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Abstract

Knowledge distillation constitutes a simple yet effective way to improve the per-
formance of a compact student network by exploiting the knowledge of a more
powerful teacher. Nevertheless, the knowledge distillation literature remains lim-
ited to the scenario where the student and the teacher tackle the same task. Here,
we investigate the problem of transferring knowledge not only across architectures
but also across tasks. To this end, we study the case of object detection and, instead
of following the standard detector-to-detector distillation approach, introduce a
classifier-to-detector knowledge transfer framework. In particular, we propose
strategies to exploit the classification teacher to improve both the detector’s recog-
nition accuracy and localization performance. Our experiments on several detectors
with different backbones demonstrate the effectiveness of our approach, allowing
us to outperform the state-of-the-art detector-to-detector distillation methods.

1 Introduction
Object detection plays a critical role in many real-world applications, such as autonomous driving
and video surveillance. While deep learning has achieved tremendous success in this task [25, 26, 31,
32, 40], the speed-accuracy trade-off of the resulting models remains a challenge. This is particularly
important for real-time prediction on embedded platforms, whose limited memory and computation
power impose strict constraints on the deep network architecture.

To address this, much progress has recently been made to obtain compact deep networks. Existing
methods include pruning [1, 2, 13, 22, 38] and quantization [7, 30, 44], both of which aim to reduce
the size of an initial deep architecture, as well as knowledge distillation, whose goal is to exploit
a deep teacher network to improve the training of a given compact student one. In this paper, we
introduce a knowledge distillation approach for object detection.

While early knowledge distillation techniques [18, 33, 36] focused on the task of image classification,
several attempts have nonetheless been made for object detection. To this end, existing techniques [5,
12, 39] typically leverage the fact that object detection frameworks consist of three main stages
depicted by Figure 1(a): A backbone to extract features; a neck to fuse the extracted features; and
heads to predict classes and bounding boxes. Knowledge distillation is then achieved using a teacher
with the same architecture as the student but a deeper and wider backbone, such as a Faster RCNN [32]
with ResNet152 [14] teacher for a Faster RCNN with ResNet50 student, thus facilitating knowledge
transfer at all three stages of the frameworks. To the best of our knowledge, [43] constitutes the only
exception to this strategy, demonstrating distillation across different detection frameworks, such as
from a RetinaNet [25] teacher to a RepPoints [40] student. This method, however, requires the teacher
and the student to rely on a similar detection strategy, i.e., both must be either one-stage detectors or
two-stage ones, and, more importantly, still follows a detector-to-detector approach to distillation.
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In other words, the study of knowledge distillation remains limited to transfer across architectures
tackling the same task. Our classification teacher tackles a different task from the detection student
and is trained in a different manner but on the same dataset. Therefore, the classification teacher is
capable of providing a different knowledge to the student, for both classification and localization,
than that extracted by a detection teacher.

In this paper, we investigate the problem of transferring knowledge not only across architectures
but also across tasks. In particular, we observed that the classification head of state-of-the-art object
detectors still typically yields inferior performance compared to what can be expected from an image
classifier. Thus, as depicted by Figure 1(b), we focus on the scenario where the teacher is an image
classifier while the student is an object detector. We then develop distillation strategies to improve
both the recognition accuracy and the localization ability of the student.

Our contributions can thus be summarized as follows:

• We introduce the idea of classifier-to-detector knowledge distillation to improve the perfor-
mance of a student detector using a classification teacher.

• We propose a distillation method to improve the student’s classification accuracy, applicable
when the student uses either a categorical cross-entropy loss or a binary cross-entropy one.

• We develop a distillation strategy to improve the localization performance of the student be
exploiting the feature maps from the classification teacher.

We demonstrate the effectiveness of our approach on the COCO2017 benchmark [23] using diverse
detectors, including the relatively large two-stage Faster RCNN and single-stage RetinaNet used
in previous knowledge distillation works, as well as more compact detectors, such as SSD300,
SSD512 [26] and Faster RCNNs[32] with lightweight backbones. Our classifier-to-detector distil-
lation approach outperforms the detector-to-detector distillation ones in the presence of compact
students, and helps to further boost the performance of detector-to-detector distillation techniques for
larger ones, such as Faster RCNN and RetinaNet with a ResNet50 backbone. Our code is avlaible at:
https://github.com/NVlabs/DICOD.

