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ABSTRACT

Large language models (LLMs) have achieved remarkable performance in recent
years but are fundamentally limited by the underlying training data. To improve
models beyond the training data, recent works have explored how LLMs can be used
to generate synthetic data for autonomous self-improvement. However, successive
steps of self-improvement can reach a point of diminishing returns. In this work,
we propose a complementary approach towards self-improvement where finetuning
is applied to a multiagent society of language models. A group of language models,
all starting from the same base model, are independently specialized by updating
each one using data generated through multiagent interactions among the models.
By training each model on independent sets of data, we illustrate how this approach
enables specialization across models and diversification over the set of models. As a
result, our overall system is able to autonomously improve over many more rounds
of fine-tuning than single-agent self-improvement methods. We quantitatively
illustrate the efficacy of the approach across a wide suite of reasoning tasks.

1 INTRODUCTION

Recent breakthroughs in large language models (LLMs) like GPT-3.5 and GPT-4 have demonstrated
remarkable proficiency in language generation, comprehension, question answering, and transla-
tion (OpenAI, 2023; Touvron et al., 2023). Despite these advancements, LLMs are fundamentally
constrained by the data they are trained on, with existing models already using much of the available
data on the Internet (Brown et al., 2020). To further enhance the performance of LLMs, recent
research on self-improvement, where LLMs generate additional synthetic data on which they are
trained on (Huang et al., 2022; Yu et al., 2023).

One approach to increase the data available to LLMs is to use powerful existing frontier models like
GPT-4 to generate additional supervisory data. However, this approach is limited by the inherent
quality of frontier models, preventing models from becoming better than the frontier of what the
best existing models can accomplish. In addition, such an approach incurs high financial costs
due to inference expenses of such large models and is also often legally prohibited with existing
commercial-grade models.

An alternative approach is to directly leverage existing language models to generate additional
synthetic data for their self-improvement (Zelikman et al., 2022; Bai et al., 2022; Chen et al., 2024b;
Yuan et al., 2024). In such works, language models are used to iteratively collect data that they are then
finetuned on. However, as models are repeatedly trained, performance gains often plateau relatively
quickly (Figure 1) and the self-improvement loop is often only run for two or three rounds (Lu et al.,
2023). This limits the applicability of self-improvement to autonomously improve language models,
as models can only be improved a limited amount above their base performance.

In this paper, we propose a new approach to self-improvement that can help mitigate the issue of
decreased gains of performance after multiple rounds of fine-tuning. Instead of fine-tuning a single
model, our method finetunes a multiagent set of language models from the same base model and
then independently specializes each model to capture parts of a task of interest. Our key insight
is that by finetuning multiple models, we can encourage specialization and diversification across
responses, which can enable consistent performance gains over many rounds of fine-tuning. To
achieve specialization between models, we fine-tune each model repeatedly on independent subsets
of the generated data corresponding to responses from the respective particular model.
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Figure 1: Multiagent finetuning improves reasoning performance over multiple rounds of finetuning. Our
multiagent finetuning procedure enables models to improve across multiple iterations of finetuing. Results
reported on the MATH dataset.

Within our multiagent set of models, we propose to specialize models into distinct functionalities
within the output generation procedure. First, we specialize a set of models to be generation agents
that produce a set of initial responses given queries. Since initial responses can often be suboptimal,
especially for challenging reasoning tasks, we further propose to specialize a set of models as
critic agents that evaluate and refine the generations of other models. By using this set of distinct
models in combination through multiagent debate (Du et al., 2023), we are able to construct a
robust feedback loop for generating final responses, with additional experiments on other methods to
combine multiagent models in Appendix D

By training each model on distinct sets of data and roles, our approach fosters specialization across
models and promotes diversification within the society of models. Consequently, our system can au-
tonomously improve over many more rounds of finetuning compared to single-agent self-improvement
methods (Figure 1). We quantitatively demonstrate the effectiveness of our approach across a com-
prehensive suite of reasoning tasks, illustrating significant performance gains, as shown in Table 1. In
our experiments, we illustrate how our proposed method can be directly applied to both open-source
LLMs such as Phi-3, Mistral, and LLaMA-3 as well proprietary LLMs such as GPT-3.5 to substan-
tially improve performance. In addition, the finetuned models can generalize to novel datasets and
outperform the baseline methods trained directly on these new datasets.

Overall, our paper has the following contributions: (1) We propose to leverage multiagent interaction
as an approach to self-improvement with language models. (2) We propose to specialize models with
distinct roles to enable detailed feedback between agents and to improve the final output quality. (3)
We quantitatively verify the applicability of our approach across a wide suite of reasoning tasks on
both open-source and proprietary language models. (4) We demonstrate that the finetuned agents can
generalize across different datasets in a zero-shot manner.

2 MULTIAGENT FINETUNING OF LANGUAGE MODELS

We provide an overview of our approach towards multiagent finetuning of language models, where
we learn a multiagent society of models to accomplish a task. Our method involves two components.
We first use a multiagent debate method to construct a finetuning dataset for training models (though
other multiagent generation methods can also be used, see Appendix Section D). We then introduce
our approach, multiagent finetuning, where we specialize each LLM model by finetuning each model
on its own generated data. An overview of our approach can be seen in Figure 2. We first provide
an introduction of our multiagent debate method in Section 2.1. We then discuss how to fine-tune a
single model on generated data in Section 2.2, and the proposed multiagent finetuning in Section 2.3
and Section 2.4. We then show how to apply finetuned models for inference in Section 2.5.

2.1 MULTIAGENT DEBATE

Multiagent debate (Du et al., 2023) involves a series of N language model agents—either specific
copies or finetuned versions of the same model—each tasked with generating a response to a given
problem. After the initial responses are generated, a debate round is initiated among the agents. In
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Figure 2: Overview of Multiagent Finetuning.We first use multiagent debate and majority voting to create
the finetuning datasets (left). These datasets are then used to finetune the generation and critic agents (right).
When finetuning generation models, we use the majority voted result (”correct” output) to select first-round
responses from each agent. We then finetune critic models using responses from the final round based on whether
responses match the majority voted result (mix of ”correct and incorrect” outputs). The finetuned models are
combined through multiagent debate to generate more accurate answers. In this figure, we illustrate a single
finetuning iteration. Applying multiple rounds of finetuning iterations can significantly boost performance.

our paper, we concatenate and summarize the responses from other agents. Each agent is instructed to
construct a new response based on its prior response and the summarized responses from the others.
The final result is determined by majority vote based on the outputs from the last round of debate.
The multiagent debate is illustrated in Figure 2.

2.2 FINETUNING MODELS ON GENERATED DATA

We start by considering how to use data generated by multiagent debate data to finetune a single
LLM model for self-improvement. Given a set of natural language inputs Dtask = {xi}, we use
a multiagent debate method (Du et al., 2023), specifically a debate with N agents and M rounds,
to generate responses for each input in Dtask. We obtain the final predicted output ŷi for each xi

through majority voting in the last round of debate. We use this to construct a “ground truth” dataset
of {(xi, ŷi)}. In the single LLM model setting, we then finetune the model on the set of generated
responses yi which match ŷi given input xi.

