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Abstract

With the success of deep reinforcement learning, there has been a resurgence of interest in sit-
uated emergent communication research. Properties of successful emergent communication
have been identified which typically involve auxiliary losses that ensure a trade-off between
ensuring diversity of message-action pairs, conditioned on observations, and consistency,
when the reward acquired is significant. In this work, we draw theoretically connections
between these auxiliary losses and the probabilistic framework of repulsive point processes.
We show how in fact these auxiliary losses are promoting repulsive point processes, as well as
outline ways in which the practitioner could utilise these repulsive point processes directly.
We hope this newfound connection between language and repulsive point processes offers
new avenues of research for the situated language researcher or probabilistic modeller.

1 Introduction

Deep Reinforcement Learning (DRL) has seen successes in many problems such as video and board
games (Mnih et al., 2013; Silver et al., 2016; 2017; Mnih et al., 2015), and control of simulated robots (Ammar
et al., 2014; Schulman et al., 2015; 2017). Though successful, these applications assume idealised simulators
and require tens of millions of agent-environment interactions, typically performed by randomly explor-
ing policies. However, on the time scales of physical (i.e., real-world) systems, sample-efficiency naturally
becomes a more pressing concern due to time and cost burdens.

Sampling in supervised learning is typically used on a fixed dataset D, where mini-batches are sampled
from D to perform parameter updates. The supervised learning literature features a range of biased (non-
uniform) sampling approaches. Csiba & Richtárik (2018) and Katharopoulos & Fleuret (2018) develop
importance sampling schemes that reduce the training time of deep neural networks by orders of magnitude.
Zhao & Zhang (2014) motivates the need for diverse (in terms of classes) mini-batches and shows that
sampling from Repulsive Point Processes (RPP) yields reduced training time and more accurate models.
RPPs are probabilistic models on finite sets that can naturally trade-off between quality and diversity when
sampling subsets of items. Sampling subsets of items arises in many domains within reinforcement learning,
from sampling experience in procedurally generated games to sampling actions and messages in emergent
communication.

With the advent of DRL, there has been a resurgence of interest in situated emergent communication (EC)
research Das et al. (2017); Lazaridou et al. (2016); Kottur et al. (2017); Jaques et al. (2019); Havrylov
& Titov (2017). In this setup, one typically has at least two agents which are de-centralised, yet have a
communication channel between them that might be detrimental to the overall performance of both agents,
i.e. one agent might be able to see but not move, and needs to guide another agent towards a goal. However,
there remain many open design decisions, each of which may significantly bias the nature of the constructed
language, and any agent policy which makes use of it. The properties of successful emergent communication
were identified in Jaques et al. (2019); Eccles et al. (2019b); Lowe et al. (2019); Cowen-Rivers & Naradowsky
(2020), and these typically involve a trade-off between ensuring diversity of message-action pairs, conditioned
on observations, and consistency, when the reward acquired, is considerable.

In this work, we discuss the connections between RPPs and emergent communication. We examine properties
of successful emergent communication and explain how they in-fact encourage a repulsive point processes over
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the actions/ messages. We then show how one could create specifically repulsive emergent communication
for either a speaker or listener agent, and detail how this formulation theoretically bias’s an agent to speak
or listen in a situated language game.

2 Why Emergent Communication is Repulsive

First, we introduce the relevant background required. In 2.1 we introduce the background for single agent
reinforcement learning, in 2.2 we extend the formulation of reinforcement learning (in 2.1) to emergent
communication. We then detail the key elements of diversity and quality. Lastly, in 2.3 we formally
introduce Determinantal Point Processes, a computationally efficient repulsive point process, later used to
re-define an optimal listener and optimal speaker.

2.1 Reinforcement learning

We consider Markov decision processes (MDPs) with continuous states and action spaces; MDP =
⟨O, A, P, c, γ⟩, where O ⊆ Rdstate denotes the state space, A ⊆ Rdact the action space, P : O × A → O
is a transition density function, c : O × A → R is the reward function and γ ∈ [0, 1] is a discount factor.
At each time step t = 0, . . . , T , the agent is in state ot ∈ O and chooses an action t ∈ A transitioning it
to a successor state ot+1 ∼ P (ot+1|ot, t), and yielding a reward rt = c(ot, t). Given a state ot, an action
t is sampled from a policy π : O → A, where we write π(t|ot) to represent the conditional density of an
action. Upon subsequent interactions, the agent collects a trajectory τ = [o0:T , a0:T ], and aims to determine
an optimal policy π⋆ by maximising total expected reward: Eτ∼pπ(τ )[C(τ )] := Eτ∼pπ(τ )[

∑T
t=0 γtrt], where

pπ(τ ) denotes the trajectory density defined as: pπ(τ ) = µ0(o0)
∏T −1

t=0 P(ot+1|ot, t)π(t|ot), with µ0(·) being
an initial state distribution.

