
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EXPLORING SOLUTION DIVERGENCE AND ITS EFFECT
ON LARGE LANGUAGE MODEL PROBLEM SOLVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have been widely used for problem-solving tasks.
Most recent work improves their performance through supervised fine-tuning
(SFT) with labeled data or reinforcement learning (RL) from task feedback. In
this paper, we study a new perspective: the divergence in solutions generated by
LLMs for a single problem. We show that higher solution divergence is positively
related to better problem-solving abilities across various models. Based on this
finding, we propose solution divergence as a novel metric that can support both
SFT and RL strategies. We test this idea on three representative problem domains
and find that using solution divergence consistently improves success rates. These
results suggest that solution divergence is a simple but effective tool for advancing
LLM training and evaluation.

1 INTRODUCTION

The rise of large language models (LLMs) and their remarkable general problem-solving capabilities
have accelerated research on advanced artificial intelligence (AI) solutions across diverse domains,
including science (Ren et al., 2025), finance (Li et al., 2023), and education (Wang et al., 2024). In
particular, problems in STEM subjects such as mathematics (Liu et al., 2024), logic reasoning (Par-
mar et al., 2024) and programming (Coignion et al., 2024) have received significant attention, as their
solutions can be objectively verified. A wide range of advanced algorithms have been proposed to
improve LLMs’ problem-solving success, most of which focus on either expanding training datasets
or applying supervised fine-tuning (SFT) with step-by-step annotated solutions (Zhang et al., 2024)
or employing reinforcement learning (RL) with correctness-based rewards (Ouyang et al., 2022).

While these approaches highlight the value of data in improving LLM performance, in this work we
turn to an underexplored property shared across problem-solving datasets: the solution divergence,
which refers to the presence of multiple viable solutions to a single problem. Studying solution
divergence offers two key benefits in improving the models’ performance. First, the majority of
existing work in using SFT to boost LLM’s performance on the task relies on generating or collecting
new problems to augment training data, a process that is costly and labor-intensive due to the need for
extensive cleaning and quality control (Shen, 2024). Although synthetic approaches such as question
paraphrasing have been proposed (Chen & Lin, 2024), they often produce inconsistent quality and
risk diverging from authentic problem distributions, limiting their effectiveness (Chen et al., 2024b).
By contrast, leveraging solution divergence allows us to enrich datasets using existing, authentic
problems, thus avoiding these drawbacks. Second, it is evident from cognitive science research that
humans with larger repertoires of problem-solving strategies perform more effectively on complex
tasks (Siegler, 1998). Given the growing similarities between human and model problem-solving
behaviors, such as step-by-step reasoning (Wei et al., 2022), we argue that studying the solution
divergence potentially offers a new perspective for understanding LLM behavior from a cognitive-
science point of view. Moreover, it provides new opportunities to improve LLM problem-solving
performance. For instance, education research shows that fostering solution diversity in learners
leads to better academic outcomes (Caviola et al., 2018). By integrating solution divergence, we can
analogously enhance LLMs.

Overall, our study is organized as follows. In Section 3, we define the concept of solution di-
vergence and evaluate it on three representative problem-solving datasets spanning mathematics,
programming, and logical reasoning, examining its relationship with LLM performance across mul-
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tiple models. In Section 4, we propose methods to incorporate solution divergence into both SFT-
and RL-based fine-tuning paradigms. Finally, in Section 5, we present experiments on datasets from
different domains and empirically demonstrate that integrating solution divergence enhances the
problem-solving capabilities of LLMs.

2 RELATED WORK

LLM Optimization. LLM optimization methods typically build on SFT and RL. SFT has proven
effective across domains such as coding (Roziere et al., 2023), mathematics Hendrycks et al. (2021);
Toshniwal et al. (2024), and general reasoning (Yue et al., 2024), where curated datasets like
Code Llama, OpenMathInstruct-2, and MAmmoTH2 yield substantial improvements. Reinforce-
ment learning from human feedback (RLHF) (Ouyang et al., 2022) further established a widely
used paradigm for aligning models to human preferences. More recently, group-based RL variants
have been proposed to better capture sequence-level reasoning: GRPO (Shao et al., 2024) intro-
duces group-wise optimization to improve mathematical reasoning, DAPO (Yu et al., 2025) refines
stability for long chain-of-thought training via dynamic sampling and token-level gradients, and
GSPO (Zheng et al., 2025) adopts sequence-level clipping for greater efficiency. Our work com-
plements these approaches by introducing solution divergence as an explicit signal, used both for
selecting training samples in SFT and for designing diversity-aware reward functions in RL.

Data Diversity in LLM Training and Inference. Parallel lines of research emphasize the role
of data and output diversity. At the training stage, diverse prompts and responses have been shown
to enhance robustness and alignment (Bukharin & Zhao, 2023; Song et al., 2024), while synthetic
data studies also report strong links between diversity and downstream generalization (Chen et al.,
2024a). At inference, prompt ensembles, sampling strategies, and temperature scaling are com-
monly used to elicit multiple solution paths (Kirk et al., 2023). Unlike these heuristic approaches,
our framework formalizes diversity through a measurable solution divergence metric and integrates
it directly into training objectives, unifying dataset-level diversity with inference-time diversity in a
principled manner.

3 PRELIMINARY STUDY

3.1 SOLUTION DIVERGENCE DEFINITION

We consider a question dataset Q = {qn | n = 1, . . . , N} of size N. For each question qn, the LLM
(πθ) generates a solution set Sqn = {sm | m = 1, . . . ,M} of size M. The divergence between two
solutions si and sj is represented by δi,j , capturing the degree of difference between them. For each
question qn, the overall divergence of its solution set Sqn is denoted as ζqn . The model’s solution
divergence over Q is written as ζπ = mean(ζqn). In cognitive science studies (Caviola et al., 2018),
the pairwise divergence δi,j is represented as a binary value {0, 1}, where 0 indicates identical
solutions and 1 indicates different solutions. These judgments are usually made by experts through
manual review of solution pairs. Based on this, ζqn is calculated by counting the number of unique
solutions in the set of solutions. Formally, this can be expressed by constructing a weighted relation
graph G, where nodes correspond to solutions and edge weights correspond to their similarity, i.e.,
1− δi,j for si and sj . The number of connected components in G then yields ζqn .