2 Related work

Object detection is one of the fundamental tasks in computer vision, aiming to localize the objects
observed in an image and classify them. Recently, much progress has been made via the development
of both one-stage [9, 21, 26, 31, 37] and two-stage [4, 15, 24, 32] deep object detection frameworks,
significantly improving the mean average precision (mAP) on standard benchmarks [10, 11, 23].
However, the performance of these models typically increases with their size, and so does their
inference runtime. This conflicts with their deployment on embedded platforms, such as mobile
phones, drones, and autonomous vehicles, which involve computation and memory constraints. While
some efforts have been made to design smaller detectors, such as SSD [26], YOLO [31] and detectors
with lightweight backbones [19, 35], the performance of these methods does not match that of deeper
ones.

Knowledge distillation offers the promise to boost the performance of such compact networks
by exploiting deeper teacher architectures. Early work in this space focused on the task of image
classification. In particular, Hinton et al. [18] proposed to distill the teacher’s class probability
distribution into the student, and Romero et al. [33] encouraged the student’s intermediate feature
maps to mimic the teacher’s ones. These initial works were followed by a rapid growth in the number
of knowledge distillation strategies, including methods based on attention maps [42], on transferring
feature flows defined by the inner product of features [41], and on contrastive learning to structure
the knowledge distilled from teacher to the student [36]. Heo et al. [17] proposed a synergistic
distillation strategy aiming to jointly leverage a teacher feature transform, a student feature transform,
the distillation feature position and a better distance function.

Compared to image classification, object detection poses the challenge of involving both recognition
and localization. As such, several works have introduced knowledge distillation methods specifically
tailored to this task. This trend was initiated by Chen et al. [5], which proposed to distill knowledge
from a teacher detector to a student detector in both the backbone and head stages. Then, Wang
et al. [39] proposed to restrict the teacher-student feature imitation to regions around positive anchor
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Figure 1: Overview of our classifier-to-detector distillation framework. (a) Existing methods
perform distillation across corresponding stages in the teacher and student, which restricts their
applicability to detector-to-detector distillation. (b) By contrast, we introduce strategies to transfer
the knowledge from an image classification teacher to an object detection student, improving both its
recognition and localization accuracy.

boxes; Dai et al. [8] produced general instances based on both the teacher’s and student’s outputs, and
distilled feature-based, relation-based and response-based knowledge in these general instances; Guo
et al. [12] proposed to decouple the intermediate features and classification predictions of the positive
and negative regions during knowledge distillation. All the aforementioned knowledge distillation
methods require the student and the teacher to follow the same kind of detection framework, and thus
typically transfer knowledge between models that only differ in terms of backbone, such as from a
RetinaNet-ResNet152 to a RetinaNet-ResNet50. In [43], such a constraint was relaxed via a method
able to transfer knowledge across the feature maps of different frameworks. This allowed the authors
to leverage the best one-stage, resp. two-stage, teacher model to perform distillation to any one-stage,
resp. two-stage, student. This method, however, still assumes that the teacher is a detector.

In short, existing knowledge distillation methods for object detection all follow a detector-to-detector
transfer strategy. In fact, to the best of our knowledge, distillation has only been studied across
two architectures that tackle the same task, may it be image classification, object detection, or even
semantic segmentation [16, 27]. In this paper, by contrast, we investigate the use of knowledge
distillation across tasks and develop strategies to distill the knowledge of an image classification
teacher to an object detection student.