2.2 Emergent Communication

A common approach to emergent communication is to concatenate the incoming observational message
(om) and state observation (o) together Lowe et al. (2019); Foerster et al. (2016) to create an augmented
observational space ô = [o, om]. Given a state ôt, a discrete message mt ∈ M is sampled from a policy
π : O → M, where we write π(mt|ôt) to represent the conditional probability distribution of a message
given an observation and incoming message. An agent will also have an additional communication (message)
policy π(m | o). The replay buffer (B) in emergent communication can be described as a collection of tuples
(X ∈ B) such that B = {X0 := (o0, o′

0, om
0 , o′

0
m, a0, m0, r0), . . . , Xn := (on, o′

n, om
n , o′

n
m, an, mn, rn)}.

One of the difficulties in emergent communication is efficiently exploring complex observation, action, com-
munication spaces whilst trading off consistency of actions and messages. There exist auxiliary losses that
pressure the speaking/ listening agent to alter its short-term behaviour in response to messages consis-
tently (e.g., causal influence of communication loss Lowe et al. (2019); Jaques et al. (2019); Eccles et al.
(2019b)), but bear with them the additional difficulties of tuning extremely sensitive auxiliary loss param-
eters, as is the case with most auxiliary loss functions. Thus, there is a need for more simplified emergent
communication algorithms that achieve success in challenging language games with less sensitivity to hyper-
parameters. We will now discuss identified characteristics of Positive Listening Lowe et al. (2019) and
Positive Signalling Lowe et al. (2019) that successfully aid communication and how auxiliary loss func-
tions that encourage these losses are in-fact biasing the agents’ action distribution towards a repulsive point
processes.

Positive Listening Its important for an agent to adapt to changes in incoming communication signals/
messages. An agent exhibits positive listening if the probability distribution over its actions is influenced
by the messages it receives. The causal influence of communication (CIC) Lowe et al. (2019); Jaques et al.
(2019); Eccles et al. (2019b) loss can be defined below

CIC = DKL(π(a | o) || π(a | o, om)) (1)
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Where one can marginalise over messages in order to approximate π(a | o) =
∫

m
π(a | o, om). It is easy

to observe, that when a CIC loss is minimised, an agent should have large probability distribution changes
when an incoming message is received vs when one is not. One can readily see the repulsive nature of this
loss, as the loss biases the agent to taking diverse actions when diverse incoming messages are present in the
observation space. Note, this loss consistently encourages diversity, and has no quality term which enables
the agent to trade-off between diversity and quality (reward) when the reward received increases, unlike the
auxiliary loss for positive listening shown in Eq 2.

Positive Signalling An agent must be consistent with outgoing communication signals. Positive
signalling is defined as a positive correlation between the speaker’s observation and the corresponding message
it sends, i.e., the speaker should produce similar messages when in similar situations. Various methods
exist to measure positive signalling, such as speaker consistency, context independence, and instantaneous
coordination Lowe et al. (2019); Eccles et al. (2019a). An example of a method for biasing agents towards
positive signalling is via the mutual-information (I) loss Eccles et al. (2019a), as shown below. This loss
biases the speaker to produce high entropy distribution of overall messages, but when conditioned on the
speaker’s observation has a low entropy, allowing for exploration and consistency between communication
signals.

I(m, o) = H(m) − H(m|o) (2)

H(m) can be approximated by taking the entropy of the average message distribution and H(m|o) can be
computed easily. The repulsive property in this loss is less obvious: we have a diversity promoting term on
the left, which promotes a more uniform spread of messages, with a quality term on the right that allows
for certain messages, when conditioned on an observation, to maintain a level of consistency (rather than
diversity). This loss function therefore trades off between diversity of message-observation pairs, as well as
allowing consistency for ones receiving high reward, which a detrimental point process is similarly able to
achieve naturally.

2.3 Determinantal Point Process

A repulsive point process is a type of probability distribution whereby meaning sampled points are encouraged
to repel from previously sampled points with respect to some distance metric. Determinantal Point Process’s
(DPP’s) are a type of repulsive point process. DPP’s provide exact methods to calculate the probability of
a subset of items, that can be sampled, from a core set. DPP’s are gaining increasing interest as they have
proven effective in machine learning Kulesza et al. (2012) and multi-agent reinforcement learning Yang et al.
(2020), having originated from modelling repulsive particles in quantum mechanicsMacchi (1977). It has been
shown that extending the use of a determinantal point process (DPP) in multi-agent reinforcement Yang
et al. (2020) learning can significantly improve joint exploration across agents.

Definition 1 (DPP) For a ground set of items Y = {1, 2, . . . , M}, a DPP, denoted by P, is a probability
measure on the set of all subsets of Y, i.e., 2Y . Given an M × M positive semi-definite (PSD) kernel K
that measures similarity for any pairs of items in Y, let Y be a random subset drawn according to P, then
we have, ∀Y ⊆ Y,

PK
(
Y = Y

)
∝ det

(
KY

)
= Vol2

(
{wi}i∈Y

)
, (3)

where KY := [Ki,j ]i,j∈Y denotes the submatrix of K whose entries are indexed by the items included in Y .