However, in our study, the scale of LLM-generated solutions makes manual labeling infeasible. To
address this, we proxy δi,j by the normalized string edit distance d(e):

δ(si, sj) =
d(e)(si, sj)

max(|si|, |sj |)
(1)

where | · | denotes text length. Intuitively, the more overlapping characters two solutions share,
the smaller their divergence. We note that string edit distance provides only a restricted perspec-
tive on divergence due to the inherent flexibility of natural language. Nevertheless, we adopt it
because of its computational efficiency and consistency across domains. This is important since
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Figure 1: An Overview of the Solution Divergence Calculation

solution formats can differ greatly (e.g., mathematical derivations versus programming code), mak-
ing domain-specific divergence metrics inefficient to deploy adaptively. Thus, δi,j offers a practical
means to analyze the relationship between solution divergence and problem-solving performance.
More advanced proxy metrics will be explored as one future work.

To calculate ζqn , we derived it from the eigenvalues Λ = {λ1, . . . , λM} of the Laplacian matrix L
of the relation graph G. This adjustment is necessary because the edge weights δi,j are non-binary.
Inspired by spectral clustering (Von Luxburg, 2007), where the magnitude of eigenvalues reflects
the tightness of clusters in a relational graph, we propose two variants:

ζlqn = M − λ2, ζgqn = M − 1

M

M∑
i=1

λi. (2)

The local variant ζlqn is highly sensitive to weak local connections; even small changes in the smallest
δi,j can substantially affect its value. By contrast, the global variant ζgqn captures overall graph
tightness from a global perspective. The solution divergence of an LLM is denoted as ζlπ and ζgπ ,
respectively. A schematic illustration of the solution divergence calculation is shown in Figure 1.

3.2 STUDY SETTINGS

Table 1: Example questions from the datasets.

Dataset Question

Math-
500

A regular hexagon can be divided into six equilateral tri-
angles. If the perimeter of one of the triangles is 21
inches, what is the perimeter, in inches, of the regular
hexagon?

MBPP+ Write a function to find frequency of each element in a
flattened list of lists, returned in a dictionary.

Maze Given a 2D coordinate system where both the x-axis and
y-axis range from 0 to 10 (i.e., units 0, 1, .., 10). Consider
a point starting at position (0,0). The goal is to move this
point step by step to the target position: (8,4). During the
moving, you cannot pass the following position: (1,1),
(3,4), (6,2). At each step, the point may move only one
unit right (r) or one unit up (u). Please provide one pos-
sible sequence of moves to reach the destination.

Datasets To comprehensively study the rela-
tionship between solution divergence and LLM
performance, we employ three representative
problem-solving datasets: Math-500 (Light-
man et al., 2023), MBPP+ (Liu et al., 2023),
and Maze. Math-500 and MBPP+ are well-
established benchmarks for evaluating LLMs
in mathematical problem solving and auto-
matic code generation, respectively. In addi-
tion, we introduce Maze, a novel logical rea-
soning dataset developed for this study. Each
problem in Maze requires the model to identify
a viable path from a given start point to an end-
point on a 2D coordinate grid while avoiding
blocked areas. For every question across these datasets, correctness can be assessed objectively, and
multiple valid solution paths may exist. To balance cost and efficiency, we sample 100 questions
from the test split of each dataset for our experiments. Table 1 shows question examples from each
dataset. Further details on all three datasets are provided in Appendix A.1.

Other Settings We conducted experiments on the three datasets independently. In each experi-
ment, different LLMs were treated as independent “testers”, analogous to participants in cognitive
science studies, and were repeatedly prompted to solve the same questions, thereby producing the
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solution set Sqn . To ensure independence in calculating problem solving performance metric, pro-
portion of problems for which the model’s first generated solution is correct (Pass@1), and solution
divergence, we randomly split the 100 sampled questions into two halves: the first 50 were used to
compute ζπ for each model, and the remaining 50 were used to evaluate Pass@1. Since divergence
requires non-empty solution sets (|Sqn | > 0), we assigned ζqn = 0 for models that failed to produce
any correct solutions within the allowed trials. To control for the effect of solution set size on diver-
gence values, we required each model to provide the same number of correct solutions per question.
For models unable to generate sufficient correct solutions, we applied random oversampling from
the existing solution set to match the required size. Our study encompasses a broad spectrum of
LLMs, including both open-source models (e.g., Llama-3.1 (Touvron et al., 2023), Qwen-2.5 (Yang
et al., 2024)) and closed-source models (e.g., GPT-4o (Bubeck et al., 2023), Claude-3.5 (Anthropic,
2024), Gemini-1.5 (Team et al., 2023)). To ensure fairness in generation, we used the same inquiry
prompt across all models and relied on their default generation parameters. Additional details about
the models and prompts are provided in Appendix A.2 and Appendix A.3, respectively.

3.3 KEY FINDINGS

We present the relationship between the Pass@1 and ζπ across the three datasets in Figure 2. From
the plots, we observe a consistent positive relationship between ζgπ and problem-solving perfor-
mance across all three tasks, supporting our hypothesis that LLM performance is related to solution
divergence. In contrast, the local metric ζlπ fails to capture this relationship on MBPP+, suggesting
that ζgπ is a more reliable indicator of solution divergence. To quantify these relationships, we fit
linear regression lines for each dataset and report the coefficient of determination (R2), which mea-
sures the proportion of variance explained. As shown in the plots, R2 values obtained with ζgπ are
consistently higher than those with ζlπ , further validating this observation.

(a) MAZE [ζgπ] (R2=.94) (b) MATH-500 [ζgπ] (R2=.71) (c) MBPP+ [ζgπ] (R2=.50)

(d) MAZE [ζlπ] (R2=.89) (e) MATH-500 [ζlπ] (R2=.08) (f) MBPP+ [ζlπ] (R2=.13)

Figure 2: The Relationship of Solution Divergence (ζlπ , ζgπ) to Success Rate (Pass@1) in Maze,
Math-500, and MBPP+ Datasets.

To further examine the alignment between human and LLM problem-solving behavior, we divide
each dataset into three difficulty groups, i.e., Easy, Medium, and Hard, based on the 33rd and 66th
percentiles of average success rates across all models. For each group, we compute ζgπ , denoted
as ζgπ(e), ζ

g
π(m), and ζgπ(h), corresponding to the easy, medium, and hard subsets, while keeping

Pass@1 calculated on the mixed-difficulty questions in its original half as the performance metric.
Figure 3 shows the relationship between these group-specific divergence values and Pass@1. We
find that the slope β of the fitted line is consistently steepest for ζgπ(m), echoing findings in cognitive
science (Caviola et al., 2018) that solution divergence is most informative in the mid-difficulty range.
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This alignment further suggests that divergence serves as a particularly meaningful indicator of
capability under moderate problem difficulty.