While the final debate results ŷi are accurate, they often similar in style and methodology. As a result,
repeatedly capturing a dataset of {(xi, ŷi)} pairs for multiple rounds of finetuning often leads to a
plateau of self-improvement performance.

2.3 FINETUNING MULTIPLE GENERATION AND CRITIC MODELS

Our goal in multiagent finetuning is to create datasets that construct a set of models representing
different agents that are diverse and accurately solve problems. Instead of building a single dataset to
finetune each model, we propose creating different datasets to finetune different models. A set of
models are trained as generation agents and others as critic agents. The generation models produce
initial responses to input questions. In contrast, the critic models assess the outputs from all generation
agents and then select or generate the most effective responses.

Finetuning Generation Models. The role of a generation model is to generate accurate responses to
input questions. Such models should rely on diverse reasoning chains to promote diversity. Generation
agents AG

n are constructed from the N generation models which generate a response to the given input
x (we omit i for simplicity). For each agent, we select its outputs yn that match the final debate results
ŷ and construct input-output pairs (x, yn). The resulting dataset for agent AG

n is DG
n = {(x, yn)}.

This approach generates a set of finetuning datasets {DG
1 , · · · ,DG

N} across all N agents. Each dataset

3
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Algorithm 1 Multiagent Finetuning of Language Models

Require: A pretrained LLM A; A set of language inputs Dtask = {xi}; The number of agents N ; The number
of debate rounds M ; The number of finetuning iterations L.

1: AG
1 , · · · , AG

N ← A # Copy the LLM to build N generation agents
2: AC

1 , · · · , AC
N ← A # Copy the LLM to build N critic agents

3: # Multiple Iterations of Finetuning
4: for l = 1→ L do
5: # Multiagent Debate
6: for x in Dtask do # Iterate over the input tasks
7: for m in M do # M rounds of debate
8: if m = 0 then
9: y1,1, · · · , y1,N ← AG

1 (x), · · · , AG
N (x) # Response of each generation agent

10: else
11: xs

m,1, · · · , xs
m,N ← Summarize the responses from other agents in round m− 1

12: ym,1, · · · , ym,N ← AC
1 (x

s
m,1), · · · , AC

N (xs
m,N ) # Response of each critic agent

13: end if
14: end for
15: ŷ← Majority Voting {yM,1, · · · , yM,N} # Responses of the final round of debate
16: end for
17: # Multiagent Finetuning
18: Initialize datasets for finetuning generation models {DG

n }Nn=1

19: Initialize datasets for finetuning critic models {DC
n }Nn=1

20: for n in N do # Iterate over all the agents
21: for x in Dtask do # Iterate over the input tasks

22: DG
n ← DG

n ∪ {(x, y1,n) | y1,n = ŷ} # Add pairs

23: DC−
n ← DC−

n ∪ {(x, (y1,n, · · · , yM,n)) | y1,n ̸= ŷ, yM,n = ŷ} # Add pairs

24: DC+
n ← DC+

n ∪ {(x, (y1,n, · · · , yM,n)) | y1,n = ŷ, yM,n = ŷ} # Add pairs

25: DC
n ← wDC−

n + (1− w)DC+
n # Combine the datasets

26: end for
27: ÂG

n ← Finetune(An,DG
n ) # Finetune the generation model

28: ÂC
n ← Finetune(An,DC

n ) # Finetune the critic model
29: end for
30: AG

1 , · · · , AG
N ← ÂG

1 , · · · , ÂG
N # Generation agent for the next finetuning iteration

31: AC
1 , · · · , AC

N ← ÂC
1 , · · · , ÂC

N # Critic agent for the next finetuning iteration
32: end for

contains different outputs, allowing for specialization and diversification of responses. We finetune
each generation model with the corresponding dataset to get N correspondingly finetuned agents
{ÂG

1 , · · · , ÂG
N}.

Finetuning Critic Models. The role of a critic model is to further provide accurate critiques to
responses from other agents and use these responses to provide an updated answer. Simply finetuning
generation models isn’t sufficient for achieving optimal results, especially for more challenging tasks,
due to the lack of a feedback mechanism on their outputs. Critic agents AC

n are constructed from
critic models and evaluate the outputs from all generation agents and then select or synthesize the best
responses. This additional step ensures that the system continuously improves and adapts, enhancing
overall performance.

In the multiagent debate setting, each agent’s output in the last round of debates is represented as
yM,n, where M denotes the number of debate rounds. We first identify those outputs yM,n that align
with the final debate results ŷ. These consistent outputs, together with the previous responses, are
then used to construct input-output pairs (x, (y1,n, . . . , yM,n)) for finetuning the critic models.

To enhance the model’s capability to correct incorrect answers generated early in the debate
process, we sample a subset of pairs where y1,n differs from ŷ, but yM,n matches ŷ and build
a dataset DC−

n = {(x, (y1,n, . . . , yM,n)) |y1,n ̸= ŷ, yM,n = ŷ}. This indicates that the an-
swer was successfully corrected by the end of the debates. We also construct another dataset
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DC+
n = {(x, (y1,n, . . . , yM,n)) |y1,n = ŷ, yM,n = ŷ} where both y1,n and yM,n match ŷ, demon-

strating the agent’s ability to maintain the correct answer throughout the debates. We combine these
two datasets to create a comprehensive finetuning dataset for each critic model to construct updated
critic agents AC

n :
DC

n = wDC−
n + (1− w)DC+

n . (1)
In the above expression, w is a tunable hyperparameter representing the proportion of data sampled
from the first set, while (1− w) represents the proportion of data sampled from the second set. This
method generates a series of datasets {DC

1 , · · · ,DC
N} for finetuning the critic models, denoted as

{ÂC
1 , · · · , ÂC

N} after the finetuning process.

2.4 MULTIPLE ITERATIONS OF FINETUNING

The finetuned models are capable of generating responses through multiagent debate. We found
that iterative application of the multiagent finetuning allows for continuous learning and adaptation,
leading to progressively refined and more accurate responses over time. The finetuned generation
agents {ÂG

1 , · · · , ÂG
N} and critic agents {ÂC

1 , · · · , ÂC
N} are used to gather datasets for the next

iteration through multiagent debate. The algorithm for the proposed approach of L iterations of
finetuning is detailed in Algorithm 1. The steps for collecting data for finetuning the generation
models are marked in red, and the finetuning of critic models is shown in blue.

