction(1 & 2) Experimental Data 4,307 STScore,
LLM Score

Table 3: The statistics of all tasks, datasets, dataset type and evaluation metrics.

A.1 DATA SOURCE

We extract data from 8 open-source databases. The name and description of each dataset are listed
below.

• ElectroCatalytic Reduction 1 Wang et al. (2023a)1: An open-source corpus of electro-
catalytic CO2 reduction extracted from science literatures Du et al. (2023).

• ElectroCatalytic Reduction 2 Chen et al. (2024)2: A text-mining dataset describing the
CO2 reduction process catalyzed by copper-based electrocatalysts Wang et al. (2025a),
which specifically includes material, regulation method, product, Faradaic efficiency and
relevant synthesis conditions.

• Solution-based synthesis dataset Kononova et al. (2019)3: A dataset of 35,675 solution-
based synthesis procedures extracted from the scientific literature. Each procedure contains
essential synthesis information including the precursors and target materials, their quanti-
ties and the synthesis actions and corresponding attributes.

• OC20-Dense Chanussot et al. (2021)4: The largest dataset of catalyst-adsorbate inter-
actions to date, designed to accelerate catalyst discovery through machine learning. The
dataset contains over a million DFT calculations covering an extremely wide range of cat-
alyst materials (including bulk, surfaces and nanoparticles) and adsorbates.

• Catalytic Material Database(CMD)5: CMD contains material composition, properties,
reactions, products and other information.

• SACs Hiragond et al. (2022)6: A dataset of catalyst samples constructed for electrocat-
alytic reactions such as OER or ORR. SACs contains dozens of transition metals, combined
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with several different coordination environments and substrates, resulting in hundreds of
catalyst samples.

• Catalyst Hub Winther et al. (2019)7: A featured database for surface reactions contains
more than 100,000 chemisorption and reaction energies obtained from electronic structure
calculations and is continuously being updated with new datasets.

• Materials Project Jain et al. (2013)8: The Materials Project provides computed informa-
tion on known and predicted materials as well as powerful analysis tools to inspire and
design novel materials.

A.2 TASK FORMULATION

We evaluate the understanding, reasoning and explanation capabilities of LLMs in catalyst design by
constructing 8 widely recognized practical catalytic material tasks. Table 3 summarizes these tasks,
including their task types from a machine learning perspective, the datasets used for evaluation and
the evaluation metrics.

Simple Instruction Data Synthesis Method: Converting structured chemical data into reasoning-
adjusted data suitable for training LLMs presents two main challenges: 1) the creation of diverse
templates and 2) the integration of chemical logic and reasoning into QA pairs. The information
extraction tasks focus on identifying composition and operational parameters related to material
design from scientific literatures. The classification tasks predict discrete categories or labels, while
the regression tasks focus on continuous numerical property values. For template diversity, we
initially developed a foundational seed template to meet the requirements of specific tasks. Using
gpt-4o, We generate a series of prompt templates that express different meanings while maintaining
semantic consistency. These diverse templates enhance the model’s ability to interpret and respond
to different instruction formats. For each structured data entry, we randomly select one of these
templates to create a single-round dialogue sample.

The source datasets typically use various representations of catalytic materials to characterize the
corresponding catalytic properties Cao et al. (2023b); Balaji et al. (2023); Xu et al. (2023); Ock
et al. (2023). We propose a key hypothesis: When the model is only provided with the material
common name and its SMILES representation, it is difficult for LLM to learn the complex structure-
property relationships implicit in the data. To validate this hypothesis and explore the impact of
input information richness on model performance, we create prompts based on the source dataset
to generate different types of catalytic characterization input data. The prompts are included in
Appendix E.2.

Complex Scenario Data Synthesis Method: For information-rich complex texts such as synthesis
schemes, we enriched the data by constructing multi-round dialogues to provide contextual depth
and logical consistency. By simulating the deep thinking and step-by-step reasoning involved in
catalytic material design processes, we created a highly specialized multi-round dialogue dataset,
reducing the need for dialogue rounds and human intervention. The above template examples are
included in Appendix D.

A.3 THE COMPARISON OF CHEMICAL BENCHMARK

Catalysis research presents unique challenges that distinguish it from broader chemistry or mate-
rials science applications, particularly in the combination of heterogeneous knowledge modalities
and the multi-stage, interdependent workflow of real catalyst design. While prior LLM benchmarks
in chemistry and materials science have explored domain-specific reasoning or property prediction,

1https://doi.org/10.57760/sciencedb.07106
2https://doi.org/10.57760/sciencedb.13290
3https://doi.org/10.6084/m9.figshare.16583387.v4
4https://opencatalystproject.org/
5http://cmd.us.edu.pl/catalog/
6https://catalysis-ncepu-hvkydg736ykqeq26d5gxrn.streamlit.app/
7http://www.catalysthub.net/
8https://next-gen.materialsproject.org/
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Method_type
Method 

Description
Science Contexts

Composite

the well-dispersed 

Cu@CuxO 

nanoparticles 

deposited on the 

defective VG-Ar

The improved 

CO2 reduction 

performance of 

Cu/VG-Ar … 

species deposited 

on VG-Ar.

… … …

Search

Scientific papers Knowledge paragraphs

Scientific papers

Prompt: Given the provided scientific texts, please complete the 
following two steps: Keyword Extraction and QA Generation.

Keyword Extraction 
 [Cu@CuxO nanoparticles], [Defective VG-Ar], [Carbon defects], 
[Hydrogen evolution suppression], [Excessive oxidation 
impeding]

QA Generation
Q1: How does the presence of well-dispersed Cu@CuxO 
nanoparticles on defective VG-Ar contribute to the improved CO2 
reduction performance?
A1: The well-dispersed Cu@CuxO nanoparticles on defective VG-
Ar enhance …  such defect engineering or material integration.

Experts

SciQAG

Evaluate

Figure 8: The process of converting regulation method text into high-quality Q&A pairs using
SciQAG.

none have simultaneously aligned tasks to the full, practical catalyst R&D pipeline — from extrac-
tion of synthesis parameters in literature, through structure–property prediction, to the mechanistic
interpretation of regulation strategies.

Benchmark Domain
Focus Task Type Data

Modalities

Workflow
Alignment

to Real
Catalyst
Design

ChemBench
General

chemistry
knowledge

Multiple-choice factual recall Text only ×
Fragmented

MaScQA
Materials
science

concepts

Q&A from graduate-level
examinations Text only ×

Fragmented

SCIBENCH

College-level
scientific
problem
solving

Multi-domain Q&A Text only ×
Fragmented

ChemCoTBench Chemical
reasoning

Step-wise
chain-of-thought

Text symbolic
expressions

×
Fragmented

LLM4Mat-Bench
Material
property

prediction

Regression/classification on
numerical properties

Structured
material

descriptors

×
Partial

CatalystBench
(ours)

Catalysis-
specific,

combining
theory experiment

8 tasks: information extraction,
method classification,

numerical property prediction,
regulation scheme

comprehension

Text
structured
chemical

descriptors
numerical

values

✓ Full
workflow coverage

Table 4: The comparison of CatalystBench and the current Benchmark across dimensions such as
domain categories, data modalities and task types.

