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ABSTRACT

Recent CLIP-like Vision-Language Models (VLMs), pre-trained on large amounts
of image-text pairs to align both modalities with a simple contrastive objective,
have paved the way to open-vocabulary semantic segmentation. Given an arbitrary
set of textual queries, image pixels are assigned the closest query in feature space.
However, this works well when a user exhaustively lists all possible visual concepts
in an image, which contrast against each other for the assignment. This corresponds
to the current evaluation setup in the literature which relies on having access to
a list of in-domain relevant concepts, typically classes of a benchmark dataset.
Here, we consider the more challenging (and realistic) scenario of segmenting a
single concept, given a textual prompt and nothing else. To achieve good results,
besides contrasting with the generic “background” text, we propose two different
approaches to automatically generate, at test time, textual contrastive concepts that
are query-specific. We do so by leveraging the distribution of text in the VLM’s
training set or crafted LLM prompts. We also propose a metric designed to evaluate
this scenario and show the relevance of our approach on commonly used datasets.

1 INTRODUCTION

Vision-language models (VLMs) such as CLIP (Radford et al., 2021) are trained to align text and
global image representations. Recently, VLMs have been proposed for denser tasks (Zhou et al., 2022;
Ghiasi et al., 2022; Li et al., 2022). This includes the challenging pixel-level task of open-vocabulary
semantic segmentation (OVSS), which consists of segmenting arbitrary visual concepts in images, i.e.,
visual entities such as objects, stuff (e.g., grass), or visual phenomena (e.g., sky). To that end, several
methods exploit a frozen CLIP model with additional operations (Zhou et al., 2022; Bousselham
et al., 2024; Wysoczańska et al., 2024b;a), or fine-tune the model with specific losses (Xu et al., 2022;
Ranasinghe et al., 2023; Cha et al., 2023; Luo et al., 2023; Mukhoti et al., 2023).

Most OVSS methods label each pixel with the most probable prompt (or query) among a finite set of
prompts provided as input, contrasting concepts with each other. This works well for benchmarks
that provide a large and nearly exhaustive list of things that can be found in the dataset images, such
as ADE20K (Zhou et al., 2019) or COCO-Stuff (Caesar et al., 2018). However, when given a limited
list of queries, these methods are bound to occasionally suffer from hallucinations (Wysoczańska
et al., 2024b; Miller et al., 2024). In particular, common setups do not handle the case where only a
single concept is queried (Cha et al., 2023; Xu et al., 2022), which results in classifying all pixels
using the same concept.

To catch such hallucinations, a common strategy consists in using an extra class labeled ‘background’,
intended to capture pixels that do not correspond to any visual concept being queried. This extra
class is already present in object-centric datasets, such as Pascal VOC (Everingham et al., 2012). It
provides an easy, generic concept to be used as a negative query, i.e., to be used to contrast with
actual (positive) queries, but to be discarded from the final segmentation. However, the notion of
background is not well defined as it is context-dependent, therefore providing suboptimal contrasts.
This strategy also fails when a queried concept (e.g., “tree”) falls in the learned background (which
commonly encompasses trees).

In this work, we consider the practical and realistic OVSS task in which only one or a few arbitrary
concepts are to be segmented, leaving out the remaining pixels without any prior knowledge of other
concepts that may occur in an image. We name this setup open-world Given a query, instead of
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Figure 1: Illustration of our proposed open-world scenario and benefits of contrastive concepts
(CC). We investigate open-world segmentation, where only one (or a few) visual concepts are to be
segmented (2nd column), while all concepts that can occur in an image are unknown. Contrasting
the query with “background” allows us to obtain a coarse segmentation (Ranasinghe et al., 2023;
Wysoczańska et al., 2024b) (3rd column), but is not enough to catch all pixels not corresponding to
the query when they are related or co-occur frequently in the VLM training set. Our automatically-
generated contrastive concepts (CC) (4th column) help to separate and disentangle pixels of the query
(right column, generated CC in text boxes), therefore achieving better segmentation.

assuming access to a dataset-specific set of classes (a closed-world setup), we propose to automatically
suggest contrastive concepts that are useful to better localize the queried concept, although they can
later be ignored. In particular, we focus on predicting concepts likely to co-occur with the queried
concept, e.g., “water” for the query “boat” (as visible in Fig. 1), thus leading to better segment
boundaries when prompted together.

Moreover, we argue that this scenario needs to be evaluated to better understand the limitations of
open-vocabulary segmentation methods. We therefore propose a new metric to measure such an
ability, namely IoU-single, which considers one query prompt at a time and thus does not rely on the
knowledge of potential domain classes.

To summarize, our contributions are as follows:
• We introduce the notion of test-time contrastive concepts and discuss the importance of

contrastive concepts in open-vocabulary semantic segmentation.
• We analyze the usage of “background” as a test-time contrastive concept, which has been so

far accepted but not discussed.
• We propose a new single-query evaluation setup for open-world semantic segmentation that

does not rely on any domain knowledge. We also propose a new metric to evaluate the
grounding of visual concepts.

• We propose two different methods to generate test-time contrastive concepts automatically
and show that our approaches consistently improve the results of 7 different popular OVSS
methods or backbones.

2 RELATED WORK

Open-vocabulary semantic segmentation. VLMs trained on web-collected data to produce aligned
image-text representations (Radford et al., 2021; Jia et al., 2021; Zhai et al., 2023) had a major
impact on open-vocabulary perception tasks and opened up new avenues for research and practical
applications. While CLIP can be used off-the-shelf for image classification in different settings, it
does not produce dense pixel-level features and predictions, due to its final global attentive-pooling
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(Zhou et al., 2022; Jatavallabhula et al., 2023). To mitigate this and produce dense image-text features,
several methods finetune CLIP with dense supervision. Other approaches devise new CLIP-like
models trained from scratch using a pooling compatible with segmentation. Their supervision comes
from large datasets annotated with coarse captions (Ghiasi et al., 2022; Ranasinghe et al., 2023;
Liang et al., 2023; Xu et al., 2022; Liu et al., 2022; Xu et al., 2023; Mukhoti et al., 2023; Cha et al.,
2023), object masks (Rao et al., 2022; Ghiasi et al., 2022; Ding et al., 2022) or pixel labels (Li
et al., 2022; Liang et al., 2023). However, when models are finetuned, they face feature degradation
(Jatavallabhula et al., 2023), or require long training cycles on huge amounts of images when trained
from scratch.

CLIP densification methods have emerged as a low-cost alternative to produce pixel-level image-text
features while keeping CLIP frozen (Zhou et al., 2022; Wysoczańska et al., 2024a; Jatavallabhula
et al., 2023; Abdelreheem et al., 2023; Wysoczańska et al., 2024b; Bousselham et al., 2024). The
seminal MaskCLIP (Zhou et al., 2022) mimics the global pooling layer of CLIP with a 1× 1 conv
layer. The aggregation of features from multiple views and crops (Abdelreheem et al., 2023; Kerr
et al., 2023; Wysoczańska et al., 2024a; Jatavallabhula et al., 2023) also leads to dense features,
yet with the additional cost of multiple forward passes. Some methods (Shin et al., 2022; 2023;
Karazija et al., 2023) rely on codebooks of visual prototypes per concept, including per-dataset
negative prototypes (Karazija et al., 2023), or leverage self-self attention to create groups of similar
tokens (Bousselham et al., 2024). The recent CLIP-DINOiser (Wysoczańska et al., 2024b) improves
MaskCLIP features with limited computational overhead thanks to a guided pooling strategy that
leverages the correlation information from DINO features (Caron et al., 2021).