(a) Maze [ζgπ(e)] (β = .08) (b) MATH-500 [ζgπ(e)] (β = .12) (c) MBPP+ [ζgπ(e)] (β = .10)

(d) Maze [ζgπ(m)] (β = .10) (e) MATH-500 [ζgπ(m)] (β = .47) (f) MBPP+ [ζgπ(m)] (β = .38)

(g) Maze [ζgπ(h)] (β = .10) (h) MATH-500 [ζgπ(h)] (β = .18) (i) MBPP+ [ζgπ(h)] (β = −.03)

Figure 3: The Relationship of Solution Divergence (ζgπ(e), ζ
g
π(m), ζ

g
π(h)) to Success Rate (Pass@1)

in Maze, Math-500, and MBPP+ Datasets.

4 DIVERGENCE FUSED FINE-TUNING METHODS

Based on the findings in Section 3.3, we confirm a positive relationship between solution divergence
(ζgπ) and model problem-solving performance (Pass@1) during inference. However, the effective-
ness of solution divergence as a metric remains unverified in the training stage. Inspired by recog-
nition science studies Siegler (1998), which emphasize the benefits of fostering large repertoires of
problem-solving strategies in children’s education, we propose two simple yet effective approaches
that integrate solution divergence into existing training paradigms, i.e., SFT and RL, to further im-
prove LLM performance. The following sections describe each method in detail.

4.1 DATASET DIVERGENCE METRIC

The most straightforward way to leverage ζπ for improving model performance during training is
to use it as a criterion for data sample selection in the fine-tuning stage. The goal is to increase
solution divergence by training the model on more diverse solutions. Data quality control is cru-
cial in fine-tuning, as it directly affects both training efficiency and final performance (Shen, 2024).
Building on this idea, our first proposed method for enhancing LLM problem-solving ability is to
adopt ζqn as a new metric for solution set selection. Specifically, for a given set of solutions Sqn
for the questions qn, we compute its solution divergence to decide whether to add new solutions or
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remove low-value ones. The decision is guided by the change in ζgqn before and after modification:
if the metric increases, the modification is accepted; otherwise, it is rejected. In this way, incorpo-
rating solution divergence into the supervised fine-tuning process ensures higher diversity within the
training dataset, which in turn enhances the model’s problem-solving capability.

4.2 SOLUTION DIVERGENCE FUSED REWARD

Another application of the solution divergence metric is its integration into reinforcement learn-
ing (RL) training for LLMs. Recent advances in reinforcement learning algorithms, such as
GRPO (Shao et al., 2024), DAPO (Yu et al., 2025), and GSPO (Zheng et al., 2025), have demon-
strated the effectiveness of using group-based success rewards, evaluated over a set of generated
solutions S1 for each question, in removing the need for a separate value model, as required in
the original RLHF framework (Ouyang et al., 2022). However, these approaches focus solely on
correctness-based rewards and neglect the solution divergence naturally present in group genera-
tion. To address this gap, we propose a novel divergence-augmented reward function defined as:

Rζ(si,S) =


(

|Sc|
|S|

)α

·
∑

sj∈Sc
δ(si,sj)

|Sc| , if v(si) = 1,

−1, if v(si) = 0.

(3)

where si is the i-th generated solution, and v(·) is a verification function that returns 1 if si is correct
and 0 otherwise. Sc = {si | v(si) = 1} ⊆ S is the subset of correct solutions. δ(·) denotes pairwise
solution divergence calculation function, |S| is the number of sampled solutions, and α ∈ R is a
scaling hyperparameter. Compared with binary correctness-based rewards, Rζ incorporates pair-
wise solution divergence into reward computation for correct solutions. The leading term (|Sc|/|S|)
calculates the average success rate of the solution set and serves to balance correctness and diversity:
when the success ratio is low, the reward emphasizes correctness; when success is high, it shifts at-
tention toward divergence. The hyperparameter α controls the sensitivity of this balance. Intuitively,
while classical binary success-based rewards treat all correct answers equally, Rζ reweights correct
solutions according to their divergence. In standard RL training, optimization tends to concentrate
on the dominant cluster of similar solutions, giving less influence to correct but more creative or
diverse answers. By reweighting samples based on solution divergence, Rζ provides a more bal-
anced learning signal between dominant and inventive solutions, enabling the model to learn from a
broader range of behaviors. By summing over all solutions, we obtain the group reward for question
qn:

Rqn =
∑
si∈S

Rζ(si,S) ≈
(
|Sc|
|S|

)α−3

· ζgqn + |Sc| − |S| (4)

where ζqn is the solution divergence for question qn we defined in Section 3.1. Full details of the
simplification are provided in Appendix A.5. This formulation shows that the reward depends jointly
on ζqn and |Sc|, encouraging the model not only to increase the number of correct solutions but
also to diversify the solution set. For optimization, we adopt the Token-level Policy Gradient Loss
proposed in DAPO, which alleviates the underweighting of long responses in the original GRPO
loss. Furthermore, we remove the KL-divergence constraint to allow for broader exploration during
RL training. The loss function is given by:

J (θ) =E(q,a)∼D,{si}S
i=1∼πθold

(·|q) 1∑|S|
i=1 |si|

|S|∑
i=1

|si|∑
t=1

min
(
ri,t(θ)Âi,t, clip (ri,t(θ), 1− ϵ, 1 + ϵ) Âi,t

) (5)

where
1We omit the index in the following text for clarity

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

ri,t(θ) =
πθ(si,t|q, si,<t)

πθold(si,t|q, si,<t)
, Âi,t =

Ri − mean({Ri}|S|
i=1)

std({Ri}|S|
i=1)

(6)

Here, si,t denotes the t-th token of solution si, θ is the parameter of the current policy model, and
θold is the parameter of the reference model. The functions mean and std compute the mean and
standard deviation of the rewards across the solution set S. Finally, ϵ is the clipping hyperparameter
that prevents excessively large updates and stabilizes RL training.

5 EXPERIMENT

In this section, we present the experimental details for the same three problem-solving tasks intro-
duced in Section 3. As in the previous section, we first describe the datasets and the preparation
steps applied to each. We then provide details of the models and experimental settings. Next, we
report results from both SFT- and RL-based algorithms, followed by ablation studies.