2.5 INFERENCE

At inference time, we have a set of finetuned generation models which represent generation agents
{ÂG

1 , · · · , ÂG
N}, and a set of finetuned critic models which represent critic agents {ÂC

1 , · · · , ÂC
N}. We

conduct a multiagent debate among these agents, where each individual generation agent participates
in the first round of the debate, followed by each individual critic agent in subsequent rounds. Each
agent takes the responses from all other agents and generates a new response in each round of the
debate. We found that summarizing the responses from the other agents helps eliminate redundant
information while retaining the most important details, thereby further improving performance. The
final result is determined by a majority vote based on the responses from the final round of the debate.
We provide pseudocode in Algorithm 2.

3 EXPERIMENTS

3.1 LANGUAGE REASONING TASKS

We evaluate our method and baselines on three language reasoning tasks.

Arithmetic. consists of 1,000 generated arithmetic problems in the form a + b · c + d − e · f .
Following the generation procedure in (Du et al., 2023), each variable is assigned a random value up
to a maximum of 30.

Grade School Math (GSM). (Cobbe et al., 2021) consists of math word problems that require
multi-step mathematical reasoning. Each example includes a problem statement, the numerical
answer, and an explanation of the answer.

MATH. Hendrycks et al. (2021) consists of competition-level math problems categorized into five
difficulty levels. For our experiments, we sample problems from the first three levels.

For each dataset, we randomly select 500 examples for finetuning the language model. Additionally,
we select 500 held-out problems for evaluation. We parse the generated answers and evaluate their
correctness by comparing them with the ground truth answers. Accuracy is reported based on how
frequently the model returns the correct answer. We also report the standard error of each accuracy
value to measure the significance of improvement.

3.2 BASELINES

We compare the proposed method with various baselines. In all multiagent settings, we use three
agents, and for all debate settings, we conduct two rounds of debates to ensure a fair comparison
(additional results with five agents in Appendix Section F).
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LLM Methods Arithmetic GSM MATH

GPT-3.5 (OpenAI, 2022)

Base 81.99 ± 0.99 75.60 ± 1.36 46.83 ± 2.25
Majority 94.40 ± 1.03 81.20 ± 1.24 51.40 ± 2.23
Debate 98.21 ± 0.54 83.30 ± 1.18 55.73 ± 2.21
STaR 98.38 ± 0.57 83.60 ± 1.17 53.00 ± 2.23
Majority FT 98.40 ± 0.56 83.70 ± 1.17 53.40 ± 2.23
Ours 99.62 ± 0.28 85.60 ± 1.11 60.60 ± 2.18

Phi-3 (Abdin et al., 2024)

Base 88.30 ± 1.09 81.20 ± 1.74 45.60 ± 2.10
Majority 91.80 ± 1.84 81.80 ± 1.72 47.20 ± 1.82
Debate 96.20 ± 0.61 84.40 ± 1.58 53.40 ± 2.28
STaR 94.80 ± 0.79 85.80 ± 1.21 51.80 ± 2.06
Majority FT 93.80 ± 0.41 82.20 ± 1.71 48.60 ± 2.16
Ours 99.40 ± 0.34 88.60 ± 1.42 58.80 ± 2.22

Mistral (Jiang et al., 2023)

Base 10.80 ± 0.51 35.60 ± 1.92 16.60 ± 1.21
Majority 14.80 ± 1.17 41.80 ± 0.88 16.80 ± 1.25
Debate 19.60 ± 1.12 52.60 ± 1.26 18.20 ± 1.37
STaR 17.40 ± 0.97 45.50 ± 1.54 17.84 ± 1.23
Majority FT 16.40 ± 0.73 44.60 ± 1.65 18.91 ± 1.37
Ours 22.60 ± 0.97 58.40 ± 2.11 22.50 ± 1.87

LLaMA-3 (Dubey et al., 2024)

Base 43.20 ± 2.22 75.00 ± 1.94 46.80 ± 2.23
Majority 45.80 ± 2.23 76.40 ± 1.90 47.20 ± 2.23
Debate 48.40 ± 2.24 78.40 ± 1.44 51.60 ± 2.23
Majority FT 49.20 ± 2.24 77.20 ± 1.87 52.20 ± 2.23
Ours 52.00 ± 2.24 88.60 ± 1.77 57.40 ± 2.21

Table 1: Quantitative results of the proposed method and baselines. Our method outperforms the baselines
across all datasets, as indicated by accuracy (%) ± standard error. The highest values are highlighted in
red, and the second-highest values are highlighted in blue. All results are reported over 500 fixed evaluation
problems, expect GSM results for GPT-3.5 which are reported over 1000 fixed evaluation problems (to construct
nonoverlapping confidence bars).

Base utilizes a single language model to process input and generate responses.

Majority is a multiagent baseline that selects responses based on a majority vote from multiple
agents. If no response secures a majority, one of the potential answers is chosen at random.

Debate is a multiagent debate baseline as described in Du et al. (2023). The debate structure is
outlined in Figure 2.

STaR (Zelikman et al., 2022) iteratively finetunes the language agent using a dataset with ground
truth answers for each problem. Initially, the LM generates an answer for each problem, and correct
responses, as verified by the ground truth, are added to the finetuning dataset. For problems answered
incorrectly, the LM is reprompted with a hint that includes the ground truth answer. Problems where
the generated response includes the correct answer are added to the finetuning dataset. The LM is
finetuned on the collected dataset. This iterative process of building the dataset and finetuning is
repeated until the finetuning loss saturates. The final model is then used for evaluation.

Majority FT is a baseline that incorporates both majority voting and finetuning. We prompt the
language agents with each problem and conduct a majority vote on their results. We then compile the
responses from all agents that align with the majority vote, along with the input, to create a finetuning
dataset. The language model is finetuned using this dataset. Finally, we apply majority voting to the
outputs of the finetuned model to determine the final answer.

3.3 QUANTITATIVE RESULTS

We compare baselines and our method, which was finetuned for only a single iteration (L = 1), in
Table 1. The accuracy and standard error for each dataset are reported. We use three distinct base
language models: three open-source models, Phi-3 4B (Abdin et al., 2024), Mistral 7B (Jiang et al.,
2023), and LLaMA-3 8B (Dubey et al., 2024); and one proprietary model, GPT-3.5 (OpenAI, 2022).