Prompt augmentation. Prompt engineering is a common practice for adapting Large Language
Models (LLMs) to different language tasks (Kojima et al., 2022) without updating parameters. This
strategy of carefully selecting task-specific prompts also improves the performance of VLMs. For
instance, in the original CLIP work (Radford et al., 2021), dataset-specific prompt templates, e.g., “a
photo of the nice {· · ·}” were devised towards improving zero-shot prediction performance. Although
effective, manual prompting can be a laborious task, as templates must be adapted per dataset
and sufficiently general to apply to all classes. Afterwards, different automated strategies were
subsequently explored, e.g., scoring and ensembling predictions from multiple prompts (Allingham
et al., 2023). Prompts can also be augmented by exploiting semantic relations between concepts
defined in WordNet (Fellbaum, 1998) to generate new coarse/fine-grained (Ge et al., 2023) or
synonym (Lin et al., 2023) prompts. LLMs can be used as a knowledge base to produce rich visual
descriptions adapted for each class starting from simple class names (Pratt et al., 2023; Menon &
Vondrick, 2023). Prompt features can be learned by considering visual co-occurrences (Gupta et al.,
2019), a connection between training and test distributions (Xiao et al., 2024), mining important
features for the VLM (Esfandiarpoor et al., 2024) or by test-time tuning on a sample (Shu et al.,
2022). Most of these strategies have been designed and evaluated for the image classification task,
and their generalization and scalability for semantic segmentation are not always trivial. Here, we
aim to obtain better prompts for semantic segmentation to separate queried object pixels from their
background. We do this automatically without supervision and without changing the parameters
of either the text encoder or the image encoder, leveraging statistics from VLM training data or
LLM-based knowledge.

Dealing with contrastive concepts in OVSS. Our contrastive concept discovery is tightly related
to background handling in the context of open-vocabulary semantic segmentation, since the standard
benchmark datasets for this task, originally designed for supervised learning, use background to
describe unlabeled pixels, for example, to cover concepts outside of the dataset vocabulary. There
are three main types of approaches to address this problem. The first one is to threshold uncertain
predictions (Cha et al., 2023; Bousselham et al., 2024; Xu et al., 2022) with a given probability value
(Xu et al., 2022; Bousselham et al., 2024) or clip similarities (Cha et al., 2023). The second group
of methods leverages the object-centric nature of certain datasets by defining background through
visual saliency (Wysoczańska et al., 2024a;b). Finally, a significant body of work addresses the
same issue by defining dataset-level concepts either by adding handcrafted names of concepts to the
background definition (Lin et al., 2024; Yu et al., 2023; Ranasinghe et al., 2023; Cho et al., 2024)
or by extracting visual negative prototypes with a large diffusion model (Karazija et al., 2023). In
contrast, in this work, we aim for automatic discovery of contrastive concepts without any prior
access to the vocabulary used for the annotation of the dataset.
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Visual grounding is the task of localizing within images specific objects from text descriptions.
The major instances of visual grounding tasks are referring segmentation that produce pixel-level
predictions for one (Hu et al., 2016; Ding et al., 2023; Wang et al., 2022) or multiple target objects
(Liu et al., 2023) given a text description, and referring expression comprehension (Chen et al., 2018;
Deng et al., 2021; Liao et al., 2020; Liu et al., 2024) that detects objects. Similarly to referring
segmentation, we aim to segment specific user-defined objects. In contrast, we do not use supervision
to align textual descriptions with object masks and do not focus on text-described relations between
objects and mine contrastive concepts to disentangle target objects from the background.

3 OPEN-WORLD SEGMENTATION WITH TEST-TIME CONTRASTIVE CONCEPTS

We consider the following segmentation task: given an image and a set of textual queries characteriz-
ing different visual concepts, the goal is to label all pixels in the image corresponding to each concept,
leaving out unrelated pixels, if any. Moreover, we want to do so without any prior knowledge of what
concepts could be prompted at the test time. That is, not only do we want to be open-vocabulary in
terms of the choice of words for querying, but we also want to be open-world, that is, not specialized
in a given domain or set of categories. For evaluation purposes, segmenting a specific dataset thus
shall not assume anything about the dataset, such as knowledge of represented classes.

3.1 INTRODUCING THE USE OF TEST-TIME CONTRASTIVE CONCEPTS

Closed-world vs open-world open-vocabulary semantic segmentation. Even when it is open-
vocabulary, traditional semantic segmentation is closed-world in the following sense. Given an
RGB image I∈RH×W×3 and a set of textual queries q ∈Q, semantic segmentation yields a map
Sclosew : {1...H} × {1...W} 7→ Q, where each image pixel has to be assigned one of the queries
as a label. In contrast, open-world segmentation considers an extra dummy label ‘⊥’ to represent
any visual concept that is different from the queries. The segmentation map, in this case, is then
Sopenw : {1...H} × {1...W} 7→ Q ∪ {⊥} . For instance, to label a boat, it is enough to ask for the
“boat” segment; other pixels (sky, sea, sand, rocks, trees, swimmers, etc.) are expected to be labeled⊥
and thus ignored.

Following, we show how to use any open-vocabulary segmenter in an open-world fashion. We only
assume that the segmenter uses a CLIP-like architecture with a text encoder, noted ϕT(·), used to
extract textual features ϕT(q)∈Rd for any query q, where d is the feature dimension. Patch-level
features ϕV(I) ∈ Rh×w×d are generated using the visual encoder, noted ϕV(·), where h=H/P ,
w=W/P , and P is the patch size. The cosine similarities between each query feature and a
patch feature are then used as logits when upsampling to obtain pixel-level predictions. It yields a
closed-world segmentation, given our definition above.

From such segmentation, open-world segmentation could be derived by assigning a pixel (or patch)
to a query if the cosine similarity between the visual embedding and the query embedding is above a
given threshold. However, in practice, it has been commonly observed that the CLIP space is not
easily separable (Miller et al., 2024), thus making the definition of such a threshold difficult without
overfitting the query or datasets (Bousselham et al., 2024; Cha et al., 2023).

Train-time contrastive concepts. Cues to separate visual concepts without supervision primarily
come from data where these concepts occur separately and are described in their captions. If some
concepts always co-occur, they are harder to be told apart. This applies in particular to OVSS models
that are trained only from captioned images, rather than from dense information. Sharing a caption
pushes their embedding to align on a common textual feature, which in turn tends to bring the visual
embeddings closer together. Still, such frequently co-occurring visual concepts can often be separated
in a closed-world setting: pixels (or patches) are then just mapped to the query with which they align
the most. However, a problem arises if a visual concept of a query q can be mistaken for another
visual concept present in the image but not queried (e.g., querying “boat” but not “water” as in Fig. 1).

Test-time contrastive concepts. To address this problem, we propose to use one or more additional
textual queries of visual concepts that are likely to contrast well with q. For instance, when querying
“boat”, we want to add the query “water”. We name such queries test-time contrastive concepts
and note them CCq. We further propose different solutions to automatically generate CCq, and such
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without assuming prior access to the image domain. Given prompt queries {q} ∪ CCq, we perform
closed-world segmentation and assign to the dummy label ⊥ any patches which are labeled as CCq .