5.1 DATASET

Details of the problems posed to LLMs are provided in Section 3.2. Here, we focus on the prepa-
ration of datasets used for subsequent SFT and RL training. For each task, we construct disjoint
datasets for SFT (DSFT) and RL (DRL) by random sampling from the standard training split, ensuring
DSFT ∩ DRL = ∅. Dataset sizes were determined by the availability of samples, task difficulty, and
computational constraints. Specifically, we use 2,000 and 1,000 questions for math, 98 and 98 for
programming, and 250 and 1,000 for logical reasoning in SFT and RL training, respectively. Since
our SFT experiments require diverse correct solutions per question, we employ advanced LLMs
(e.g., GPT-4o, Gemini-2.5, Claude-3.5) to generate at least 10 distinct correct solutions for each.
For each question, we enumerate all 4-solution subsets, compute their solution divergence ζqn , and
select the subset with the highest divergence as D+

S and the one with the lowest divergence as D−
S .

Aggregating these across all questions yields two version training sets: a high-divergence set D+
SFT

and a low-divergence set D−
SFT. Each version SFT datasets contain 8,000, 392, and 1,000 solutions

for math, programming, and logical reasoning, respectively. For validation, we sample 100, 32, and
500 examples from the validation splits of the respective datasets, which are used for both SFT and
RL training. For testing, we extend the datasets from the preliminary study: the full 500-question
Math-500 set for math, the same 100-question MBPP+ set for programming (as no additional test
data are available), and 500 questions for Maze. Additional details on sampling procedures and
prompts are provided in Appendix A.6.

5.2 SETTINGS

We use four representative open-source LLMs in our experiments: Llama-3.2-1B, Llama-3.1-8B,
Qwen2.5-1.5B, and Qwen2.5-7B. Following the commonly adopted performance improvement
pipeline, each model is first trained with the task-specific SFT dataset, and then further refined with
the RL dataset for additional performance gains. For the SFT stage, we train each model on both
versions of the prepared datasets, D+

SFT and D−
SFT. In the RL stage, we further train the models using

the RL dataset DRL, starting from the two SFT-trained checkpoints. In cases where the SFT results
show little difference between D+

SFT and D−
SFT, we proceed with the model trained on D+

SFT as the
initialization for RL training. For both SFT and RL training, we tune the hyper-parameters including
learning rate and the solution divergence balancing factor α. The baselines are defined as follows:
for SFT, models trained on D−

SFT serve as the baseline for comparison with D+
SFT; for RL, we replace

the divergence-fused reward function Rζ with the classical binary success-based reward function
Rs. For evaluation, we report Pass@1 (success rate for the top solution) and Pass@10 (success rate
within the top 10 solutions, capturing gains from solution diversity and supporting post-hoc ensem-
bling methods such as self-consistency Wang et al. (2022)). Task instruction prompts are identical
to those used in our preliminary study; other details are provided in Appendix A.7.
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Table 2: Problem-solving performance (Pass@1 and Pass@10, in %) across three datasets. Results
are shown for models fine-tuned with D−

SFT and D+
SFT. The metric difference ∆ = D+

SFT −D−
SFT.

Model Llama-3.2-1B Llama-3.1-8B Qwen2.5-1.5B Qwen2.5-7B

Dataset Metric D−
SFT D+

SFT ∆ D−
SFT D+

SFT ∆ D−
SFT D+

SFT ∆ D−
SFT D+

SFT ∆

Maze Pass@1 23.84 23.24 -0.60 25.70 29.36 3.66 27.92 26.48 -1.44 25.10 22.70 -2.40
Pass@10 35.20 43.80 8.60 36.80 47.80 11.00 39.00 43.60 4.60 36.00 45.80 9.80

Math-500 Pass@1 22.88 25.38 2.50 38.16 39.24 1.08 31.78 32.14 0.36 43.20 44.78 1.58
Pass@10 40.00 48.60 8.60 64.20 72.40 8.20 53.00 57.40 4.40 60.80 69.00 8.20

MBPP+ Pass@1 26.50 29.60 3.10 47.00 47.90 0.90 40.30 41.30 1.00 56.00 54.10 -1.90
Pass@10 39.00 51.00 12.00 70.00 68.00 -2.00 62.00 63.00 1.00 65.00 65.00 0.00

5.3 MAIN RESULTS

Dataset Divergence Metric Table 2 reports problem-solving performance and solution diver-
gence across the three datasets for models fine-tuned on low- and high-divergence training sam-
ples. Models trained on D+

SFT outperform those trained on D−
SFT in 8 out of 12 cases for Pass@1

(mean(∆) = 0.65%). The advantage is even clearer for Pass@10, where D+
SFT yields higher per-

formance in 10 out of 12 cases (mean(∆) = 6.2%). These results underscore the strong influence
of solution divergence in training data on SFT model performance, supporting divergence-based
sample selection as an effective strategy for improving problem-solving ability. An exception is
observed on the MBPP+ dataset, where performance differences between low- and high-divergence
training are minimal. Examination of the training process indicates that the limited size of MBPP+
leads to rapid overfitting and early stopping, thereby reducing the benefits of divergence-based sam-
ple selection. Finally, as some values of∆ are small, we repeat the experiment over small sized
model for multiple times and report their statical significancy in Appendix A.8.

Solution Divergence Fused Reward We now present the RL results in Table 3. When applying
RL to models initialized from D−

SFT, the divergence-fused reward Rζ outperforms the binary suc-
cess reward Rs on Pass@1 in 7 out of 12 cases, with an average improvement of 0.34%. More
importantly, on Pass@10, models trained with Rζ achieve overwhelming advantages in 11 out of
12 cases, with an average improvement of 3.12% over Rs. For models initialized from D+

SFT, we
observe a similar but less pronounced trend. Specifically, Rζ improves Pass@1 performance in 5
out of 9 cases, though the average performance lags behind Rs by 0.38%. For Pass@10, however,
Rζ maintains its advantage, outperforming Rs in 6 out of 9 cases with an average gain of 2.68%.
These findings provide strong evidence that the divergence-fused reward is effective in enhancing the
problem-solving ability of LLMs. Notably, in several cases Rζ yields lower Pass@1 performance
but significantly better Pass@10 results. This suggests that Rζ encourages broader exploration of
solution space, which helps models discover diverse solutions to new problems, rather than relying
solely on rigid, known solutions. Together, these results confirm the effectiveness of incorporat-
ing solution divergence into the reward function. Additionally, we run multiple experiments using
smaller-sized models and report their statistical significance in Appendix A.8. Finally, while our
main experiments use normalized edit distance as the proxy metric for paired-solution divergence,
we also evaluate a variant of Rζ that leverages semantic embeddings to compute divergence. We find
that embedding-based divergence can further improve performance on Math-500, though it presents
challenges on datasets such as MBPP+. Detailed results are reported in Appendix A.9.

