
A Study on Improving Reasoning in Language Models

Yuqing Du∗

UC Berkeley
Alexander Havrilla

Georgia Tech

Sainbayar Sukhbaatar
Meta AI Research

Pieter Abbeel
UC Berkeley

Roberta Raileanu
Meta AI Research

Abstract

Accurately carrying out complex reasoning is a crucial component of deployable
and reliable language models. While current language models can exhibit this
capability with few-shot guidance, accurate reasoning is primarily restricted to
larger model sizes. In this work, we explore methods for improving the reasoning
capabilities of smaller language models which are more deployable than their larger
counterparts. Specifically, we look at variations of supervised learning, online
reinforcement learning with PPO, and distillation from larger models. Surprisingly,
for reasoning tasks such as CommonsenseQA [26] and GSM8K [2] we find that
simple filtered supervised learning often outperforms reward-conditioned super-
vised learning, and that simple iterative supervised learning performs on par with
online reinforcement learning.

1 Introduction

Reasoning is a crucial aspect of human decision making and intelligence. Recent work has shown
that it is possible to elicit coherent reasoning from language models, especially when the models
make use of step-by-step reasoning, or ’chains of thought’ [23, 32, 17]. Despite these models not
being explicitly trained to learn reasoning skills, the combination of a vast pretraining corpus and
sufficiently large model size has led to surprisingly performant models on various reasoning tasks
[31]. This is a particular capability of interest as reasoning, problem solving, and decision making
capabilities can be seen as hallmarks of human intelligence [24].

However, impressive reasoning capabilities are currently primarily restricted to large language
models. For example, [32] find that chain-of-thought prompting is an emergent property, only
yielding “performance gains when used with models of ∼100B parameters". In this work, we are
interested in studying methods for improving reasoning in smaller language models, i.e. fewer than
10B parameters. Teaching smaller models to reason well can enable faster deployment, removing
the burden of serving large language models (LLMs) in practice. For example, a mobile phone or
household robot is likely unable to host the hardware necessary to serve the most capable LLMs, yet
we would like them to have the same general reasoning abilities as current large models.

As reasoning tasks can often have a correct outcome (e.g. there exists a correct final answer for a
math problem), we assume we are operating in the setting where we have access to outcome-based
supervision. That is, we assume access to ground truth final answers for reasoning tasks. Given this
assumption, how can we best train smaller language models to improve their reasoning abilities on
unseen questions? We explore two data sources for teaching smaller models to reason: distillation
from a more capable teacher model, and self-taught reasoning. We also explore two methods of
self-taught reasoning: iteratively applying supervised learning from an outcome-filtered dataset
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and online reinforcement learning via policy gradient method. Concretely, we conduct a study on
improving the reasoning capabilities of smaller (6-7B parameter) language models, comparing the
effects of data sources and learning schemes. We focus on two tasks: commonsense reasoning via
CSQA [26] and mathematical reasoning via GSM8K [2]. We find:

• While prior work has found reward-conditioned supervised learning to be effective in other settings
[8, 7], surprisingly, we find that for reasoning, conditional supervised finetuning is often more
harmful than helpful.

• Iterative policy improvement via expert iteration or policy gradient have a similar test performance,
resulting in comparable gains on reasoning tasks relative to supervised learning.

• If larger models are accessible, one should leverage distillation of reasoning traces generated by
the larger (teacher) model, which can be combined with policy improvement methods.

2 Related Works

Reasoning in Language Models Many benchmark tasks have been proposed for assessing language
model reasoning capabilities, such as: commonsense reasoning [26], mathematical reasoning [2, 19,
3], multi-hop reasoning [34, 28], or reasoning about external knowledge sources [27]. Reasoning
can be elicited from sufficiently large language models with chain-of-thought prompting [32], which
provides the language model few-shot examples of correct reasoning steps and a correct final outcome.