Our method outperforms all the baselines. Although “STaR” utilizes ground truth labels for data
selection and undergoes multiple iterations of finetuning, it still performs worse than our method,
which uses only a single finetuning iteration without access to ground truth. The “Majority”,

6
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LLM Ablations Arithmetic GSM MATH

GPT-3.5 (OpenAI, 2022)

Multiagent FT (Ours) 99.62 ± 0.28 85.60 ± 1.67 60.60 ± 2.18
Multiagent FT w/o summary 99.20 ± 0.40 82.20 ± 1.72 51.70 ± 2.24
Multiagent FT w/o critic 99.20 ± 0.40 83.80 ± 1.65 50.80 ± 2.24
Single-agent FT 99.00 ± 0.45 83.60 ± 1.66 56.80 ± 2.21
Single-agent FT w/o debate 87.20 ± 1.49 75.00 ± 1.93 48.89 ± 2.23

Phi-3 (Abdin et al., 2024)

Multiagent FT (Ours) 99.40 ± 0.34 88.60 ± 1.42 58.80 ± 2.22
Multiagent FT w/o summary 98.80 ± 0.51 84.40 ± 1.68 55.00 ± 2.09
Multiagent FT w/o critic 98.20 ± 0.62 86.00 ± 1.58 56.60 ± 2.22
Single-agent FT 97.40 ± 0.71 86.80 ± 1.51 56.80 ± 2.21
Single-agent FT w/o debate 92.20 ± 1.20 83.60 ± 1.66 50.20 ± 2.24

Mistral (Jiang et al., 2023)

Multiagent FT (Ours) 22.60 ± 0.97 58.40 ± 2.11 22.50 ± 1.87
Multiagent FT w/o summary 21.80 ± 0.80 56.00 ± 1.56 20.20 ± 1.55
Multiagent FT w/o critic 21.00 ± 0.52 54.80 ± 1.60 19.01 ± 1.59
Single-agent FT 21.20 ± 1.20 55.00 ± 2.22 19.21 ± 1.69
Single-agent FT w/o debate 17.71 ± 1.18 51.20 ± 2.24 17.22 ± 1.54

LLaMA-3 (Dubey et al., 2024)

Multiagent FT (Ours) 52.00 ± 2.24 88.60 ± 1.77 57.40 ± 2.21
Multiagent FT w/o summary 50.40 ± 2.24 83.20 ± 1.67 51.60 ± 2.23
Multiagent FT w/o critic 48.60 ± 2.24 82.20 ± 1.70 50.50 ± 2.23
Single-agent FT 48.00 ± 2.23 84.40 ± 1.62 52.40 ± 2.23
Single-agent FT w/o debate 44.00 ± 2.22 81.60 ± 1.73 48.80 ± 2.24

Table 2: Ablation results. We examine each component of the proposed method and found that summarization,
the combination of critic and generation agents, multiagent finetuning, and multiagent debate all contribute to
performance improvement. The accuracy (%) ± standard error is reported.

“Debate” and “STaR” methods outperform the “Base” model, demonstrating that majority voting,
multiagent debate, and finetuning all contribute to improved performance. “Majority FT” enhances
the performance of “Majority” by incorporating a finetuning procedure. Our method is only finetuned
on 500 examples and still shows significant improvement over the baselines, particularly on more
challenging datasets such as GSM and MATH.

3.4 MULTIPLE ITERATIONS OF FINETUNING

To verify the effectiveness of multiple iterations of finetuning, as described in section 2.4, we present
the performance of our proposed method “Multiagent FT (Ours)” over five iterations of finetuning in
Figure 1. We tested this method on two open-source models, Mistral and Phi-3, using the MATH
dataset. The results demonstrate that “Multiagent FT (Ours)” consistently improves performance
over time. For example, the accuracy of Phi-3 increased from 58.8% to 66.0%, and the accuracy of
Mistral improved from 22.5% to 28.2%. Our method with five rounds of finetuning is 12.6% and
9.31% more accurate than the best baseline listed in table 1 using Phi-3 and Mistral, respectively.

In contrast, finetuning a single agent (”Single-agent FT”), as described in section 2.2, shows that
performance saturates after one iteration of finetuning and starts dropping afterward, indicating
potential overfitting to generated responses. This issue occurs when the single model, after several
finetuning cycles, becomes fixated on a small range of responses, which limits its diversity and
prevents further enhancement. However, finetuning multiple generation and critic agents using our
proposed method increases diversity and consistently improves performance.

4 ANALYSIS

In this section, we aim to answer the following questions: 1) How important is the proposed multiagent
finetuning procedure? 2) Will it increase response diversity? 3) Can the finetuned agent generalize to
other datasets in a zero-shot setting?

4.1 ABLATION STUDIES

We examine each component of the proposed method, as shown in Table 2. Multiagent FT (Ours)
refers to our proposed method with a single round of finetuning, L = 1.
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Figure 3: Response diversity across finetuning iterations. We measure the response diversity of our method
and the single-agent finetuning method on the MATH dataset. The diversity of our method remains consistent
over finetuning iterations, whereas the diversity of the single-agent method drops significantly.

Multiagent FT w/o summary removes the summarization step from the multiagent debate. Instead
of summarizing, the responses from other agents are directly concatenated and presented to each
agent. Summarization helps by eliminating redundant information and retaining the most critical
points; therefore, omitting the summarization step can negatively impact performance.

Multiagent FT w/o critic: The critic agents evaluate the outputs from all generation agents and select
or synthesize the best responses. Removing the critic agents and only finetuning the N generation
agents could hurt performance, as the critic agents play a crucial role of refining the final output.

Single-agent FT involves finetuning only a single LLM as covered in Section 2.2 and using it as
an agent in multiagent debate. This approach can easily lead to model collapse, where the agent
generates similar responses after finetuning, thereby reducing diversity and hurting performance.
Therefore, multiagent finetuning is necessary to maintain high performance in reasoning tasks.

Single-agent FT w/o Debate further eliminates the debate procedure, with the finetuned LLM
generating responses directly. As shown in Du et al. (2023), multiagent debate can significantly
boost performance, so removing it could lead to a performance drop.

These results indicate that summarization, the combination of critic and generation agents, multiagent
finetuning, and multiagent debate all contribute to performance improvement. Our proposed method
integrates these components into a single, unified framework, leveraging their combined benefits.

4.2 AGENT RESPONSE DIVERSITY
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Diversity Metric: Embedding Dissimlarity
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Single-Agent FT
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Figure 4: Relationship between accuracy and diver-
sity. We visualize the relationship between embedding
dissimilarity and MATH accuracy across rounds of fine-
tuning. Our multiagent finetuning preserves diversity
across rounds of finetuning while improving accuracy.

By finetuning multiple agents with distinct roles,
our approach enables us to obtain more diverse
responses across rounds of finetuning compared
to a single agent. Figure 3 illustrates the diver-
sity of generations from our method and single-
agent across rounds of finetuning.

Here, we measure diversity using embed-
ding dissimilarity. Specifically, we consider
agent responses in the final round of debate
{yM,1, · · · , yM,N} that match the majority-
voted final majority-voted final response ŷ. For
each response, we obtain pretrained contextual
word embeddings from a held-out language
model, in this case the T5-3B encoder model
(Raffel et al., 2020).

We feed each agent response to the T5 encoder
model to obtain word embeddings and extract
the embedding associated with the classification
token [CLS]. As done in prior work, we use
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this embedding as a representation of the sequence. We compare the similarity of the agent responses
using cosine similarity of the [CLS] embeddings. Since cosine similarity measures similarity, to
obtain a metric for diversity, we take the complement of cosine similarity by subtracting the value
from 1.

