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Abstract

Reinforcement learning (RL) agents make decisions using nothing but observations
from the environment, and consequently, rely heavily on the representations of those
observations. Though some recent breakthroughs have used vector-based categorical
representations of observations, often referred to as discrete representations, there
is little work explicitly assessing the significance of such a choice. In this work, we
provide an empirical investigation of the advantages of discrete representations in
the context of world-model learning, model-free RL, and ultimately continual RL
problems, where we find discrete representations to have the greatest impact. We
find that, when compared to traditional continuous representations, world models
learned over discrete representations accurately model a larger portion of the state
space with less capacity, and that agents trained with discrete representations learn
better policies with less data. In the context of continual RL, these benefits translate
into faster adapting agents. Additionally, our analysis suggests that it is the binary
and sparse nature, rather than the “discreteness” of discrete representations that
leads to these improvements.1

1 Introduction

This work is motivated by the quest to design autonomous agents that can learn to achieve goals in
their environments solely from their stream of experience. The field of reinforcement learning (RL)
models this problem as an agent that takes actions based on observations of the environment in order
to maximize a scalar reward. Given that observations are the agent’s sole input when choosing an
action (unless one counts the history of reward-influenced policy updates), the representation of
observations plays an indisputably important role in RL.

In this work, we examine the understudied yet highly effective technique of representing observations
as vectors of categorical values, referred to in the literature as discrete representations (van den
Oord et al., 2017; Hafner et al., 2021; Friede et al., 2023) — a method that stands in contrast to the
conventional deep learning paradigm that operates on learning continuous representations. Despite
the numerous uses of learned, discrete representations (e.g., Robine et al., 2021; Hafner et al., 2023;
Micheli et al., 2023), the mechanisms by which they improve performance are not well understood.
To our knowledge, the only direct comparison to continuous representations in RL comes from a
single result from Hafner et al. (2021) in a subfigure in their paper. In this work, we dive deeper
into the subject and investigate the effects of discrete representations in RL.

The successes of discrete representations in RL date back to at least as early as tile coding methods,
which map observations to multiple one-hot vectors via a hand-engineered representation function

1Code for the implementation and analysis is accessible at
https://github.com/ejmejm/discrete-representations-for-continual-rl.

https://github.com/ejmejm/discrete-representations-for-continual-rl
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(Sutton & Barto, 2018, p. 217-222). Tile coding was most popular prior to the proliferation of deep
neural networks as a way to construct representations that generalize well. Continuous alternatives
existed — notably, radial basis functions (RBFs) could be viewed as a generalization of tile coding
that produce values in the interval [0, 1]. But despite the superior representational capacity of RBFs,
they have tended to underperform in complex environments with high-dimensional observations (An
et al., 1991; Lane et al., 1992).

A similar comparison can be seen between the work of Mnih et al. (2015) and Liang et al. (2016).
Mnih et al. train a deep neural network (DNN) to play Atari games, relying on the neural network
to learn its own useful representation, or features, from pixels. In contrast, Liang et al. construct a
function for producing binary feature vectors that represent the presence of various patterns of pixels,
invariant to position and translation. From this representation, a linear function approximator is
able to perform as well as a DNN trained from pixels.

Recent approaches to producing discrete representations in the area of supervised learning have
moved away from hand-engineering representations, and towards learning representations. Van den
Oord et al. (2017), for example, propose the vector quantized variational autoencoder (VQ-VAE), a
self-supervised method for learning discrete representations. VQ-VAEs perform comparably to their
continuous counterparts, variational autoencoders (Kingma & Welling, 2014), while representing
observations at a fraction of the size. When applied to DeepMind Lab (Beattie et al., 2016), VQ-
VAEs are able to learn representations that capture the salient features of observations, like the
placement and structure of walls, with as little as 27 bits (van den Oord et al., 2017).

Similar representation learning techniques have also been successfully applied in the domain of RL.
Hafner et al. (2021) train an agent on Atari games (Bellemare et al., 2013; Machado et al., 2018),
testing both discrete and continuous representations. They find that agents learning from discrete
representations achieve a higher average reward, and carry on the technique to a follow-up work
(Hafner et al., 2023) where they find success in a wider variety of domains, including the Proprio
Control Suite (Tassa et al., 2018), Crafter (Hafner, 2022), and Minecraft (Johnson et al., 2016).
Works like those from Robine et al. (2021) and Micheli et al. (2023) further build on these successes,
using discrete representations to learn world models and policies. Work from Wang et al. (2022) finds
that representations that are more successful in transfer learning are often sparse and orthogonal,
suggesting that these properties may underpin such successes of discrete representations.

The goal of this work is to better understand how discrete representations help RL agents. We use
vanilla autoencoders (Ballard, 1987) to learn dense, continuous representations, fuzzy tiling activa-
tion (FTA) autoencoders (Pan et al., 2021) to learn sparse, continuous representations, and vector
quantized-variational autoencoders (VQ-VAEs) to learn fully discrete, binary representations. In-
spired by the success of the Dreamer architecture (Hafner et al., 2021; 2023), we first examine how
these different representations help in two distinct parts of a model-based agent: world-model learn-
ing and (model-free) policy learning. Observing that discrete and sparse representations specifically
help when an agent’s resources are limited with respect to the environment, we turn to the continual
RL setting, where an agent must continually adapt in response to its constrained resources (Ku-
mar et al., 2023). We particularly emphasize the benefits of discrete and sparse representations in
continual RL, as the largest and most complex environments are impossible to perfectly model and
require continual adaptation to achieve the best possible performance (Sutton et al., 2007; 2022).

The primary contributions of our work include:

• Showing that discrete representations can help learn better models and policies with less
resources (modeling capacity and data).

• Demonstrating that the successes of discrete representations are likely attributable to the
choice of one-hot encoding rather than the “discreteness” of the representations themselves.