Improving Reasoning in LMs There exists a large body of work studying methods for improving
complex reasoning in language models. In cases where external sources of correct reasoning traces
are available, one can finetune on a dataset of questions, rationales, and answers. These rationales can
be human-written [2], synthetically generated [17, 9], or generated by larger, more capable models
[5, 30, 4, 13, 10, 14]. In cases where access to expert data is limited, a complementary method is to
provide sparser reward supervison. Reward functions can be used to evaluate final outcomes only, or
a combination of intermediate reasoning steps and final outcomes [29, 11]. Such reward functions can
be used for filtered or ranked supervised learning [35, 2, 29], reinforcement learning [36, 11, 33], or
a combination of the two [15, 18]. These prior works have shown the benefit of using reinforcement
learning on top of a supervised finetuned model, especially with respect to alignment with human
feedback. In contrast, we focus on directly comparing policy improvement on reasoning tasks with
iterative outcome supervision either via expert iteration [29] or policy gradient methods [21].

3 Improving Reasoning in LMs

Suppose we are given a dataset D of problems with x and corresponding answers y – i.e. D =
{(xi, yi)}Ni=1. Let fθ be the model we are training (i.e. the smaller student model). Let ẑi be the
model-generated reasoning trace (e.g. CoT) for question xi, leading to model generated answer ŷi.
In this section, we formalize the different finetuning schemes. For details, see Appendix A.

(1) Fewshot prompting. Do no training and condition the model fθ on a few examples of (xi, zi, yi)
where zi is a correct reasoning trace. Typically a small number of samples, e.g. i < 10.

(2) Supervised finetuning on labels (SFT-L). Simply finetune on the paired question and answers
directly. We apply the standard per-token negative log likelihood loss.

(3) Supervised finetuning on external reasoning traces and labels (Distillation). Simply finetune
on the combined question, reasoning trace, and answer. We can apply the same standard negative log
likelihood loss. For distillation, these reasoning traces come from a teacher model.

(4) Supervised finetuning on positive self-reasoning traces and labels (SFT-filter). Since we
only have outcome labels yi, we can few-shot prompt fθ to generate its own reasoning traces and
corresponding final answers, and filter for reasoning traces where the final answer matches the ground
truth label (i.e. positive samples). This can be applied iteratively for continual self-improvement.

(5) Conditional supervised finetuning on positive and negative self-reasoning traces and labels
(CSFT). In the previous loss, we only utilized positive samples and discarded negative ones. However,
ideally our model should be able to learn from negative samples as well. One simple way of learning
different distributions from positive and negative samples is through reward-conditioning. We label
reward using special tokens <|good|> and <|bad|>, as in prior work [8]. Following the procedure
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GPT-J (6B) Llama-2 (7B)
Test Accuracy Data Used Test Accuracy Data Used

Fewshot prompting 35% - 63% -
SFT-filter 47% 33% 70% 62%
CSFT 38% 100% 66% 100%
SFT-L 52% 100% 75% 100%
Distillation 60% 76% 74% 76%

(a) CSQA Single-Iteration evaluation.

GPT-J (6B) Llama-2 (7B)
Test Accuracy Data Used Test Accuracy Data Used

Fewshot prompting 3.0% - 14% -
SFT-filter 3.1% 2.3% 17% 15%
CSFT 2.8% 100% 14% 100%
SFT-L 4.7% 100% 8.2% 100%
Distillation 10.6% 58% 31% 58%

(b) GSM8K Single-Iteration evaluation.

Table 1: Test Accuracy shows accuracy on each respective test set, using greedy decoding with 1
attempt per question. Data Used shows the percentage of the training set questions used for finetuning.
We bold the best self-improved results (i.e. not including Distillation since it relies on a separate
model). For CSQA, where intermediate reasoning steps may not be crucial for getting the correct
answer, finetuning on the full dataset of labels is preferable. On the other hand, for GSM8K, where
generating reasoning is necessary for arriving at the correct answer, we find SFT-filter is preferable.

from (SFT-filter), we initially prompt the language model to generate reasoning traces and answers
for a set of questions. We prepend each positive and negative example with <|good|> or <|bad|>

respectively and at test time, we condition the model on <|good|> only.