Table 4 compares representative existing chemical benchmarks with CatalystBench in terms of task
categories, data modalities and alignment to real-world catalyst design workflows. The compari-
son illustrates that CatalystBench uniquely integrates both high-fidelity theoretical simulations and
curated experimental literature into a task suite directly reflecting the sequential steps of modern
catalytic materials discovery.
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A.4 Q&A GENERATION

We use SciQAG Wan et al. (2024) to guide GPT-4o in interpreting a large volume of regulation
scheme texts, converting them into high-quality comprehension Q&A pairs. The pre-defined task
is defined as follows: Given a seed input catalytic design scheme text T , for each input text t, the
generator should first generate 5 keywords k that capture the most important terms and concepts
in the text and then generate a set S = {(qi,ai)}n

i=1 focusing on the generated keywords k, where
∀i ∈ {1,2, . . . ,5}, qi is the question and ai is the answer to qi. We use the 1,198 catalytic design
scheme texts from the ElectroCatalytic Reduction dataset as input to generate 5,990 seed Q&A
pairs by prompting GPT-4o. The generating prompts are included in Appendix E.1. To reduce the
occurrence of non-knowledge-based questions that can only be answered using information from the
given article, we develop a rule-based method to remove all pairs containing “this paper” or “this
study.” As shown in Fig 8, we ultimately generate 4,307 semantic understanding text Q&A pairs in
this step.

A.5 QUALITY ASSURANCE DETAILS

In order to guarantee the scientific credibility of CatalystBench and to ensure reproducibility of
results, a multi-layered quality assurance framework was implemented during dataset development.
This framework covers both theoretically simulated catalytic property data and open-ended Q&A
content extracted and generated from experimental literature.

A.5.1 THEORETICAL Q&A DATA CALIBRATION

For task data derived from theoretical simulations, we first perform foundational consistency checks
before feeding it into the conversion interface and generating corresponding QA-formatted con-
tent. This process removes samples with obvious errors, such as invalid SMILES representations,
missing chemical formulas, or attribute values falling outside the original data’s statistical range. Si-
multaneously, samples with duplicate structures or identical text are cleaned using hash fingerprint
comparison and field uniqueness checks. To maintain scientific rigor while preserving large-scale
data volume, we randomly selected 20% of samples from the cleaned theoretical dataset and invited
two independent experts in catalytic materials for manual verification. The review process employs
a double-blind cross-evaluation approach to ensure conclusions are not influenced by individual
reviewer preferences and to achieve explicit consensus on answer consistency assessments.

A.5.2 OPEN-ENDED Q&A DATA CALIBRATION

For open-ended comprehension Q&A data sourced from experimental literature and automatically
generated by SciQAG-guided GPT-4o, we implement an additional rule-based filtering system to
remove potentially noisy article-internal reference questions. This includes questions relying solely
on non-generic knowledge cues like “this paper” or “this study.” This filtering effectively mitigates
the risk of model over-reliance on specific textual contexts during training. Furthermore, during the
generation phase, we avoid a single-round direct instruction-to-output approach. Instead, we design
a multi-round generation process: first extracting keywords and key mechanisms, then guiding the
model to generate Q&A focused on core scientific concepts, followed by structured rewriting and
semantic consistency review. This multi-round strategy significantly mitigates GPT-4o’s tendency
toward fixed stylistic expressions and non-scientific rhetoric in lengthy responses. Consequently,
the retained data exhibits greater expressive diversity, enhanced scientific rigor and high consistency
with actual catalytic mechanisms.

We further introduce a verifiable knowledge attribution mechanism to reduce and identify poten-
tial hallucination content. During the extraction of contextual keywords, we concurrently build an
internal retrieval database comprising three elements: 1) We retain the unique DOI identifiers of
corresponding literature to ensure each Q&A pair can be traced back to its original publication; 2)
We preserve the complete contextual paragraphs underlying generated questions for offline review
and revalidation; 3) We associate extracted core scientific keywords with their corresponding text
fragments, establishing a keyword-context-DOI mapping. This structured database not only pro-
vides an additional quality control measure beyond expert review for open-ended Q&A data but also
enables rapid programmatic verification of answer consistency with original sources. This maintains
the high standards for scientific verifiability and reproducibility of our datasets.
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We also randomly sample 50% of the dataset and conduct manual verification by experts in the field
of catalysis. We invite several experts from the National Nanotechnology Center’s catalysis field
to participate, including 2 associate researcher and 6 doctoral student. The review process covers
three central aspects: 1) The reasonableness and scientific value of the open-ended Q&A task
questions, whether they reflect the development trends and focal points of the catalysis field; 2)
The accuracy and completeness of the answers, ensuring they include all key conditions; and
3) The relevance and contextual fidelity of the Q&A tasks, ensuring there are no hallucinations
generated by the model itself. After an initial filtering, approximately 90.8% of the Q&A tasks are
identified accurate and scientifically meaningful. To further validate the rigor of our filtering process,
we conduct IAA analysis on 500 randomly selected samples. Two domain experts independently
annotate each sample as accept or reject achieving a Cohen’s Kappa coefficient of 0.75. This further
confirms that the dataset reflects domain knowledge rather than model bias.

A.6 ERROR SAMPLES

The errors in automatically generated open-ended Q&A responses primarily stem from models in-
troducing inferences inconsistent with mainstream consensus in the catalysis field, mismatched ex-
perimental conditions, or unfounded explanations of reaction mechanisms during answer generation.
To clarify the feature of this issue, we present several representative error samples, all annotated and
verified by two independent domain experts.

Error Sample 1

Question:
What is the specific role of Zn sites in the CO electro-reduction process within this Cu-Zn
bimetallic catalytic system?

Reference Answer:
The Zn site serves as an efficient active center for CO generation, selectively reducing CO
to the *CO intermediate and synergistically promoting subsequent C-C coupling with the
Cu site to form ethylene.

The answer generated by LLM:
Zn sites directly participate in C-O bond cleavage, promoting the reduction of CO to CO
while enhancing the selectivity of Cu sites toward ethylene.

The error causes:
The model erroneously interprets the Zn site’s action as directly participating in bond
cleavage, which contradicts the explicitly documented mechanism in the literature of
“indirect action via intermediate generation.” This constitutes a mechanistic error.
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Error Sample 2

Question:
What is the primary contribution of nitrogen doping when employing an electrocatalytic
system supported by nitrogen-doped graphene for Fe single-atom active sites?

Reference Answer:
Nitrogen doping alters the local electronic structure, increases the electron density at active
sites and improves reaction kinetics by enhancing adsorption capacity.

The answer generated by LLM:
Nitrogen doping enhances the carrier conductivity, enabling it to maintain structural stability
under high current densities.

The error causes:
The generated answer unduly emphasizes enhanced conductivity while overlooking the
dominant effects verified in the literature: regulation of active site electronic structures and
improvement in adsorption capacity. This error constitutes a critical omission of key factors.

Error Sample 3

Question:
What is the primary purpose of introducing nanoporous structures in Au-Cu alloys for CO
electrolytic reduction?

Reference Answer:
The porous structure increases the specific surface area and the number of exposed active
sites while improving the mass transfer efficiency of reactants.

The answer generated by LLM:
Naphthalene-based structures are primarily employed to suppress the formation of methane
byproducts, enhancing selectivity through altered electron cloud distribution.

The error causes:
The response focuses solely on selective enhancement and methane suppression as its sole
objectives, lacking descriptions of surface structure and mass transfer effects. This results in
insufficient scientific rationale and inconsistency with the original context keywords.

A.7 DATA DISTRIBUTION AND DIVERSITY ANALYSIS

To comprehensively demonstrate the composition of CatalystBench, this section conducts detailed
statistical and diversity analysis of the dataset. We aim to reveal its coverage breadth and data
distribution characteristics across dimensions such as catalyst types, regulation method types and
reaction types through quantitative data, thereby validating its rationale and challenge as a com-
prehensive benchmark. Fig 9 illustrates the distribution characteristics of the catalysts and reaction
types involved in CatalystBench.