Multi-query segmentation. This principle can be generalized to several simultaneous queries Q,
with |Q|> 1, considering the union of their contrastive concepts CCQ =

⋃
q∈Q CCq. Open-world

multi-query segmentation consists in segmenting Q ∪ CCQ, and ignoring pixels not assigned to the
queries in Q, as in the single-query case. However, some queries in Q may already contrast each
other, which puts them in competition with the set of contrastive concepts CCQ and could lead to
their elimination when pixels labeled in CCQ are discarded. To prevent it, we propose to exclude
contrastive concepts CCQ that are too similar to queries Q, e.g., with a cosine similarity of text
features above some threshold β: CCQ =

⋃
q∈Q{q′ ∈ CCq | ϕT(q

′) · ϕT(q) ≤ β}. In the following,
for simplicity, we only consider the single-query scenario, where |Q|=1.

Moreover, to the best of our knowledge, none of the currently used evaluation benchmarks for OVSS
allows us to measure the effectiveness of such CCs. We, therefore, propose a variant of the traditional
evaluation metric for semantic segmentation and discuss it in detail in Sec. 4.1.

3.2 CONTRASTING WITH “BACKGROUND” (CCBG)

In recent work (Ranasinghe et al., 2023; Wysoczańska et al., 2024a;b), the word “background” has
been used to try to capture a generic visual concept to help segment foreground objects, separating
them from their background. In our framework, it amounts to defining “background” as a test-time
contrastive concept to any query q. In other words, it defines CCBG

q = {“background”}.
However, if the word “background” feels natural to us, it is not obvious why it should also make
sense in the CLIP space. In fact, this formulation is not contextual, meaning that the contrastive
concept is not specific to the query, which might be suboptimal. Worse, the “background” samples
that CLIP learned from could accidentally include the visual concept of the query, which could make
the query representation close to the background representation and defeat the contrast mechanism.

To sort it out, we investigate the occurrence of “background” in VLM training data. First, we use the
metadata provided by Udandarao et al. (2024), which describes the representation of four thousand
common concepts in LAION-400M (Schuhmann et al., 2021), which is a subset of the web-crawled
LAION-2B dataset (Schuhmann et al., 2022) used to train CLIP. In Fig. 2a, we plot the frequency
of occurrence of “background” among other VOC class names. We observe that “background” is
significantly more frequent than all other words, hinting that it is widely available not only in CLIP
training data but also in web-crawled data in general.

0 0.3 0.6 0.9

·10−2

background
bicycle

bird
boat

car
chair
horse

person
sofa

(a) Freq. of VOC concepts. (b) “background” in caption (c) “in the background” in caption

Figure 2: Statistics about “background” in metadata of web-crawled datasets. (a) Frequency of
some of the concepts from VOC dataset in LAION-400M caption samples. Examples of images in
web-crawled data with a caption including the words “background” (b) or “in the background” (c).

Fig. 2b shows images sampled from the LAION dataset that have a caption containing “background”.
We observe that they display a high diversity in colors and textures. Images captioned with “in the
background” (Fig. 2c) appear to be more photo-oriented. We believe that the combination of a high
frequency of the “background” word in the dataset and the diversity of associated images make it
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a good generic contrastive concept, and hence make CCBG a baseline. However, superior results
have been obtained by applying well-designed tricks to handle the background (Wysoczańska et al.,
2024a;b; Cha et al., 2023; Bousselham et al., 2024), emphasizing the necessity of applying something
more than simply “background”.

An option is to define a generic background class list, as done by CLIPpy (Ranasinghe et al., 2023)
or CAT-Seg (Cho et al., 2024), which adds to the concept “background” a fixed list of concepts
potentially appearing in the background, e.g., “sky”, “forest”, “building”, to be discarded. First,
since these visual concepts are intended to be discarded, it would not be possible to query them.
Second, such a list is defined at the dataset level, making it domain-specific. As it is not possible to
exhaustively describe all visual concepts appearing in any “background” (without prior knowledge of
the domain or dataset), we propose to generate such complements specifically per query as discussed
below.

3.3 AUTOMATIC CONTRASTIVE CONCEPTS (CC) GENERATION

To generate contrastive concepts that are query-specific but also domain-agnostic, the only data we
can then leverage are (i) the VLM’s training data, or (ii) unspecific external data. As we focus on
text-based contrasts, we can (i) exploit the large vocabulary of concepts used for VLM training,
or (ii) generate prompts via an LLM. Finally, as we want good contrasts, we have to find hard
negatives. These are concepts that surround queries in images. To gather them, we can (i) look for
word co-occurrences in training data, or (ii) ask an LLM to list such concepts. Sec. 3.3.1 investigates
option (i), and Sec. 3.3.2, option (ii).

3.3.1 MINING CO-OCCURRENCE-BASED CONTRASTIVE CONCEPTS (CCD)

As discussed above, ambiguity in segmentation for unsupervised approaches arises from co-
occurrences in training data. Yet, OVSS does a better job when being prompted to create segments
simultaneously for co-occurring concepts. To list contrastive concepts specific to a given query q, we
thus propose to use information of co-occurrence in the VLM training captions. For efficiency, we
construct offline a co-occurrence dictionary, built for a large lexicon of textual concepts extracted
from the captions. We note CCDq the co-occurrence-based contrastive concepts we extract for a
query q based on this lexicon.

Co-occurrence extraction. We consider as lexicon a set of textual concepts T extracted from
captions of the VLM training dataset and construct the co-occurrence matrix X ∈ N|T |×|T |. Con-
cretely, two concepts {i, j} ⊂ T co-occur if they appear simultaneously in the caption of an image.
Xi,j counts the number of times concepts {i, j} co-occur in some images. Next, we normalize the
symmetric matrix X row-wise by the number of occurrences of concept i in the dataset, producing the
frequency matrix X̂ . We then consider only concepts with frequent co-occurrences: for each i ∈ T ,
we select concepts Ti = {j ∈ T | X̂i,j > γ}, for some frequency threshold γ . Selecting only a few
contrastive concepts in this way is also consistent with the fact that we target online segmentation:
we need to be mindful of the computational costs.

Concept filtering. To improve the quality of selected contrastive concepts Ti, we design a simple
filtering pipeline. For each target concept i ∈ T (which can be thought of as a future query), we
remove from Ti any concept that might interfere with i and induce false negatives. First, we discard
uninformative words that appear in captions: {“image”, “photo”, “picture”, “view”}. Then, we
remove abstract concepts, such as “liberty”. To do so, we ask an LLM whether a given word can
be visible or not in an image (more details in Appendix C.2). We also filter out concepts that are
too semantically similar to target concept i, e.g., such that their cosine similarity with ϕT(i) is more
than a threshold δ . We also consider an alternative approach to filtering, which uses the structured
ontology WordNet (Fellbaum, 1998) to remove the CCs that possibly interfere with q. However, our
experiments, which are discussed in Appendix B.2, show that our proposed filtering mechanisms
based on dataset statistics are more effective.

Generalization to arbitrary concepts. So far, we discussed how to select contrastive concepts
CCDi for a target concept i ∈ T . Now when we are given an arbitrary textual query q, to make the

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

generation of contrastive concepts truly open-vocabulary, we first find in the CLIP space the nearest
neighbor i of q in T and then use for q the contrastive concepts of i: CCDq = CCDi .