5.4 ABLATION STUDIES

In addition to the main results, we conduct ablation studies on the Maze dataset, where task per-
formance is highly sensitive to changes in solution divergence. This sensitivity makes Maze a use-
ful setting for uncovering further insights into how solution divergence influences model behavior
across different scenarios. In addition, because Maze is a new problem-solving task introduced in
this study, using it for case analyses helps avoid the potential data-contamination issues present in
the other two public benchmark datasets.

Data Size Influence. We investigate the influence of SFT training data size on the relationship
between solution divergence and LLM problem-solving performance. Specifically, we expand the

8
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Table 3: Problem-solving performance (Pass@1 and Pass@10, in %) across three datasets. Results
are shown for models trained with GRPO using Rs and Rζ as reward function, initialized from the
SFT model with D−

SFT and D+
SFT respectively. The metric difference ∆ = Rζ − Rs. - denotes for

skipped results due to the similar performance between D−
SFT and D+

SFT.

Model Llama-3.2-1B Llama-3.1-8B Qwen2.5-1.5B Qwen2.5-7B

Dataset Metric Rs Rζ ∆ Rs Rζ ∆ Rs Rζ ∆ Rs Rζ ∆

D−
SFT

Maze Pass@1 25.60 26.86 1.26 31.80 32.44 0.64 29.58 31.34 1.76 27.28 26.74 -0.54
Pass@10 35.40 40.80 5.40 39.00 46.40 7.40 37.40 41.80 4.40 36.20 40.20 4.00

Math-500 Pass@1 24.52 25.52 1.00 41.12 41.50 0.38 35.48 36.04 0.56 46.30 46.26 -0.04
Pass@10 41.60 41.20 -0.40 68.00 68.20 0.20 54.20 58.80 4.60 66.40 68.20 1.80

MBPP+ Pass@1 33.40 33.40 0.00 50.70 49.10 -1.60 48.10 47.70 -0.40 59.70 60.70 1.00
Pass@10 44.00 50.00 6.00 63.00 63.00 0.00 59.00 63.00 4.00 67.00 71.00 4.00

D+
SFT

Maze Pass@1 32.60 30.94 -1.66 37.82 34.26 -3.56 31.06 30.66 -0.40 26.64 27.34 0.70
Pass@10 43.20 47.60 4.40 43.00 54.40 11.40 43.40 46.40 3.00 33.00 43.80 10.80

Math-500 Pass@1 26.92 27.44 0.52 43.58 39.68 -3.90 34.42 34.78 0.36 47.50 50.22 2.72
Pass@10 50.20 49.20 -1.00 71.80 69.80 -2.00 57.60 62.40 4.80 69.00 70.80 1.80

MBPP+ Pass@1 37.90 38.60 0.70 - - - - - - - - -
Pass@10 58.00 57.00 -1.00 - - - - - - - - -

number of unique questions in D+
SFT and D−

SFT from 250 to 1,000, thereby increasing the dataset
sizes from 1,000 to 4,000. This yields two new datasets: D++

SFT and D−−
SFT . Figure 4 reports model

performance across all four SFT datasets. The results show that training with more samples improves
overall performance, while also widening the gap between low- and high-divergence datasets, further
highlighting the benefit of incorporating solution divergence in SFT training.

(a) Pass@1 (b) Pass@10

Figure 4: Problem-solving performance (Pass@1 and Pass@10, in %) of models trained on D−
SFT

(1k-low), D−−
SFT (4k-low), D+

SFT (1k-high), and D++
SFT (4k-high) for solving problems in Maze.

Performance and Divergence Balanced Reward. In Section 4.2, we introduced the hyper-
parameter α to balance solution divergence and problem-solving performance during RL training.
We experiment with α ∈ {2, 3, 4}, which scales the divergence term to be inversely proportional,
constant, or directly proportional to the success rate. As shown in Figure 5, α = 4 yields the best
performance in 5 out of 8 Pass@1 cases and 6 out of 8 Pass@10 cases. This suggests that it is gen-
erally beneficial to limit the influence of divergence when problem-solving performance is low, and
to amplify it as performance improves. This finding aligns with cognitive science theory (Siegler,
1998), which emphasizes first developing a correct strategy and only then expanding to diverse
alternatives.

Generation Temperature Tuning. Tuning the generation temperature is a common technique
for adjusting a model’s output style without retraining. In general, higher temperatures encourage
more diverse and creative generations, which can lead to improvements in Pass@10 on problem-
solving benchmarks. To compare the effect of temperature tuning with our proposed solution-
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(a) Pass@1 (b) Pass@10

Figure 5: Problem-solving performance (Pass@1 and Pass@10, in %) of models trained on α =
2, 3, 4 for solving problems in Maze.

Table 4: Problem-solving performance (Pass@1 and Pass@10, in %) on Maze using different gen-
erating temperatures. Results are shown for models fine-tuned with D−

SFT, D+
SFT, Rs and Rζ .

Model Llama-3.2-1B Qwen2.5-1.5B

Method D−
SFT D+

SFT Rs Rζ D−
SFT D+

SFT Rs Rζ

Temperature 0.9 1.2 0.6 0.9 1.2 0.6 0.9 1.2 0.7 0.9 1.2 0.7

Maze
Pass@1 22.54 21.08 23.40 25.10 23.58 26.86 27.45 27.04 26.48 29.09 28.85 31.34

Pass@10 40.00 41.66 43.80 38.20 41.68 40.80 39.88 42.84 43.60 38.32 41.12 41.80

Average 31.27 31.37 33.60 31.65 32.63 33.83 33.67 34.94 35.04 33.71 34.99 36.57

Math-500
Pass@1 22.66 22.20 25.38 23.31 21.34 25.52 31.75 31.10 32.14 35.69 35.28 36.04

Pass@10 41.32 42.12 48.60 43.30 43.60 42.20 54.56 55.84 57.40 56.60 59.00 58.80

Average 31.99 32.16 36.99 33.31 32.47 33.86 43.16 43.47 44.77 46.15 47.14 47.42

MBPP+
Pass@1 24.02 21.42 29.60 33.94 32.00 33.40 40.12 34.80 41.30 44.23 27.02 47.70