(6) Policy Gradient. We consider the sparse reward case where we apply the reward at the final
token, rT = 1(ŷi = yi). We can apply standard deep RL algorithms to this setting; we use PPO [21].

For all of the above settings, we train on the combined question, reasoning trace, and answer. One
could also mask out the question since the model does not need to learn to generate questions.

4 Experiments

We consider Single-Iteration Policy Improvement (Section 4.1) and Multi-Iteration Policy Improve-
ment (Section 4.2). We use ‘iteration’ to refer to the number of times we generate new data with the
updated model for finetuning. The former focuses on the case where we only do one pass of data
generation, while the latter contains cases where we can continually generate new data for training
(i.e., iteratively applying SFT-filter/CSFT or online RL). See Appendix B for training details.

4.1 Single-Iteration Policy Improvement

First, we consider the case where we can only finetune the model with a single training run—i.e., not
generating new training data as the model is updated. In this section, we try to answer the following
question: what data source will result in the highest test-time performance if we can only finetune
the language model once? We evaluate four methods for finetuning and use a few-shot prompting
baseline: 1) one iteration of filtered supervised finetuning SFT-filter, 2) one iteration of conditional
finetuning CSFT, 3) one iteration of finetuning on questions and labels only SFT-L, and 4) distilling
reasoning traces from the more capable Llama-2 65B model, after filtering for correctness. See
Section 3 for details on the instantiation of each method.

Table 1 shows the test-time accuracies across all methods. Unsurprisingly, distillation is generally
the best approach if one has access to a better model. If not, we find that the alternative approaches
vary in effectiveness depending on the task. For CSQA, where intermediate reasoning steps may
not be crucial for getting the correct answer, finetuning on the full dataset of labels is preferable.
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Test Acc. (Whole Dataset) Test Acc. (Self-Generated)
No errors SFT-filter 33.0% 17%

No errors CSFT 32.4% (-0.6%) 17% (+0%)
1 step error CSFT 35.3% (+2.3%) 20% (+3%)
2 steps error CSFT 35.4% (+2.4%) 18% (+0.9%)

Table 2: Llama-2 (7B) GSM8K test set accuracy, CSFT using synthetic negatives. Note that 1 and
2-step error conditions doubles the amount of training data (each question now has both a positive
and negative reasoning trace). The left column uses the dataset-provided reasoning traces (i.e. all
7470), while the right column only uses the filtered positive reasoning traces (i.e. 1102/7470).

On the other hand, for GSM8K, where generating reasoning is necessary for arriving at the correct
numerical answer, we find SFT-filter is preferable. Interestingly, we find that conditional finetuning
with additional negative samples generally hurts reasoning performance compared to simple positive
filtering. Even if we balance the number of positive and negative examples (Table 6), we find that
evaluation performance either remains the same or decreases.

When is conditional training helpful for reasoning? One question we would like to better
understand is why conditioning on negative reasoning traces harms performance, even though this
method has generally been found to be helpful for alignment and dialogue tasks [8, 12]. Is it the case
that there are too many diverse ways of reasoning poorly, making learning a conditional distribution
difficult from good and bad self-generated reasoning traces difficult? Since we have ground truth,
human-written reasoning traces for GSM8K, we investigate providing augmented synthetic negative
samples, that may allow us to better understand what ‘useful’ negative samples look like. Here,
we hypothesize that negative samples that are smaller deviations from positives ones may be easier
to learn. We construct negative samples as follows: 1-step—only the final outcome is incorrect,
but all reasoning before is sound, or 2-step—the final outcome is incorrect and the final step is
missing, but all preceding reasoning is sound. See Table 7 for examples. With this approach, CSFT
is beneficial (see Table 2). This suggests that more closely aligned negatives can be beneficial.
However, constructing such examples may be difficult if we do not have access to human written
or human annotated steps for reasoning. One potential avenue for interesting further research is to
use the language model itself to edit similar small synethetic errors on correct self-generated traces.
Generally, converting correct reasoning traces into incorrect ones is easier than the other way around
so we could expect language models to be useful at generating such data.