• Identifying and demonstrating that discrete and sparse representations can help continual
RL agents adapt faster.
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2 Experimental Setup

This work primarily focuses on how to train agents to achieve some goal in their environment by
learning to select actions, At ∈ A. This problem is formulated as learning to select actions from
states St ∈ S, that best maximize a given reward signal, Rt+1 ∈ R. We are specifically concerned
with how to learn the parameters, θ, of a policy, πθ(At|St), that maps from states to a distribution
over actions. The goal is to maximize the discounted return from the current state, which is given
by Gt

·=
∑T
k=0 γkRt+k+1, where T is the terminal time step, and γ ∈ [0, 1] is the discount factor.

In this following parts of this section, we discuss the algorithms we use to achieve this goal, and
the environments we use in our experiments.

2.1 Algorithms

We use proximal policy optimization (PPO) (Schulman et al., 2017) to learn policies, which collects
transitions through environment interactions, and then applies multiple epochs of stochastic gra-
dient descent to weights that directly parameterize the policy. The sample efficiency of model-free
RL algorithms like PPO can sometimes be further improved with the additional use of a world
model (Atkeson & Santamaría, 1997; Sutton et al., 2008; Jin et al., 2018; Janner et al., 2019).
In our work, we independently study two components that are often part of model-based RL
methods—world-model learning and (model-free) policy learning—for a fine-grained view of how
the different types of representations affect complex RL agents.

Both policy and world model architectures are split into two components in our work: a represen-
tation network (or encoder) that extracts a representation, and a higher-level network that learns a
policy or world model atop the learned representations. This decoupling allows us to swap out the
encoder (both architecture and objective), while keeping the higher-level model unchanged. With
the exception of an end-to-end baseline, each of the encoders we use are trained with an observation
reconstruction objective as part of a larger autoencoder model (Ballard, 1987). The autoencoder
architecture compresses an observation into a bottleneck state before attempting to reconstruct it,
forcing it to learn a representation that captures salient aspects of the observation. Each of the three
types of learned representations in our work are produced by different autoencoder variants. We
also evaluate the standard approach of end-to-end learning, where the representations are learned
as a byproduct of the optimization process.

Dense, continuous representations are produced by a vanilla autoencoder.2 Sparse, continuous rep-
resentations also use a vanilla autoencoder, but the bottleneck layer outputs are passed through
a Fuzzy Tiling Activation (FTA) (Pan et al., 2021). FTA produces sparse outputs by converting
scalars to “fuzzy” one-hot vectors. The FTA representations provide a strong baseline (Miahi, 2022;
Wang et al., 2022) that acts as a bridge between dense, continuous representations and discrete rep-
resentations. Discrete representations are produced by a vector quantized-variational autoencoder
(VQ-VAE) (van den Oord et al., 2017), which quantizes the multiple outputs of the encoder to
produce a vector of discrete values, also referred to as the codebook. The discrete representations
we refer to in our work comprise multiple one-hot vectors, each representing a single, discrete value
from the codebook. The details of these autoencoders are explained in more depth in Appendix A.

2.2 Environments

Throughout this work, we use the empty, crossing, and door key Minigrid environments (Chevalier-
Boisvert et al., 2023), as displayed in Figure 1. In each environment, the agent receives pixel
observations, and controls a red arrow that navigates through the map with left, right, and
forward actions. The agent in the door key environment additionally has access to pickup and use
actions to pickup the key and open the door. The crossing and door key environments are stochastic,
with each action having a 10% chance to enact a random, different action. The stochasticity increases

2We also tested variational autoencoders (Kingma & Welling, 2014) in early model learning experiments, but were
unable to find hyperparameters to make the method competitive.
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the difficulty of learning a world model by increasing the effective number of transitions possible in
the environments. The increase in difficulty widens the performance gap between different methods,
which makes the results easier to interpret.

(a) Empty (b) Crossing (c) Door Key

Figure 1: Minigrid environments used in our experi-
ments. We refer to these as the (a) empty, (b) cross-
ing, and (c) door key environments. The agent re-
ceives lower-resolution RGB arrays representing pix-
els as observations.

The environments are episodic, terminating
when the the agent reaches the green square,
or when the episode reaches a maximum
length. The former yields a reward Rt ∈
[0.1, 1] depending on the length of the episode
(shorter episodes yield higher rewards), and
the latter yields no reward. The reward is
calculated with the standard Minigrid for-
mula, 1 − 0.9 t

T , where t is the current step
and T is the maximum episode length (de-
pendent on the experiment). Contrary to the
standard Minigrid environments, the layouts
are fixed throughout all episodes. Further
environment details are displayed in Table 4
in Appendix D.

3 World-Model Learning with Discrete Representations

We begin our experiments by examining the benefits of using discrete representations in world model
learning. We specifically focus on the case of sample models, where the model is trained to produce
outcomes with probability equal to that of outcomes in the environment.

3.1 Learning World Models

We train autoencoders and world models on a static dataset, D, of one million transition tuples,
(s, a, s′), collected with random walks. In each episode, the environment terminates when the agent
reaches the green square or after 10,000 steps. Training occurs in two phases: first the autoencoder
is trained, and then a transition model is trained over the fixed representations.

Observations are 3-dimensional RGB arrays, so we use convolutional and deconvolutional neural
networks (LeCun et al., 1989) for the encoder and decoder architectures. The encoder architecture
is similar to the IMPALA network (Espeholt et al., 2018), but the size of the bottleneck layer
is chosen with a hyperparameter sweep. Architectural details are given in Section C. All of the
autoencoders are trained with a mean squared error reconstruction loss, and the VQ-VAE with
additional loss terms as detailed in Section A. Training for both autoencoders and world models use
the Adam optimizer (Kingma & Ba, 2015) with hyperparameter values of β1 = 0.9, β2 = 0.999, and
a step size of 2× 10−4. Training continues for a fixed number of epochs, until near-convergence, at
which point the model weights are frozen and world model learning begins.