3.3.2 PROMPTING AN LLM TO GENERATE CONTRASTIVE CONCEPTS (CCL)

Instead of extracting contrastive concepts from the VLM training set, we investigate here another
strategy, which is generating them using an LLM. For a given text query q, we ask an LLM to directly
generate contrastive concepts CCLq , without the need for subsequent filtering. To that end, we design a
prompt that excludes potential synonyms, meronyms (e.g., “wing” for “plane”), or possible contents
(e.g., “wine” for “bottle”). We present a shorter version of the prompt in Fig. 3 and include the
complete version in Appendix C.2.

You are a helpful AI assistant with visual abilities. Given an input object O, I want you to generate a list of words 
related to objects that can be surrounding input object O in an image to help me perform semantic segmentation.

Figure 3: An abbreviated version of the prompt we use to generate CCL.

Using an LLM has the benefit of producing specific contrastive concepts CCq for any target query q,
without returning to a fixed and practically limited lexicon.

4 EVALUATION

4.1 EVALUATING OPEN-WORLD SEGMENTATION

We discuss here our evaluation protocols and present our new metric IoU-single specifically designed
to evaluate open-world segmentation.

Evaluation datasets. We conduct our experiments on six datasets widely used for the task of
zero-shot semantic segmentation (Cha et al., 2023), fully-annotated COCO-Stuff (Caesar et al.,
2018), Cityscapes (Cordts et al., 2016) and ADE20K (Zhou et al., 2019) and object-centric VOC
(Everingham et al., 2012), COCO-Object (Caesar et al., 2018) and Context (Mottaghi et al., 2014),
when considering “background” pixels. We treat the input images following the protocol of (Cha
et al., 2023), which we detail in Appendix A.

Our IoU-single metric. To better evaluate the ability of a method to localize a visual concept
when given no other information, we propose the IoU-single metric. It modifies the classic IoU by
considering each concept independently and then averaging. Concretely, we individually segment
each class annotated in the dataset for the considered image, thus with |Q|=1. The IoU-single is
then the average of each IoU with the corresponding ground-truth class segment. In Appendix A.3,
we give a more intuitive illustration of our metric in Fig. 6 and a pseudo-code in Algorithm 1. If a
dataset contains a background class, we do not consider it in the mIoU calculation.

Classic mIoU evaluation. We also evaluate the impact of using our CC in the classic mIoU scenario
on the datasets that consider “background” as a class, i.e., VOC and COCO-Object. We prompt at
once all dataset classes together with their CCs, using our multiple-query strategy discussed in 3.1.
We then assign pixels that fall into any of the CCs to “background”, ensuring that none of the concepts
competes with the dataset queries. It allows us to verify if our CCs can act as background without
hurting the performance on foreground classes.

4.2 EVALUATED METHODS

Test-time contrastive concepts. For CCDgeneration, we use the statistics gathered by Udandarao
et al. (2024) for four thousand common concepts in the LAION-400M dataset, which is a subset of
LAION-2B (Schuhmann et al., 2022) and which is used to train CLIP (Radford et al., 2021). We
filter contrastive concepts using a low co-occurrence threshold γ = 0.01 and a high CLIP similarity
threshold δ = 0.8. In the classic mIoU scenario, we use a threshold β = 0.9 to account for possible
similarities between one query and contrastive concepts close to the other queries. We discuss the
selection of these values in Appendix B.1. To generate CCL, we use the recent Mixtral-8x7B-Instruct
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model (Jiang et al., 2024). More details about the setup can be found in Appendix C.1 alongside
our designed prompts in Appendix C.2. In our experiments, unless stated otherwise, we include
“background” in all CC’s: CCD ← {“background”} ∪ CCD and CCL ← {“background”} ∪ CCL.

Baselines. To evaluate the impact of using contrastive concepts, we experiment on 5 popular or
state-of-the-art methods, one of which (MaskCLIP) using 3 different backbones, thus resulting in 7
different segmenters, which we believe are representative of the current OVSS landscape. Concretely,
we study two training-free methods that directly exploit the CLIP backbone, namely MaskCLIP
(Zhou et al., 2022) and GEM (Bousselham et al., 2024), where MaskCLIP may exploit different
OpenCLIP backbones (Ilharco et al., 2021) pre-trained either on LAION (Schuhmann et al., 2022),
MetaCLIP (Xu et al., 2024), or by default on the original OpenAI training data (Radford et al.,
2021). We also include TCL (Cha et al., 2023), CLIP-DINOiser (Wysoczańska et al., 2024b) and the
supervised CAT-Seg (Cho et al., 2024). Details on the evaluation protocol, including background
handling strategies, can be found in Appendix A. All compared methods use CLIP ViT-B/16.

4.3 CONTRASTIVE CONCEPTS GENERATION RESULTS

We first present in Tab. 1 results obtained with our IoU-single metric on 3 datasets, namely ADE20K,
Cityscapes and VOC. We compare results when using different CC’s proposed in this work. We also
include results when having access to privileged information (CCPI ), i.e., the list of concepts present
in images as given by the evaluation dataset. More results can be found in Appendix Tab. 8.

CLIP VOC Cityscapes ADE20k
Method training data CCBG CCL CCD CCBG CCL CCD CCPI CCBG CCL CCD CCPI

MaskCLIP OpenAI 44.2 52.2 53.4 15.0 22.5 22.0 30.6 20.2 23.5 25.2 29.8
DINOiser LAION-2B 59.3 63.1 64.7 23.2 30.6 27.3 36.0 28.9 29.7 31.6 35.5
TCL TCL’s 52.9* 52.6* 53.6* 9.8 26.3 22.0 29.7 14.9* 25.9 26.5 32.6
GEM MetaCLIP 48.6* 61.3* 64.6* 14.5* 21.5 14.6 20.6 21.5* 26.3 29.1 33.0
CAT-Seg OpenAI 52.8 69.5 67.7 – – – – 25.7 38.4 39.7 46.8

Table 1: Benefits of CC measured in IoU-single. ‘*’ indicates that the method’s original background
handling is applied, if any and provided it gives the best results. Note that CAT-Seg input resolution is
640x640, whereas it is 448x448 for all the other methods. We note CCPI the unrealistic setup where
we have access to all of the dataset classes and use them as systematic contrastive concepts (except

for VOC, as its annotations do not cover all pixels). Please note that CCBG is our baseline.

“Background” is not enough. We start by analyzing the overall impact of our proposed CCs.
In all cases, we observe a significant improvement when using contrastive concepts CCD and
CCL compared to the CCBG. Even for object-centric VOC where CCBGalready provides a strong
baseline, our proposed CC generation methods bring significant gains ranging from 0.7 to 16.7 points.
Interestingly, test-time CCs also work well for supervised CAT-Seg, showing that our method is
beneficial for open-vocabulary segmenters with all levels of supervision.

CCL generalize better to domain-specific datasets. For both VOC and ADE20K, the co-
occurrence-based CCD outperforms most of the time the LLM-based CCL, with a margin ranging
from 0.6 to 2.8 points. However, this trend does not hold for Cityscapes, where CCLgives the best
results for all methods. In particular, Cityscapes is a dataset of urban driving scenes that contains
images depicting a few recurring concepts. This may suggest that LLMs can produce better results
than CCD for such domain-specific tasks. We also note that CCLgenerally produces fewer CCs, but we
do not observe a correlation between segmentation performance and |CC|, as shown in Appendix D.