We compute the diversity across all test examples and present the results in Figure 3. For the “Single-
agent FT”, all agents are the same finetuned language models, and M = 1. The diversity of our
method “Multiagent FT (Ours)” remains consistent over finetuning iterations, while the diversity of
the single-agent method drops significantly. This aligns with our previous observation that diverse
responses can mitigate mode collapse and prevent the model from overfitting to the finetuning data,
leading to better performance. We provide additional metrics for evaluating diversity in generations
in Appendix Section C, and similarly find that multiagent finetuning improves the final diversity of
generations.

We further analyze the relationship between diversity and performance and show this in Figure 4.
Specifically, we see that an improvement in the diversity of responses correlates positively with
an improvement in performance across rounds of finetuning across both Phi-3 and Mistral models.
This suggests that in general, increasing the diversity of responses can be helpful for improvement
over multiple rounds of fine-tuning. In Appendix Section E, we compare our approach with another
approach improve diversity of samples directly increasing the temperature at which samples are
genereated. We further find that our approach outperforms this baseline.

4.3 ZERO-SHOT GENERALIZATION

We investigate the zero-shot generalization of the proposed method across different datasets. Specif-
ically, we use generation and critic agents finetuned on the MATH dataset and evaluate their per-
formance on 100 randomly sampled examples from the GSM dataset. We compare our method to
baseline methods used in Table 1. These baselines are trained on the GSM dataset. All methods use
Mistral as the base LLM. Figure 5 shows that our method surpasses all the baseline methods, even
though it has never seen data from the GSM dataset, indicating the strong zero-shot generalization
capability of the proposed method.

5 RELATED WORK

Base Majority Debate STaR Majority-FT Ours (zero-shot)
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Figure 5: Zero-shot generalization of the proposed method. Our
method demonstrates zero-shot generalization capabilities. When trained
on the MATH dataset, it can effectively generalize to the GSM dataset. It
outperforms all the baselines that are trained on the GSM dataset.

Finetuning methods generally
fall into three categories: human-
in-the-loop, distillation, and
self-improvement. We briefly
cover the first two categories
and spend more time on self-
improvement, which is more
related to our work.

Finetuning with human-in-the-
loop and distillation: Several
human-in-the-loop methods have
been introduced for finetuning,
most noticeably RLHF (Chris-
tiano et al., 2017; Sun et al.,
2023) and DPO (Rafailov et al.,
2024). These methods have been
employed as part of instruction tuning (Zhang et al., 2023), improving the generated responses to
instructions. Several instruction tuning datasets (Wang et al., 2022; Longpre et al., 2023) have been
released publicly, some with human-generated responses. Other datasets have been constructed using
the second category of finetuning methods, distillation, whereby a much larger, highly performant
LLM is used to generate data that finetunes a smaller LLM (Peng et al., 2023; Liu et al., 2024).
These approaches have been used to build recent LLMs such as Alpaca (Taori et al., 2023) or Vicuna
(Chiang et al., 2023) using responses generated by GPT-3.5 or GPT-4 (Achiam et al., 2023).

Finetuning with self-improvement: Self-improvement methods (Huang et al., 2022; Yu et al., 2023;
Yuan et al., 2024; Hsieh et al., 2023; Welleck et al., 2022) improve the performance of LLMs through
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the finetuning. Common approaches include iterated learning (Anthony et al., 2017; Vani et al.; Polu
et al., 2022; Xu et al., 2024) where solution/methods discovered by optimization on prior data are
used to uncover further solutions or, in this context, provide additional finetuning data. Some of
the main papers we use for comparison finetune using bootstrapping through rationale generation
(Zelikman et al., 2022; Lee et al., 2024; Pang et al., 2024; Zhang et al., 2024; Lu et al., 2023) or
use self-play/self-training methods through reinforcement learning (Chen et al., 2024b; Yuan et al.,
2024; Chen et al., 2024a). Most methods find that using self-generated rationales leads to significant
improvement when finetuning. However, these works and many others rely on access to ground truth
answer. Overall, existing works often show a plateauing effect with limited boosts in improvement
after several rounds of fine-tuning. Our work proposes to use multiagent interaction as an approach
to get more consistent gains after multiple rounds of finetuning.

Multiagent Interaction: Our work builds on the combination of finetuning and multiagent interaction
systems. We primarily incorporate multiagent debate (Du et al., 2023; Chan et al., 2023; Pham et al.,
2023; Liang et al., 2023) due to its success in improving factuality and reasoning in LLMs in a
variety of tasks at inference time. Several other multiagent interactions could also serve as the basis
for this paper. Tree-of-thought (Yao et al., 2024; Long, 2023) and graph-of-thought (Besta et al.,
2024) represent two common multiagent interaction systems over LLMs that incorporate responses
across multiple LLMs, which improves reasoning. Other works (Wu et al., 2023) have designed
more flexible systems for multiagent conversations built on structured program synthesis rather than
natural language. Prior work has also focused on incorporating multiagent interaction into domains
beyond factuality and reasoning such as strategy and communication games (Abdelnabi et al., 2023).
More recently, this has led to multiagent interaction systems over LLMs that have optimized via
equilibrium search for factuality and reasoning tasks (Jacob et al., 2023b;a). In contrast to existing
works, our work aims to use multiagent interaction as a method to finetune language models.

6 CONCLUSION AND LIMITATIONS

Limitations. In comparison to existing works in single model finetuning, multiagent finetuning is
substantially more expensive at both training and inference time as multiple copies of a model need
to be trained and run. To run multiagent finetuning experiments on open source models, we used
either four H100 GPUs or four A100 GPUs. Models took between 120GB - 240GB of GPU memory
and inference took between 12-24 hours across multiple GPUs. To improve the training time of
multiagent models, it may be interesting to instead share weights across different instances of models.
To improve inference time in multiagent models, we can directly distill the debate procedure into a
single model or use quantization as part of finetuning.

Conclusion. In this paper, we have introduced a novel multiagent finetuning framework that sig-
nificantly enhances the performance and diversity of language models. By employing a society of
agents with distinct roles, our method effectively improves the feedback mechanism and overall
output quality, mitigating the limitations inherent in single-agent self-improvement methods. This
system allows for autonomous self-improvement through iterative finetuning, leading to substantial
performance gains across a comprehensive suite of reasoning tasks. Importantly, our approach is
versatile and can be applied to both open-source and proprietary LLMs, ensuring broad utility and
impact. Additionally, our method can be integrated with other finetuning approaches such that
incorporate human feedback such as RLHF or DPO, which we leave to future work. This work opens
new avenues for future research in language model enhancement and sets a foundation for further
advancements in the field.
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A APPENDIX SUMMARY

We add additional details for our methods and experiments as well as additional results to provide
more evidence of improvements with multiagent finetuning. In Section B, we provide additional
details on summarization, inference and training details using multiagent finetuning with debate. In
Section C, we cover additional metrics for measuring diversity in agent responses based (1) consensus
and (2) KL-divergence. Both metrics show that diversity is maintained or increases while accuracy
increase over rounds of finetuning. In Section D, we introduce a cooperative approach for composing
agent responses rather than a competitive approach through multiagent debate. We apply multiagent
finetuning with the cooperative approach to analyze whether our method is agnostic to the approach
style. We find strong similar improvements when our method is applied to a cooperative approach.
In Section E, we include an additional baseline based on Single Agent FT where we increase the
sampling temperature applied across all agents. This is a proxy for increasing diversity that is
complementary to our method. We find that multiagent finetuning significantly outperforms methods
that modify temperature to artificially induce diversity. In Section F, we add an additional experiment
where we apply multiagent finetuning to responses across 5 agents instead of 3. We see significant
improvements in performance when using additional agents.