World models learned over latent representations take a latent state, z, and an action, a, as input
to predict the next latent state, ẑ′ = wψ(z, a), with an MLP, wψ. World models learned over
continuous representations, or continuous world models, consist of three layers of 64 hidden units
(32 in the crossing environment), and rectified linear units (ReLUs) (Agarap, 2018) for activations.
In discrete world models, the MLP is preceded by an embedding layer that converts discrete values
into a continuous, 64-dimensional vectors. The loss for both world models is given by the difference
between the predicted next latent state and the ground-truth next latent state. The continuous
world model outputs a continuous vector and uses the squared error loss. The discrete model
outputs multiple vectors of categorical logits and uses a categorical cross-entropy loss over each.3
All world models are trained with 4 steps of hallucinated replay as described by Talvitie (2017).

3We also experimented with a squared error loss for the discrete world model and found it made little difference
in the final world model accuracy.
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Hallucinated replay entails feeding outputs of the model back in as new inputs, and training over
multiple “hallucinated” steps to increase the accuracy of the world model. Figures 10 and 11 in
Appendix G depict the training process for continuous and discrete world models, and include a
visualization of hallucinated replay.

Our aim is to train sample models—models that emulate the environment by producing outcomes
with frequency equivalent to that of the real environment. This is more difficult in stochastic
environments because our current training procedure would result in expectations models, where
predictions are weighted averages over possible outcomes. To instead learn sample models, we
augment our models using the method proposed by Antonoglou et al. (2022). This approach learns
a distribution over potential outcomes, and samples from it when using the world model. We provide
a more detailed explanation and relevant hyperparameters in Appendix B.

3.2 Experiments

The goal of this first set of experiments is to measure how the representation of the latent
space affects the ability to learn an accurate world model. Unfortunately, this is not as
simple as comparing a predicted latent state to the ground-truth latent state, as multiple outcomes
may be possible for any given state-action pair. To account for this, we look at distributions
over many transitions instead of the outcomes of single transitions. Specifically, we choose a
behavior policy and measure the difference between the state distribution it induces in the real
environment and in a learned model of the environment. Accurate world models should produce
state distributions similar to that of the real environment, and inaccurate models should produce
state distributions that differ. Figure 12 in Appendix G contains a visualization that helps build
an intuition of how state distributions may differ, which we will discuss in more detail later.

Emulating how world models are often used to simulate multiple different policies, we choose
different behavior policies in each environment. We use a random policy for the empty environment,
a policy that explores the right half of the grid in the crossing environment, and a policy that
navigates directly to the goal in the door key environment. We enact the policies in the real environ-
ments and learned world models for 10,000 episodes each. Episodes are cut off early, or are frozen
at the terminal state to reach exact 30 steps of interaction. We then compare the KL divergence
between ground-truth and induced state distributions at each step of the rollouts. A lower KL
divergence is better, indicating that a model predicts outcomes more similar to the real environment.

We include two baselines in our comparisons that are free of auxiliary autoencoder objectives: the
uniform baseline and the end-to-end baseline. The uniform baseline predicts a uniform distribution
over all states and is strong when the agent’s target policy leads it to spread out, like in a random
walk. The end-to-end baseline shares an architecture equivalent to the vanilla autoencoder, but
is trained end-to-end with a next-observation reconstruction loss. The size of the latent state is
re-tuned in a separate hyperparameter sweep. This is the standard setup in deep RL.

3.2.1 Model Rollouts

We roll out the trained world models for 30 steps and evaluate their accuracy, plotting the results
in Figure 2. Although all of the methods perform the same in the empty environment, the gap in
accuracy widens as the complexity progressively increases in the crossing, and then in the door key
environment.

We examine visualizations of trajectories to better understand the patterns observed in Figure 2,
showing two visualizations that most clearly represent these patterns in Figures 12 and 13 in
Appendix G. The trajectories predicted by the continuous models (Vanilla AE and FTA AE) in the
crossing environment rarely make it across the gap in the wall, which manifests as a steady increase
in the KL divergence starting around step 14. The performance of the continuous model in the door
key environment suffers much earlier as the model struggles to predict the agent picking up the
key, and again as the model struggles to predict the agent passing through the door. Notably, these
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Vanilla AE
VQ-VAE FTA AEEnd-to-End

Uniform

Figure 2: The mean KL divergence between the ground-truth and the world model induced state
distributions. Lower values are better, indicating a closer imitation of the real environment dynamics.
The VQ-VAE and Vanilla AE learn near-perfect models in the empty environment, so the curves
are so close to zero that they are not visible without maginification. FTA AE and End-to-End
experiments were not run in the empty environment because of the triviality. Curves depict a 95%
confidence intervals over 20 runs.

Vanilla AE

VQ-VAE

FTA AE

End-to-End

Uniform

Figure 3: The median KL divergence between the ground-truth and the world model induced state
distributions, averaged over 30 steps. Lower is better, indicating a closer imitation of the real
environment dynamics. The x-axis gives the number of hidden units per layer for all three layers
of the world model. The shaded region depicts a 95% confidence interval over 20 runs. Error bars
are wide for the end-to-end method due to a few divergent runs. Training the end-to-end model is
harder because gradients for multiple objectives must be passed back in time through multiple steps.

two actions occur infrequently in the training data because the training data is generated with
random walks, and because they can only happen once per episode even when they do occur. Stated
concisely, the discrete world model more accurately predicts transitions that occur less frequently in
the training data.

3.2.2 Scaling the World Model

Despite sweeping over the latent vector dimensions of the vanilla and FTA autoencoders in the
hyperparameter sweep, we were unable to find an encoder architecture that enabled either of the
continuous world models to adequately learn transitions underrepresented in the training data.
Either the discrete representations allow learning something that is not learnable with
the continuous representations, or the fixed size of the world model is limiting the
continuous model’s performance. We test the latter hypothesis by varying the size of the world
model while tuning the latent dimensions of each autoencoder as described in Appendix C. We plot
the average performance of each world model in Figure 3.