Pass@10 41.00 53.00 51.00 42.92 49.37 50.00 62.40 65.80 63.00 64.38 64.38 63.00

Average 32.51 37.21 40.30 38.43 40.69 41.70 51.26 50.30 52.15 54.31 45.70 55.35

divergence–based training, we conduct the following experiments. For the SFT stage, we take the
model trained on D−

SFT and generate solutions using two additional temperatures: 0.9, and 1.2. We
compare these results against the model trained on D+

SFT, evaluated with the default temperature.
For the RL stage, we similarly evaluate the model trained with Rs at different temperatures and
compare it to the model trained with Rζ under the default temperature. Results are reported in
Table 4. Because both Pass@1 and Pass@10 are important, we additionally report their average.
From the table, we observe that increasing the temperature improves the Pass@10 of models trained
on D−

SFT and Rs, but typically reduces Pass@1. When comparing the averages of the two metrics,
models trained with D+

SFT and Rζ consistently maintain the best performance. These results suggest
that solution-divergence–based training provides more robust overall gains than temperature tuning
alone. In addition to the Maze, we also experiment result experiments with both the MBPP+ and
Math-500 datasets and the consistent observation can be observed.

6 CONCLUSION

In this paper, we investigate an underexplored direction for enhancing the problem-solving per-
formance of LLMs: solution divergence, defined as the presence of multiple viable solutions to a
single problem. Our preliminary study empirically demonstrates a positive relationship between
solution divergence and model performance. Building on this insight, we introduce two methods,
the dataset divergence metric and a divergence-fused reward, to augment existing SFT and RL algo-
rithms. Comprehensive experiments across three representative problem-solving tasks in the logical
reasoning, mathematics, and programming domains confirm the effectiveness of leveraging solution
divergence to improve LLM performance. These findings highlight the potential of solution diver-
gence as a valuable training signal and open new avenues for future research on harnessing diversity
in solutions to strengthen LLM problem-solving capabilities.
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A APPENDIX

A.1 PRELIMINARY STUDY DATASET DETAILS

We conduct our preliminary study on the relationship between LLMs’ solution divergence (ζπ) and
problem-solving performance (Pass@1) across three datasets: Math-500, MBPP+, and Maze.

Math-500. This dataset is a high-quality subset of Math, a widely used benchmark for evaluating
LLMs’ mathematical problem-solving ability. Unlike the full Math dataset, which includes stan-
dard train/validation/test splits, Math-500 contains 500 correctness-verified questions sampled from
the original test split. The dataset spans seven categories and provides ground-truth answers, with
most questions also annotated with difficulty levels (1–5). For efficiency and to control API costs
when querying closed-source models, we randomly sampled 100 questions from Math-500 for our
experiments.

MBPP+. MBPP+ is a refined version of the MBPP benchmark, designed to evaluate LLMs’ ability
to solve Python programming tasks. Each problem specifies a function signature and requires a
correct implementation that passes the associated test cases. Compared to MBPP, MBPP+ improves
test robustness by expanding coverage of edge cases; a small number of ambiguous problems from
MBPP were removed. In total, MBPP+ contains 378 problems, aligned with the original MBPP
train/validation/test split. For consistency with Math-500, we randomly sampled 100 test problems
to form our preliminary programming dataset. Both Math-500 and MBPP+ are accessed via the
Hugging Face datasets library2.

Maze. Maze is a new logical reasoning dataset introduced in this paper. Each problem asks an
LLM to find a viable path from a fixed start point (0,0) to a random goal point within a 10× 10grid.
To increase difficulty, we add a blocking set B, where |B| < 100, with blocked coordinates sampled
uniformly at random. Each problem instance has a distinct blocking configuration. Following the
setup for Math-500 and MBPP+, we generated 100 Maze problems for the preliminary study (see
Table 1 for an illustration).

Verification. To verify solution correctness across tasks, we combine existing open-source veri-
fication tools with additional rules tailored to each dataset. For Math-500, we use the open-source
math verify package3. This tool processes full solution strings, extracts the marked answer, and
handles common numerical-equivalence cases with high accuracy. Since our prompts instruct the
model to generate step-by-step solutions, we extract the final answer from the last step and pass it,
along with the ground-truth answer, to the verifier. For MBPP+, we execute each generated func-
tion against the dataset’s official Python test cases. We cap the runtime of each test at 200 ms; if
execution raises an error or exceeds the time limit, the solution is marked incorrect. For Maze, we
reconstruct the complete movement trajectory from the generated solution. A solution is judged
correct only if the final position reaches the goal and all intermediate positions avoid any blocked
coordinates in B.

A.2 PRELIMINARY STUDY MODELS

To ensure the robustness of our conclusion, we comprehensively select 17 representative
LLMs from both open- and close-sourced ones. Below, we list them by their series names
as follows: o1-mini, o1-mini, gpt-4o, gpt-4o-mini, claude-3-7-sonnet-20250219, claude-3-5-
sonnet-20241022, gemini-1.5-pro-002, gemini-1.5-flash-002, gemini-2.0-flash-001, Llama-3.1-
70B-Instruct, Llama-3.1-8B-Instruct, Qwen2.5-72B-Instruct, Qwen2.5-7B-Instruct, DeepSeek-R1-
Distill-Qwen-32B, DeepSeek-R1-Distill-Qwen-7B, DeepSeek-R1-Distill-Llama-70B, DeepSeek-
R1-Distill-Llama-8B. For all the close-sourced ones, we implement based on the huggingface Trans-
former package4 and we use the default generation configuration for each model inference. For the
open-sourced LLMs. we send request to official API endpoints for the results.

2https://huggingface.co/docs/datasets/index
3https://github.com/huggingface/Math-Verify
4https://huggingface.co/docs/transformers/en/index
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A.3 PRELIMINARY STUDY TASK PROMPTS

Below, we present the query prompts for each task. To improve the accuracy of approximating
pairwise divergence δi,j via string edit distance, we explicitly include output-format instructions
in each prompt, requiring LLMs to produce solutions in a standardized style. This design reduces
formatting noise and expression redundancy, ensuring cleaner comparisons during our experiments.