B METHODOLOGY DETAILS

B.1 SUMMARIZATION DETAILS

As done in Du et al. (2023), we incorporate summarization into the multiagent debate procedure. In
summarization, we have an LLM agent take responses from other agents as input and summarize the
answers to the responses. During round m of debate, we introduce a summarization agent AS

n which
takes responses from the other N − 1 agents in the last round, (ym−1

1 , · · · , ym−1
n−1 , y

m−1
n+1 , · · · y

m−1
N )

and generates a summary of the responses xs
m,n. This summary is sent to the critic agent AC

n to
generate a new response.

B.2 INFERENCE DETAILS

The pseudocode of our method for inference is shown in .

Algorithm 2 Inference

Require: A set of finetuned generation agents {ÂG
1 , · · · , ÂG

N}; A set of finetuned critic agents {ÂC
1 , · · · , ÂC

N};
A test set of language inputs and ground truth responses Dtask = {xi, yi}; The number of agents N ; The
number of debate rounds M .

1: success← 0
2: for x, y in Dtask do # Iterate over the input tasks
3: for m in M do # M rounds of debate
4: if m = 0 then
5: y1,1, · · · y1,N ← ÂG

1 (x), · · · , ÂG
N (x) # Response of each generation agent

6: else
7: xs

m,1, · · · , xs
m,N ← Summarize the responses from other generator agents

8: ym,1, · · · , ym,N ← ÂC
1 (x

s
m,1), · · · , ÂC

N (xs
m,N ) # Response of each critic agent

9: end if
10: end for
11: ŷ← Majority Voting {yM,1, · · · , yM,N} # Responses of the final round of debate
12: success← success+ I(ŷ = y)
13: end for
14: Accuracy← success

|D|
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B.3 EXPERIMENTAL DETAILS

For all open-source models, we perform finetuning using a total of eight 40GB A100 GPUs and four
80GB H100 GPUs. The evaluation of individual inference times for multi-agent finetuning with
open-source models took approximately 30 to 36 hours.

Phi-3 We ran our results using Phi-3-Mini-128K-Instruct which has 4 billion tunable
parameters. We finetune the entire model end-to-end (no LoRA or memory adaptation) on two 40GB
A100 GPUs or one 80GB H100 GPU and run a total of two epochs of finetuning for generation agents
and one epoch of finetuning for critic agents. We use a batch size of 1 and a learning rate of 5e−6 for
generation agents and 5e−7 for critic agents. When applying multiple iterations of finetuning, we use
a learning rate of 5e−7 across both generation and critic agents. Models are finetuned with a fixed
training set of 500 randomly selected questions (where we do not provide answer annotations for the
questions) and then evaluated on a separate test set of 500 randomly selected questions.

Mistral We ran our results using Mistral-7B-Instruct-v0.2, which has 7 billion tunable
parameters. We finetune the entire model end-to-end (no LoRA or memory adaptation) on four 40GB
A100 GPUs or two 80GB H100 GPUs and run a total of two epochs of finetuning. We use a batch
size of 1 and a learning rate of 5e−7 for generation agents and 5e−8 for critic agents. When applying
multiple iterations of finetuning, we use a learning rate of 5e−8 across both generation and critic
agents. Models are finetuned with a fixed training set of 500 randomly selected questions (where we
do not provide answer annotations for the questions) and then evaluated on a separate test set of 500
randomly selected questions.

LLaMA-3 We ran our using Meta-Llama-3-8B-Instruct, which has 8 billion tunable param-
eters. e finetune the entire model end-to-end (no LoRA or memory adaptation) on three 80GB H100
GPUs and run a total of two epochs of finetuning. We use a batch size of 1 and a learning rate of 3e−7

for generation agents and 3e−8 for critic agents. When applying multiple iterations of finetuning,
we use a learning rate of 3e−8 across both generation and critic agents. Models are finetuned with a
fixed training set of 500 randomly selected questions (where we do not provide answer annotations
for the questions) and then evaluated on a separate test set of 500 randomly selected questions.

GPT-3.5 We ran our results on the gpt-3.5-turbo-0613 model. We use the finetuning API
and run a total of two epochs of finetuning, using a batch size of 1 and a learning rate multiplier of
1. Models are finetuned with a fixed training set of 500 randomly selected questions (where we do
not provide answer annotations for the questions) and then evaluated on a separate test set of 500
randomly selected questions.

C DIVERSITY METRICS

C.1 CONSENSUS

We analyze diversity in our method to show that diversity is preserved. Rather than using text
embeddings, we can measure the consensus among agents as a more interpretable alternative. This
is measured as the proportion of agents that have the same final answer in a given round of debate.
We take an average of this proportion across all 500 problems used for evaluation. To obtain the
mean consensus of our single agent finetuning baseline, we prompt the single-agent finetuned model
3 times, take a majority vote over generated answers, and find the proportion of agents that had
a generated answer that was the majority vote. In order to convert this to diversity, we take the
difference of the mean consensus value from 1, which represents the average number of agents with a
different response from the consensus answer.

We measure diversity as the inverse of consensus. Specifically, we consider the agent responses in
the final round of debate {yM,1, · · · , yM,N} that match the majority-voted final response ŷ. The
consensus is computed as the percentage of responses in {yM,1, · · · , yM,N} that match ŷ:

Consensus =
∑N

n=1 I(yM,n = ŷ)

N
,

where I is the indicator function. Diversity is then given by Diversity = 1− Consensus.
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Figure 6: Consensus: Response diversity across finetuning iterations. We measure the response diversity
based on agent consensus of our method and the single-agent finetuning method on the MATH dataset. The
diversity of our method remains consistent over finetuning iterations, whereas the diversity of the single-agent
method drops significantly.

1 2 3 4 5
Iterations of Finetuning

0.02

0.04

0.06

0.08

0.10

KL
 D

iv
er

ge
nc

e 
ac

ro
ss

 a
ge

nt
s

Phi-3

Multiagent FT (Ours)
Single-agent FT

1 2 3 4 5
Iterations of Finetuning

0.04

0.06

0.08

0.10

0.12

Mistral

Figure 7: KL-Divergence: Response diversity across finetuning iterations. We measure diversity based
on the KL-divergence between the probabilities of the output tokens between agents. Similar to embedding
dissimilarity, we find that diversity is preserved across rounds of finetuning.