In the plot, an interesting pattern emerges: the performance of all methods become indistinguishable
beyond a certain size of the world model. Only when the environment dynamics cannot be modeled
near-perfectly, due to the limited capacity of the world model, do the discrete representations
prove beneficial. As the size of the world model shrinks, the performance of the continuous models
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Quantized

Multi-One-Hot

Uniform

Figure 4: The mean KL divergence between the ground-truth and the world model induced state
distributions. Lower values are better, indicating a closer imitation of the real environment dynamics.
Both methods use the same VQ-VAE architecture, but represent the information in different ways.
Curves depict 95% confidence intervals over 20 runs.

degrade more rapidly. This observation aligns with the findings in the previous section, where the
performance gap between models widened with the complexity of the environment. Both results
point to the same conclusion: the discrete VQ-VAE representations enable learning a more accurate
world model with less modeling capacity. This gap is notable especially when the world is much
larger than what the agent has capacity to model. In this setting in our experiments, discrete
representations are favorable because they allow the agent to learn more despite its limited capacity.

3.2.3 Representation Matters

Our goal in the previous experiments was to assess how a change in representation alone can affect
performance, but VQ-VAEs may affect more than just the representation learned. Latent spaces
are defined by both the information they represent—informational content—and by the way that
information is structured—representation. Because the altered bottleneck structure and objectives
of a VQ-VAE may change what is learned, the previous experiments do not directly control for
differences in information content. Our next experiment controls for this factor as we ask the
question: do the benefits of discrete world models stem from the representation or from
the informational content of the latent states?

To answer this question, we rerun the model learning experiment with two types of latents, both
produced by the same VQ-VAE but represented in different ways. Generally, the outputs of a
VQ-VAE are quantized by “snapping” each latent to the nearest of a finite set of embedding vectors.
The resulting quantized latents are discrete in the sense that each can take only a finite number
of distinct values, but they are element-wise continuous. In our work, we alternatively represent
latents as (one-hot encoded) indices of the nearest embedding vectors, which are element-wise
binary. Both of these methods encode the same informational content and can produce latents of
the same shape, but have different representations. If the representation of the latent space does
not matter, then we would expect models learned over both representations to perform similarly.

We prepare the experiment by constructing architecturally equivalent world models with quantized
and multi-one-hot representations. The number and dimensionality of the embedding vectors are
set to 64 so that both representations take the same shape. The quantized model is trained with
the squared error loss, but both models otherwise follow the same training procedure.

We plot the accuracy of both models in Figure 4, where we see multi-one-hot representations vastly
outperform quantized representations despite both being discrete and semantically equivalent. These
results support the claim that the representation, rather than the informational content, is responsi-
ble for the superior performance of the VQ-VAE latents in our experiments. Our results also suggest
that the superior performance of discrete representations is not necessarily attributable to their “dis-
creteness”, but rather to their sparse, binary nature. Both quantized and multi-one-hot representa-
tions are discrete and semantically equivalent, yet yield different results. These results suggest that
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(a)

Vanilla AE

FTA AE

(b)

VQ-VAE

End-to-End

(c) (d)

Figure 5: Performance of RL agents as measured by episode length with a 95% confidence interval
over 30 runs. Lower is better. (a-b) Agents are trained with PPO and autoencoder objectives from
the beginning. (c-d) The PPO objective is introduced only after the dotted line (with the exception
of the end-to-end method).

the implicit choice of representing discrete values as multi-one-hot vectors is essential to the success
of discrete representations, yet to our knowledge, such a choice is not discussed in any prior work.

4 Model-Free RL with Discrete Representations

We now progress to the full RL problem. Our first experiments aim to understand the effects of
using discrete representations in the standard, episodic RL setting. After identifying a clear benefit,
we progress to the continual RL setting with continually changing environments (Abbas et al., 2023)
as a proxy for environments that are too big for the agent to perfectly model.

We train all RL agents in this section with the clipping version of proximal policy optimization
(PPO) (Schulman et al., 2017). Instead of observations, the policy and value functions intake learned
representations. Separate networks are used for the policy and value functions, but both share the
same architecture: an MLP with two hidden layers of 256 units and ReLU activations. We sweep over
select hyperparameters for PPO and over autoencoder hyperparameters as described in Section 3.

The training loop alternates between collecting data, training the actor-critic model, and training the
autoencoder, as detailed in Algorithm 2 in Appendix H. This setup differs from previous experiments
in that environment interaction and the training of each component happen in tandem instead of
in separate phases. The objectives, however, remain separate; PPO gradients only affect the policy
and value function weights, and autoencoder gradients only affect the encoder. Only the end-to-end
baseline is an exception, in which the entire model is trained with PPO, as is often standard in deep
RL. Agents are trained in the crossing and door key environments shown in Figure 1. The maximum
episode length is set to 400 in the crossing environment and 1,000 in the door key environment.

4.1 Episodic RL

We train RL agents with each type of representation in the crossing and door key environments,
plotting the results in Figures 5a and 5b. All of the methods with an explicit representation learning
objective perform better than end-to-end RL. In a reverse from the previous model learning results,
the VQ-VAE now performs the worst of all the representation learning methods. Inspecting the
autoencoder learning curves in Figure 15 in Appendix H, however, reveals an important detail: all
of the autoencoders learn at different speeds. If the speed of the RL learning updates is our primary
concern (whether it actually is will be discussed later), then the learning speed of the autoencoder is a
confounding factor in our analysis. We address this by delaying PPO updates until all autoencoders
are trained to around the same loss and plot the results in Figures 5c and 5d. Though the gap in
performance in the new results looks small, the VQ-VAE and FTA autoencoder methods converge
with around two to three times less PPO updates than the vanilla autoencoder.
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(a)

Vanilla AE End-to-End

(b) (c)

VQ-VAE

(d)

FTA AE

Figure 6: (a-b) Mean agent performance as the environments change at intervals indicated by the
dotted, gray lines. Lower is better. (c-d) Median encoder reconstruction loss. Lower peaks mean the
representation generalizes better, and a quicker decrease means the autoencoder is learning faster.
Overall, a lower reconstruction loss is better. (a-d) Curves depict 95% confidence intervals over 30
runs. Performance is plotted after an initial delay to learn representations, after which all methods
are trained with PPO. Refer to Figure 16 in Appendix H for the full figure.