Test-time concepts are different from train-time concepts. We also observe that CCPI results
overall do not exceed 50% mIoU. The segmentation quality might thus be limited by the VLM
capacity or by a mismatch between the dataset classes and the training data. Well-designed prompt
engineering could help address this issue (Roth et al., 2023) and improve segmentation results.
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Method Bkg. Object VOC

MaskCLIP
CCBG 17.8 35.1
CCL 25.9 46.2
CCD 25.1 46.4

DINOiser
sal. 34.8 62.1
CCBG 29.5 54.0
CCL 35.0 60.8
CCD 33.3 60.4

Table 2: Results w/ mIoU.

Classic mIoU evaluation. Additionally, in Tab. 2, we present results
with the standard mIoU for MaskCLIP and CLIP-DINOiser (both with
the LAION-2B backbone). We report results with various contrastive
concepts (CC) and the original background handling strategy when
applicable. We observe that in all cases, the results with CCD and
CCL are better than baseline CCBG. We also notice that for DINOiser
the results are on par with the ones obtained with the saliency (noted
‘sal.’) originally proposed by Wysoczańska et al. (2024b). This shows
that integrating our contrastive concepts does not hurt performance in
the classic mIoU setup. We provide more results in Tab. 7.

4.4 ABLATION STUDIES

co- no sem. Mask TCL DINO
occ. abs. sim. CLIP iser

✓ 20.2 22.4 23.9
✓ ✓ 20.9 23.2 25.5

✓ ✓ 18.4 20.0 26.3
✓ ✓ ✓ 25.2 26.0 31.6

(a) Impact of filtering in CCD on
ADE20K (%IoU-single).

Cityscapes ADE20k
Method w/o w/ w/o w/

MaskCLIP 22.3 22.5 22.5 23.5
DINOiser 30.3 30.6 27.5 29.7
TCL 26.0 26.2 25.4 26.3
GEM 21.3 21.4 25.7 26.1

(b) Adding “background” or not
to our LLM-based CCL.

MaskCLIP VOC
w/ CLIP
training set CCBG CCL CCD

LAION-2B 47.9 51.8 53.8
OpenAI 44.2 52.2 53.4
MetaCLIP 46.8 50.6 50.0

(c) Impact of pre-training dataset
on VOC (%IoU-single).

Table 3: Ablation studies. (a) The impact of filtering steps: ‘co-occ.’ is the co-occurrence-based
filtering; ‘no abs.’ is the removal of abstract concepts; ‘sem. sim.’ is the semantic-similarity filtering.
(b) Relevance of adding “background” to CCL. (c) Varying the pre-training dataset.

CCD concept filtering. In Tab. 3a, we analyze the impact of the different filtering steps discussed
in Sec. 3.3.1 on the challenging ADE20K dataset. We observe that each step boosts results by
removing noisy or detrimental concepts. The largest gain is obtained when filtering highly similar
(‘sem. sim.’) concepts. We also note that the improvement is consistent for all methods. We report
the performance without the co-occurrence thresholding (w/o ‘co-occ.’) and observe a significant
degradation. More experiments in Appendix B.2 suggest that ontology-based filtering (e.g., using
WordNet) does not help and can even be harmful.

Adding “background” to CCL. In Tab. 3b, we study the influence of adding the word “background”
to the set of contrastive concepts CCL generated with the LLM. We observe that it is always beneficial,
in most cases with little gain, except on ADE20k where the gain is up to 2.2 IoU-single pts.

Impact of the pre-training dataset. Tab. 3c shows the results of MaskCLIP with different datasets
used to train CLIP. We observe that using CCDalways gives a boost over using “background” alone
(CCBG) across all pre-training datasets, including on the highly-curated MetaCLIP. However, we
notice that for MetaCLIP, CCLgives even better results, suggesting that leveraging LLMs can also be
more profitable with backbones pre-trained on carefully-curated datasets.

4.5 QUALITATIVE RESULTS

In Fig. 4, we present qualitative examples when using different contrastive concepts proposed in
this work. We compare CCLand CCDwith ground truth (GT) and baseline CCBG. For both CCLand
CCD, we present the output segmentation mask for the queried concept together with its contrastive
concepts (noted all) as well as the single queried concept (noted single), where CCs are discarded.
We observe that the output masks produced by our methods are more accurate, removing the noise
from related concepts, e.g. “tree” for the bird, or “sofa” for the “bed”.

Generalization to arbitrary concepts. Fig. 5 presents results when prompting queries that are
not included in the subset of concepts T extracted from the VLM training dataset, such as “muffin”
or “cavalier” (a dog breed). We show the closest neighbor for the query q below each example and
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Figure 4: Qualitative results. We show segmentation examples from ADE20K (1st and 2nd row)
and Context (3rd and 4th row), with segments produced by CLIP-DINOiser. For CCD and CCL, we
additionally show the joint segmentation of all contrastive classes (all).

MaskCLIP CLIP-DINOiser
CCD(single) CCD(all) CCD(single) CCD(all)

q: muffin→ i ∈ T : pastry

q: cavalier→ i ∈ T : dog

Figure 5: In the wild examples. We visualize results for MaskCLIP and CLIP-DINOiser for query
concepts beyond T . The closest neighbour to a query is presented below each example (grey row).

visualize masks for both MaskCLIP and CLIP-DINOiser. We observe that the CCDgeneration method
leveraging statistics from pre-training datasets is also robust to examples outside of the co-occurrence
dictionary by accurately mapping q to its closest concept in T , e.g., mapping “cavalier” to “dog”.

5 CONCLUSION

In this work, we identify limitations of the current evaluation setup for open-vocabulary semantic
segmentation tasks, which are inherited from close-world evaluation benchmarks. To bridge the
gap between close- and open-world setups, we propose the single-class segmentation scenario. We
study the limitations of current state-of-the-art models when we assume no prior access to in-domain
classes and propose to automatically discover contrastive concepts CC that are useful to better
localize any queried concept. To do so, we propose two methods leveraging either the distribution
of co-occurrences in the VLM’s training set or an LLM to generate such CC. Our results show the
generalizability of our proposed method across several setups.
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APPENDIX

In this appendix,

• we start by providing details on the evaluation in Sec. A: evaluation protocol (Sec. A.1),
approaches to the background handling of the considered baselines (Sec. A.2), and details
of the IoU-Single metric (Sec. A.3).

• Next, in Sec. B, we present more quantitative results and studies, including hyperparameter
selection (Sec. B.1), filtering based on WordNet ontology (Sec. B.2), classic mIoU results
(Sec. B.3), and further quantitative (Sec. B.3) and qualitative (Sec. B.4) results. We also
discuss limitations (Sec. 5).

• In Sec. C, we provide details about LLM and the used prompts, together with examples of
LLM-generated contrastive concepts.

• Sec. D presents performance vs. the number of contrastive concepts when considering
CCDand CCL.