We show results in Figure 6. As seen with our prior metric, embedding dissimilarity, we can preserve
diversity based on the responses given by the agents, rather than based on the embeddings of a
language model.

C.2 KL-DIVERGENCE

We introduce a further metric of diversity which computes KL divergence between the probability
distributions computed based on the final answers from different agents. We estimate the probability
distribution of each agent’s response using the likelihoods from Gemma-2 (2B) For each test example,
we compute the KL divergence between the responses of any two agents and then average the values
from all pairs of agents to determine the overall KL divergence.

We see results in Figure 7. Specifically, we see that diversity is preserved using our method whereby
KL-divergence is consistently higher than the single-agent finetuning baseline.

D COOPERATIVE FINETUNING

In this paper, our method mainly builds on a competitive approach for composing agent responses
with multiagent debate. Our approach for multiagent finetuning can be applied to both the competitive
setting, where critic agents provide feedback to generator agents, and cooperative settings, where
agents work together in a ”mixture of experts” style to generate answers. Instead of prompting agents
to critique responses from other agents, in the second round of conversation, we prompt agents to
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LLM Methods Arithmetic GSM MATH

GPT-3.5 Cooperative (Base) 96.60 ± 0.83 81.80 ± 1.73 53.60 ± 2.23
Cooperative (FT) 98.80 ± 0.39 84.00 ± 1.64 56.40 ± 2.21

Table 3: Cooperative Finetuning. Our method supports fine-tuning in cooperative settings, where agents work
together (e.g., 3 agents, 2 rounds).
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Figure 8: Inducing diversity through increasing temperature. We introduce an additional baseline where we
apply the Single-Agent FT baselin with a temperature of 2. By increasing the sampling temperature, we allow
the model to generate more diverse responses. We observe that our method out-performs higher temperature
settings, which demonstrates that temperature does not increase diversity in a way that is useful for accuracy.

cooperate with other agents. We ask each agent to generate a new response by merging their own
response with the responses of other agents, using the prompt “Can you derive a new solution by
combining your solution with the solutions of other agents?”. Under this cooperative setting, the
proposed multi-agent finetuning improves the performance, as demonstrated by Cooperative (FT)
outperforming Cooperative (Base).

We show results in Table 3. More specifically, we see that we can finetune with a cooperative method
with multiagent finetuning and achieve similar improvements in performance. This demonstrates that
our method can be applied to other multiagent prompt settings as a general finetuning method for
LLMs.

E TEMPERATURE BASELINE

We consider one further method for inducing diverse responses from LLM agents, increasing the
temperature. We add an additional baseline where we vary the temperature of agents finetuned using
Single Agent-FT. Higher temperature values may be a proxy for more diverse responses. We show
results over rounds of finetuning in Figure 8.

We see that our method surpasses the performance of this baseline. This likely because higher
temperature values can reduce accuracy due to increased variability of samples. Our method preserves
diversity of responses while increasing accuracy using a more carefully designed finetuning method.

F ADDITIONAL AGENTS IN DEBATE

In Table 4, we show the influence additional agents with finetuning. We use 5 agents and 2 rounds
of debate. We find that additional agents improves results as noted in prior work (Du et al., 2023)
over 3 agents, 2 rounds of debate. This also implies that our method will scale with larger number of
finetuned agents.
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LLM Methods Arithmetic GSM MATH

GPT-3.5
Debate 99.40 ± 0.34 85.40 ± 1.58 58.20 ± 2.22
Majority FT 99.60 ± 0.28 86.20 ± 1.54 59.00 ± 2.19
Ours 100.00 ± 0.00 88.20 ± 1.44 62.80 ± 2.16

Phi-3
Debate 97.40 ± 0.71 86.00 ± 1.55 55.20 ± 2.22
Majority FT 95.80 ± 0.90 84.80 ± 1.61 53.20 ± 2.23
(Ours) 99.80 ± 0.20 89.40 ± 1.38 60.40 ± 2.19

Table 4: More agents of debate. With 5 agents and 2 rounds of debate, our methods still outperform the
baselines and show better results than the 3 agents and 2 rounds of debate results presented in Table 1 of the
main paper.

G MATHEMATICAL MODEL OF DIVERSITY OVER ROUNDS OF FINETUNING

We consider a simple mathematical model illustrating how diversity can arise by finetuning models
only on answers that they are accurate on. Consider a training dataset of problems in three topics,
A, B, and C as well as three models we train all initialized from the same base model. For each
model, we assign a specialization skill score SA, SB , SC between 0 and 1, representing how accurate
the model is at answering questions in the specified topic. All three models are initialized to have a
skill of 0.33 on each topic. The specialization Si for each topic i corresponds to the percentage of
questions in topic i the model get accurate, where SA of 0 represents that a model would get 0% of
questions in topic A correct.

At each iteration, a model is trained on all questions it answers correctly in each topic. This increases
the specialization skill score by fraction of training the model saw for each specific topic. Formally,
the updated skill of model A at iteration t would be:

St
A = St−1

A

(
1 +

St−1
A

St−1
A + St−1

B + St−1
C

)
. (2)

To account for a finite amount of capacity in each model, after the above skill update, the skills across
all models at iteration t are then normalized to have a sum of one. Without loss of generality, assume
that at iteration t, St

A is larger than St
B and St

C (which happens by random chance, since we have a
finite number of questions). Under the update rule described, the ratio St+1

A to St
A is given by(

1 +
St
A

St
A + St

B + St
C

)
/

 ∑
i∈{A,B,C}

(
1 +

St
i

St
A + St

B + St
C

)
St
i

 . (3)

Since St
A is greater than or equal to St

i , the above expression is greater than or equal to(
1 +

St
A

St
A + St

B + St
C

)
/

 ∑
i∈{A,B,C}

(
1 +

St
A

St
A + St

B + St
C

)
St
i

 = 1, (4)

where we use the identity that the sum of St
i is equal to 1 to indicate since they are normalization of

the scores.

We thus have that St+1
A will be larger than St

A, with specialization on topic A monotonically increasing
over iterations of training.

Since a priori the model has no preference for any particular topic, random sampling each initial base
model will lead to skill preference over a different random topic. This repeated procedure will then
eventually result in models specializing in either topic A, B, C, ensuring diversity across models.
This mathematical model is similar to the multiagent finetuning procedure in the paper, where we
selectively train generators and critics on datasets they are accurate on and illustrate how they can
then specialize on different portions of data.

