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ABSTRACT

Ensembling multiple Deep Neural Networks (DNNs) is a simple and effective
way to improve top-line metrics and to outperform a larger single model. In
this work, we go beyond top-line metrics and instead explore the impact of en-
sembling on subgroup performances. Surprisingly, we observe that even with a
simple homogeneous ensemble –all the individual DNNs share the same training
set, architecture, and design choices– the minority group performance dispropor-
tionately improves with the number of models compared to the majority group,
i.e. fairness naturally emerges from ensembling. Even more surprising, we find
that this gain keeps occurring even when a large number of models is considered,
e.g. 20, despite the fact that the average performance of the ensemble plateaus
with fewer models. Our work establishes that simple DNN ensembles can be a
powerful tool for alleviating disparate impact from DNN classifiers, thus curbing
algorithmic harm. We also explore why this is the case. We find that even in
homogeneous ensembles, varying the sources of stochasticity through parameter
initialization, mini-batch sampling, and data-augmentation realizations, results in
different fairness outcomes.

1 INTRODUCTION

Deep Neural Networks (DNNs) are powerful function approximators that outperform other alterna-
tives on a variety of tasks (Vaswani et al., 2017; Arulkumaran et al., 2017; Hinton et al., 2012; He
et al., 2016b). To further boost performance, a simple and popular recipe is to average the predic-
tions of multiple DNNs, each trained independently from the others to solve the given task, this is
known as model ensembling (Breiman, 2001; Dietterich, 2000).

By averaging independently trained models, one avoids single model symptomatic mistakes by re-
lying on the wisdom of the crowd to improve generalization performance, regardless of the type of
model being employed. While existing work has focused on improvements towards aggregate per-
formance (Fort et al., 2019; Gupta et al., 2022; Opitz & Maclin, 1999) or gains in efficiency over a
single larger model (Wang et al., 2020; Wortsman et al., 2022), there has been limited consideration
of how sensitive ensembling performance is on certain subsets of the data distribution.

Understanding performance on subgroups is a frequent concern from a fairness perspective. A com-
mon fairness objective is mitigating disparate impact (Kleinberg et al., 2016; Zafar et al., 2015)
where a class or subgroup of the dataset presents far higher error rates than other subsets of the dis-
tribution. In particular, and as we will thoroughly describe in Sec. 2, many strategies have emerged
to improve fairness by designing novel ensembling strategies based on fairness measures obtained
from labeled attributes. In this study, we take a step back and focus on studying the fairness benefits
of the simplest ensembling strategy: homogeneous ensembles. In this setting, the individual models
in the ensemble all have the same architecture and hyperparameters. They are also trained with the
same optimizer, data-augmentations, and training set.

Our results are surprising: despite the absence of ”diversity” in the models being trained in the ho-
mogeneous ensemble, the only sources of randomness are (i) the parameters’ initialization, (ii) the
realizations of the data-augmentations, and (iii) the ordering of the mini-batches. The final predic-
tions are diverse enough to provide substantial improvements for both the minority groups and the
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Figure 1: Relative Accuracy for Top-K/Bottom-K. Plot of the ratio of the homogeneous ensemble accuracy
over a single base model (y-axis) illustrates strong benefits for the bottom-k group of ensembling while the
top-k group only marginally benefits.

bottom-k classes upon which a single model performs badly. This emergence of fairness is observed
consistently across thousands of experiments on popular architectures (ResNet9/18/34/50, VGG16,
MLPMixer, ViTs) and datasets (CIFAR10/100/100-C, TinyImagenet, CelebA) (Sec. 3). The first
important conclusion unlocked by our thorough empirical validation is that one may effectively im-
prove minority group performance by using the same architecture and hyperparameters for each
individual model without the need to observe corresponding labeled attributes. A second crucial
finding is that solely controlling for initialization, batch ordering, and data-augmentation realiza-
tions is already enough to make training episodes produce models that are complementary with each
other. Other factors such as architectures, optimizers, or data-augmentation families may not be
the most important variables to produce fair ensemble (Sec. 4). The last interesting observation is
that, as a function of the number of models in the homogeneous ensemble, the average performance
quickly plateaus after 4 to 5 models, but the bottom-k group performance keeps increasing steadily
for up to 50 models. In short, when performing deep ensembling, one should employ as many
models as possible–even beyond the point at which the average performance plateaus–in order to
produce a final ensemble with as much fairness as possible. Beyond fairness of homogeneous deep
ensembles, our empirical study also offers a rich variety of new observations e.g., tying the severity
of image corruption to the relative benefits that emerges from homogeneous deep ensembles.