Distribution of Key Metal Elements: We compile the key metal elements in catalysts across the
dataset, particularly in tasks derived from experimental literature such as ME, SE and RMC tasks.
As shown in Fig 9a, Cu is the most frequently occurring element, accounting for 43.7%. This
aligns closely with our data sources’ focus on the current state of research in CO2 electrocatalytic
reduction(CO2RR), where copper-based catalysts represent a major research focus. Simultaneously,
the dataset extensively includes transition metals such as Fe, Co and Ni, which play crucial roles
in electrocatalysis, along with various other metallic elements. This ensures the model can learn
diverse elemental knowledge.
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Figure 9: The distribution characteristics of the catalysts and reaction types involved in Catalyst-
Bench.

Distribution of Catalyst Regulation Methods: CatalystBench incorporates a variety of advanced
catalyst design and control strategies. We statistically analyze 2,364 samples from the RMC task. As
shown in Fig 9b, Structure control and Composite materials are the two most prevalent approaches,
accounting for 46.5% and 22.3% respectively. This reflects the current mainstream trend of en-
hancing catalytic performance through constructing heterojunctions and multi-component synergies.
Additionally, Surface modification, Alloying, Defect engineering and Atomic-level dispersion also
account for significant proportions, comprehensively covering key technologies from macroscopic
morphology to atomic-scale regulation.

Distribution of Reaction Type: CatalystBench encompasses several core reaction types in the elec-
trocatalysis field. As shown in Fig 9c, CO2 electrocatalytic reduction(CO2RR) constitute the largest
proportion of the dataset, accounting for 64.3%, directly attributable to our integration of multiple
literature sources and datasets focused on CO2RR. Simultaneously, by incorporating datasets like
SACs and OC20, we have also included a substantial amount of theoretical calculation data related to
oxygen evolution reaction(OER) and oxygen reduction reaction(ORR), combined as 22.6%. Addi-
tionally, a small number of other surface adsorption and catalytic reactions are included, collectively
forming a diverse set of reaction scenarios.
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B EXPERIMENTAL DETAILS

B.1 DOMAIN-SPECIFIC CHALLENGES IN CATALYSTBENCH MULTI-TASK LEARNING

CatalystBench presents a unique configuration of tasks that diverges substantially from typical
multi-task learning settings, primarily due to the heterogeneous nature of inputs, outputs and the
rich domain-specific dependencies intrinsic to catalytic science. Unlike general-purpose multi-task
benchmarks where tasks may share a uniform modality and output format, the catalytic design work-
flow necessitates the simultaneous handling of mixed input modalities comprising structured chem-
ical descriptors, unstructured scientific text and numerical parameters. These inputs range from
SMILES strings, atomic coordination tables, or facet specifications to free-form descriptions of syn-
thesis methods and regulation schemes extracted from literature, creating a complex representational
space in which feature alignment across modalities is non-trivial.

The heterogeneity further extends to output modalities. Regression tasks such as Adsorption Predic-
tion, d-band Center Prediction and Faradaic Efficiency Prediction demand high-precision numerical
values. Classification tasks, exemplified by Regulation Method Classification, require discrete cate-
gorical decisions grounded in chemical taxonomy. Generative tasks, including Material Extraction
and Regulation Scheme Comprehension, produce long-form textual responses that must balance flu-
ency and factual correctness while integrating domain knowledge. This diverse set of output spaces
imposes fundamentally different optimization landscapes; mean squared error (MSE) objectives for
regression tasks often operate on a much larger numerical scale than cross-entropy losses used in
classification, or token-level negative log-likelihoods in generation. Without explicit control mech-
anisms, the disproportionately high gradients from regression losses can dominate joint training,
suppressing learning in classification and generative objectives, a phenomenon that is particularly
detrimental in scientific settings where each capability is equally critical.

Moreover, tasks within CatalystBench are not independent in their knowledge requirements. The
Regulation Method Classification task, for instance, provides crucial mechanistic context that di-
rectly influences downstream predictive accuracy in Faradaic Efficiency estimation. Similarly, un-
derstanding textual regulation schemes is often prerequisite to correctly interpreting property trends.
These upstream–downstream dependencies mean that multi-task learning in this domain must not
only avoid interference between tasks, but also preserve and exploit beneficial cross-task syner-
gies. Naively unifying outputs in a shared generative head, as in the FT setting, disregards both the
modality-specific optimization needs and the asymmetric informational flow between tasks, often
leading to diluted performance gains. Conversely, the MST approach, while introducing modality-
specific heads, treats each task in isolation during training, forfeiting the representational transfer
that arises from shared backbone exposure to the full diversity of inputs.

Empirical evidence from Fig 5 underscores these points. The FT configuration suffers notable degra-
dation in numerical prediction tasks, reflecting loss-scale interference and insufficient modality dif-
ferentiation, whereas MST exhibits limited average improvement due to the absence of multi-task
semantic alignment. By contrast, the MFT strategy achieves the highest mean improvement rate of
12.44% over the ST baseline, leveraging joint backbone training to capture shared domain features,
while decoupled output heads mitigate loss conflict across heterogeneous modalities. These findings
substantiate that the challenges in CatalystBench, such as input heterogeneity, output space diver-
gence, loss imbalance and domain-specific task coupling necessitate an architecture that is simulta-
neously modality-aware and synergy-preserving, a requirement uniquely fulfilled by the proposed
MFT fine-tuning framework.

B.2 BASELINE LLMS

The following sections will introduce the specific open-source LLMs and general closed-source
LLMs we evaluate in the main text. The comparison results are presented in the main text.

LLaMA-2 Touvron et al. (2023) is a set of large language models with parameter ranges from 7
billion to 70 billion. The model architecture remains largely unchanged from LLaMA-1, but over
40% of the data is used to train the base model. Specifically, LlaMA-2 includes pre-trained and fine-
tuned models optimized for conversational applications and we have chosen to use LLaMA-2-7B as
the model for comparative evaluation.
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Mistral Jung et al. (2010) is an open-source large language model with 7 billion parameters, de-
signed to offer high efficiency and performance on a wide range of downstream tasks. The model
features a transformer architecture with various optimizations on tokenization and training data di-
versity. In this study, we select Mistral-7B for comparative evaluation.

ChatGLM GLM et al. (2024) is a bilingual large language model containing 6 billion parame-
ters. It adopts the General Language Model (GLM) architecture and is optimized for dialogue and
question-answering scenarios. ChatGLM-6B is pre-trained on extensive Chinese and English cor-
pora, enabling strong cross-lingual generation capabilities.

Qwen3 Yang et al. (2025) are trained on diverse multilingual datasets to improve performance across
languages and domains. The model is optimized for multilingual and multitask settings, benefiting
from large-scale pre-training. For evaluation purposes, Qwen3-8B is selected as a representative of
mid-sized models in the Qwen3 series.

ChemLLM Zhang et al. (2024a) is an open-source language model deeply optimized for the chemi-
cal field, with 7B parameters. ChemLLM has converted vast amounts of structured chemical knowl-
edge sources into over 40 million high-quality single-round Q&A pairs, known as ChemData. By
fine-tuning on this large-scale instruction dataset, ChemLLM can learn a wealth of chemical facts
and understand and execute diverse chemical tasks through seamless conversational interactions.

Darwin1.5 Xie et al. (2024) is an open-source foundational LLM tailored for material science and
chemistry. The model is designed with a two-stage training strategy, namely question-answering
(QA) fine-tuning and multi-task learning, to enable LLM to proficiently perform chemical and ma-
terials tasks.

Claude-3-haiku is one member of the Claude-3 series of commercial large language models devel-
oped by Anthropic. It is designed to provide fast, safe and helpful conversational abilities, partic-
ularly for business and enterprise applications. Being a closed-source model, our interactions with
Claude-3-haiku are conducted via API, employing few-shot inference to ensure fair and efficient
evaluation.