Single-iteration Takeaways:
1. CSFT with incorrect generations has a neutral effect at best. Training with

synthetic negatives to boost the amount of data is potentially helpful.
2. In cases where complex reasoning is needed to get to the correct final answer

(e.g. GSM8K), it is better to train on a smaller filtered dataset of reasoning
traces with the final answers (SFT-filter) rather than the whole dataset of final
answers directly (SFT-L). One potential alternative we leave for future work is a
combination of the two: combining filtered reasoning trace and answers with
answers-only for the questions that the model was unable to answer.

3. In cases where a larger model is available, distillation of filtered correct answers
and reasoning traces is often better than training on the whole dataset of answers
only (SFT-L), even though the latter uses the whole training set of questions.

4.2 Multi-Iteration Policy Improvement

Next, we consider the case where we can finetune the model multiple times. In this section, we try to
answer the following question: is it preferable to iteratively repeat SFT-filter or use PPO?

Iterative Supervised Finetuning. Building on the above results, we can also iteratively apply the
above techniques to continually improve reasoning capabilities. As in STaR [35], we reset the model
to the base model at each iteration and do not accumulate data over iterations. In Figure 1, we
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Base Llama-2 (7B)

STaR 

STaR (+rationalization)

STaR-ES

STaR-ES (+rationalization)

(a) Y-axis shows test set accuracy on CSQA.

Base Llama-2 (7B)

STaR 

STaR (+rationalization)

STaR-ES

STaR-ES (+rationalization)

(b) Y-axis shows test set accuracy on GSM8K.

Figure 1: Finetuning Llama2 (7B) with using SFT-filter, comparing different scheduling schemes.
Following STaR’s fixed (40 steps to start, increase by 20% each iteration) scheduling proposed in
the paper leads to better test performance at convergence than using early stopping each iteration
(STaR-ES). Note that (+rationalization) means we apply the rationalization method from STaR, where
we generate reasoning in hindsight after being given the correct ground truth answer.

Base Llama-2 (7B)

SFT-filter

SFT-filter (no GAE)

SFT-filter (detach value)

SFT-filter (separate heads)

SFT-filter (reset)

Distilled

(a) Y-axis shows test set accuracy on CSQA.

Base Llama-2 (7B)

SFT-filter

SFT-filter (no GAE)

SFT-filter (detach value)

SFT-filter (separate heads)

SFT-filter (reset)

Distilled

(b) Y-axis shows test set accuracy on GSM8K.

Figure 2: Finetuning Llama-2 (7B) with PPO. We compare three different model initializations (base,
SFT-filter, and distilled), and various augmentations of the base algorithm. Of the changes tried,
removing GAE and detaching the value head were most helpful for improving training stability.

compare with an early stopping scheduler based on a held out validation set loss, rather than the fixed
schedule proposed in the original work. Interestingly, we find that early stopping leads the model
to generally converge to a lower test accuracy, suggesting that careful selection of a validation set
is necessary or use of early stopping may be unsuitable in combination with STaR. This suggests
that iterative finetuning can be sensitive to the prescribed scheduling and data being trained on. This
can possibly be related to the general problem of a model collapse, with generations degrading in
quality as it continues to train on synthetic samples [22]. For additional experiments on applying
CSFT iteratively, see Appendix D.1.

Policy Gradient. We explore a range of different methods to see if they improve policy learning.
These are primarily based on the hypothesis that improving reasoning with RL is challenging due to
the difficulties of value learning in the language modelling setting.

• Removing GAE [20] by setting λ = 1: avoid using predicted values for advantage estimation if
our value function is inaccurate.

• Detaching value head gradients: prevent value estimation errors from affecting underlying language
modelling abilities by not backpropagating value updates through the language model.

• Separate value heads: train separate value heads for the task reward and KL penalty, with the
intuition that that is easier than learning one shared value function.