Our contributions can be enumerated as follows:

1. We demonstrate that simple homogeneous deep ensembles trained with the same objec-
tive, architecture and optimization settings minimize worst-case error. This holds in both
balanced and imbalanced datasets with protected attributes that the model is not trained on.

2. We further perform controlled sensitivity experiments where constructed class imbalance
and data perturbation is applied (Sec. 3). We observe that homogeneous ensembles con-
tinue to improve fairness and, in particular, the bottom-k group benefits more and more
with the size of the ensemble compared to the top-k group as the severity of the corruption
increases. These observations are held even when the protected attribute is imbalanced and
underrepresented, such as in our CelebA experiments.

3. We further dive into possible causes for this emergence of fairness in homogeneous deep
ensembles by measuring model disagreement (Sec. 4.1) and by ablating for the differ-
ent sources of randomness, e.g., weight-initialization (Sec. 4.2). We obtain interesting
results that suggest certain sources of stochasticity such as mini-batch ordering or data-
augmentation realizations are enough to bring diversity into homogeneous ensembles.

The codebase to reproduce our results and figures will be released upon completion of the review
process.
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2 RELATED WORK

Deep ensembling of Deep Neural Networks (DNNs) is a popular method to improve top-line metrics
(Lakshminarayanan et al., 2016). Several works have sought to further improve aggregate perfor-
mance by amplifying differences between models in the ensemble ranging from varying the data
augmentation used for each model (Stickland & Murray, 2020), the architecture (Zaidi et al., 2021),
the hyperparameters (Wortsman et al., 2022), and even the training objectives (Jain et al., 2020). As
will become clear, our focus is on the opposite setting where all the models in the ensemble share
the same objective, training set, architecture, and optimizer.

Beyond Top-line metrics Discussions of algorithmic bias often focus on datasets collection and
curation (Barocas et al., 2019; Zhao et al., 2017; Shankar et al., 2017), with limited work to-date un-
derstanding the role of model design or optimization choices on amplifying or curbing bias (Ogueji
et al., 2022; Hooker et al., 2019; Balestriero et al., 2022). Consistent with this, there has been lim-
ited work to-date on understanding the implications of ensembling on subgroup error. (Grgić-Hlača
et al., 2017) points out the theoretical possibility of using an ensemble of randomly selected candi-
date models to improve fairness, however no empirical validation was presented. (Bhaskaruni et al.,
2019) considers AdaBoost (Freund & Schapire, 1995) ensembles and shows that upweighting un-
fairly predicted examples reaches higher fairness. (Kenfack et al., 2021; Chen et al., 2022) propose
explicit schemes to induce fairness by designing heterogeneous ensembles, and (Gohar et al., 2023)
provides ensemble design suggestions in heterogeneous ensembles. Lastly, (Cooper et al., 2023)
provided a modified bagging solution, again specifically designed to reduce subgroup error rate dis-
parities. In contrast, our goal is to demonstrate how the simplest homogeneous ensembling strategy
where each model is trained independently and with identical settings naturally exhibit fairness
benefits without having to measure or have labels for the minority attributes.

Understanding why ensembling benefits subgroup performance. Several works to date have
sought to understand why weight averaging performs well and improves top-line metrics (Gupta
et al., 2022). However, few to our knowledge have sought to understand why ensembles dispro-
portionately benefit bottom-k and minority group performance. In particular, (Rame et al., 2022)
explores why weight averaging performs well on out-of-distribution data, relating variance to di-
versity shift. In this work, we instead explore how individual sources of inherent stochasticity in
uniform homogeneous ensembles impact subgroup performance.