Gemini-2.5-flash-preview Comanici et al. (2025) is a pre-release version of Google’s Gemini-2.5
series, offering improvements in dialogue understanding and response speed. As a closed-source
model, we access Gemini-2.5-flash-preview through its API, enabling batch evaluation for compar-
ative studies while maintaining low overhead.

Deepseek-v3 Liu et al. (2024a) is the third-generation model from the Deepseek series, developed
to enhance code understanding, generation and natural language interactions. With advanced pre-
training strategies on code and text data, Deepseek-v3 demonstrates strong capabilities across mul-
tiple tasks.

GPT-3.5-turbo and GPT-4. For closed-source models such as OpenAI GPT Family GPT-3.5-turbo
Ye et al. (2023) and GPT-4 Achiam et al. (2023), we employ batch inference via APIs for conducting
few-shot prompt inference. This approach significantly enhances evaluation efficiency and reduces
overhead.

B.3 BASELINE TRADITIONAL ML METHODS

CatBERT Ock et al. (2023) is a Transformer model based on the RoBERTa architecture, specif-
ically designed for predicting adsorption energies in catalytic systems. It can replace traditional
graph neural network(GNN) methods, which rely on precise three-dimensional atomic coordinates,
by using human-readable text inputs that describe the “adsorbate-catalyst” system. By processing
text containing key information such as adsorbate types, catalyst host material compositions and
interacting atoms, CatBERTa achieves accurate predictions of catalyst adsorption energies.

GAP-CatBERT Ock et al. (2024) improves the accuracy of catalyst property prediction through a
graph-assisted pre-training strategy. During the pre-training phase, the model utilizes a powerful
graph neural network, EquiformerV2 Liao et al. (2023); Liao & Smidt (2022), to generate high-
quality graph embeddings from precise atomic structures. While the CatBERTa model generates
text embeddings from corresponding textual descriptions. Subsequently, this method aligns the
embeddings from these two different modalities through contrastive learning, thereby transferring
and injecting the rich structural knowledge contained in the graph model into the text model. The
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resulting GAP-CatBERTa achieves respectable accuracy in adsorption energy prediction tasks using
only text input.

GPTchem Jablonka et al. (2024) is an effective prediction method which combines the power-
ful representation capabilities of LLM with Gaussian Process Regression(GPR) strategies. In this
framework, the model uses LLM fine-tuned by massive amounts of chemical text to convert discrete
chemical entity information into feature embedding vectors, which are then fed into a GPR model.
GPR can not only predict specific chemical properties of molecules such as formation energy, but
also provide a quantified confidence interval for the prediction results through Bayesian inference.

CGCNN Xie & Grossman (2018) (Crystal Graph Convolutional Neural Network) is a graph
convolutional neural network (GCN) model specifically designed for crystalline materials. Within
CGCNN, the crystal structure is abstracted as a crystal graph, wherein atoms serve as the graph’s
nodes and chemical bonds between atoms represent the graph’s edges. Node features typically rep-
resent invariant properties characterising atomic species. By stacking graph convolutional layers
and pooling layers, this model learns both local and global features within the crystal structure, ulti-
mately enabling accurate prediction of various physicochemical properties such as formation energy
and bandgap.

SchNet Schütt et al. (2018) is a deep learning model specifically designed for molecular and pe-
riodic structures, aiming to learn potential energy surfaces and quantum chemical properties. At
its core, SchNet employs continuous filtering convolutional layers to process atomic environments,
with these convolutional operations being rotationally and translationally invariant. It progressively
refines atomic features through interaction blocks that utilise interatomic distance information. Cru-
cially, SchNet introduces Gaussian Radial Basis Functions (RBFs) to represent interatomic dis-
tances, enabling the model to capture long-range interactions that vary continuously with distance.
The model efficiently and accurately predicts atomic energies, forces and other quantum chemical
properties.

DimeNet++ Gasteiger et al. (2020a) is a geometric deep learning model that builds upon the
DimeNet Gasteiger et al. (2020b) framework, focusing on capturing angular information and tripar-
tite interactions within molecules. Unlike traditional GNNs that solely consider atoms and bonds,
DimeNet++ introduces a Directional Message Passing mechanism. It accounts not only for the
connection from atom i to j, but also for the message transmitted from atom k to i via j, thereby
explicitly encoding the angular information formed by atoms i, j and k. This explicit handling of
the three-body term enables DimeNet++ to achieve higher accuracy and rotation invariance when
predicting molecular properties, while simultaneously enhancing computational efficiency through
optimised architecture.

GemNet-OC Gasteiger et al. (2022) is a high-performance graph neural network model, specifically
designed as a variant for catalyst adsorption system architectures. Building upon DimeNet and
SchNet, it further emphasises the utilisation of geometric information. By integrating explicit three-
body terms and higher-order angular information, this model accurately characterises the intricate
interactions between adsorbates and surface atoms on catalysts, thereby enabling high-precision
predictions of key catalytic properties such as adsorption energies. It stands as one of the state-of-
the-art models in the field of catalysis that relies on atomic coordinate inputs.

Faradaic efficiency prediction is a relatively new property prediction task in the field of catalytic
materials. Gao et al. Gao et al. (2023) construct a knowledge graph of electrocatalysts based on sci-
entific literature and propose a deep learning-based prediction model, which integrates the semantic
information from the scientific literature (word embedding) with the correlation of knowledge triples
(graph embedding) and realizes the prediction of the Faradaic efficiency for a targeted case.

B.4 EVALUATION AMONG OPEN-SOURCED MODELS

Previous studies have shown that general LLMs often perform poorly when handling tasks requiring
deep understanding of chemical structures, such as SMILES strings and complex chemical reason-
ing, as they lack internalized, domain-specific knowledge systems Bagal et al. (2021); Liu et al.
(2024b); Chang et al. (2024). To select an appropriate base model, we systematically evaluated
multiple existing open-source LLMs with 7B/8B parameters on representative tasks from Catalyst-
Bench. The evaluation tasks encompass 3 core capabilities: structured numerical prediction, text
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classification and text generation. This approach aims to comprehensively characterize the models’
reasoning and generalization abilities across theoretical and experimental data conditions. The Re-
sults are shown in Table 5, which demonstrate that ChemLLM-7B maintains stable and outstanding
performance across most tasks, exhibiting significant advantages over other candidate models partic-
ularly in reaction mechanism analysis and catalyst performance prediction. Therefore, we designate
ChemLLM as the base model for fine-tuning to ensure subsequent experiments build upon a robust
foundation of comprehensive performance.

Model IE RMC AP
ChemLLM-7B 0.86 0.52 0.63

Darwin1.5 0.84 0.48 0.59
LLaMA2 0.76 0.38 0.24

Qwen3-8B 0.80 0.41 0.31

Table 5: The performance of four open-source
LLMs of similar scale on representative tasks in
CatalystBench.

The decision to limit the model size to small
parameters stems from a balanced considera-
tion of computational resources and applica-
tion scenarios. On one hand, a 7B/8B-scale
model can undergo multi-task fine-tuning on
typical GPU clusters with relatively low train-
ing overhead, ensuring reproducibility and gen-
eralizability throughout the research process.
On the other hand, this parameter scale al-
ready achieves satisfactory task performance in
chemistry and materials domains while main-
taining high operational feasibility for practical
deployment.

B.5 EVALUATION WITH TRADITIONAL ML METHODS

Model AP d-CP FP
CGCNN 0.79 0.66 0.78
SchNet 0.72 0.65 0.77

DimeNet++ 0.84 0.69 0.80
GemNet-OC 0.85 0.72 0.84
CatBERTa 0.82 / /

GAP-CatBERTa 0.86 / /
GPTchem / 0.69 0.85

CatalystLLM
(ours) 0.81 0.73 0.80

Table 6: The results of CatalystLLM compared
with machine learning baselines for 3 prediction
tasks. The best model is in bold font and the
second-best is underlined.