4.2 Continual RL

While static Minigrid environments can test these representation learning methods to an extent,
they do not reflect the vastness of the real world. When the size of the world and the complexity of
its problems dwarf that of the agent, the agent will lose its ability to perfectly model the world and
learn perfect solutions (Sutton et al., 2022). The agent must instead continually adapt in response
to its limited capacity if it is to best achieve its goal(s) in this continual RL setting (Kumar et al.,
2023). Given the ability of these representation learning methods to expedite policy learning, they
may be well suited for the continual RL setting, where fast adaptation is key.

To test this hypothesis, we modify the previous experimental RL setup by randomizing the layout
of the crossing environment every 40,000 steps, and the layout of the door key environment every
100,000 steps, as is similarly done in related work (Taylor & Stone, 2009; Khetarpal et al., 2022;
Abbas et al., 2023). All of the same items and walls remain, but their positions are randomized,
only the positions of the goal and outer walls remaining constant. Example layouts are shown in
Figure 14 in Appendix H. By only changing the environment after a long delay, we create specific
points in the learning process where we can observe the difference between how the different types of
representation methods adapt to change. The RL training process otherwise stays the same, and is
specified in Algorithm 2 in Appendix H. With only this modification to the environments, we rerun
the previous RL experiment with a delayed PPO start, and plot the results in Figures 6a and 6b.

Latent Type Crossing Reward Door Key Reward
End-to-End 28± 5 14± 2
Vanilla AE 382± 33 866± 94
FTA AE 574± 57 1033± 130
VQ-VAE 674 ± 21 1324 ± 64

Table 1: RL performance per environment layout (95% CI)

We observe a spike in the episode length each time the environment changes, indicating that the
agents’ previous policies are no longer sufficient to solve the new environments. While the repre-
sentation learning methods clearly outperform end-to-end training, the confidence intervals over-
lap at many time steps. If we instead, however, consider the average reward accumulated by
each method per layout as displayed in Table 1, a clear ranking emerges. In the crossing en-
vironment we see VQ-VAE > FTA AE > Vanilla AE, and in the door key environment we see
VQ-VAE > FTA AE ≈ Vanilla AE.
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While the slower initial learning speed of the VQ-VAE hinders its ability to maximize reward at the
beginning of the training process (when PPO updates are not delayed), it does not seem to hinder its
ability to adapt after an initial representation has already been learned. Inspecting the reconstruction
loss of both autoencoders, plotted in Figures 6c and 6d, shows that the VQ-VAE’s reconstruction
loss increases much less when the environment changes. The shorter spikes suggest that the VQ-VAE
representations generalize better, allowing them to adapt faster when the environment changes.

With these results, we return to the prior question: can multi-one-hot representations be beneficial
in RL even if the initial representation is learned slower? We argue in the affirmative. If we consider
continually learning RL agents in the big world setting, where the goal of the agent is to maximize
reward over its lifetime by quickly adapting to unpredictable scenarios, then the cost of learning an
initial representation can be amortized by a lifetime of faster adaptation.

5 Conclusion & Future Work

In this work, we explored the effects of learning from discrete and sparse representations in two
modules that comprise many model-based RL algorithms: model learning and model-free policy
learning. When learning a world model, discrete, multi-one-hot representations enabled accurately
modeling more of the world with fewer resources. When in the model-free RL setting (policy
learning), agents with multi-one-hot or sparse representations learned to navigate to the goal and
adapt to changes in the environment faster.

Our study underscores the advantages of multi-one-hot representations in RL but leaves several ques-
tions of deeper understanding and extrapolation to future work. We show that one-hot encoding is
crucial to the success of discrete representations, but do not disentangle multi-one-hot representations
from purely binary or sparse representations in our experiments. Prior work by Wang et al. (2022)
on feature generalization aligns with our results in continual RL (Section 4.2 and Appendix F), and
suggests that sparsity and orthogonality play a role in the success of multi-one-hot representations.
Prior work on DreamerV3 (Hafner et al., 2023) and the success of VQ-VAEs in the domain of com-
puter vision (van den Oord et al., 2017; Nash et al., 2021; Esser et al., 2021; Hong et al., 2022) already
imply that this method can extrapolate and scale to larger environments, but future work could apply
these works to a wider variety of environments, beyond the inherently discrete domain of Minigrid.

Regardless of these open questions, our results implicate multi-one-hot representations learned by
VQ-VAEs as a promising candidate for the representation of observations in continual RL agents. If
we care about agents working in worlds much larger than themselves, we must accept that they will
be incapable of perfectly representing the world. The agent will see the world as forever changing
due to its limited capacity, which is the case in complex environments like the real world (Sutton
et al., 2022; Kumar et al., 2023). If we wish to address this issue in the representation learning
space, agents must learn representations that enable quick adaptation, and are themselves quick to
adapt (Sutton et al., 2007). The multi-one-hot representations learned in our experiments exhibit
these features, and provide a potential path to build ever more efficient, continually learning RL
agents.
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A Autoencoders Explained

In this work, we opt to learn representations with autoencoders, neural networks with the objective
of reconstructing their own inputs. Autoencoders can be decomposed into an encoder, fθ, that
projects the input into a latent space, and a decoder, gϕ, that attempts to reverse the transformation.
Where x ∈ Rn is an observation input to the encoder, the corresponding latent state is given by
z = fθ(x) ∈ Rk, and the goal is to learn parameters θ and ϕ such that gϕ(fθ(x)) = x. We achieve
this by minimizing the squared error between the input and the reconstruction over observations
sampled from some dataset, D:

Lae = Ex∼D

[
||x− gϕ(fθ(x))||22

]
. (1)

Because the latent space of an autoencoder is constrained (generally by size, and sometimes by
regularization), the model is encouraged to learn properties of the input distribution that are the
most useful for reconstruction. We refer to this type of autoencoder, where the latent states are
represented by vectors of real-valued numbers, as a vanilla autoencoder. An overview of the model
is depicted in Figure 7.