• Resetting model: to prevent the model from reaching a local minima, we can occasionally reset
model parameters [16]. We only reset the final layer of the language model (before the value head)
and update 10x more times on the same batch of data whenever a reset occurs.

In the PPO setting, we compare three different model initializations: (1) the base Llama-2 (7B) model,
(2) a Llama-2 (7B) model that has gone through one iteration of SFT-filter, and (2) a Llama-2 (7B)
model that has gone through one iteration of filtered distillation from Llama-2 65B.

5



Two big challenges we found while using PPO were reward collapse—where the model performance
would suddenly drop to 0, and lack of generalization—where performance would increase on the
training set but remain constant for the test set. While decreasing learning rate and increasing
the KL penalty helped with the collapse issue, they did not fix the problem entirely. Instead we
found that the change that made the biggest difference is using LoRA [6], corroborating results
from [25]. Of the additional augmentations we tried above, we find that detaching the value head
gradients and removing GAE were most helpful for slightly stabilizing training. This motivates
further investigations into whether it would be more effective to have a separate value model entirely
(if one has sufficient memory space), or even to pretrain the value head directly. Removing GAE
also lead to similar improvements in performance, albeit being less sample efficient. The other
augmentations generally hurt performance.

Multi-Iteration Takeaways:
1. STaR is sensitive to correct scheduling – model can converge to lower

performance at test time. Rationalization is not helpful if the reasoning
generated in hindsight is incorrect.

2. LoRA [6] was necessary for seeing meaningful generalization (compared to fully
finetuning between 1-16 layers).

3. Detaching the value head and removing GAE helped with training stability.
4. We find that we are able to improve reasoning performance on the test set

substantially from the base model, without having to initialize with SFT-filter
beforehand. While this does not outperform the models that are initialized with
SFT-filter, it shows that PPO can lead to the model to learn to reason correctly
at test time about questions that the base model initially could not.

4.3 Comparing SFT-filter and RL

CSQA GSM8K
STaR 76.2% 29.0%

STaR (+rationalization) 77.4% 14.1%
PPO 77.0% 30.0%

Table 3: Best Test Accuracy, Finetuning Llama-2 (7B) with iterative training methods. Ultimately,
the best performing setting with either multi-iteration method are similar.

Taking the best checkpoints of either method, both multi-iteration SFT-filter and PPO perform
similarly at test time. RL does not require the STaR-specific scheduling, but is much more prone to
mode collapse and may result in less diverse outputs. The RL setting does more exploration (through
higher temperature sampling at training time and retaining negative samples), while SFT-filter only
uses greedy sampling and throws away negative samples.

5 Conclusion

We investigate various methods for improving the reasoning capabilities of finetuned language models.
For a single training iteration, we compare distillation from a more capable model, conditional
supervised learning, and filtered supervised learning. This work raises many questions for further
work. In the SFT-filter case, it would be meaningful to explore how sensitive the method is to the
STaR scheduling. Furthermore, getting more diverse samples with higher temperatures and prompting
with different schemes could also improve the performance of applying multiple rounds of SFT-filter.
Further investigations into which components of PPO are necessary for improving at reasoning tasks
is also an interesting avenue for further work. Many implementation details in PPO were included
for performance in control environments, but may not be necessary in the language modelling case
(where our base model is already somewhat capable, we do not use discounting, etc.).
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A Details on Schemes for Improving Reasoning

Suppose we are given a dataset D of problems with x and corresponding answers y – i.e. D =
{(xi, yi)}. Let f be the model we are training (i.e. the smaller student model). Let ẑi be the
model-generated reasoning trace (e.g. CoT) for question xi, leading to model generated answer ŷi.
In this section, we formalize the training objectives for different finetuning schemes.

(1) Fewshot prompting. We do no training, but condition the model fθ on a few examples of
(xi, zi, yi) where zi is a correct reasoning trace. Typically a small number of samples, e.g. i < 10.