We compare CatalystLLM with traditional ma-
chine learning methods on 4 property predic-
tion regression tasks in CatalystBench. The
ML results for each task are obtained using
specific single-task data. Taking the adsorp-
tion energy prediction task as an example, both
CatBERTa and GAP-CatBERTa use the atomic
text information of the catalyst, which is also
the generic text in the template as Appendix
D.5, as input to predict the adsorption energy
value of the catalyst. These ML algorithms typ-
ically only accept one input format and do not
have results for all tasks. For the AP, d-CP and
FP tasks, we introduce mainstream graph neu-
ral network benchmark models currently preva-
lent in materials science, including CGCNN,
SchNet, DimeNet++ and GemNet-OC. These
models are widely regarded as standard bench-
marks in adsorption energy prediction benchmarks such as OC20. We compare CatalystLLM against
publicly available checkpoints of these algorithms, all of which are trained on the same data set size
as CatalystBench. It is particularly noteworthy that these graph neural network models rely on com-
plete atomic 3D geometric coordinates and lattice parameters as inputs. They explicitly encode 3D
spatial structural information through message-passing mechanisms to achieve high-precision pre-
dictions. In contrast, CatalystLLM is limited to textual descriptions extracted from experimental
literature or databases, along with simplified structured text sequences such as chemical formulas,
crystal plane information and adsorption site descriptions. Additionally, due to differences in input
representation formats, not all tasks have ML baselines, such as text classification and semantic un-
derstanding tasks. For information extraction tasks, LLMs like the GPT series are more accurate
than traditional entity extraction methods. The detail results of evaluation is shown in Table 6 and
Table 7.

As can be seen from Table 6, the advantage of CatalystLLM over traditional ML methods lies in
its exceptional versatility. It can provide effective predictions across a wide range of task types,
whereas other models typically focus on one or two specific tasks. In terms of specific performance,
CatalystLLM achieve the best score of 0.73 in the d-CP task, outperforming GPTchem. In other
tasks, CatalystLLM also demonstrate strong competitiveness. For example, its adsorption energy
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prediction score is 0.81 and close to SOTA model GAP-CatBERTa. In summary, while highly op-
timized specialized models may perform better in certain single tasks, CatalystLLM demonstrates
its immense value as an efficient catalyst design LLM through its balanced and competitive perfor-
mance across a wide range of catalytic prediction tasks.

Model MSE MAE R2

multi-layer perceptron 0.03 0.15 0.48
support vector regression 0.06 0.20 0.11

linear regression 0.05 0.17 0.20
BRR 0.05 0.18 0.23
GPR 0.04 0.15 0.34

original paper 0.01 0.08 0.84
CatalystLLM

(ours) 0.02 0.13 0.73

Table 7: The results of CatalystLLM compared
with machine learning baselines for FEP task. The
best model is in bold font and the second-best is
underlined.

Notably, when compared against graph-
structured prediction models, CatalystLLM’s
predictive accuracy falls slightly below that
of top-tier graph models like GemNet-OC and
DimeNet++, which rely on precise geometric
structures. Moreover, CatalystLLM outper-
forms earlier SchNet models. This indicates
CatalystLLM’s ability to effectively capture
chemical knowledge and structural features
implicit in textual descriptions through multi-
task fine-tuning. Crucially, widely-used GNNs
require 3D coordinates derived from costly
DFT relaxations. CatalystLLM achieves com-
parable accuracy using only text information.
This enables instantaneous inference on vast chemical spaces where 3D structures are unknown.
For the FEP prediction task, we introduce traditional text prediction methods from the current
scientific domain. As shown in Table 7, although it falls short of specially trained state-of-the-art
models for this task, CatalystLLM significantly outperforms other ML approaches, demonstrating
considerable potential in this domain.

B.6 ADDITIONAL ABLATION STUDY

In addition to the ablation experiments described in the main text, we also compare the impact of
different experimental settings on model capabilities to explore the crucial elements of LLM fine-
tuning experiments.

B.6.1 THE IMPACT OF WEIGHTED LOSS-FUNCTION ON MODEL PERFORMANCE

Figure 10: The impact of weighted loss-function
of MFT on model performance.

This experiment aims to verify the critical role
of weighted loss-function calculation in multi-
head Full-task fine-tuning setting. In the ex-
perimental setup described in the main text,
we manually adjust the weights based on the
performance of ChemLLM-MST model on the
validation set for each task to balance the con-
tribution of different tasks to the model gradi-
ent update. In addition, we use an unweighted
loss-function on the Multi-head architecture, in
which the weight coefficients λtask,i for all tasks
are set to 1.

Fig 10 shows the comparison of the results of
the two sets of experiments. MFT-weighted
demonstrate better performance in most tasks,
proving that loss weighting is a necessary step
to achieve high-performance multi-task learn-
ing. Among them, MFT-Unweighted shows a
significant decline in performance in tasks such
as classification and information extraction. This may be because in multi-task learning, the numer-
ical scales of the loss functions of different tasks often differ by orders of magnitude. For example,
the mean squared error in regression tasks has a larger scale than the cross-entropy loss in classi-
fication tasks, leading the model to prioritize regression tasks during back-propagation. Therefore,
we need to set different weight parameters to balance the contributions of different tasks to the to-
tal gradient, thereby maintaining the multi-task capability of CatalystLLM. In addition, a possible
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future optimization direction is to set the weight parameters as hyperparameters and dynamically
adjust them during model training.

B.6.2 OOD LEAVE-ONE-TASK-OUT EVALUATION

To systematically evaluate CatalystLLM’s generalization capabilities on unseen tasks, we design
a “Leave-One-Task-Out” experimental strategy. Building upon Section 6.3 of the main text, we
further conduct out-of-domain performance analysis for specific tasks. Considering the prior rela-
tionships among the 8 CatalystBench tasks—particularly the strong correlations in input modalities
and knowledge dimensions for certain tasks, we select the Faradaic Efficiency Prediction (FEP)
task as the holdout set. This task is excluded from model training and only evaluated during the
inference phase. This task belongs to the numerical regression category, with inputs derived from
structured catalyst characterization and performance data in experimental literature. It exhibits po-
tential upstream-downstream logical connections with tasks like Regulation Method Classification
(RMC) and Regulation Scheme Comprehension (RSC). FEP prediction requires comprehensive un-
derstanding and inference regarding the regulation methods, structural features and corresponding
intermediate formation processes of the catalyst system.

This experiment aims to validate whether CatalystLLM can retain a certain level of performance
through cross-task transfer learning and shared representation modeling, even under training condi-
tions with complete absence of task-specific data. We compare CatalystLLM with ChemLLM-FT
and representative general-purpose open-source models LLaMA2-7B and Mistral-7B under iden-
tical data partitioning and inference settings. All models are fine-tuned without FEP task training
data, using the remaining seven tasks as training sets. The results are shown in Table 8.

Model R2 MAE
ChemLLM-FT 0.58 3.21
LLaMA2-7B 0.49 3.87
Mistral-7B 0.51 3.75

CatalystLLM 0.69 2.84

Table 8: The experiments on OOD Leave-One-
Task-Out evaluation on FEP task

Experimental results indicate that under the
FEP-withheld setting, CatalystLLM still signif-
icantly outperforms baseline models on both
R2 and MAE metrics, representing an improve-
ment of approximately 0.11 over ChemLLM-
FT and exceeding 0.20 compared to general-
purpose models. The outcome indicates that
FEP task performance largely benefits from
knowledge transfer and sharing within the
multi-task architecture, particularly contribu-
tions from structural regulation tasks in terms
of semantics and patterns. Furthermore, de-
spite performance declines compared to the original setting with FEP training data, CatalystLLM
still generates predictions with physicochemical plausibility. This demonstrates that its generaliza-
tion capability relies not only on task matching but also on the internal organization and expression
of domain knowledge.
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C EVALUATION DETAILS

We conduct a multi-dimensional evaluation of open-ended Q&A tasks focused on understanding
and explaining catalytic regulation schemes.