In this work, we consider the impact of ensembling on both balanced and imbalanced subgroups.
Fairness considerations emerge for both groups. Real world data tends to be imbalanced, where
infrequent events and minority groups are under-represented in the data collection processes. This
leads to representational disparity (Hashimoto et al., 2018) where the under-represented group con-
sequently experiences higher error rates. Even when training sets are balanced, with an equivalent
number of training data points, certain features may be imbalanced leading to a long-tail within a
balanced class. Both settings can result in disparate impact, where error rates for either a class or
a subgroup are far higher (Chatterjee, 2020; Feldman & Zhang, 2020). This notion of unfairness
is widely documented in machine learning systems: (Buolamwini & Gebru, 2018) find that facial
analysis datasets reflect a preponderance of lighter-skinned subjects, with far higher model error
rates for dark skinned women. (Shankar et al., 2017) show that models trained on datasets with
limited geo-diversity show sharp degradation on data drawn from other locales. Word frequency co-
occurrences within text datasets frequently reflect social biases relating to gender, race and disability
(Garg et al., 2017; Zhao et al., 2018; Bolukbasi et al., 2016; Basta et al., 2019).

In the following Sec. 3, we will study how the randomness stemming from the random initialization,
data-augmentation realization, or mini-batch ordering during training may provide enough diversity
in homogeneous deep ensembles for fairness to naturally emerge. The why is left for Sec. 4.

3 FAIR-ENSEMBLE: WHEN HOMOGENEOUS ENSEMBLES
DISPROPORTIONATELY BENEFIT MINORITY GROUPS

Throughout our study, we will consider a DNN to be a mapping fθ : X 7→ Y with trainable
weights θ ∈ Θ. The training dataset D consists of N data points D = {xn, yn}Nn=1. Given the
training dataset D, the trainable weights are optimized by minimizing an objective function. We
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Figure 2: Test set accuracy gain as a ratio of ensemble accuracy % over the singular base model (y-axis) by
group (top-k and bottom-k) for TinyImageNet for different architectures (columns) with varying the number
of models within the homogeneous ensemble grows (x-axis). We clearly observe that as the number of models
within the homogeneous ensemble grows, the bottom-k group performance improves. In particular, the bottom-
k group’s accuracy gain outgrow the top-k group’s. This occurs despite the fact that the models within the
ensemble are all employing the same hyperparameters, thus inherently share the same functional biases. The
absolute accuracies are provided in Tab. 1 below, and CIFAR100 results are in Fig. 8. For the test set accuracy
performance between the top-k and the bottom-k groups over ensemble size, please refer to Fig. 10 and Fig. 11.

denote a homogeneous ensemble of m classification models by {fθ1, . . . , fθm}, where fθi is the
ith model. Each model is trained independently of the others. We will denote by homogeneous
ensemble the setting where the same model architecture, hyperparameters, optimizer, and training
set are employed for each model of the ensemble.