RLJ | RLC 2024

To learn discrete representations, we use an autoencoder variant called a vector quantized variational
autoencoder (VQ-VAE) van den Oord et al. (2017). VQ-VAEs also use an encoder, a decoder, and
have the same objective of reconstructing the input, but include an additional quantization step
that is applied to the latent state between the encoder and decoder layers. After passing the
input through the encoder, the resultant latent state z is split into k latent vectors of dimension
d: {z1, z2, . . . , zk} ∈ Rd. Each latent vector is quantized, or “snapped”, to one of l possible values
specified by a set of embedding vectors. The quantization function uses l embedding vectors of
dimension d, {e1, e2, . . . , el} ∈ Rd, which are learned parameters of the VQ-VAE.

The quantization happens in two phases. First, each latent vector is compared to every embedding
vector using the L2 norm, and indices of the most similar embedding vectors are returned:

ci = arg min
j
∥zi − ej∥2, for all i = 1, 2, ..., k. (2)

The resultant vector of integers c is called the codebook, and indicates which embedding vectors are
the most similar to each latent vector. In the second phase, the indices in the codebook are used to
retrieve their corresponding embeddings, producing the quantized latent vectors:

z′
i = eci

, for all i = 1, 2, ..., k. (3)

The quantized vectors {z′
1, z′

2, . . . , z′
k} ∈ Rd are the final output of the quantization function, and

are concatenated before being passed to the decoder. The full architecture is depicted in Figure 8.

Figure 7: Depiction of a vanilla autoencoder with a continuous latent space. The input x is encoded
with fθ to produce a latent state z, which is decoded by gϕ to produce the reconstruction x̂.
The model is trained to minimize the distance between the input and reconstruction with the
reconstruction loss Lae.

Because the quantization process is not differentiable, a commitment loss is added to pulls pairs of
latent states and their matching embeddings towards each other. If latent vectors are always near
an existing embedding, then there will be minimal difference between all zi and z′

i, and we can use
the straight-through gradients trick Bengio et al. (2013) to pass gradients directly back from z′ to z
with no changes. Combining the reconstruction and commitment losses, the full objective is given
by the minimization of

Lvqvae = Ex∼D

[
||x− gϕ(qe(fθ(x)))||22 + β

k∑
i=1
∥zi − ezi∥2

2

]
, (4)

where qe is the quantization function, β is a hyperparameter that weights the commitment loss,
and ezi

is the closest embedding vector to zi. In practice, the speed at which the encoder weights
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Figure 8: Depiction of the VQ-VAE architecture. The input x is encoded with encoder fθ to produce
latent vectors {z1, z2, . . . , zk} ∈ Rd. In the first green circle, each latent vector is compared to every
embedding vector to produce codebook c, a vector of indices indicating the most similar embedding
vectors (example values are depicted). In the second green circle, the indices are transformed into
their corresponding embedding vectors to produce quantized vectors {z′

1, z′
2, . . . , z′

k} ∈ Rd. The
quantized vectors are then decoded by gϕ to produce the reconstruction x̂. Our work uses one-hot
encodings of the codebook c as discrete representations.

and embedding vectors change are modified separately by weighting the gradients of both modules
individually. We use a value of β = 1 in our work, and scale the embedding updates with a weight
of 0.25.

The discrete representations we use for downstream tasks RL tasks are different from the quantized
vectors that are passed to the decoder. We instead use one-hot encodings of the values in the
codebook:

oij =
{

1 if j = ci,

0 otherwise
for j = 1, 2, . . . , l. (5)

The result is a series of one-hot vectors {o1, o2, . . . , ok} ∈ Rl that represent a single state, which we
refer to as a multi-one-hot encoding or discrete representation.

B Stochastic World Models

We use a variant of the method proposed by Antonoglou et al. (2022) to learn sample models
for stochastic environments. The method works similarly to a distribution model, first learning a
distribution over possible outcomes during training, and then sampling from that distribution during
evaluation. The problem faced by most distribution models is how to represent a distribution over
a complex state space (or latent space in our case). Antonoglou et al. circumvent this problem by
learning an encoder e that discretizes each state-action pair, mapping it to a single, k-dimensional
one-hot vector we call the outcome vector. Each of the possible k values represents a different
outcome of the transition.

The high-level idea is that while directly learning a distribution over full latent states is intractable,
learning a categorical distribution over a limited, discrete set of outcomes (the outcome distribution)
is possible. Whenever we wish to use the world model, we can sample from the outcome distribution
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and include the one-hot outcome vector as an additional input to the world model, indicating which
of the k outcomes it should produce. Table 2 in provides the relevant hyperparameters for this
method.

Hyperparameter Value
Bin count 32
Discretization projection 256, 256
Prediction projection 256, 256

Table 2: Stochastic sample model hyperparameters

C Autoencoder Architecture

The vanilla autoencoder, FTA autoencoder, and VQ-VAE use the same encoder and decoder archi-
tecture, only differing in the layer that produces the latent state. The decoder is a mirror of the
encoder, reversing each of the shape transformation, so we describe only the encoder architecture.
The encoder starts with three convolutional layers with square filters of sizes {8, 6, 4}, channel of
sizes {64, 128, 64}, strides of {2, 2, 2} (or {2, 1, 2} for the crossing environment), and uniform padding
of {1, 0, 0}. Each convolutional layer is followed by a ReLU activation. The downscaling convolu-
tions are followed by an adaptive pooling layer that transforms features into a shape of (k× k× 64),
and finally a residual block (He et al., 2016) consisting of a convolutional layer, batch norm (Ioffe
& Szegedy, 2015), ReLU, convolutional layer, and another batch norm. These general layers are
followed by layers specific to the type of autoencoder.