C.1 LLM-BASED EVALUATION

The RSC task aims to evaluate the model’s deep understanding of catalytic regulation schemes and
its text generation capabilities. The output is a segment of natural language, rather than fixed labels
or numerical values. Traditional automated evaluation metrics, such as BLEU Papineni et al. (2002)
or ROUGE Lin (2004) based on phrase overlap rates, cannot effectively measure the factual accuracy
of answers. For example, an answer may use different words from the standard answer but still be
semantically correct and conversely. Therefore, we use gpt-4o and deepseek-r1 as evaluation models
M. Bran et al. (2024). They are prompted to assume the role of a catalytic field expert, but has no
access to external tools such as internet browsing. We collaborate with domain experts to design a
set of evaluation prompts so that LLM would imitate scientists in their thinking patterns and give
scores in different dimensions: 1) Reasonableness assesses whether the content generated by the
model follows basic scientific principles and causal relationships; 2) Accuracy assesses whether the
technical terms used in the model output are consistent with recognized scientific knowledge; 3)
Usability assesses whether the answer generated by the model is practical to the question and has a
certain degree of reality and operability. The LLM-based evaluation prompt we designed is shown
in Appendix E.3.

C.2 EXPERT EVALUATION

Figure 11: The 3 sub-metrics and the overall Pearson score between LLM Score and Expert Score.

Although general LLMs have vast knowledge reserves and powerful reasoning capabilities, they
have a prevalent issue: the generation of hallucinations such as incorrect or fabricated information
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presented as factual Xu et al. (2024). Therefore, we invite domain experts to evaluate the model’s
performance on a test set of 100 samples. We observe a clear trend of consistency between LLM
scores and expert ratings across the overall distribution of these samples. The Pearson correlation
coefficient for the average scores of the 100 samples is 0.89, indicating a high degree of linear cor-
relation in the numerical variations between the two types of scoring. We further analyze the 3
sub-metrics and the overall score. As shown in Fig 11, samples rate highly by the LLM also tended
to receive relatively high scores from experts, with a similarly pronounced consistency observed for
low-scoring samples. This outcome demonstrates that despite divergences in assessing the accuracy
of specific procedural details, both evaluation systems exhibit close alignment in judging overall
answer quality trends. This consistency provides practical support for leveraging prompt-optimized
LLM scoring during initial data screening and offers statistical justification for subsequent integra-
tion with expert review to achieve efficient quality control.

LLM-based Score Expert Score

Figure 12: Average scores for gpt-4o and
deepseek-r1 across three metrics and aggregated
results from expert evaluators (n=100) across all
tasks. Error bars indicate confidence intervals
(95%).

Regarding the variability in human scoring, Fig
12 shows the differences between LLM evalu-
ation and human expert evaluation. Although
human experts prefer CatalystLLM’s responses
based on the accuracy of catalytic materials and
corresponding mechanisms, LLMs prefer GPT-
4.1’s answers, typically basing their evaluation
on the fluency and apparent completeness of
GPT-4.1 responses. Therefore, we focus on ex-
cluding GPT 4.1’s answers that are complete
and fluent enough to cover the question but
contain incorrect information. Fig 13 shows an
example of an illusion in LLM-based score and
expert score. GPT4.1’s answer achieves higher
LLM-based score, but it makes inferences that
violated the principles of catalysis, which is
”K+ directly participates in C-O bond cleav-
age”. In the field of electrocatalysis, there is
a non-covalent interaction mechanism whereby
alkali metal ions stabilize intermediates through electrostatic field effects rather than directly partici-
pating in bond formation or bond breaking. In general, LLMs tend to favor answers that are formally
rigorous and logically coherent. However, in scientific evaluation, the correctness of the answer is
more valuable than a complete and detailed explanation. For scientific tasks requiring real-world
knowledge, LLM-based evaluation methods cannot replace expert human assessment for now.

C.3 CASE STUDY: UNIQUE CORRECT REASONING IN COMPLEX CATALYTIC CONTEXT

To more intuitively demonstrate CatalystLLM’s domain adaptation capability, we select a test case
that only CatalystLLM could answer completely and correctly among all comparison models, which
is shown in Appendix D.7. This task belongs to the Regulation Scheme Comprehension(RSC)
category, involving a high-order coupled multi-metal catalytic system whose underlying mechanism
was not directly present in the training data.

Among all comparative model responses, CatalystLLM uniquely link the inferred product shift to-
ward methane and hydrogen to the synergistic mechanism involving *CO production at the Zn site.
It accurately identifies that losing the Zn site reduces intermediate concentration and alters the reac-
tion pathway, thereby disrupting the essential conditions for ethylene formation. This response not
only aligns with established physicochemical principles but also resonates with mainstream under-
standing of electrocatalytic mechanisms at the mechanistic level, demonstrating the model’s capacity
for abstract reasoning when inferring complex sequential mechanisms. This case demonstrates that
CatalystLLM can leverage cross-task learned catalytic reaction knowledge to make domain-logical
inferences even without direct case training. This holds significant reference value for chemical en-
gineers and catalytic scientists exploring novel multifunctional catalyst designs. More importantly,
this case reflects the unique potential of domain-adapted LLMs in supporting high-level scientific
problem-solving. Their accuracy stems not only from data coverage but also from the learned rep-
resentation’s ability to capture and structurally express catalytic principles during fine-tuning.
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GPT-4o CatalystLLM
(ours)

Instruction: In this K-Fe-N-C catalytic system, how specifically do potassium ions (K⁺) enhance the electrocatalytic reduction of CO₂ to CO?
Input: The catalyst consists of single iron (Fe) atoms anchored on a nitrogen-doped graphene (N-C) support. To further enhance performance, potassium ions 
(K⁺) are introduced as a promoter, forming a K-Fe-N-C composite system designed for the efficient electroreduction of carbon dioxide (CO₂) to carbon 
monoxide (CO).

- Reasonableness: 9
- Accuracy: 8
- Usability: 10
- Total Score: 8.8

“While Model A's response is structurally clear 
and appears comprehensive, its core argument 
contains a fatal scientific error. Its assertion that 
“potassium ions directly participate in C-O bond 
cleavage” severely contradicts the widely 
accepted “non-covalent interaction” mechanism 
in the field of electrocatalysis, which states that 
alkali metal ions stabilize intermediates through 
electrostatic field effects rather than directly 
participating in bond formation or cleavage. This 
fundamental conceptual error renders the entire 
answer not only valueless but also highly 
misleading, as it presents an erroneous 
mechanism within a seemingly reasonable and 
professional framework, which is highly 
confusing for non-specialists.”

B_answer: In this catalyst, potassium ions enhance 
performance through a non-direct electrostatic field effect. 
They do not directly participate in chemical bond cleavage 
but instead accumulate in the vicinity of the Fe single-atom 
active sites during the reaction. This localized high-
concentration cationic field effectively stabilizes key reaction 
intermediates, particularly the negatively charged *COOH 
species. By stabilizing the intermediate of this rate-
determining step, potassium ions significantly lower the 
activation energy of the reaction pathway, which manifests 
macroscopically as a higher reaction rate and greater 
selectivity towards the CO product.