3 Our Approach

Our goal is to investigate the transfer of knowledge from an image classifier to an object detector.
As illustrated in Figure 1, this contrasts with existing knowledge distillation techniques for object
detection, which typically assume that the teacher and the student both follow a similar three-stage
detection pipeline. For our classifier-to-detector knowledge distillation to be effective, we nonetheless
need the student and teacher to process the same data and use the same loss for classification. To
this end, given a detection dataset Ddet depicting C foreground object categories, we construct
a classification dataset Dcls by extracting all objects from Ddet according to their ground-truth
bounding boxes and labels. We then train our classification teacher Ft, with parameters θt, on Dcls

in a standard classification manner. In the remainder of this section, we introduce our strategies to
exploit the resulting teacher to improve both the classification and localization accuracy of the student
detector Fs, with parameters θs.
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3.1 KDcls: Knowledge Distillation for Classification

Our first approach to classifier-to-detector distillation focuses on the classification accuracy of the
student network. To this end, we make use of the class-wise probability distributions obtained by the
teacher and the student, softened by making use of a temperature parameter T . Below, we first derive
our general formulation for distillation for classification, and then discuss in more detail how we
obtain the teacher and student class distributions for the two types of classification losses commonly
used by object detection frameworks.

Formally, given K positive anchor boxes or object proposals, which are assigned with one of the
ground-truth labels and bounding boxes during training, let ps,Tk denote the vector of softened class
probabilities for box k from the student network, obtained at temperature T , and let pt,Tk denote
the corresponding softened probability vector from the teacher network. We express knowledge
distillation for classification as a loss function measuring the Kullback-Leibler (KL) divergence
between the teacher and student softened distributions. This can be written as

Lkd−cls =
1

K

K∑
k=1

KL(pt,Tk ∥ ps,Tk ) . (1)

The specific way we define the probability vectors ps,Tk and pt,Tk then depends on the loss function
that the student detector uses for classification. Indeed, existing detectors follow two main trends:
some, such as Faster RCNN and SSD, exploit the categorical cross-entropy loss with a softmax,
accouting for the C foreground classes and 1 background one; others, such as RetinaNet, employ a
form of binary cross-entropy loss with a sigmoid2, focusing only on the C foreground classes. Let us
now discuss these two cases in more detail.

Categorical cross-entropy. In this case, for each positive object bounding box k, the student detector
outputs logits zsk ∈ (C + 1). We then compute the corresponding softened probability for class c
with temperature T as

ps,Tk (c|θs) = ez
s
k,c/T∑C+1

j=1 ez
s
k,j/T

, (2)

where zsk,c denote the logit corresponding to class c. By contrast, as our teacher is a C-way classifier,
it produces logits ztk ∈ C. We thus compute its softened probability for class c as

p̃t,Tk (c|θt) = ez
t
k,c/T∑C

j=1 e
zt
k,j/T

, (3)

and, assuming that all true objects should be classified as background with 0 probability, augment the
resulting distribution to account for the background class as pt,T = [p̃t,T , 0].

The KL-divergence between the teacher and student softened distributions for object k can then be
written as

KL(pt,Tk ∥ ps,Tk ) = T 2
C+1∑
c=1

pt,Tk,c log p
t,T
k,c − pt,Tk,c log p

s,T
k,c . (4)

Binary cross-entropy. The detectors that rely on the binary cross-entropy output a score between 0
and 1 for each of the C foreground classes, but, together, these scores do not form a valid distribution
over the C classes as they do not sum to 1. To nonetheless use them in a KL-divergence measure
between the teacher and student, we rely on the following strategy. Given the student and teacher
C-dimensional logit vectors for an object k, we compute softened probabilities as

p̃s,Tk (c|θs) = (1 + e−zs
k,c/T )−1 ,

p̃t,Tk (c|θt) = (1 + e−zt
k,c/T )−1 .

(5)

We then build a 2-class (False-True) probability distribution for each category according to the
ground-truth label l of object k. Specifically, for each category c, we write

ps,Tk,c = [1− p̃s,Tk,c , p̃
s,T
k,c ], (6)

2In essence, the RetinaNet focal loss follows a binary cross-entropy formulation.
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for the student, and similarly for the teacher. This lets us express the KL-divergence for object k as

KL(pt,Tk ∥ ps,Tk ) =
T 2

C

C∑
c=1

1∑
i=0

pt,Tk,c (i) log p
t,T
k,c (i)− pt,Tk,c (i) log p

s,T
k,c (i) , (7)

where pt,Tk,c (i) indicates the i-th element of the 2-class distribution pt,Tk,c .