3.1 EXPERIMENTAL SET-UP

Experimental set-up: we evaluate homogeneous ensembles on CIFAR100 (Krizhevsky et al.,
2009) and TinyImageNet (Russakovsky et al., 2015) datasets across various architectures:
ResNet9/18/34/50 (He et al., 2016a), VGG16 (Simonyan & Zisserman, 2014), MLP-Mixer (Tol-
stikhin et al., 2021) and ViT (Dosovitskiy et al., 2020). Training and implementation details are
provided in Appendix B. Whenever we report results on the homogeneous ensemble, unless the
number of models is explicitly stated, it will comprise of 20 models. Each model is trained indepen-
dently as in(Breiman, 2001; Lee et al., 2015), i.e. we do not control for any of the remaining sources
of randomness as this will be explored exclusively within Sec. 4.2.
Balanced Dataset Sub-Groups: for top-k and bottom-k, we calculate the class accuracy of the base
model and find the best and worst K (K = 10) performing classes and track the associated classes as
bottom-k and top-k groups. We then proceed to measure how performance on these groups changes
as a function of the homogeneous ensemble size. We highlight that although we leverage K = 10 in
many experiments, the precise choice of K does not impact our findings, as demonstrated in Fig. 9
and Fig. 12.
Imbalanced Dataset Sub-Groups: we consider a setting where the protected attribute is an under-
lying variable different from the classification target. Similar to the setup in (Hooker et al., 2019;
Veldanda et al., 2022), we treat CelebA(Liu et al., 2015) as a binary classification problem where the
task is predicting hair color Y ={blonde, dark haired} and the sensitive attribute is gender. In this
dataset, blonde individuals constitute only 15% of which a mere 6% are males. Hence, blonde male
is an underrepresented attribute. We then proceed to measure how performance on the protected
gender:male attribute varies as a function of ensemble size.

Given the above experimental details, we can now proceed to present our core observations that tie
the homogeneous ensemble size with its fairness benefits.

3.2 OBSERVING DISPROPORTIONATE BENEFITS FOR BOTTOM-K GROUPS

Impact on bottom-k classes: in Fig. 1 and Fig. 2, we plot the relative gain in accuracy, i.e., the
ratio between the homogeneous ensemble and base model performance on top-k/bottom-k groups,
for each model architecture and dataset. Therefore answering the question: what is the relative
improvement in performance of using a homogeneous ensemble over a single model? Across models
and datasets, there is a disproportionate benefit for the bottom-k performance. For CIFAR100,
this benefit ranges from 14%-29% for bottom-k across different architectures compared to 1%-
4% for top-k. For TinyImageNet the benefits are even more pronounced with a maximum gain
of 55% for bottom-k compared to 5% for top-k across different architectures. We also provide in
Tab. 1 the absolute per-group accuracy and average performances for the corresponding models and
datasets. For example, we observe a gain of more than 10% in absolute accuracy for the bottom-
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Table 1: Depiction of the average and per-group (top-k and bottom-k) absolute test set accuracies correspond-
ing to the models and datasets depicted in Fig. 2 above and Fig. 8 in the Appendix, again the homogeneous
ensemble consists of 20 models. We clearly observe that fairness naturally emerges through ensembling i.e.
the bottom-k group substantially benefits from homogeneous ensembling compared to the top-k group.

CIFAR100 TinyImageNet

Ensemble Single Ensemble Single

Arch. mean top-k bottom-k mean top-k bottom-k mean top-k bottom-k mean top-k bottom-k

ResNet9 77.01 92.18 58.43 72.21 90.80 51.30 58.29 86.66 23.60 50.71 82.80 15.20
ResNet18 78.15 94.19 59.13 73.57 92.00 49.70 56.50 86.64 24.82 49.29 84.20 16.60
ResNet34 78.68 93.84 58.89 74.26 92.10 50.30 58.89 87.44 27.25 52.18 84.60 20.60
ResNet50 77.94 93.53 58.34 74.88 92.40 50.70 60.35 87.38 28.09 55.00 86.20 22.00
VGG16 76.95 92.88 57.32 71.24 91.50 44.40 67.04 90.27 38.71 60.36 89.20 26.20
MLPMixer/ViT 66.69 87.95 40.93 60.25 84.50 33.00 56.97 85.60 22.42 51.23 84.20 17.20
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Figure 3: Left: CelebA test set accuracy gain as a ratio of ensemble accuracy % over the singular base model
(y-axis) by group (majority and minority). Male is the protected attribute and Blond Males are extremely
underrepresented in the training data. Nevertheless, we clearly observe that as the number of models within
the homogeneous ensemble grows (x-axis), the protected attribute group’s classification accuracy outgrows the
majority group’s. Right: CIFAR100-C test set accuracy gain ratio (same as left per-group (top-k and bottom-k)
of the homogeneous ensemble as the number of models being aggregated increases (x-axis) for varying severity
of corruption levels in CIFAR100-C (recall Fig. 20) from light to dark color shading. A striking observation
is that not only does homogeneous DNN ensembling improves fairness by increasing the performance on the
bottom group more drastically than on the top group, this effect is even more prominent at higher corruption
severity levels.