A DETAILS ON THE EVALUATION

A.1 EVALUATION PROTOCOL

In our experiments, we follow the evaluation protocol of Cha et al. (2023). We use MMSegmentation
implementation (Contributors, 2020) with a sliding window strategy and resize input images to
have a shorter side of 448. In the case of CAT-Seg, we retain the original model framework and
integrate IoU-single into Detectron (Wu et al., 2019). We also use its evaluation protocol, meaning
that the input images differ from other evaluated methods, i.e., with an input image size of 640x640.
Regarding the text prompts, we keep the native prompting of each method to stay as close as possible
to the methods.

A.2 BACKGROUND HANDLING OF BASELINES

We detail here the different strategies employed in the methods that we evaluate to handle the
background.

TCL (Cha et al., 2023) applies thresholding and considers pixels with maximal logit ≤ 0.5 to
be in the background, where the logits are the cosine similarities of the visual embedding
with the embedding of queries.

GEM (Bousselham et al., 2024) applies a background handling strategy only for Pascal VOC.
It only predicts the foreground classes. The background is obtained by thresholding the
softmax-normalized similarity between the patch tokens and the text embedding of each
class name. The threshold is fixed (set to 0.85). In our experiments with VOC, we explore
the performance of GEM both with and without background handling and report each time
the better score. For other datasets than VOC, we apply only our methods.

MaskCLIP (Zhou et al., 2022) does not use any dedicated mechanism for background. There-
fore, we do not report the original setup for it.

CLIP-DINOiser (Wysoczańska et al., 2024b) leverages a foreground/background saliency
strategy which focuses on foreground pixels. In that case, the foreground/background is
defined following FOUND (Siméoni et al., 2023), which focuses on objectness and mainly
discards pixels corresponding to stuff-like classes, which might also be of interest.

CAT-Seg (Cho et al., 2024) does not apply any background handling strategy. Instead, for VOC
they create a list of potential background classes and use them as "dummy" classes. This
approach is the closest to what we propose in our work. In practice, for the VOC dataset,
the authors use class names from the Context dataset, an extension of VOC with +40 class
names.
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Algorithm 1: IoU-single

input : I – input image: I ∈ RH×W×3

Y – ground-truth annotations of I: gt ∈ NH×W×1

T – ground-truth text labels
CC – a dictionary of contrastive concepts per query
model – segmenter producing pixel-level predictions given text queries

output : mean IoU-single, a mIoU score for a single-query scenario for a given image
procedure IoUsingle(I, Y ):

// Get unique classes from Y
gtcls ← unique(Y)
scores← ∅
for i ∈ gtcls do
q ← Ti

// Text prompts include query q and contrastive concepts of q
tq ← q ∪ CCq

// Get model predictions for given prompt set
ŷ ← model(I, tq)
// Get binarized version of predicted mask
ŷ ← binarize(ŷ, i)
// Get ground-truth binary mask for gt class i
y ← binarize(Y, i)
// Record corresponding IoU
scores← scores ∪ IoU(ŷ, y)

end for
return mean(scores)

A.3 ABOUT THE IOU-SINGLE METRIC

We present in Fig. 6 an illustration of our proposed metric IoU-single. We illustrate the difference
between the standard mIoU metric (dataset-driven mIoU), where all the concepts present on an image
are considered at once. On the contrary, our IoU-single considered each of the present concepts
separately to measure the single-class segmentation ability of open vocabulary semantic segmentation
methods.

We also present in Algorithm 1 a pseudo-code of our metric. (The actual code of this metric, along
with the code used in our experiments, will be available upon publication.)
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Figure 6: Illustration of our IoU-single metric.
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values of γ values of δ
Method CLIP tr. data 0.001 0.005 0.01 0.015 0.02 0.95 0.9 0.85 0.8 0.75

MaskCLIP
OpenAI 24.4 26.0 24.8 24.4 23.2 19.9 21.0 23.0 24.4 22.8
Laion2B 25.8 27.8 27.4 26.0 25.4 23.0 24.1 26.4 27.4 24.6

MetaCLIP 22.0 24.1 24.4 23.8 23.4 22.7 23.7 25.9 27.2 23.7

DINOiser Laion2B 24.4 27.2 27.9 27.9 27.7 23.5 24.6 26.4 27.9 26.9

Table 4: Parameter study of γ and δ. Selection (marked in grey) of the hyperparameters γ and δ
with IoU-single on 100 randomly-selected images in ADE20k training dataset.

Method CLIP training data 1.0 0.95 0.9 0.85 0.8

MaskCLIP
OpenAI 26.0 40.4 41.1 39.1 32.1
Laion2B 35.3 43.7 44.0 44.6 42.2

MetaCLIP 24.4 39.1 40.3 34.3 30.6

DINOiser Laion2B 51.3 57.8 58.6 58.8 55.2
TCL TCL’s 37.2 47.6 47.7 47.1 47.7

Table 5: Selection of β with classic mIoU on 100 randomly-selected images in the VOC training
dataset. Results are reported for CCL.

Method MaskCLIP TCL DINOiser

CCD 25.2 26.0 31.6
CCD+ WordNet 25.2 26.4 26.3
CCD+ WordNet − sem. sim. 21.0 23.4 25.8

Table 6: Ontology-based (WordNet) filtering out synonyms, meronyms, hyponyms and hypernyms
(at depth 1) from CCD. Results are reported on ADE20K, as %IoU-single.

B MORE QUANTITATIVE RESULTS

B.1 HYPERPARAMETER SELECTION

In this section, we discuss the selection of hyperparameters for our CC generation. For the frequency
threshold γ and the cosine similarity threshold δ, we randomly select 100 images from the training
set of the ADE20K dataset and report IoU-single on this subset — which we observed was enough to
select the values. We report in Tab. 4 a parameter study of both hyperparameters and mark in grey
selected values, i.e., γ = 0.01 and δ = 0.8. For γ, we observe that values γ < 0.005 are too low,
most likely introducing too much noise in selected contrastive concepts.

Tab. 5 presents a parameter study of the cosine similarity of text queries β in multi-query segmentation.
Here, we randomly select 100 images from the VOC training set and report classic mIoU for different
β values. We select β = 0.9 because it gives the best result for most methods. We also note that
controlling the similarity between query concepts and contrastive concepts in the multiple-query
scenario is necessary. Not including this step (see results for β = 1.0) greatly degrades performance.

B.2 ONTOLOGY-BASED FILTERING WITH WORDNET

Here, we discuss our experiments when using the WordNet ontology (Fellbaum, 1998) for CCD
filtering. Specifically, for each query concept, we extract synonyms and meronyms, as well as
hyponyms and hypernyms in-depth 1 in the WordNet ontology. From the results in Tab. 6, we observe
that adding such filtering on top of our semantic similarity filtering brings little to no improvement,
suggesting that semantic filtering removes most of the contrastive concepts that interfere with a query
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Background Type of CLIP Training Dataset
Methods handling CC backbone dataset Context Object VOC

GroupViT threshold ∅ scratch CC12M+RedCaps 18.7 27.5 50.4
CLIP-DIY saliency ∅ LAION-2B - 19.7 31.0 59.9
TCL threshold ∅ OpenAI CC12M+CC3M 24.3 30.4 51.2
MaskCLIP† ∅ ∅ OpenAI - 21.1 15.5 29.3
MaskCLIP∗ ∅ ∅ LAION-2B - 22.9 16.4 32.9
MaskCLIP∗ (+keys) ∅ ∅ LAION-2B - 24.0 21.6 41.3
CLIP-DINOiser ∅ ∅ LAION-2B ImageNet (1k im.) 32.4 29.9 53.7
GEM ∅ ∅ MetaCLIP - - - 46.8