Truth 
QA pair

A_answer: Potassium ions (K⁺) significantly enhance the 
catalytic conversion of CO₂ through several synergistic 
mechanisms:

Direct Participation in Bond Cleavage: As a Lewis acid, K⁺ 
ions directly coordinate with the oxygen atom of the CO₂ 
molecule, forming a transient Fe-C-O-K active intermediate. 
This strong electrostatic attraction dramatically weakens the 
C-O bond, significantly lowering the energy barrier for bond 
cleavage and thus directly promoting the formation of CO.
Optimization of the Local Environment: The accumulation of 
K⁺ ions on the electrode surface helps to stabilize negatively 
charged key reaction intermediates and increases the local 
concentration of CO₂ at the reaction interface.
Modulation of Electronic Structure: The presence of K⁺ 
indirectly influences the electron cloud density of the 
surrounding Fe-N₄ active sites, making them more favorable 
for CO₂ adsorption and activation.

In summary, potassium ions act as a multifunctional promoter, 
with their core advantage being direct participation in and 
catalysis of the C-O bond-breaking process. 

- Reasonableness: 8
- Accuracy: 8
- Usability: 8
- Total Score: 8

“Although Model B's answer is concise, it 
accurately captures the scientific essence of the 
catalyst's role in this catalytic system. It correctly 
points out that the role of potassium ions is a 
“non-direct electrostatic field effect” and the 
stabilization of “negatively charged *COOH 
intermediates,” which is fully consistent with the 
mainstream scientific consensus in the field. This 
answer demonstrates a high level of ability to 
summarize complex catalytic mechanisms.”

GPT-4o

Answer integrity

Major hallucinations 

Inaccurate explanations 

CatalystLLM

Innovative insights

Reasonable explanations

Occasional flawed 
answers 

Figure 13: For the example truth Q&A pair of the same regulatory scheme semantic understanding
task, the LLM-based scores and expert scores of answers given by GPT-4.1 and CatalystLLM. The
yellow highlights indicate positive evaluations and the green highlights indicate negative evaluations.

D QUESTION TEMPLATES

In recent years, there has been a surge in the application of machine learning to chemistry, resulting
in a wealth of datasets and benchmarks in chemistry and material field. However, few of these
benchmarks focus on assessing LLMs for tasks specific to Catalytic Science and a standardized
evaluation technique has not yet been established. This section provides concrete examples for each
catalytic science task category, demonstrating how to formulate inputs and showcasing the model’s
expected outputs for representative problems.

D.1 LABEL DEFINITION

<Contexts>: The text describing catalytic material control schemes or synthesis schemes
in scientific literature. e.g. ”The synthesized Cu catalysts show relatively high crystallinity
dominated by {111} facets, promoting the generation of CH4.”

<Material representation>: The actual representation of catalytic material typically
shows its elemental composition or structural details, including SMILES strings, chemical
formulas, CIF and other forms of existence. e.g. Cu2Pd.

<Operations>: The common operations in catalytic material synthesis schemes include
ADDING, HEATING, CURING, ELECTROCHEMICAL ANODIZATION, FILTERING,
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DRYING, DIPPING and REACITON. e.g. The reaction mixture was then heated at 85 °C
with constant stirring for 3 h.

<Operation conditions>: The relevant attributes of catalytic material synthesis operations,
including heating temperature and duration. e.g. 85 °C and 3 h

<Property>: The characteristics or properties of catalytic material describe its chemical
characteristics and crucial performance, including adsorption energy, d-band center,
formation energy and actual catalytic Faradaic efficiency. e.g. 90%.

D.2 MATERIAL EXTRACTION TEMPLATES

Material Extraction Templates

Instructions:
• What specific materials are mentioned as catalysts in the text?

• List all keywords that refer to catalyst materials or their types discussed in the
article.

• Which terms in the document are associated with or describe catalyst materi-
als?

Input: <Contexts>

Output: <Material representation>
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D.3 SYNTHESIS EXTRACTION TEMPLATES

Synthesis Extraction Templates

Instructions:
• Round 1: What is the target material synthesized in the given text?

Input: <Contexts>

Output: The target material synthesized in the text is <Material representation>.

• Round 2: List the main experimental operations described in the synthesis
process.

Input: <Contexts>

Output: The experimental operations mentioned are <Operations>

• Round 3: For <Operations>, specify the relevant <Operation conditions>.

Input: The reaction mixture was then heated at 85 °C with constant stirring for 3 h.

Output: The <Operation conditions> is 800°C.
...

D.4 REGULATION METHOD CLASSIFICATION TEMPLATES

Regulation Method Classification Templates

Instructions:
• What is the type of regulation method applied to the catalytic material in the

described scheme?

• Which regulation approach or technique is used to modify the catalytic
material as detailed in the text?

• Identify the specific method of regulation implemented in this catalytic mate-
rial scheme.

The options: A. Alloy B. Defect C. Atomic level dispersion D. Surface/interface modifica-
tion E. Composite F. Structure control

Input: Cu/Bi bi-metal compounds derived from MOFs.

Output: E. Composite.
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D.5 PROPERTY PREDICTION TEMPLATES-GENERAL TEXT

Property Prediction Templates

Instructions:
• What is the <Property> of the catalytic material represented by this
<Material representation>?

• Can you provide the <Property> associated with this catalytic material
<Material representation> for reduction of CO2 to produce CO?

• What is the <Property> for the catalytic material described by
<Material representation>?

Input: CHTi18Pd54 (2 1 0) [C Ti Pd Pd hollow [Ti Pd Pd Pd Pd Pd Pd . . . ]].

Output: -1.6033 eV.

D.6 PROPERTY PREDICTION TEMPLATES-CHEMICAL TEXT

Property Prediction Templates

Instructions:
• Calculate the adsorption energy of CH species on the Ti18Pd54(210) surface

using the <Material representation>:

input:
- Adsorbate: CH
- Catalyst: Ti18Pd54
- Facet: (2 1 0)
- Active site: hollow site coordinated by C, Ti, Pd, Pd

Output: -1.6033 eV.

D.7 REGULATION SCHEME COMPREHENSION

User

Instruction:
How does the core-shell architecture of CoP@NiFe-LDH specifically address the common
limitations of using NiFe-LDH alone for the Oxygen Evolution Reaction (OER)?

Method Description:
To construct a highly efficient catalyst for the Oxygen Evolution Reaction (OER), a hierar-
chical core-shell structure was designed. The core consists of conductive cobalt phosphide
(CoP) nanowires, which serve as a scaffold. Vertically aligned nickel-iron layered double
hydroxide (NiFe-LDH) nanosheets were then grown directly on the surface of the CoP
nanowires. The resulting composite material, denoted as CoP@NiFe-LDH, leverages the
high intrinsic activity of the NiFe-LDH shell and the metallic properties of the CoP core.
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CatalystLLM

[Answer]
The CoP@NiFe-LDH core-shell architecture strategically overcomes two primary limita-
tions of using standalone NiFe-LDH as an OER catalyst: its poor intrinsic electrical conduc-
tivity and the tendency for nanosheets to aggregate, which reduces the number of available
active sites.

User

Instruction:
Based on the described tandem catalysis mechanism, if the zinc (Zn) sites in this catalyst
were to be completely removed or deactivated, leaving only the functional copper (Cu) sites,
what change is expected for the catalyst’s major product? Please explain the reasoning.

Method Description:
To efficiently convert carbon dioxide (CO2) into high-value ethylene (C2H4), researchers
designed a dual-function catalyst. This catalyst consists of atomically adjacent copper
(Cu) and zinc (Zn) sites dispersed on a nitrogen-doped carbon (NC) support, denoted
as Zn-Cu/NC. The core mechanism is a ”tandem catalysis” process: first, the Zn sites
act as efficient ”CO factories,” selectively reducing CO2 to the carbon monoxide (*CO)
intermediate. Subsequently, due to spatial proximity, the generated *CO intermediate
rapidly migrates to the adjacent Cu sites, where the critical C-C coupling reaction occurs to
ultimately produce ethylene (C2H4).