k classes against a gain of around 4% for the top-k group across settings. As a result, we obtain
that even when ensembling models that share all their hyperparameters, data, and training settings,
fairness naturally emerges. Given these observations, one may wonder how does the number of
models in the homogeneous ensemble impact fairness benefits. In Fig. 2 and Fig. 8, we plot fairness
impact as a function of m, the number of models being used. A key observation we obtain is that
while the top-k group’s performance plateaus rapidly for small m, the bottom-k group still exhibits
improvements when reaching m = 20. We further explore increases of m in the Appendix, where
we consider up to 50 model ensembles (see Fig. 17). In both TinyImageNet and CIFAR100 datasets,
the absolute accuracy improvements of architectures such as ResNet9, ResNet50, and VGG16 all
slowly plateaued as m → 50; we also present the relative test set accuracies in Figs. 18 and 19.

Controlled Experiment: CelebA Beyond looking at the top-k and bottom-k classes, we leverage
the CelebA dataset which contains fine-grained attributes to study the fairness impact of homoge-
neous ensembles. Using the ResNet18 architecture, we train 20 models and measure their perfor-
mances on the protected gender:male attribute. Employing homogeneous ensembles, we observe
the average performance for the Blonde classification task to increase from 92.02% to 94.04%. Fur-
thermore, for the protected gender attribute, we see the average performance increase from 9.44% to
21.80%, a considerable benefit that alleviates the disparate impact on an under-represented attribute.
As we previously observed, homogeneous ensembles provide a disproportionate accuracy gain in
the minority subgroup as further depicted in Figs. 3 and 7.
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Figure 4: Depiction of churn results across models and datasets. The results demonstrate that churn is sig-
nificantly higher for the bottom-k group compared to the top-k group, indicating that ensembling these models
disproportionately impacts the bottom-k group (as defined in Eq. (1)). The difference in churn between bottom-
k and top-k groups varies based on model architecture, suggesting that some homogeneous ensembles achieve
more fairness than others.

Controlled Experiment: CIFAR100-C (Hendrycks & Dietterich, 2018) is an artificially con-
structed dataset of 19 individual corruptions on the CIFAR100 Test Dataset as depicted in Fig. 20,
each with a severity level ranging from 1 to 5. Our goal is to understand the relation between fairness
benefits for the bottom-k group and severity of the input corruption. We thus propose to benchmark
our homogeneous ensembles on all severity levels, and for completeness, we benchmark and average
performance across all corruptions for each severity level. In Fig. 3, we depict the gain in test-set
accuracy achieved by the top-k and bottom-k (K=10) classes as the ensemble size (m) increases rel-
ative to a single model. We see that, consistent with earlier results, gains on top-k plateau earlier as
the size of the ensemble increases. However, the benefits of homogeneous ensembles are even more
pronounced when the data is increasingly corrupted. We observe in Fig. 21 that the largest fairness
benefits occur with the maximum severity, with a maximum relative gain of 40.17% for severity 5
vs 20.18% for severity 1.

4 WHY HOMOGENEOUS ENSEMBLES IMPROVE FAIRNESS

We established in the previous Sec. 3 that homogeneous ensembles overly benefit minority sub-
group performance. However, it is still unclear why. In this section, we take a step towards under-
standing that effect through the scope of model disagreement, and in particular how the only three
sources of stochasticity in homogeneous ensemble may impact those results.