(2) Supervised finetuning on labels (SFT-L). We do not use reasoning traces, instead simply finetune
on the paired question and answers directly. This is possible given our assumption of access to ground
truth outcome labels. Let wi = (xi, yi) be the concatenation of each question, answer pair. We apply
the standard per-token negative log likelihood loss as follows

Llabel = − 1

|D|
∑
i∈D

∑
t

log fθ(wi,t|wi,1:t−1)

(3) Supervised finetuning on external reasoning traces and labels (Distillation). In cases where
we have access to reasoning traces zi, let wi = (xi, zi, yi). We can apply the same standard negative
log likelihood loss as in (2). For distillation, these reasoning traces come from a teacher model.

(4) Supervised finetuning on positive self-reasoning traces and labels (SFT-filter). Since we
only have outcome labels yi, we can few-shot prompt fθ to generate its own reasoning traces and
corresponding final answers, and filter for reasoning traces where the final answer matches the ground
truth label (i.e. positive samples). In this case, let ŵi = (xi, ẑi, ŷi), where ẑi, ŷi ∼ fθ(·|xi). This can
be applied iteratively for continual self-improved reasoning.

LSFT-filter = − 1

|D|
∑
i∈D

∑
t

1(ŷi = yi) log fθ(wi,t|wi,1:t−1)

As noted in [35], this objective is analogous to vanilla policy gradient with a sparse, binary reward.

(5) Conditional supervised finetuning on positive and negative self-reasoning traces and labels
(CSFT). In the previous loss, we only utilized positive samples and discarded negative ones. However,
ideally our model should be able to learn from negative samples as well, for example, by decreasing the
likelihood of generating invalid reasoning traces. One simple way of learning different distributions
from positive and negative samples is through reward-conditioned finetuning. We label for reward by
using special tokens <|good|> and <|bad|>, as in prior work [8].

We follow a similar procedure as (SFT-filter) where we initially prompt the language model to
generate reasoning traces and answers for a set of questions. However, in this case we do not discard
incorrect samples that led to the wrong outcome. We prepend each positive and negative example
with <|good|> or <|bad|> respectively, encouraging the model to learn a conditional distribution over
positive and negative samples. At test time, we condition the model on <|good|> only. In this case, let
ŵi = (xi, ci, ẑi, ŷi), where ẑi, ŷi ∼ fθ(·|xi) and ci is <|good|> if ŷi = yi and <|bad|> otherwise. As
above, this process can be applied iteratively for continual self-improved reasoning.

(6) Policy Gradient. Given that we have access to the ground truth label, we can also use reinforce-
ment learning for teaching LMs to reason. Let rt be the reward at t-th token. For the sparse reward
case, we apply the reward at the final token. That is, the reward is all zeros except at t = T , where
rT = 1(ŷi = yi). We can apply standard deep RL algorithms to this setting; we use PPO [21]. To
reduce variance, we learn a value function vϕ and estimate the advantage Ât =

∑
t′>t rt′ − vϕ(w1:t)

LPPO = − 1

|D|
∑
i∈D

∑
t

log fθ(wi,t|wi,1:t−1)Ât

In addition to the task outcome-based reward, we can also add a per-token KL penalty to the reward
to prevent the finetuned model from deviating too far from the pretrained model [36].

Note that for all of the above settings, we train on w as the whole combined question, reasoning trace,
and answer. An alternative approach would be to only compute loss on the generated tokens, since
the model does not need to learn to generate questions.
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B Training Details

Supervised learning: To generate the full training set we need to sample reasoning traces and
answers for all questions in the dataset. To do so, we few-shot prompt the model with 6-7 example
questions, reasoning traces, and answers, and sample greedily to generate new reasoning traces and
answers. For SFT-filter we filter for correct answers only, and for CSFT we annotate each reasoning
traces with whether it was <|good|> or <|bad|>. We use the same few-shot prompting scheme during
evaluation as well. To determine which checkpoint to evaluate, we use early stopping based on loss
on a held-out validation set (taken from the generated training set above) unless otherwise stated
(e.g. training with STaR for fixed total step sizes in Section 4.2). Specifically, for each training
dataset generated, we hold out 10% of the samples for validation. We use the HuggingFace trainer
for finetuning and we do not append few-shot samples to each example in the training set.