3.2 KDloc: Knowledge Distillation for Localization

While, as will be shown by our experiments, knowledge distillation for classification already helps the
student detector, it does not aim to improve its localization performance. Nevertheless, localization, or
bounding box regression, is critical for the success of a detector and is typically addressed by existing
detector-to-detector distillation frameworks [5, 8]. To also tackle this in our classifier-to-detector
approach, we develop a feature-level distillation strategy, exploiting the intuition that the intermediate
features extracted by the classification teacher from a bounding box produced by the student should
match those of the ground-truth bounding box.

Formally, given an input image I of size w × h, let us denote by Bk = (x1, y1, x2, y2) the top-left
and bottom-right corners of the k-th bounding box produced by the student network. Typically, this
is achieved by regressing the offset of an anchor box or object proposal. We then make use of a
Spatial Transformer [20] unit to extract the image region corresponding to Bk. It is a non-parametric
differentiable module that links the regressed bounding boxes with the classification teacher to yield
an end-to-end model during training. Specifically, we compute the transformer matrix

Ak =

[
(x2 − x1)/w 0 −1 + (x1 + x2)/w

0 (y2 − y1)/h −1 + (y1 + y2)/h

]
, (8)

which allows us to extract the predicted object region Op
k with a grid sampling size s as

Op
k = fST (Ak, I, s) , (9)

where fST denotes the spatial transformer function. As illustrated in the right portion of Figure 1(b),
we then perform distillation by comparing the teacher’s intermediate features within the predicted
object region Op

k to those within its assigned ground-truth one Ogt
k .

Specifically, for a given layer ℓ, we seek to compare the features Fℓ
t (O

p
k) and Fℓ

t (O
gt
k ) of the positive

box k. To relax the pixel-wise difference between the features, we make use of the adaptive pooling
strategy of [28], which produces a feature map AP (Fℓ

t (O)) of a fixed size M ×W ×H from the
features extracted within region O. We therefore write our localization distillation loss as

LL
kd−loc =

1

KLMHW

K∑
k=1

L∑
ℓ=1

1ℓ∥AP (Fℓ
t (O

p
k))−AP (Fℓ

t (O
gt
k ))∥1 , (10)

where K is the number of positive anchor boxes or proposals, L is the number of layers at which we
perform distillation, 1l is the indicator function to denote whether the layer ℓ is used or not to distill
knowledge, and ∥ · ∥1 denotes the L1 norm. As both the spatial transformer and the adaptive pooling
operation are differentiable, this loss can be backpropagated through the student detector.

Note that, as a special case, our localization distillation strategy can be employed not only on
intermediate feature maps but on the object region itself (ℓ0), encouraging the student to produce
bounding boxes whose underlying image pixels match those of the ground-truth box. This translates
to a loss function that does not exploit the teacher and can be expressed as

L0
kd−loc(O

p, Ogt) =
1

KMHW

K∑
k=1

∥AP (Op
k)−AP (Ogt

k )∥1 . (11)

Depending on the output size of the adaptive pooling operation, this loss function encodes a more-
or-less relaxed localization error. As will be shown by our experiments, it can serve as an attractive
complement to the standard bounding box regression loss of existing object detectors, whether using
distillation or not.
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Table 1: Analysis of our classifier-to-detector distillation method with compact students on the
COCO2017 validation set. R50 is ResNet50, MV2 is MobileNetV2, QR50 is quartered ResNet50.

Method mAP AP50 AP75 APs APm APl mAR ARs ARm ARl

SSD300-VGG16 25.6 43.8 26.3 6.8 27.8 42.2 37.6 12.5 41.7 58.6
+ KDcls 26.3 (↑ 0.7) 45.2 27.2 7.3 28.5 43.6 38.4 12.8 42.6 59.1
+ KD0

loc 27.1 (↑ 1.5) 43.2 28.4 7.5 29.4 43.3 40.0 13.4 44.4 60.6
+ KDloc 27.2 (↑ 1.6) 43.3 28.5 7.5 29.5 43.5 40.2 13.2 44.7 61.5
+ KDcls + KDloc 27.9 (↑ 2.3) 45.1 29.2 8.1 30.1 45.4 40.4 13.9 44.7 61.4