4.1 DIFFERENCE IN CHURN BETWEEN MODELS EXPLAINS ENSEMBLE FAIRNESS

It might not be clear a priori how to explain the disparate impact of homogeneous deep ensembling
in bottom-k groups compared to top-k groups, as we observed in the previous Sec. 3, however we
do know that such benefit only appears if the individual models do not all predict the same class,
i.e., there is disagreement between models. One popular metric of model disagreement known as
the churn will provide us with an obvious yet quantifiable answer.

Experiment set-up. To understand the benefit of model ensembling one has to recall that if all the
models within the ensemble agree, then there will not be any benefit to aggregating the individual
predictions. Hence, model disagreement is a key metric that will explain the stark change in per-
formance that our homogeneous DNN ensembles have shown on the bottom-k group. We consider
differences in churn between top-k and bottom-k. We also recall that the predictive churn is a mea-
sure of predictive divergence between two models. There are several different proposed definitions
of predictive churn (Chen et al., 2020; Shamir & Coviello, 2020; Snapp & Shamir, 2021); we will
employ the one that is defined on two models f1 and f2 as done by (Milani Fard et al., 2016) as the
fraction of test examples for which the two models disagree:

C(f1, f2) = EX
[
1{Ŷx;f1

̸=Ŷx;f2
}
]
, (1)

where 1 is the indicator. For an ensemble with more than two models, we will report the average
churn computed across 100 randomly sampled (without replacement) pairs of models. As a further
motivation to employ Eq. (1), we provide in Fig. 22 the strong correlation between Churn(%) and
Test accuracy improvement(%) for various architectures on both CIFAR100 and TinyImageNet. In
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Figure 5: Depiction of multiple individual training episodes of a ResNet9 model on CIFAR100 (two left
columns) and ResNet50 model on TinyImageNet (two right columns). We clearly observe that varying
one factor of stochasticity at a time highlights which ones provide the most randomness between training
episodes. In this setting, we see that batch ordering is the main source. On the other hand, model-init and
data-augmentation have little effect and we even observe very similar trends at different epochs between the
individual runs.

fact, the Pearson correlation coefficient (a maximum score of 1 indicates perfect positive correlation)
between churn and test set accuracy are 0.975 for CIFAR100 and 0.93 for TinyImageNet i.e., a
greater value for Eq. (1) is an informative proxy on the impact toward test set accuracy.

Observations. In Fig. 4, we report churn for various architectures on CIFAR100 and TinyImagenet.
We observe that architectures differ in the overall level of churn, but a consistent observation across
architectures emerges: there are large gaps in the level of churn between top-k and bottom-k. For
example, on ResNet18 for TinyImageNet the difference is churn of 9.22% and 33.21% for top-k and
bottom-k respectively, while it is 7.78% and 39.89% for top-k and bottom-k for CIFAR100. In short,
the models disagree much more when looking at samples belonging to the bottom-k groups than
when looking at samples belonging to the top-k groups. In fact, when looking at the samples of the
bottom-k classes, the models vary in which samples are incorrectly classified (by definition of churn,
please see Eq. (1)). As a result, that group benefits much more from homogeneous ensembling.

From these observations, it becomes clear that poor performance from individual models on the
bottom-k subgroups does not stem from a systematic failure and can thus be overcome through
homogeneous ensembling.

4.2 CHARACTERIZING STOCHASTICITY IN DEEP NEURAL NETWORKS TRAINING

While Sec. 3 demonstrated the fairness benefits of homogeneous ensembles, and Sec. 4.1 linked
those improvements to increased disagreement between the individual models for the minority group
and bottom-k classes, one question remains unanswered: what drives models trained with the same
hyperparameters, optimizers, architectures, and training data to end-up disagreeing? This is what
we propose to answer in this section by controlling each of the possible sources of randomness that
impact training of the individual models.