CLIP-DINOiser

saliency ∅ LAION-2B ImageNet (1k im.) – 34.8 62.1
CC CCBG LAION-2B ImageNet (1k im.) 32.4 29.5 54.0
CC CCL LAION-2B ImageNet (1k im.) 31.3 35.0 60.8
CC CCD LAION-2B ImageNet (1k im.) 31.8 33.3 60.4

MaskCLIP
CC CCBG LAION-2B - 23.6 17.8 35.1
CC CCL LAION-2B - 22.5 25.9 46.2
CC CCD LAION-2B - 23.2 25.1 46.4

GEM threshold ∅ MetaCLIP - 33.4* 27.4* 46.6*
GEM CC CCL MetaCLIP - 31.6 35.7 60.0
GEM CC CCD MetaCLIP - 32.1 35.5 60.5

Table 7: Results with standard mIoU metric when employing different contrastive concept gener-
ation strategies. ’*’ denotes our implementation, ‘†’ denotes results from TCL (Cha et al., 2023),
and ’MaskCLIP (+keys)’ denotes keys refinement proposed in the original paper (Zhou et al., 2022).
Training datasets include CC12M (Changpinyo et al., 2021), RedCaps (Desai et al., 2021), Ima-
geNet (Deng et al., 2009), CC3M (Sharma et al., 2018).

concept. Furthermore, replacing semantic similarity with WordNet-based filtering yields significantly
worse results than our proposed CCD.

B.3 MORE QUANTITATIVE RESULTS

State-of-the-art results under classic mIoU In Tab. 7, we report the results under the classic mIoU
metric for selected state-of-the-art methods on open-vocabulary semantic segmentation. For each of
the methods, we detail the specific background handling techniques (if any), the CLIP backbone used
as well as additional datasets used for training.

We notice that extending the dataset vocabulary with our generated contrastive concepts does not
hurt the overall performance under a normal setup when all dataset labels are considered as prompts.
For GEM and MaskCLIP we observe significant improvements over their original setups on VOC.
This holds for both contrastive concept generation methods CCD and CCL. Looking at the results of
CLIP-DINOiser, we observe that saliency is still more effective in the object-centric scenario.

More open-world evaluation results Tab. 8 extends Tab. 1 and completes the results, obtained
with the IoU-single metric on all the datasets that we considered.

B.4 MORE QUALITATIVE RESULTS

More qualitative results are provided in Fig. 7, comparing CCD to CCL.
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Method CLIP dataset Original CCPI CCBG CCL CCD

VOC

MaskCLIP
LAION-2B – 49.9 47.9 51.8 53.6

OpenAI – 47.1 44.2 52.2 53.4
MetaCLIP – 47.9 46.6 50.6 50.1

CLIP-DINOiser LAION-2B 63.8* 61.0 59.3 63.1 64.7
TCL TCL’s 52.9* 53.0* 52.9* 52.6* 53.6*
GEM MetaCLIP – – 48.6* 61.3* 64.6*
CAT-Seg OpenAI – – 52.8 69.5 67.7

Cityscapes

MaskCLIP
LAION-2B – 32.2 16.2 27.2 24.0

OpenAI – 30.6 15.0 22.5 22.0
MetaCLIP – 30.0 13.6 24.6 23.3

CLIP-DINOiser LAION-2B 20.8 36.0 23.2 30.6 27.3
TCL TCL’s 18.6* 29.7 9.8 26.3 22.0
GEM MetaCLIP – 20.6 14.5* 21.5 14.6

COCO-Stuff

MaskCLIP
LAION-2B – 34.1 26.4 28.8 29.5

OpenAI – 33.6 24.1 28.4 28.8
MetaCLIP – 34.0 25.8 28.1 28.1

CLIP-DINOiser LAION-2B 28.0* 35.3 32.4 33.9 34.4
TCL TCL’s 25.0* 34.7 17.4 29.5 30.6
GEM MetaCLIP – 38.3 22.9* 32.2 33.6

ADE20k

MaskCLIP
LAION-2B – 33.2 22.7 26.8 27.8

OpenAI – 29.8 20.2 23.5 25.2
MetaCLIP – 32.1 21.5 24.7 26.0

CLIP-DINOiser LAION-2B 28.8* 35.3 28.9 29.7 31.6
TCL TCL’s 14.8* 32.6 14.9* 25.9 26.5
GEM MetaCLIP – 33.0 21.5* 26.3 29.1
CAT-Seg OpenAI – 46.8 25.7 38.4 39.7

COCO-Object

MaskCLIP
LAION-2B – 32.1 27.7 33.7 32.9

OpenAI – 31.3 24.3 34.5 33.3
MetaCLIP – 30.9 27.4 32.2 31.1

CLIP-DINOiser LAION-2B 38.8* 38.9 35.5 41.6 39.9
TCL TCL’s 37.1* 38.1 37.2* 38.1* 37.2*
GEM MetaCLIP – – 31.4 39.7 40.1

Pascal Context

MaskCLIP
LAION-2B – 40.5 34.4 35.2 37.4

OpenAI – 41.1 32.9 34.7 36.8
MetaCLIP – 41.1 32.6 34.2 35.8

CLIP-DINOiser LAION-2B 33.9* 45.8 41.5 41.6 44.2
TCL TCL’s 29.7* 41.7 29.7* 36.8 38.2
GEM MetaCLIP – – 26.9 40.1 42.1

Table 8: Results on all datasets with our IoU-single metric defined in Sec. 4.1. ‘*’ denotes the result
when the original background handling gives the best results.
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Figure 7: More qualitative results of CLIP-DINOiser with different CC. Here we focus on cases
where CCD and CCL give different results. For “boat" (2nd row), CCL gives a better result providing
a good CC (“dock"). On the other hand, for “skyscraper" (3rd row), CCD yields slightly better results
suggesting “sky" and not “cloud". Note that in this last example, CCBG completely fails, possibly
due to a difficult (uncommon) angle of view.

B.5 LIMITATIONS

In many images, the objects of interest are surrounded by unrelated other objects or stuff. Contrastive
concepts are then of little help, and the objects of interest are reasonably well segmented by only
contrasting with “background”. This is, in particular, the case for object-centric datasets such as VOC.
Differently, in some images, the objects of interest are surrounded by other objects or stuff that are
frequently co-occurring in the training set. Using specific contrastive objects helps the segmenter
to better separate the objects of interest from the rest. Consequently, the average gain of using
CC is good but possibly moderate. However, in some images and queries, the specific gain can be
particularly high.

C PROMPTING THE LLM

In this section, we provide more details about the LLM and the prompts used.

C.1 THE LLM MODEL

We use the recent Mixtral-8x7B-Instruct model (Jiang et al., 2024), a sparse mixture of experts model
(SMoE), finetuned for instruction following and released by Mistral AI. More precisely, we rely on
the v0.1 version of its open weights available via the Hugging Face transformers library. We run the
LLM in 4-bit precision with flash attention to speedup inference.

C.2 THE PROMPTS USED FOR CONTRASTIVE CONCEPTS

We provide in Fig. 8 the prompt used to generate the contrastive concepts CCL and in Fig. 9 the
prompt used to predict whether a concept can be seen in an image or not in order to filter CCD.