SSD512-VGG16 29.4 49.3 31.0 11.7 34.1 44.9 42.7 17.6 48.7 60.6
+ KDcls 30.3 (↑ 0.9) 51.1 31.7 12.7 34.6 45.5 43.3 19.4 49.0 60.4
+ KD0

loc 30.8 (↑ 1.4) 48.8 32.9 12.8 35.8 46.2 44.7 18.8 51.1 63.4
+ KDloc 31.0 (↑ 1.6) 49.1 32.8 12.6 35.8 46.2 45.0 18.9 51.6 63.2
+ KDcls + KDloc 32.1 (↑ 2.7) 51.0 34.0 13.3 36.6 47.9 45.3 20.1 51.2 63.1

Faster RCNN-QR50 23.3 40.7 23.9 13.1 25.0 30.7 40.2 22.7 42.8 51.8
+ KDcls 25.9 (↑ 2.6) 45.5 26.2 15.3 27.9 34.0 42.8 25.5 46.0 54.9
+ KD0

loc 24.2 (↑ 0.9) 41.1 25.0 13.7 25.8 32.1 41.7 23.8 44.3 54.8
+ KDloc 24.3 (↑ 1.0) 41.0 25.1 13.0 25.9 32.5 41.6 22.7 44.6 54.7
+ KDcls + KDloc 27.2 (↑ 3.9) 46.0 27.7 15.2 29.3 36.2 44.5 25.9 48.1 58.3

Faster RCNN-MV2 31.9 52.0 34.0 18.5 34.4 41.0 47.5 29.7 50.9 60.4
+ KDcls 32.6 (↑ 0.7) 53.3 34.6 18.9 34.8 42.3 48.1 29.7 51.2 61.5
+ KD0

loc 32.2 (↑ 0.3) 51.9 34.2 18.3 34.4 41.8 47.9 29.0 50.8 61.5
+ KDloc 32.3 (↑ 0.4) 52.0 34.7 18.1 34.8 41.6 48.0 28.7 51.3 61.6
+ KDcls + KDloc 32.7 (↑ 0.8) 52.9 35.0 19.0 35.0 42.9 48.4 29.9 51.8 61.9

3.3 Overall Training Loss

To train the student detector given the image classification teacher, we then seek to minimize the
overall loss

L = Ldet + λkcLkd−cls + λklLkd−loc , (12)

where Ldet encompasses the standard classification and localization losses used to train the student
detector of interest. λkc and λkl are hyper-parameters setting the influence of each loss.

4 Experiments

In this section, we first conduct a full study of our classification and localization distillation methods
on several compact detectors, and then compare our classifier-to-detector approach to the state-of-
the-art detector-to-detector ones. Finally, we perform an extensive ablation study of our method and
analyze how it improves the class recognition and localization in object detection. All models are
trained and evaluated on MS COCO2017 [23], which contains over 118k images for training and
5k images for validation (minival) depicting 80 foreground object classes. Our implementation is
based on MMDetection [6] with Pytorch [29]. Otherwise specified, we take the ResNet50 as the
classification teacher. We will use the same teacher for all two-stage Faster RCNNs and one-stage
RetinaNets in our classifier-to-detector distillation method. We consider this to be an advantage of
our method, since it lets us use the same teacher for multiple detectors. To train this classification
teacher, we use the losses from Faster RCNN and RetinaNet frameworks jointly. Since SSDs use
different data augmentation, we train another ResNet50 classification teacher for them. Additional
experimental details on how to train our classification teachers are provided in the supplementary
material.

4.1 Classifier-to-Detector Distillation on Compact Students

We first demonstrate the effectiveness of our classifier-to-detector distillation method on compact de-
tectors, namely, SSD300, SSD512 [26] and the two-stage Faster RCNN [32] detector with lightweight
backbones, i.e., MobileNetV2 [35] and Quartered-ResNet50 (QR50), obtained by dividing the number
of channels by 4 in every layer of ResNet50, reaching a 66.33% top-1 accuracy on ImageNet [34].

Experimental setting. All object detectors are trained in their default settings on Tesla V100 GPUs.
The SSDs follows the basic training recipe in MMDetection [6]. The lightweight Faster RCNNs are
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trained with a 1× training schedule for 12 epochs. The details for the training settings of each model
are provided in the supplementary material. We use a ResNet50 with input resolution 112 × 112
as classification teacher for all student detectors. We report the mean average precision (mAP) and
mean average recall (mAR) for intersection over unions (IoUs) in [0.5:0.95], the APs at IoU=0.5 and
0.75, and the APs and ARs for small, medium and large objects.