Reinforcement Learning (PPO): We use TRLX [1] for PPO training. In addition to the default
settings, we use best-of-4 sampling (i.e. we generate 4 rollouts per question and only the highest
reward sample), with temperature 0.7 during generation to encourage exploration. At evaluation
time, we do the same greedy sampling as in the SFT case. Due to memory limits, we only use 1-shot
examples for RL.

B.1 Prompts

We use the same few-shot prompts as in STaR [35]. Due to memory issues with PPO training, we
only use 1-shot prompting. For all other experiments, we use few-shot prompting.

CSQA prompt:

Q: What do people use to absorb extra ink from a fountain pen? Answer Choices: (A) shirt

pocket (B) calligrapher’s hand (C) inkwell (D) desk drawer (E) blotter A: The answer must be

used to absorb extra ink. Blotters are designed to absorb liquids. Therefore, the answer is

blotter (E). Finish[E]

Q: What home entertainment equipment requires cable? Answer Choices: (A) radio shack (B)

substation (C) television (D) cabinet (E) desk A: The answer must require cable. Cable is

used to provide satellite channels to televisions. Therefore, the answer is television (C).

Finish[C]

Q: The fox walked from the city into the forest, what was it looking for? Answer Choices:

(A) pretty flowers (B) hen house (C) natural habitat (D) storybook (E) dense forest A: The

answer must be a reason for a fox to go into the forest. The forest is a fox’s natural

habitat. Therefore, the answer is natural habitat (C). Finish[C]

Q: Sammy wanted to go to where the people were. Where might he go? Answer Choices: (A)

populated areas (B) race track (C) desert (D) apartment (E) roadblock A: The answer must be a

place with many people. Populated areas, by definition, have a lot of people. Therefore, the

answer is populated areas (A). Finish[A]

Q: Where do you put your grapes just before checking out? Answer Choices: (A) mouth (B)

grocery cart (C) super market (D) fruit basket (E) fruit market A: The answer should be the

place where grocery items are placed before checking out. Of the above choices, grocery cart

makes the most sense for holding grocery items. Therefore, the answer is grocery cart (B).

Finish[B]

Q: Google Maps and other highway and street GPS services have replaced what? Answer Choices:

(A) united states (B) mexico (C) countryside (D) atlas (E) oceans A: The answer must be

something that used to do what Google Maps and GPS services do, which is give directions.

Atlases were also used to give directions. Therefore, the answer is atlas (D). Finish[D]

Q: Before getting a divorce, what did the wife feel who was doing all the work? Answer

Choices: (A) harder (B) anguish (C) bitterness (D) tears (E) sadness A: The answer should

be a feeling which would cause someone who was doing all the work to get divorced. If someone

feels bitter towards their spouse, they are likely to want a divorce. Therefore, the answer

is bitterness (C). Finish[C]

GSM8K prompt:
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Q: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in

May. How many clips did Natalia sell altogether in April and May? A: Natalia sold 48/2 =

«48/2=24»24 clips in May. Natalia sold 48+24 = «48+24=72»72 clips altogether in April and May.

Finish[72]

Q: Betty is saving money for a new wallet which costs $100. Betty has only half of the

money she needs. Her parents decided to give her $15 for that purpose, and her grandparents

twice as much as her parents. How much more money does Betty need to buy the wallet? A:

In the beginning, Betty has only 100 / 2 = $«100/2=50»50. Betty’s grandparents gave her 15

* 2 = $«15*2=30»30. This means, Betty needs 100 - 50 - 30 - 15 = $«100-50-30-15=5»5 more.