H LARGER MATH EVALUATION

To further evaluate multiagent finetuning, we evaluate on the MATH dataset across all 5 levels of
difficulty, instead of selecting examples from levels 1-3. We extract 500 examples for training and
500 examples for testing and evaluate on LLaMA-3.
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LLM Methods MATH

LLaMA-3 (Dubey et al., 2024)

Base 24.40 ± 1.92
Majority 25.20 ± 1.94
Debate 29.80 ± 2.05
Majority FT 28.00 ± 2.01
Ours 34.20 ± 2.12

Table 5: Additional Evaluation of Multiagent Finetuning on more difficult tasks. Our method outperforms
the baselines on more difficult tasks including examples from all levels of MATH. This shows the applicability
of our method in more broad settings.
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Figure 9: Multiple iterations of finetuning over all levels of MATH. We apply multiple iterations of finetuning
over 500 examples of MATH sampled from all levels. Even over a more difficult domain, we see significant
improvements from multiagent finetuning that continue to self-improve.

We show results across all baselines in Table 5 and results across multiple rounds of finetuning in
Figure 9. We see consistent improvement using LLaMA-3.

I KL-DIVERGENCE ANALYSIS

We consider a new method for calculating KL-divergence to analyze the diversity and specialization
of our agents across multiple iterations of multiagent finetuning. Our method involves comparing the
likelihood of responses of generation and critic agents with the likelihood of responses from the base
LLM model across iterations of finetuning using the KL-divergence between likelihoods.

We measure the KL-divergence between each agent responses and responses from a base LLM for
500 MATH examples. We average KL-divergence across all examples for each iteration of finetuning.
We apply this measure to agents formed through Single Agent-FT and to generation and critic agents
formed through our method. For Single-Agent FT, we find the KL divergence for each finetuned
agent and average the KL-divergence across all examples and all agents per iteration of finetuning.
For our method, we separate generation and critic agents and find the average KL-divergence for
both. We measure likelihoods using Gemma-2 (2B), similar to Figure 7.

We show results in Figure 10. We see that critic agents generally have higher KL-divergences from
the base LLM and both critic and generation agents have higher KL-divergences across iterations of
finetuning.

J UNIQUE ID FOR AGENTS

We include an additional comparison to multiagent finetuning that can preserve diversity while
reducing the cost of finetuning. The method involves using a unique identifier as part of the
prompt fed to each agent. We feed each generation agent an ID given by GEN1, GEN2, etc. Sim-
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Figure 10: KL Diversity between finetuned and unfinetuned LLM. We measure the KL-divergence between
likelihoods of responses from finetuned agents and base LLM agents for single-agent finetuning and genera-
tion/critic agents from multiagent finetuning. Likelihoods are calculated using Gemma-2 (2B). We find that
our method diverges from the base LLM probabilities and furthermore, critic agents have better divergence in
responses and our method has better diversity metrics than single-agent FT.

LLM Methods MATH

LLaMA-3 (Dubey et al., 2024)

Base 46.80 ± 2.23
Debate 51.60 ± 2.23
Unique ID 50.80 ± 2.24
Ours 57.40 ± 2.21

Table 6: Unique ID vs Multiagent Finetuning. We introduce an additional comparison to multiagent finetuning
where we feed a unique ID token to each agent, corresponding to a generation or critic agent. We find that this is
not comparable to improvements on multiagent finetuning.

ilarly, each critic agent is given an ID CRIT1, CRIT2, etc. Additionally, we provide a short
description to the agent, explaining what the ID refers to. For generation agents, we state that
the agent is tasked with creating a solution. For critic agents, we state that the agent is tasked
with evaluating and improving responses. The ID is presented to the agent at the beginning of
each prompt, marked by the string Agent ID: GEN1 (This is a generation agent
tasked with creating a solution.) as an example of the ID fed to generation agent 1.

We compare the unique ID approach on the same 500 MATH examples reported in Table 1. Results
are shown in Table 6. We find that multiagent finetuning performs significantly better and that using
unique IDs is fairly similar to debate. This demonstrates that mechanisms for generating solutions
and critiquing them is unlocked via finetuning.

K MMLU

We add an additional comparison with MMLU to further establish thte improvement of our method
on a task related to general factuality and reasoning instead of mathematics.

We finetune on 500 MMLU examples randomly sampled from all 57 subjects. We then evaluate on a
different set of 500 randomly sampled examples.

We show results in Table 7. We see that our method can improve performance on a task related to
factuality.

L ZERO-SHOT GENERALIZATION EVALUATION

We include a larger evaluation of zero-shot evaluation of our method in Figure 11, where we finetune
on 500 MATH problems and test on 1000 GSM problems. We find that our method performs
significantly better than all other baselines.
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Figure 11: Testing zero-shot generalization across 1000 GSM problems We test the zero-shot capabilities of
our method using models trained on the MATH dataset. We find that over 1000 problems of GSM, our method
performs better than all baselines.
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Figure 12: Zero-shot generalization after arithmetic finetuning. We evaluate the ability of our method to
generalize after finetuning Mistral on the arithmetic task and evaluating on GSM. We find that this aids in GSM
performance, even more than finetuning with MATH.
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LLM Methods MMLU

LLaMA-3 (Dubey et al., 2024)

Base 60.40 ± 2.18
Majority 61.80 ± 2.17
Debate 65.80 ± 2.12
Majority FT 63.40 ± 2.15
Ours 68.80 ± 2.07

Table 7: MMLU Evaluation We introduce an additional evaluation with the MMLU benchmark, finetuning on
500 MMLU examples and testing on 500 different MMLU examples. We find that our method performs better
than other baselines.
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Figure 13: Measuring response likelihood of other agents across iterations of finetuning. We measure
the response diversity using likelihood of generated responses from other agents using a held-out agent across
iterations of finetuning. We see that the diversity increases via an increase in NLL across iteration of finetuning
for our method.

Furthermore, we test another setting to measure zero-shot performance by finetuning on the arithmetic
dataset and evaluating on the GSM dataset. We finetune using 500 arithmetic problems and evaluate
each method on 1000 GSM problems. See Figure 12. We find that our method also performs
significantly better than all other baselines.

M DIVERSITY METRIC: LIKELIHOOD

We construct an additional metric for diversity based on measuring likelihood of responses from
different agents.

In this metric, we aim to characterize specialization by tracking the likelihood of responses of other
agents using likelihood calculations of a specific agent. If we are increasing diversity, then the
log-likelihood of responses from other agents will decrease across iterations of finetuning. The
reasoning used by other agents would be considered less common for the specific agent, indicating
a divergence in responses. If accuracy increases while likelihood of responses from other agents
decreases, this indicates must specialization.

We evaluate the negative log-likelilhood (NLL) of responses from other critic agents using another
held-out critic agent and plot this over iterations of finetuning. We do the same with Single-Agent FT,
using responses from other agents and evaluate likelihood using a held-out agent. Larger NLL values
indicate that the model has assigned low likelihood to a sequence and lower NLL values indicate that
the model has assigned higher likelihood to a sequence. We measure this over iterations of finetuning
for our method as well as Single-Agent FT.

We notice that NLL increases across iterations of finetuning for our method, meaning that responses
from other critic agents are more diversity according to our held-out critic agent. Moreover, our
responses are more diverse than using Single-Agent FT.
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