In these prompts, we indicate the inserted input text as {q}. We follow Mixtral-8x7B Instruct’s
prompt template. In particular, we use <s> as the beginning of the string (BOS) special token, as
well as [INST] and [/INST] as string markers to be set around the instructions.

For the generation of CCL, we also integrate a light post-processing step, ensuring that all generated
lists have a unified format with coma separation. We do not apply any filtering or cleaning step to the
LLM-generated results.
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<s> [INST] You are a helpful AI assistant with visual abilities.

Given an input object O, I want you to generate a list of words related to objects that can be
surrounding input object O in an image to help me perform semantic segmentation.

For example:

* If the input object is ’fork’, you can generate a list of words such as ’["bottle", "knife",
"table", "napkin", "bread"]’.

* If the input object is ’child’, you can generate a list of words such as ’["toy", "drawing",
"bed", "room", "playground"]’.

You should not generate synonyms of input object O, nor parts of input object O.

Generate a list of objects surrounding the input object {q} without any synonym nor parts,
nor content of it. Answer with a list of words. No explanation.

Answer: [/INST]

Figure 8: Prompt for CCL contrastive concept generation.

<s> [INST] Please specify whether {q} is something that one can see.

Reply with ’yes’ or ’no’ only. No explanation.

Answer: [/INST]

Figure 9: Prompt for CCL visibility prediction.

<s> [INST] You are a helpful AI assistant with visual abilities.

Given an input object O, I want you to generate a list of words that are parts of an object O.

For example:

* If the input object is ’rabbit’, you can generate a list of words such as ’["paw", "tail",
"fur", "ears", "muzzle"]’.

* If the input object is ’building’, you can generate a list of words such as ’["door",
"window", "wall", "hall", "floor"]’.

Generate a list of parts of the input object {q}. Answer with a list of words. Do not give
any word that is not a part of the input object. No explanation.

Answer: [/INST]

Figure 10: Prompt for part prediction.

C.3 PART REMOVAL VIA LLM-PROMPTING

We also explore the possibility of removing suggested contrastive concepts that can be parts of
query concepts. Note that in CCL, we explicitly do it in the prompt itself (Fig. 10). Fig. 11 presents
one of such examples when removing “wheel” from the CCDof query “bicycle” gives a slight
improvement for MaskCLIP segmentation. However, we do not notice a particular improvement in
the case of other segmentation methods since, typically, they refine the masks or feature maps to
include localization priors. For example, in Fig. 11, the second row presents the same example for
CLIP-DINOiser (DINOiser), where the improvement is marginal. Finally, we observe little or no
quantitative improvement when applying part removal filtering on entire datasets. Therefore, we do
not include it in our final method.
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Figure 11: Part removal. We consider an example from Pascal Context with q = bicycle. We show
the segmentation masks produced by MaskCLIP and CLIP-DINOiser for CCD , as well as for CCDwhen parts of
objects are removed (CCD−parts).

Query q CCLq
road building, tree, car, pedestrian, sky, streetlight, sidewalk, bicycle, parked car, traffic sign
sidewalk building, street, car, tree, people, bike, road, park, sky, lane
building sky, tree, road, car, park, people, lane, fence, house, field
wall door, window, floor, ceiling, painting, light, chair, table, carpet, curtain
fence grass, tree, house, car, path, post, gate, field, flowers, animals
pole building, wire, tree, street, sky, fence, cable, road, banner, light
traffic light road, car, building, pedestrian, sky, streetlight, traffic sign, parking meter
traffic sign road, street, pole, vehicle, building, sky, pedestrian, curb, lane, light
vegetation soil, tree, grass, water, animal, fence, field, sky, rock, sun
terrain tree, sky, building, road, mountain, river, field, fence, vehicle, person
sky tree, building, cloud, sun, bird, airplane, mountain, sea, sunset, cityscape
person bike, road, car, tree, building, park, cityscape, nature, animal, sports equipment
rider bicycle, road, nature, park
car road, tree, building, person, parking
truck road, car, building, tree, parking
bus road, tree, building, sky, person, car, traffic light, bicycle, parking meter, street sign
train track, grass, sky, building, platform, tree, sign, person, car, road
motorcycle road, person, bike, car, traffic, building, nature, parking, city, scenery
bicycle road, tree, person, park, building, grass, basket, helmet, traffic, path

Table 9: Example of LLM-generated CCL for Cityscapes.

C.4 EXAMPLE OF GENERATED CCL

D AVERAGE NUMBER OF CONTRASTIVE CONCEPTS VS PERFORMANCE

We present in Fig. 13 a scatterplot of performance vs the number of contrastive concepts when
considering CCD (Fig. 13(a)) and CCL (Fig. 13(b)). The points correspond to the IoU-single scores
per class obtained with CLIP-DINOiser on all datasets we evaluate. We observe no strong correlation
between the number of contrastive concepts and performance, although there is a small mode of
around 20 concepts when using CCD. We also observe that, on average, |CCD| > |CCL|.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

5 10 15 20

0

20

40

60

80

number of contrastive concepts

Io
U

-s
in

gl
e

(%
)

(a) CCL

0 20 40

0

20

40

60

80

number of contrastive concepts

Io
U

-s
in

gl
e

(%
)

(b) CCD

Figure 12: Number of CC vs performance. We compare the number of CC against the performance
of CLIP-DINOiser for each class used in our evaluations (considering all datasets). Performance is
reported with per class IoU-single %.
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Figure 13: Distribution of maximum patch similarities with text prompts. We plot histograms for
100 images of VOC21 (a) and ADE20K (b) of patch similarities in MaskCLIP.
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Figure 14: Overview of our method.
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Figure 15: Failure cases of our method. We show examples of CLIP-DINOiser when one of the
methods fails to generate accurate CC. In the first example CCLsuggests “blanket" for “bed" which
typically covers the query concept. In the second row, both methods fail to provide “floor" to contrast
with “rug". Finally, in the third example, both methods fail to generate “person" to contrast with
“bedclothes", however, CCLsuggest “pyjamas", which results in a better segmentation.
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Figure 16: Parts of objects handling. We present here qualitative results with the method CLIP-
DINOiser (Wysoczańska et al., 2024b) when prompting the prompts ‘arm’ and ‘person’ as suggested
by the reviewer. We present results with both CCDand CCL. We observe that the prompt ‘person’ is
always well segmented when the part ‘arm’ suffers from occlusion with our CC.
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Figure 17: Sigmoid experiments. We replace softmax with sigmoid applied on individual patch-to-
query prompt similarities. We show the variation of single-IoU% wrt. the threshold that is applied
after sigmoid to decide on a positive vs. "background" class. To get the thresholds, we find the
minimum and maximum values of the features after sigmoid and linearly sample 30 values in this
range. We can see that the result is sensitive to the threshold value and does not reach the baseline of
CCBG.
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(a) Input image
CC= ∅ CCBG

Ground-truth label: bird
bird

Ground-truth label: bird
background
bird

CCD CCL
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sky
bird
branch
background
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bird
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(b)

Figure 18: t-SNE analysis of patch features for different CCs of an image q = “bird". We present
patch features with their predicted closest text embedding coded in color. Text embeddings are
corresponding CCs of q = “bird". We also mark the ground truth labels in orange. The sample is from
VOC dataset.
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