CatalystLLM

[Answer]
Removing the zinc (Zn) sites would shift the catalyst’s selectivity from ethylene (C2H4) to
methane (CH4) and hydrogen (H2). This is because eliminating the Zn “*CO factory” breaks
the synergistic tandem mechanism, depriving the copper (Cu) sites of the high concentration
of *CO intermediates needed for C-C coupling. Consequently, the catalyst would behave as
a less efficient, single-function copper system, where the reaction favors deep reduction to
methane or hydrogen evolution.
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E PROMPTS

Here are the prompt instructions we build during the benchmark construction and evaluation process.

E.1 PROMPTS FOR QA GENERATING

<Q&A Generation>Prompt

Please complete the following tasks based on the text of the catalytic regulation scheme
provided below and its context:
1. Task requirements:
- Extract core keywords related to the catalytic scheme [Method description] from the
text and context of the regulation scheme (e.g., reaction type, material system, innova-
tive mechanisms, performance enhancement points, etc.).
- Based on the extracted keywords, identify 3–5 key questions regarding the character-
istics, advantages and improvements of this regulation scheme compared to traditional
catalytic schemes and provide answers based on the scheme and its context.
- Questions should focus on: regulation schemes, material innovation, performance ad-
vantages and practical application prospects. Avoid asking simple or definitional ques-
tions.
- Assume that the user does not have access to the original paper or any external
sources, so ensure that the questions and answers are self-contained. - Answers should
be concise and specific, based on textual and contextual [Contexts] facts.
2. Example:
Input:
- Method description:{example regulation method description}
- Contexts: {example contexts}
3. output format:
- Please present the generated question-answer pairs in the following format:
Q1: [Question 1]
A1: [Answer 1]
...
Q5: [Question 5]
A5: [Answer 5]
- Use of multiple sentence structures. Questions need to be phrased in a way that is easy
to understand.
Input:
- Method description: {regulation method description}
- Contexts: {contexts}

E.2 PROMPTS FOR CHEMICAL-TEXT GENERATION

Task Type General Text Formatted Text

RMC ”Nano-porous
Au3Cu alloy

”Matrial: Cu,
Scheme: Au3Cu,

Structure: Nano-porous”

FEP

”Nano-porous
Au3Cu alloy

material catalyzes
CO2 reduction
to produce CO”

”Material: Cu,
Scheme: Au3Cu,

Structure: Nano-porous,
Reactant: CO2,
Product: CO”

AP ”FeN4−
graphene∗OH”

”Active center: Fe,
Coordination: N4,
Support: graphene,
Adsorbate: ∗OH”

Table 9: The examples of different input format
for CatalystBench tasks.

In cheminformatics, SMILES (Simpli-
fied Molecular Input Line Entry System) is a
widely used method for representing molecules
as linear strings. It encodes a molecule’s topo-
logical structure, atom types, bond types and
partial stereochemical information using a
sequence of ASCII characters. This compact
format facilitates storage and transmission.
However, this encoding relies on a character
sequence governed by syntactic rules, with
structural information implicit within the
string pattern. For language models lacking
specialized chemical parsing components,
extracting relationships between atoms and
bonds requires symbolic parsing, resulting in relatively low information explicitness.
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In the comparative experiments of Section 6.3, we employ not only plain SMILES strings but also
introduced structured molecular representations, such as explicit bond lists or atomic property ta-
bles. Table 9 shows information on two input strategies from the same original catalyst dataset.
These representations are theoretically equivalent to SMILES in information content, covering all
connectivity information of the molecular structure. However, the structured format directly presents
atomic indices, bond types and connectivity relationships, encoding the molecular graph topology as
explicit data structures in the input. Since this representation aligns with LLMs’ parsing patterns for
tabular and graph-structured data, it reduces the model’s need to infer relationships from character
sequences, making it easier for the model to correctly understand and utilize the information.

<Catalytic chemical-text generation>Prompt

You are an expert in materials science and chemistry. Your goal is to parse the un-
structured, natural language text describing a catalytic material and convert it into a
structured JSON object.
1. Task requirements:
- Analyze the [Material general text]: Carefully read the description of the catalytic
material.
- Identify Components: Extract the distinct chemical and structural components of the
catalyst system, including:
The primary catalytically Active Component (the core material driving the reaction).
The Support or Substrate on which the active component is loaded.
Any Dopants, Promoters, or Modifiers introduced to alter the properties.
- Extract Key Features: Identify crucial characteristics for each component, such as
material composition, morphology (e.g., nanoparticle, nanosheet, single-atom), crystal
facets, size and specific properties (e.g., conductive, porous).
- Generate Structured Formula: Create a concise, standardized formula-like string
that represents the overall catalyst architecture (e.g., Active@Support, Dopant-
Active/Support).
- Format as JSON: Organize all extracted information into a clean, hierarchical JSON
object according to the specified Output Format. If a category is not mentioned in the
text, use an empty list [].
2. Example:
Input:
- Material general text: {example material general text}
3. output format:
- Material chemicl text: {material json}.
- The output must be a single, valid JSON object with the following structure. Do not
include any explanatory text outside of the JSON block.
Input:
- Material general text: {material general text}
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E.3 PROMPTS FOR LLM-BASED EVALUATION

<LLM-based evaluation>Prompt

Please complete the following tasks based on the truth QA pair and two answers by
model A and model B provided below and its context:
1. Task requirements:
- Extract core keywords related to the context of the regulation scheme from [Truth
answer](e.g., reaction type, material system, innovative mechanisms, performance
enhancement points, etc.).
- Extract the core content of the [Answer by model A] and [Answer by model B]
without changing the original content.
- Based on the extracted keywords, Score the core content of the two answers according
to the following scoring criteria. Provide specific details and explanations for any
deductions.
2. Scoring criteria:
- Reasonableness: whether the answer is consistent with the description of the regula-
tion method in the question. If the answer is consistent, 10 points will be given and if it
is not, 0 points will be given.
- Accuracy: whether the answer is consistent with the key elements of the correct
answer. 3 points if one key element is included, 6 points if two key elements are
included and 10 points if all are consistent.
- Usability: whether the answer actually answers the question. If the response in
unreliable which means it does not have any correct facts, 0 points will be given, If the
response is reliable in its own right but does not match the question, 5 points will be
awarded and if the response actually answers the question, 10 points will be awarded.
2. Example:
Input:
- Truth question: {example truth question}
- Truth answer: {example truth answer}
- Answer by model A: {example A answer}
- Answer by model B: {example B answer}
3. output format:
- Please rate the [Answer by model A] and [Answer by model B] out of 10 in terms of
reasonableness, accuracy and usability. Reasonableness is 20%, accuracy is 50% and
usability is 30%.
Reasonableness: [Score reasonableness]
Explanation for reasonableness: [Explanation reasonableness]
Accuracy: [Score accuracy]
Explanation for accuracy: [Explanation accuracy]
Usability: [Score usability]
Explanation for usability: [Explanation usability]
Total score: [Total score]
Analysis: [Analysis]

F STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, large language models (LLMs) were employed in a lim-
ited capacity to assist with linguistic refinement, grammar correction and improvement of clarity in
the English prose. The scientific content, experimental design, data analysis and interpretation of
results are entirely the work of the authors and no LLM was used for the generation of novel sci-
entific claims or data fabrication. All factual statements, numerical results and interpretations have
been manually verified by the authors to ensure accuracy and integrity. The assistance of LLMs
was restricted to improving readability and cohesion and its use complies with prevailing academic
publishing policies concerning AI-assisted writing.
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