Results. The results are shown in Table 1. Our classification distillation yields improvements of at
least 0.7 mAP for all student detectors. It reaches a 2.6 mAP improvement for Faster RCNN-QR50,
which indicates that the classification in this model is much weaker. The classification distillation
improves AP50 more than AP75, while the localization distillation improves AP75 more than AP50. As
increasing AP75 requires more precise localization, these results indicate that each of our distillation
losses plays its expected role. Note that the SSDs benefit more from the localization method than
the Faster RCNNs. We conjecture this to be due to the denser, more accurate proposals of the Faster
RCNNs compared to the generic anchors of the SSDs. Note also that a Faster RCNNs with a smaller
backbone benefits more from our distillation than a larger one.

4.2 Comparison with Detector-to-detector Distillation

We then compare our classifier-to-detector distillation approach with the state-of-the-art detector-to-
detector ones, such as KD [5], FGFI [39], GID [8] and FKD [43]. Here, in addition to the compact
students used in Section 4.1, we also report results on the larger students that are commonly used in
the literature, i.e., Faster RCNN and RetinaNet with deeper ResNet50 (R50) backbones.

Experimental setting. Following [43], the Faster RCNN-R50 and RetinaNet-R50 are trained with a
2× schedule for 24 epochs. To illustrate the generality of our approach, we also report the results
of our distillation strategy used in conjunction with FKD [43], one of the current best detector-to-
detector distillation methods. Note that, while preparing this work, we also noticed the concurrent
work of [12], whose DeFeat method also follows a detector-to-detector distillation approach, and
thus could also be complemented with out strategy.

Table 2: Comparison to detector-to-detector distil-
lation methods on the COCO2017 validation set.

Method mAP APs APm APl

Faster RCNN-QR50 23.3 13.1 25.0 30.7
+ FKD [43] 26.1 14.6 27.3 35.0
+ Ours 27.2 15.2 29.3 36.2
+ Ours + FKD 28.0 15.4 29.8 38.5

SSD512-VGG16 29.4 11.7 34.1 44.9
+ FKD [43] 31.2 12.6 37.4 46.2
+ Ours 32.1 13.3 36.6 47.9
+ Ours + FKD 32.6 13.5 37.6 48.3

Faster RCNN-MV2 31.9 18.5 34.4 41.0
+ FKD [43] 33.9 18.3 36.3 45.4
+ Ours 32.7 19.0 35.0 42.9
+ Ours + FKD 34.2 18.5 36.3 45.9

Faster RCNN-R50 38.4 21.5 42.1 50.3
+ KD [5] 38.7 22.0 41.9 51.0
+ FGFI [39] 39.1 22.2 42.9 51.1
+ GID [8] 40.2 22.7 44.0 53.2
+ FKD [43] 41.5 23.5 45.0 55.3
+ Ours 38.8 22.5 42.5 50.8
+ Ours + FKD 41.9 23.8 45.2 56.0

RetinaNet-R50 37.4 20.0 40.7 49.7
+ FGFI [39] 38.6 21.4 42.5 51.5
+ GID [8] 39.1 22.8 43.1 52.3
+ FKD [43] 39.6 22.7 43.3 52.5
+ Ours 37.9 20.5 41.3 50.5
+ Ours +FKD 40.7 23.1 44.7 53.8

Results. We report the results in Table 2.
For compact student detectors, such as Faster
RCNN-QR50 and SSD512, our classifier-to-
detector distillation surpasses the best detector-
to-detector one by 1.1 and 0.9 mAP points, re-
spectively. For student detectors with deeper
backbones, our method improves the baseline
by 0.8, 0.4 and 0.5 points. Furthermore, us-
ing it in conjunction with the FKD detector-to-
detector distillation method boosts the perfor-
mance to the state-of-the-art of 28.0, 32.6, 34.2,
41.9 and 40.7 mAP. Overall, these results ev-
idence that our approach is orthogonal to the
detector-to-detector distillation methods, allow-
ing us to achieve state-of-the-art performance
by itself or by combining it with a detector-to-
detector distillation strategy.