The vanilla autoencoder flattens the convolutional output and projects it to a latent space of size
D with a linear layer. We use a value of k = 8 and sweep over values of d = {16, 64, 256, 1024} for
each environment. We use d = 64 for the empty environment, d = 256 for crossing, and d = 1024 for
door key, though we note that we do not observe a statistically significant difference in performance
for values of d ≥ 64. The end-to-end baseline uses the same architecture and tuning procedure, but
the final hyperparameter values are d = 64 for crossing, and d = 1024 for door key.

The FTA autoencoder has the same structure as the vanilla autoencoder, but with an FTA after the
final bottleneck layer. The tiling bounds are fixed at [−2, 2] for all cases, except for learning a world
model in the door key environment, where it is [−4, 4]. We sweep over values of d = {64, 256, 1024}
and the number of tiles, k = {8, 16, 32}. The sparsity parameters, η, is set to be the same as the
size of the tiles, as is recommended in the original work (Pan et al., 2021). We use values of d = 64
and k = 16 in both environments.

The VQ-VAE directly quantizes the output of the general layers, so the only other parameters added
are the embedding vectors. The number of vectors that make up a latent state is given by k2, and
we let l be the number of embedding vectors, resulting in discrete representations of shape (k2, l).
We sweep over values of k = {3, 6, 9} and l = {16, 64, 256, 1024} for each environment. We use k = 6
and l = 1024 (for a total size of 6,144) for all environments except for crossing, which uses a value
of k = 9 (for a total size of 9,216).

When designing the experiments, we considered how to construct a fair comparison between the
continuous and discrete methods despite the fact that each have different ideal sizes of the latent
state, which makes one model bigger than the other. This is a particularly difficult question because
it is unclear if we should focus on the size of a representation in bits, or the size of the representation
in the number of values used to represent it in a deep learning system. A discrete representation is
orders of magnitude smaller than a continuous representation if represented in bits (9×log2 1024 = 90
bits in the crossing environment), but takes an order of magnitude more values to represent as one-
hot vectors being passed to a neural network (9× 1024 = 9216 values in the crossing environment).
Ultimately, we found that answering this question was unnecessary, as the performance of both
methods was limited no matter how large we made the size of the representations. In the crossing
environment, for example, the performance of the continuous model would not increase even if we
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increased the size of the latent state from 256 to 9,216 values to match that of the discrete latent
state.

D Reinforcement Learning Hyperparameters

Before running the model-free RL experiments, we performed a grid search over the most sensitive
PPO hyperparameters for the continuous model. We swept over clipping values, ϵ ∈ {0.1, 0.2, 0.3},
and the number of training epochs per batch, n ∈ {10, 20, 30, 40}. We use the same final PPO
hyperparameters for training the RL models with FTA and VQ-VAE latents, which are provided in
table 3.

After the sweep over PPO hyperparameters, we also repeated a sweep over the latent dimensions
of all of the autoencoders (with the exception of the VQ-VAE, which we found to be robust to
a large range of hyperparamers) as described in Section C. The vanilla autoencoder and end-to-
end baseline use a d = 256 dimensional latent space. The FTA autoencoder also uses d = 256
dimensional pre-activation latent space with k = 8 tiles, forming a 2048-dimensional post-activation
latent space. The VQ-VAE uses k2 = 36 latent vectors and l = 256 embedding vectors, forming a
9216-dimensional latent space.

Hyperparameter Value
Horizon (T) 256
Adam step size 256
(PPO) Num. epochs 10
(PPO) Minibatch size 64
Clipping value (ϵ) 0.2
Discount (γ) 0.99
(Autoencoder) Num. epochs 8

Table 3: RL training hyperparameters

E Experiment Details

Environment
Name

Image
Dimensions Actions Stochastic

# of
Unique
States

Empty 48× 48× 3 left, right, forward no 64
Crossing 54× 54× 3 left, right, forward yes 172

Door Key 64× 64× 3 left, right, forward,
pickup, use yes 292

Table 4: Minigrid environment specifications

F Measuring Sparsity

In Section 3.2.3, our comparison between multi-one-hot and quantized VQ-VAE representations
(Figure 4) resulted in a decisive victory for multi-one-hot representations, which are both sparse and
binary. Then in the continual RL setting in Section 4.2, we again see the two sparse representations
perform the best. These results suggest that there is an advantage to using sparse representations,
but can we measure the effects of different levels of sparsity?

In this section, we design an experiment that measures the effects of varying levels of sparsity in the
continual RL setting. The most straightforward way to design such an experiment with a VQ-VAE
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Figure 9: Episode length of a continual RL agent averaged over 15 runs per data point. Lower is
better, indicating faster navigation to the goal. All agents use VQ-VAE representations, and the
sparsity level indicates the ratio of 0s to 1s in the representation (e.g. a sparsity level of 8 indicates
that there are 7 zeros for each one). The shaded region depicts a 95% confidence interval.

is to change the size of the codebook, which directly controls the level of sparsity. Changing only the
codebook, however, also changes the number of the parameters in the model. If we want to measure
the effects of only sparsity, then we need to control for the size of the model.

In this experiment, we vary the dimensionality of the embeddings, the number of latents, and the
size of the codebook all in tandem so that the size of the model stays constant as the level of sparsity
changes. At each level of sparsity, we rerun the continual RL experiments as described in Section 4.2
and plot a summary of the results in Figure 9. In the results, we see that sparsity does help and
that there is an ideal amount of sparsity. In both the crossing and door key environments, a
sparsity level of 8 leads to optimal performance.4 These results mirror findings from the work on
FTA by Pan et al. (2021), which also show sparsity helping up to a certain threshold.