Where the diagonal values Ki,i captures the quality of item i, and the off-diagonal values Ki,j measures the
diversity between items i and j with respect to some diversity function. The normaliser can be computed
as:

∑
Y ⊆Y det(KY ) = det(K + I), where I is an M × M identity matrix. The key to the success of DPP’s is

the ability to naturally trade-off between diversity and quality, which in reinforcement learning terms would
enable it to trade-off between exploration-exploitation naturally.
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3 Emergent Communication is Repulsive

In this section, we will detail how one could apply a RPP to Emergent Communication, explaining theoret-
ically how the direction application of RPPs promotes efficient emergent communication.

3.0.1 Biased agents for speaking listening

First, we ask the question: why have a separate policy for the message and action policy, when in reality,
actions and communication can be output jointly? e.g. a human typically takes actions that align with their
verbal statements, and vice versa. For this reason, we create a new joint action-message space U = A × M
for agents which speak and act. where × is the Cartesian product. Of course, this new action space will
have poor scalability; however, it will enable us to reason over actions and messages jointly.

Since the diagonal and off-diagonal entries of K represent quality and diversity respectively, we allow a
decomposition of the similarity matrix similar to Yang et al. (2020) K := DFDT with D ∈ RN×N and
F ∈ RN×N with each row Ki = d2

i fT
i is a product of a quality term d2

i ∈ R+ and a diversity feature
vector fi ∈ RN×1. Where each (i-th) row of F is ensured to have unit norm by dividing through by ∥fi∥.

We can compute the diversity matrix F through any similarity function, such as euclidean distance F i,j =
∥[ôi, ui] − [ôj , uj ]∥2 between concatenated observation-message-action points [oi, ai] and [oj , aj ].

If we denote the quality term for a given observation-action pair as di := exp
( 1

2 Q
(
ôi, ui

))
and setting

Y =
{

(ô1
1, u1

1), . . . , (ô|O|×|M|
N , u

|A|×|M|
N )

}
, C(o) :=

{
Y ⊆ Y : |Y ∩ Yi(oi)| = 1, ∀i ∈ {1, . . . , N}

}
, with Yi(oi) of

size |A| × |M| and |C(o)| = (|A| × |M|)N we can then formulate our DPP distribution over a mini-batch of
data by;

P̃K
(
Y = Y |Y ∈ C(o)

)
∝ log det

(
K

)
∝ log det

(
DY FY DT

Y

)
∝ log

(
det

(
DT

Y

)
det

(
FY

)
det

(
DY

))
∝

∑B
i=1 Q

(
ôi, ui

)
+ log det

(
FY

)
.

(4)

Using det(AB) = det(A) det(B), for square matrices A&B.

3.0.2 Speaker

If we have an agent who is just listens or speaks , we can similarly derive the DPP action-observation/
message-observation distribution. Setting Y =

{
(o1

1, m1
1), . . . , (o|O|

N , m
|M|
N )

}
, C(o) :=

{
Y ⊆ Y : |Y ∩ Yi(oi)| =

1, ∀i ∈ {1, . . . , N}
}

, with Yi(oi) of size |M| and |C(o)| = |M|N , we can now derive the probability density
function for the speakers message-observation distribution;

P̃Speaker
K

(
Y = Y |Y ∈ C(o)

)
∝

∑B
i=1 Q

(
oi, mi

)
+ log det

(
FY

)
.

(5)

3.0.3 Listener

Similarly by setting ô = [o, om] and Y =
{

(ô1
1, a1

1), . . . , (ô|O|
N , a

|A|
N )

}
, C(ô) :=

{
Y ⊆ Y : |Y ∩ Yi(ôi)| = 1, ∀i ∈

{1, . . . , N}
}

, with Yi(ôi) of size |A| and |C(ô)| = |A|N , we can now derive the probability density function
for the listeners action-observation distribution
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P̃Listener
K

(
Y = Y |Y ∈ C(o)

)
∝

∑B
i=1 Q

(
ôi, ai

)
+ log det

(
FY

)
.

(6)

One can see, that when a speaker is sampling message-observation pairs from this DPP, they will be biased
towards positive speaking as the DPP will be biased to sampling mixed messages concerning different
states, as this diversity of state-message pairs yields a larger determinant, thus a larger probability of being
sampled as seen in Equation ?. As the message quality value increases, we expect to see the agent more like
to sample this message rather than other more diverse messages.

When a listener is sampling actions from this DPP, the DPP will promote positive listening as it will grant
higher probabilities to sets of actions which are diverse concerning differing incoming messages. Similarly,
as the action value increases, the agent will be less drawn to diversifying its actions and taking the one with
higher value.

The last remaining challenge is sampling from a defined partitioned DPP’s, as we are constrained by the
fact that each observation requires an action, rather than the typical DPP which is allowed to free sample
items from the core set. However, there is a wealth of solutions to this such as sampling-by-projection as
seen in Celis et al. (2018) and Chen et al. (2018). Additionally, due to similar partitioning of the DPP one
can expect sampling to simplify down to a scheme similar to Yang et al. (2020), where each row is sampled
sequentially. We leave this up to future work.

4 Conclusion & Future Work

We examined properties of successful emergent communication and explained how they in-fact encourage a
repulsive point processes over the actions/ messages. We hope that these theoretical connections between
emergent communication and RPPs provides justification and inspiration for future researchs.
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