To understand more what introduces the most significant levels of stochasticity, we first explore
how different sources of randomness impact the training trajectories of DNNs. In particular, for
homogeneous ensembles there are only three source of randomness: (i) Random Initialization (Glo-
rot & Bengio, 2010; He et al., 2016b), (ii) Data augmentation realizations (Kukačka et al., 2017;
Hernández-Garcı́a & König, 2018), and (iii) Data shuffling and ordering (Smith et al., 2018; Shu-
mailov et al., 2021). Clearly, if a source introduces low randomness, different training episodes will
produce models with low disagreement and thus low fairness benefits. To identify the impact of the
above three sources separately, we perform a thorough ablation study.
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Figure 6: Accuracy % difference between top and bottom 10 classes, for ResNet18 (left), 34 (middle), and 50
(right) for TinyImageNet. We clearly observe that once we control for the different sources of stochasticity, it
is possible to skew the ensemble to favor the bottom group, in which case fairness is further amplified compared
to the baseline ensemble. Although the trends seem mostly consistent across architectures of the same family
(ResNets) and datasets, it is not necessarily the case between architecture families: see Fig. 13 for ResNet-
CIFAR100, Fig. 15 for MLPMixer/VGG16-CIFAR100 andViT/VGG16-TinyImagenet.

Experiment set-up. To isolate the impact of the different sources of stochasticity, we propose an
ablation study of the following sources: Change Model Initialization (Init): for this ablation, we
change the model initialization weights by changing the torch seed for each model before the model
is instantiated. Change Batch Ordering (BatchOrder): for this ablation, we change the ordering
of image data in each mini-batch by changing the seed for the dataloader for each model train-
ing. Change Model Initialization and Batch Ordering (Init & BatchOrder): for this ablation,
both the model initialization and batch ordering are changed for each model training. Change Data
Augmentation (DA): for this ablation, only the randomness in the data augmentation (e.g. probabil-
ity of random flips, probability of CutMix(Yun et al., 2019), etc.) is changed. The relevant torch
and numpy seeds are changed right before instantiating the data augmentation pipeline. Custom
fixed-seed data augmentations is also used. Change Model Initialization, Batch Ordering and Data
Augmentation (All Sources): for this ablation, the model initialization, batch ordering and data
augmentation seeds are changed for each model training–this ablation represents the standard ho-
mogeneous ensemble of Sec. 3. A last source of randomness can emerge from hardware or software
choices and round-off errors (Zhuang et al., 2022; Shallue et al., 2019) which we found to be neg-
ligible compared to the others. In addition to providing training curves evolution for each ablation,
we also use two quantitative metrics. First, we will leverage the L1-Distance of the accuracy
trajectories during training, which is calculated for every epoch by averaging the absolute distance
in accuracy among the ensemble members and averaging these values across the training epochs.
Second, we will leverage the Variance of the different training episodes’ accuracy at each epoch
and then average over all the epochs.

Observations. In Fig. 5, we plot these measures of stochasticity for both CIFAR100 and TinyIm-
ageNet on different DNNs. We observe that the single sources of noise dominate, such that the
ablations themselves equate to the level of noise in the DNN with all sources of noise present. In
particular, we observe one striking phenomenon: the variation of the data ordering within each epoch
between training trajectories BatchOrder is the main source of randomness. It is equivalent to the
level of noise we observe for the DNN with all sources of noise All Sources, and the DNN with
the ablation Init & BatchOrder. As seen in Fig. 5 when the batch ordering is kept the same
across training episodes, varying the data-augmentation and/or the model initialization has very little
impact.

4.3 CAN DIFFERENT SOURCES OF STOCHASTICITY IMPROVE HOMOGENEOUS DEEP
ENSEMBLE FAIRNESS?

The last important point that needs to be addressed is to relate the amount of randomness that each
of the three sources introduce (recall Sec. 4.2) with the actual fairness benefits of the homogeneous
ensemble. In fact, Fig. 5 did emphasize how each source of randomness provides different training
dynamics and levels of disagreements, which are the cause of the final fairness outcomes.