4Note that the optimal sparsity levels in this experiment do not align with experiments in previous sections because
we use a modified architecture that allows us to change the sparsity level more freely.
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G Supplemental World-Model Materials

This section contains additional materials that help describe the model training process and results.
Algorithm 1 provides pseudo-code for the training algorithm, Figures 10 & 11 visualize the training
process, and Figures 12 & 13 visualize distributions of rollouts predicted by the learned world models.

Algorithm 1 Training Autoencoder and World Model
D ← dataset of transition tuples (s, a, s′)
Initialize the encoder, fθ, decoder, gϕ, and world model, wψ
Set the number of autoencoder training steps, N , the number of of world model training steps, L,
and the number of hallucinated replay steps, K

{Training the Autoencoder}
for N steps do

Sample transition (s0, a0, s1) ∈ D
z← fθ(s0)
ŝ0 ← gϕ(z0)
loss ← MSE(s0, ŝ0)
Update parameters θ and ϕ with Adam

end for
Freeze autoencoder model weights, θ and ϕ

{Training the World Model}
for L steps do

Sample a sequence of transitions (s0, a0, s1, a1, ..., sK) ∈ D
ẑ← fθ(s0)
for k in {0, 1, ..., K − 1} do

ẑ← wψ(ẑ, ak)
zk+1 ← fθ(sk+1)
Compute loss between ẑ and zk+1 {cross-entropy for discrete, MSE for continuous}
Update parameters ψ with Adam

end for
end for
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Figure 10: Depiction of a continuous world model training with n steps of hallucinated replay. After
encoding the initial observation, the world model rolls out a trajectory of predicted latent states,
ẑt+1, ẑt+2, . . . , ẑt+n. Actions from a real trajectory are used during training, but are excluded in the
depiction to avoid clutter. The loss at each time step is calculated as the mean squared error between
the hallucinated latent state ẑt+i and the ground-truth, zt+i. This method is called hallucinated
replay because the entire trajectory after the first latent state is hallucinated by the world model.

Figure 11: Depiction of a single step of discrete world model training and the subsequent discretiza-
tion of the latent state. The observation xt is encoded to produce latent state zt, which is passed
to the world model to sample the logits ẑt+1 for a following state. The predicted next state logits
ẑt+1 are compared to the ground truth state zt+1, which is constructed from the corresponding
ground-truth observation: zt+1 = fθ(xt+1). Before the world model can be reapplied, the latent
state logits must be discretized with an argmax operator and converted to the one-hot format.
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Figure 12: Comparison of rollouts predicted by different world models in the crossing environment.
Each row visualizes the state distributions throughout rollouts predicted by different world models,
with the x-axis giving the step in the rollout. The ground-truth row depicts the state distribution
over rollouts as a policy that explores the right side of the environment is enacted in the true
environment. Predicted observations are averaged over 10,000 rollouts. Being closer to the ground-
truth indicates a higher accuracy.
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Figure 13: Comparison of rollouts predicted by different world models in the door key environment.
Each row visualizes the state distributions throughout rollouts predicted by different world models,
with the x-axis giving the step in the rollout. The ground-truth row depicts the state distribution
over rollouts as a policy that navigates to the goal state is enacted in the true environment. Predicted
observations are averaged over 10,000 rollouts. Being closer to the ground-truth indicates a higher
accuracy.
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H Supplemental RL Materials

This section contains additional materials that help describe the RL training process and results.
Algorithm 2 provides pseudo-code for episodic and continual RL training. Figure 14 shows different
environment variations used in the continual learning setting. Figure 15 plots the reconstruction
loss of the autoencoder during episodic RL training. And lastly, Figure 16 depicts the full results of
the continual RL runs starting from the first timestep.

Algorithm 2 Reinforcement Learning Training Process
Initialize the encoder, fθ, and decoder, gϕ
Initialize the policy and value networks, πψ and Vψ, with combined parameters ψ
D ← ∅ {Dataset of observations}
Set number of interaction steps, N , batch size, B0, autoencoder epochs, L, PPO epochs K, PPO
start step P , and autoencoder batch size, B1
For continual learning experiments, specify environment change frequency, C

while number of interactions is less than N do
Enact policy πψ in the environment to obtain a batch of B0 transition tuples
if interaction step ≥ P then

Using the online data, perform K epochs of PPO updates on parameters ψ
end if
for L steps do

Sample a batch of observations (s0, s1, ..., sB1) ∈ D
Apply the autoencoder and calculate the reconstruction loss
Update parameters θ and ϕ using Adam

end for
if doing continual learning and C interaction steps have passed then

Randomize the environment
end if

end while

Figure 14: The top row depicts random initializations of the crossing environment, and the bottom
that of the door key environment. Each time the environment changes, the positions of all internal
walls and objects are randomized, with the exception of the agent position in the crossing environ-
ment and the goal in both environments.
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Vanilla AE

VQ-VAE

FTA AE

Figure 15: Median reconstruction loss of the autoencoder during episodic RL training. The au-
toencoder is trained on observations randomly sampled from a buffer that grows as the RL training
progresses. Lower is better, indicating a better reconstruction of the input observation. The plot
depicts a 95% confidence interval around the median over 30 runs. We plot the median of this metric
as there are a few outliers that drastically skew the average. The VQ-VAE in particular exhibits
the highest variance in reconstruction loss, but this does not seem to hinder the representation’s
performance in the RL setting.

(a)

End-to-End

(b) (c)

VQ-VAE

Vanilla AE

(d)

FTA AE

Figure 16: (a-b) Mean agent performance as the environments change at intervals indicated by the
dotted, gray lines. Lower is better. (c-d) Median encoder reconstruction loss. Lower peaks mean the
representation generalizes better, and a quicker decrease means the autoencoder is learning faster.
Overall, a lower reconstruction loss is better. (a-d) Results are averaged over 30 runs and depict
95% confidence intervals. Performance is plotted after an initial delay to learn representations, after
which all methods are trained with PPO.