Given a 2D coordinate system where both the x-axis and y-axis range from 0 to 10 (i.e.,
units 0, 1, .., 10). Consider a point starting at position (0,0). The goal is to move this point
step by step to the target position: {target}. During the moving, you cannot pass the fol-
lowing position: {forbid}. At each step, the point may move only one unit right (r) or one
unit up (u). Please provide one possible sequence of moves to reach the destination.
The output format should follow this pattern: s → r → u → r → · · · → e , where s indi-
cates the start of the path, and e indicate the end of the path. The steps in between consist
only of r and u characters. If there is no viable path to make the point move to the target
position, output as: × ; Do not solve this problem using code or external tools, and avoid
including any form of validation or result verification at the end of your response.

Figure 6: The example prompt we used to solve the problems of Maze dataset. {target} and {forbid}
are the placeholder for the destination point and block points set, respectively.

Please provide a step-by-step solution and final answer to the following question. Avoid
redundant steps, such as restating information from the question or listing pure calculations
as independent steps. Do not include validation or verification at the end of the solution.
Question: {question}
Format your response as follows:
Step-by-Step Solution: Step 1. ... Step 2. ... ... Step N. ...
Final Answer: XXX
(Replace XXX with the final computed value.)

Figure 7: The example prompt we used to solve the problems of Math-500 dataset. {question} is
the placeholder for the question stem text.

Complete the Python function below to fulfill the request below. Please avoid using try,
except, or raise statements in your implementation, and focus on achieving the intended
functionality. Request: {request} Return your complete function in the following format:
```python
{function}

# start to complete the function here
```

(Replace the comment with your actual implementation.)

Figure 8: The example prompt we used to solve the problems of MBPP+. {request} is the place-
holder for the problem descriptions and {function} is the function name required by the execution
of the following test cases.

A.4 ADDITIONAL PRELIMINARY STUDY RESULTS

In this section, we present scatter plots of the local-focused solution divergence metric (ζlπ) against
LLM problem-solving performance (Pass@1) across the three difficulty subsets (Figure 9). From the
figure, we observe that the divergence for the medium-difficulty subset (ζlπ,m) exhibits the steepest
slope compared to the easy and hard subsets in both the Maze and Math-500 datasets. However, the
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MBPP+ dataset shows some inconsistencies, highlighting that the local-focused divergence metric is
less reliable than the global-focused metric in capturing the relationship between solution divergence
and problem-solving performance.

(a) Maze [ζlπ(e)] (β = .59) (b) MATH-500 [ζlπ(e)] (β = .03) (c) MBPP+ [ζlπ(e)] (β = −.05)

(d) Maze [ζlπ(m)] (β = .82) (e) MATH-500 [ζlπ(e)] (β = .24) (f) MBPP+ [ζlπ(e)] (β = −.06)

(g) Maze [ζlπ(h)] (β = .81) (h) MATH-500 [ζlπ(h)] (β = .05) (i) MBPP+ [ζlπ(h)] (β = .01)

Figure 9: The Relationship of Solution Divergence to Success Rate (Pass@1) in MAZE, MATH-
500, and MBPP-Plus Problem-Solving Datasets.

A.5 DIVERGENCE FUSED REWARD SIMPLIFICATION

In Section 4.2, we presented the simplified form of the reward function in Eq. 4. For completeness,
we provide the full derivation here. We start from the original formulation:

Rn =
∑
si∈S

Rζ(si,S)

Substituting Eq. 3 into Eq. 4, we have

Rn =
∑
si∈Sc

(
|Sc|
|S|

)α
∑

sj∈Sc
δ(si, sj)

|Sc|
−

∑
si /∈Sc

1

=

(
|Sc|
|S|

)α−1

· 1

|S|
∑
si∈Sc

∑
sj∈Sc

δ(si, sj)−
(
|S| − |Sc|

)
. (7)

Based on the Eq. 2, we have:
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ζgqn = M − 1

M

M∑
i=1

λi = M − 1

M
tr(Λ) = M − 1

M
tr(L) = M − 1

M
tr(D −A)

= M − 1

M
tr(D) = M − 1

M

∑
si∈S

∑
sj∈S

(1− δ(si, sj))

By definition |S| = M , thus we have:

ζgqn = |S| − 1

|S|
∑
si∈S

∑
sj∈S

(1− δ(si, sj)) =
1

|S|
∑
si∈S

∑
sj∈S

δ(si, sj) (8)

To be noticed, if all the solutions in S are correct, then we will have |S| = |S⌋| and the leading
term in Eq. 4 will always be the constant 1, and the expression won’t be influenced by α, thus here
we only consider about when |Sc| < |S|. In Section 3.2, we mention we will conduct the random
over-sampling over Sc to match the size of relation graph |G| = |S|. Suppose we sample all the
solutions in Sc for k times samples to fulfill the requests, and k = |S|/|Sc|. We can have:

∑
si∈S

∑
sj∈S δ(si, sj)∑

si∈Sc

∑
sj∈Sc

δ(si, sj)
≈ P (|S|, 2)− |Sc| · P (k, 2)

P (|Sc|, 2)
=

|S|(|S| − 1)− |Sc| · k(k − 1)

|Sc|(|S⌋| − 1)

=
|S|(|S| − 1)− |S| · ( |S|

|Sc| − 1)

|Sc|(|Sc| − 1)
=

|S|2

|Sc|2

where P (·, ·) denotes for permutation operation. Plug it back to Eq. 8, ζgqn can be expressed as:

ζgqn ≈ 1

|S|
· |S|2

|Sc|2
∑
si∈Sc

∑
sj∈Sc

δ(si, sj)

Then, if we do a simply conversion to the Eq. 7, we can have:

Rn =

(
|Sc|
|S|

)α−3

· 1

|S|
· |S|2

|Sc|2
∑
si∈Sc

∑
sj∈Sc

δ(si, sj)− (|S| − |Sc|)

≈
(
|Sc|
|S|

)α−3

· ζgqn + |Sc| − |S|

which completes the proof.

A.6 EXPERIMENT DATA PREPARATION

In this section, we describe the preparation of training samples for the SFT and RL experiments. For
the math problem-solving task, we sample questions from the original Math dataset, since Math-500
only provides a test split. Each sampled question is then fed into the solving prompt (Figure 10),
where the LLM is instructed to generate four diverse solutions. By aggregating responses from
multiple LLMs, we construct a candidate solution set for divergence-based selection. We enumerate
all possible 4-solution combinations, compute the question-level solution divergence, and retain the
sets with the highest and lowest divergence values to form the two SFT datasets for Math.