4.3 Ablation Study

In this section, we investigate the influence of
the hyper-parameters and of different classifica-
tion teachers in our approach. To this end, we
use the SSD300 student detector.

Ablation study of KDcls. We first study the
effect of the loss weight λkc and the temperature
T for classification distillation. As shown in
Table 3a, these two hyper-parameters have a
mild impact on the results, and we obtain the best results with λkc = 0.4 and T = 2, which were
used for all other experiments with SSDs.
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Table 3: Ablation study of KDcls. We evaluate the impact of the hyper-parameters and of various
classification teachers on our classification distillation.

(a) Varying λkc and T .
λkc T mAP AP50 AP75

baseline / 25.6 43.8 26.3

0.1 1 25.8 44.2 26.6
0.1 2 25.4 44.4 25.7
0.2 1 25.8 44.2 26.6
0.3 1 26.0 44.6 26.7
0.4 1 26.1 44.8 26.6
0.4 2 26.3 45.2 27.2
0.4 3 26.0 45.2 26.7

(b) Varying the teacher network.
Teacher Top-1 mAP AP50 AP75

ResNet18 75.78 25.9 44.4 26.4
ResNet50 80.30 26.3 45.2 27.2

ResNeXt101 83.35 25.3 43.3 25.8

Input size Top-1 mAP AP50 AP75

56× 56 76.26 26.2 44.8 26.9
112× 112 80.30 26.3 45.2 27.2
224× 224 80.41 26.2 44.9 26.9

Table 4: Ablation study of KDloc. We investigate the effect of the sampling size, the pooling size
and the choice of distilled layers on our localization distillation.

(a) Varying the sampling size.
Sampling size mAP AP50 AP75

14× 14 26.4 43.0 27.0
28× 28 26.7 43.2 27.8
56× 56 26.8 43.3 28.0

112× 112 27.0 43.5 28.1
224× 224 27.0 43.4 28.2

(b) Varying the pooling size.
Pooling size mAP AP50 AP75

2× 2 26.6 43.5 27.5
4× 4 27.0 43.5 28.1
8× 8 27.1 43.2 28.4

16× 16 26.9 42.8 28.1

(c) Varying distilled layers.
ℓ0 ℓ1 ℓ2 mAP

✓ 27.1
✓ 26.8

✓ ✓ 27.2
✓ ✓ ✓ 26.9

We then investigate the impact of different classification teacher networks. To this end, we trained
three teacher networks ranging from shallow to deep: ResNet18, ResNet50 and ResNext101-32×8d.
We further study the impact of the input size to these teachers on classification distillation, using
the three sizes [56× 56, 112× 112, 224× 224]. As shown in Table 3b, even the shallow ResNet18
classification teacher can improve the performance of the student detector by 0.3 points, and the
improvement increases by another 0.4 points with the deeper ResNet50 teacher. However, the
performance drops with the ResNeXt101 teacher, which is the teacher with the highest top-1 accuracy.
This indicates that a deeper teacher is not always helpful, as it might be overconfident to bring much
additional information compared to the ground-truth labels. As for the input size, we observe only
small variations across the different sizes, and thus use a size of 112 in all other experiments.

Ablation study of KDloc. We then evaluate the influence of the two main hyper-parameters of
localization distillation, i.e., the grid sampling size of the spatial transformer and the adaptive pooling
size of the feature maps. To this end, we vary the sampling size in [14, 28, 56, 112, 224] and the
pooling size in [2× 2, 4× 4, 8× 8, 16× 16].

As shown in Table 4a, our localization distillation method benefits from a larger sampling size,
although the improvement saturates after a size of 112. This lets us use the same classification teacher,
with input size 112, for both classification and localization distillation. The adaptive pooling size has
a milder effect on the performance, as shown in Table 4b, with a size of 8 yielding the best mAP. In
our experiments, we adopt either 4 or 8, according to the best performance on the validation set.