In Fig. 6, we depict the accuracy difference between average top-k and bottom-k. A value of 0
indicates that the model performs equally on both top-k and bottom-k classes. We observe that for
the majority of dataset/architecture combinations, batch ordering minimizes the gap between top
and bottom-k class accuracy. Surprisingly, the resulting fairness level is even greater than when
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Figure 7: 20 Model Ensemble Per-
formance (ResNet18) on Blond (left)
and Blond Male (right) Classifica-
tion in CelebA. In the overall blond
classification, the max accuracy in-
creased up to 2.27% using homoge-
neous ensembling, whereas for the
Blond Male minority group the max
accuracy increased dramatically–up
to 14.99%–in the same ensembles.

employing all the source of stochasticity, i.e., it is possible to further improve the emergence of
fairness in homogeneous ensembles solely by varying the batch ordering between the individual
models. In Fig. 7, we observe that although gains quickly plateau for the Blonde category in all
sources, the stochasticity introduced by initialization and batch ordering Init & BatchOrder
matches, and sometimes outperforms the noise ablation on the minority group performance. There
is one exception to this, as we see that data-augmentation variation for ResNet18 on TinyImageNet
creates the largest decrease. This observation is aligned with prior studies which compared the
variability of a learned representation as a function of the different sources of stochasticity present
during training.

In Appendix B. of (Fort et al., 2019), the authors note that at higher learning rates, mini-batch shuf-
fling adds more randomness than model initialization due to gradient noise. Since our experiments
for CIFAR-100 and TinyImageNet use higher learning rates, this is in line with the observations
from (Fort et al., 2019). Additionally, we also perform an ablation on learning rates Fig. 24 in
Appendix H where one can clearly see the impact of different hyperparameters onto the final con-
clusions. There are also several works to-date that have considered how stochasticity can impact
top-line metrics (Nagarajan et al., 2018). Most relevant to our work is (Qian et al., 2021; Zhuang
et al., 2022; Madhyastha & Jain, 2019; Summers & Dinneen, 2021) that evaluates how stochasticity
in training impacts fairness in DNN Systems. However, all the existing works have restricted their
treatment to a single model setting, and do not evaluate the impact of ensembling.

5 CONCLUSION AND FUTURE WORK

In this work, we establish that while ensembling DNNs is often seen as a method of improving
average performance, it can also provide significant fairness gains–even when the apparent diver-
sity of the individual models is limited, e.g., only varying through the batch ordering or parameter
initialization. This suggests that homogeneous ensembles are a powerful tool to improve fairness
outcomes in sensitive domains where human welfare is at risk, as long as the number of employed
models is pushed further even after the average performance plateaus (recall Sec. 3). Our observa-
tions led us to precisely understand the cause for the fairness emergence. In short, by controlling
the different sources of randomness, we were not only able to measure the impact of each source
onto the final ensemble diversity, but we were also able to pinpoint initialization and batch ordering
as the main source of diversity. We hope that our observations will open the door to address fair-
ness in homogeneous ensemble through a principled and carefully designed control of the sources
of stochasticity in DNN training.

Limitations: Validity on non-DNN models/non-image datasets. While our study focuses on im-
age datasets and DNNs, we found that the fairness benefits of homogeneous ensembles extend be-
yond such settings. For example, we have conducted additional experiments on the Adult Census
Income dataset(Becker & Kohavi, 1996) using both a 3-layer multi-layer perceptron (MLP) model
and a Decision Trees model. In the MLP setting, we used both race and sex as sensitive attributes.
We trained on the remaining 12 features to predict income level >$50k. Using the same ablations
as our DNN experiments we report in Tab. 2: homogeneous ensembling improves the >$50k Amer-
Indian-Eskimo subgroup prediction performance by 2.53%. As for the Decision Trees, we limited
the max depth to be 10 and used the random state, which affects the random feature permutation,
as the source of stochasticity to control. The results, shown in Tab. 3, depict improved fairness for
Black and Amer-Indian-Eskimo. The >$50k Other races subgroup had an outsized improvement
with a 3.84% increase in accuracy over the base model. This motivates the need to develop novel
theories explaining the fairness benefits of homogeneous ensembles, as those benefits are not limited
to DNNs or image datasets.
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