Following the same procedure, we prepare the SFT dataset for MBPP+ using the diverse-solution
generation prompt in Figure 11. For Maze, since all viable paths can be enumerated via brute-
force search, we directly generate solutions programmatically and randomly sample 10 solutions
per question for downstream processing.
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Provide four distinct solutions to the single given question. A reference solution is pro-
vided for guidance, but your solutions must be different from the reference. Each solution
must be step-by-step and use a different method from the others. Avoid redundant steps
(e.g., restating the problem or listing bare arithmetic as separate steps). Do not include val-
idation or verification at the end.
Question {question}
Solution {solution}
Format your response exactly as follows:
Solution 1
Step 1. . . . Step 2. . . . Step 3. . . .
Final Answer: ×
Solution 2
Step 1. . . . . . .
Final Answer: ×
Solution 3
Step 1. . . . . . .
Final Answer: ×
Solution 4
Step 1. . . . . . .
Final Answer: ×
Now, please start to respond.

Figure 10: Example prompt used to generate diverse solutions for SFT training questions of Math
dataset.

Complete the four distinct Python functions below to fulfill the request described in the
comments. A reference implementation is provided for guidance, but your solutions must
be different from the reference. Each function should employ a unique approach, and none
should rely on try, except, or raise statements. Focus on achieving the intended functional-
ity through alternative methods.

```python
# {request}
# Reference implementation
{solution}
```

Return your complete function in the following format:
```python
# function 1
{function}

# function 2
{function}

# function 3
{function}

# function 4
{function}
```

Now, please start to respond.

Figure 11: Example prompt used to generate diverse solutions for SFT training questions of MBPP+
dataset.
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Table 5: Problem-solving performance (Pass@1 and Pass@10, in %) on Maze, Math-500, and
MBPP+ with multiple runs. Results are shown for models fine-tuned with D−

SFT, D+
SFT, Rs, and Rζ .

For each metric, we report the mean and std, and statistically significant gaps are marked with *.

Model Llama-3.2-1B Qwen-2.5-1.5B

Dataset Metric D−
SFT D+

SFT ∆ Rs Rζ ∆ D−
SFT D+

SFT ∆ Rs Rζ ∆

Maze
Pass@1 23.55±0.41 23.31±0.32 -0.24 25.32±0.24 26.57±0.37 1.25* 27.81±0.15 26.77±0.47 -1.04* 29.73±0.25 30.11±0.43 0.38

Pass@10 34.71±0.74 44.71±1.09 10.0* 34.88±0.83 40.91±0.68 6.03* 39.19±0.76 43.45±0.84 4.26* 37.15±0.55 42.35±0.73 5.20*

Math-500
Pass@1 22.78±0.16 25.55±0.54 2.77* 24.42±0.13 25.65±0.21 1.23* 31.65±0.39 31.98±0.23 0.33 35.62±0.15 36.55±0.33 0.82*

Pass@10 40.25±0.87 47.65±1.05 7.40* 41.84±0.90 41.45±1.28 -0.39 51.50±1.36 57.28±1.43 5.78* 53.90±1.66 57.65±0.99 3.75*

MBPP+
Pass@1 26.35±0.41 28.85±1.50 2.50* 33.35±0.82 33.45±0.47 0.10 40.50±0.63 40.75±1.58 0.25 47.55±0.71 48.25±0.53 0.70*

Pass@10 39.15±1.30 50.75±1.79 11.6* 44.50±0.48 49.52±2.28 5.02* 63.25±2.19 63.55±1.52 0.30 58.50±1.23 62.84±0.90 4.34*

Table 6: Problem-solving performance (Pass@1 and Pass@10, in %) on Math-500 and MBPP+
datasets, using different pair-wised solution divergence calculation ways. Results are shown for
models fine-tuned with the divergence introduced reward function Rζ .

Metric
Math-500 MBPP+

Llama-3.2-1B Qwen2.5-1.5B Llama-3.2-1B Qwen2.5-1.5B

Edit Embedding ∆ Edit Embedding ∆ Edit Embedding ∆ Edit Embedding ∆

Pass@1 25.52 25.63 0.11 36.04 37.45 1.41 33.40 33.53 0.13 47.7 49.46 1.76
Pass@10 41.20 42.28 1.08 58.80 60.47 1.67 50.00 47.2 -2.80 63.00 58.70 -4.30

A.7 EXPERIMENT SETTING DETAILS

In this section, we introduce the detailed training settings used for our SFT and RL experiment. For
both SFT and RL training, we tune the learning rate from {2×10−5, 1×10−5, 8×10−6, 5×10−6},
divergence balancing parameter α ∈ {0, 1, 2, 3, 4, 5} and set the global batch size to 64. During RL
training, we fix the solution set size to |S| = 8 per question and set the clipping parameter ϵ = 0.2.
Both SFT and RL stages are trained for 10 epochs using the Adam optimizer with β1 = 0.9 and
β2 = 0.999. During the training, the best performed model on the validation dataset is saved. We
implement all the training with the Huggingface TRL packages 5.

A.8 EXPERIMENT WITH REPEATED RESULTS

As shown in Table 2 and Table 3, the performance gaps between models on metrics such as Pass@1
and Pass@10 narrow in absolute terms. To assess whether these differences remain statistically
meaningful, we run inference on the same set of questions 10 times for each trained SFT and RL
model using the default decoding settings, and apply a Student’s t-test to evaluate the significance
of the average performance differences. The resulting means and standard deviations are reported
in Table 5, with statistically significant gaps (p < 0.05) marked by an asterisk. From the table,
we observe that in most cases the performance differences between models with varying solution
divergences remain significant, only 7 out of 24 comparisons are not, demonstrating the consistent
influence of solution divergence.

A.9 EXPERIMENT WITH SEMANTIC EMBEDDINGS

In this section, we conduct the experiment to examine how alternative divergence metrics might
influence our findings, Specifically, we employed the “text-embedding-3-small” model from the
OpenAI API to encode the solutions into embedding vectors and computed pairwise solution di-
vergence using cosine similarity. We incorporated this embedding-based divergence into the RL
training phase and evaluated its effect on two models: Llama-3.2-1B and Qwen2.5-1.5B. As shown
in Table 6, the embedding consistently improves performance on the math-500 dataset, whereas
the improvements on MBPP+ are less pronounced. We hypothesize that this difference arises from
the mismatch between natural language and programming language: step-by-step math solutions
resemble human-written text, making them more compatible with the capabilities of the embedding
model, whereas program code is less aligned with its embedding space.

5https://huggingface.co/docs/trl/en/index
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