We further study the layers to be distilled in our localization distillation. To this end, we extract
features from the first convolutional layer ℓ1, and from the following bottleneck block ℓ2 of the
ResNet50 teacher. As shown in Table 4c, distilling the knowledge of only the object regions (ℓ0)
yields a better mAP than using the ℓ1 features. However, combining the object regions (ℓ0) with the
feature maps from ℓ1 improves the results. Adding more layers does not help, which we conjecture to
be due to the fact that these layers extract higher-level features that are thus less localized.

4.4 Analysis

To further understand how our classifier-to-detector distillation method affects the quality of the
classification and localization, in Table 5, we report the APs obtained with IoUs in [0.5, 0.95] with
a step of 0.05. These results highlight that our classification and localization distillation strategies
behave differently for different IoU thresholds. Specifically, KDcls yields larger improvements
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Table 5: APs for IoUs ranging from 0.5 to 0.95 on the COCO2017 validation set.
Method mAP AP50 AP55 AP60 AP65 AP70 AP75 AP80 AP85 AP90 AP95

SSD300 25.6 43.8 41.3 38.4 35.1 31.2 26.3 20.3 13.0 5.2 0.5
+ KDcls 26.3 45.2 42.6 39.9 36.1 31.6 27.2 21.0 13.5 5.1 0.5
+ KDloc 27.2 43.3 41.3 38.8 36.0 32.9 28.5 23.0 16.5 8.4 1.3
+ KDcls + KDloc 27.9 45.1 42.8 40.2 37.0 34.0 29.2 23.9 17.0 8.8 1.2

Ba
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s

(a) (b) (c) (d)

Figure 3: Qualitative analysis (better viewed in color). The ground-truth bounding boxes are in
blue with their labels, and the predictions are in red with predicted labels and confidence.

for smaller IoUs, whereas KDloc is more effective with IoUs larger than 0.75. This indicates
that KDloc indeed focuses on precise localization, while KDcls distills category information. The
complementarity of both terms is further evidenced by the fact that all APs increase when using both
of them jointly.
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Figure 2: Detection error analysis.

Detection error analysis. We analyze the dif-
ferent types of detection errors using the tool
proposed by Bolya et al. [3] for the baseline
SSD300 and the distilled models with our KDcls

and KDloc. We focus on the classification and
localization errors, which are the main errors in
object detection. The details of all error types
are provided in the supplementary material. As
shown in Figure 2a, KDcls decreases the clas-
sification error especially for IoUs smaller than
0.65. By contrast, as shown in Figure 2b, the
effect of KDloc increases with the IoU. This again shows the complementary nature of these terms.

Qualitative analysis. Figure 3 compares the detection results of the baseline model and of our
distilled model on a few images. We observe that (i) the bounding box predictions of the distilled
model are more precise than those of the baseline; (ii) the distilled model generates higher confidences
for the correct predictions and is thus able to detect objects that were missed by the baseline, such as
the boat in Figure 3c and the giraffe in Figure 3d.

5 Conclusion

We have introduced a novel approach to knowledge distillation for object detection, replacing the
standard detector-to-detector strategy with a classifier-to-detector one. To this end, we have developed
a classification distillation loss function and a localization distillation one, allowing us to exploit the
classification teacher in two complementary manners. Our approach outperforms the state-of-the-
art detector-to-detector ones on compact student detectors. While the improvement decreases for
larger student networks, our approach can nonetheless boost the performance of detector-to-detector
distillation. We have further shown that the same classification teacher could be used for all student
detectors if they employ the same data augmentation strategy, thus reducing the burden of training a
separate teacher for every student detector. Ultimately, we believe that our work opens the door to

9



a new approach to distillation beyond object detection: Knowledge should be transferred not only
across architectures, but also across tasks.

Broader impact

Knowledge distillation is a simple yet effective method to improve the performance of a compact
neural network by exploiting the knowledge of a more powerful teacher model. Our work introduces
a general approach to knowledge distillation for object detection to transfer knowledge across
architectures and tasks. Our approach enables distilling knowledge from a single classification
teacher into different student detectors. As such, our work reduces the need for a separate deep
teacher detector for each student networks; therefore, we reduce training resources and memory
footprint. As we focus on compact networks, our work could significantly impact applications in
resource-constrained environments, such as mobile phones, drones, or autonomous vehicles. We do
not foresee any obvious undesirable ethical/social impact at this moment.
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