Finish[5]

Q: Julie is reading a 120-page book. Yesterday, she was able to read 12 pages and today,

she read twice as many pages as yesterday. If she wants to read half of the remaining pages

tomorrow, how many pages should she read? A: Maila read 12 x 2 = «12*2=24»24 pages today. So

she was able to read a total of 12 + 24 = «12+24=36»36 pages since yesterday. There are 120 -

36 = «120-36=84»84 pages left to be read. Since she wants to read half of the remaining pages

tomorrow, then she should read 84/2 = «84/2=42»42 pages. Finish[42]

Q: Mark has a garden with flowers. He planted plants of three different colors in it. Ten

of them are yellow, and there are 80% more of those in purple. There are only 25% as many

green flowers as there are yellow and purple flowers. How many flowers does Mark have in his

garden? A: There are 80/100 * 10 = «80/100*10=8»8 more purple flowers than yellow flowers.

So in Mark’s garden, there are 10 + 8 = «10+8=18»18 purple flowers. Purple and yellow flowers

sum up to 10 + 18 = «10+18=28»28 flowers. That means in Mark’s garden there are 25/100 * 28 =

«25/100*28=7»7 green flowers. So in total Mark has 28 + 7 = «28+7=35»35 plants in his garden.

Finish[35]

Q: Alexis is applying for a new job and bought a new set of business clothes to wear to the

interview. She went to a department store with a budget of$200 and spent $30 on a button-up

shirt, $46 on suit pants, $38 on a suit coat, $11 on socks, and $18 on a belt. She also

purchased a pair of shoes, but lost the receipt for them. She has $16 left from her budget.

How much did Alexis pay for the shoes? A: Let S be the amount Alexis paid for the shoes. She

spent S + 30 + 46 + 38 + 11 + 18 = S + «+30+46+38+11+18=143»143. She used all but $16 of her

budget, so S + 143 = 200 - 16 = 184. Thus, Alexis paid S = 184 - 143 = $«184-143=41»41 for

the shoes. Finish[41]

Q: Tina makes $18.00 an hour. If she works more than 8 hours per shift, she is eligible

for overtime, which is paid by your hourly wage + 1/2 your hourly wage. If she works 10

hours every day for 5 days, how much money does she make? A: She works 8 hours a day for $18

per hour so she makes 8*18 = $«8*18=144.00»144.00 per 8-hour shift She works 10 hours a day

and anything over 8 hours is eligible for overtime, so she gets 10-8 = «10-8=2»2 hours of

overtime Overtime is calculated as time and a half so and she makes $18/hour so her overtime

pay is 18*.5 = $«18*.5=9.00»9.00 Her overtime pay is 18+9 = $«18+9=27.00»27.00 Her base pay

is $144.00 per 8-hour shift and she works 5 days and makes 5 * $144 = $«144*5=720.00»720.00

Her overtime pay is $27.00 per hour and she works 2 hours of overtime per day and makes 27*2 =

$«27*2=54.00»54.00 in overtime pay 2 hours of overtime pay for 5 days means she makes 54*5 =

$270.00 In 5 days her base pay is $720.00 and she makes $270.00 in overtime pay so she makes

$720 + $270 = $«720+270=990.00»990.00 Finish[990]
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B.2 Training Setup

Supervised Finetuning (SFT) For SFT, we used the following hyperparameters unless otherwise
stated:

learning rate 5e-6
LR warmup ratio 0.1
LR scheduler type constant

batch size 8
batch length 1024
weight decay 0.01

Table 4: SFT hyperparameters

PPO For PPO, we used the following hyperparameters unless otherwise stated:

learning rate 1e-5
LoRA r 16
LoRA α 16

LoRA dropout 0
clipping ϵ 0.2

number of rollouts 128
batch size 32

minibatch size 4
λ 0.95
γ 1

KL target 6
initial KL coefficient 0.05
training temperature 0.7

Table 5: PPO hyperparameters
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C CSFT Details

C.1 Balancing Positive and Negative Samples

GPT-J (6B) Llama2 (7B)
positive:negative ratio CSQA GSM8K CSQA GSM8K

SFT-filter - 47% 3% 70% 17%
100:1 45% 3% 71% 18%

CSFT 10:1 47% 4% 69% 18%
1:1 35% 4% 66% 15%

Table 6: CSFT with different proportions of positive and negative samples. As we increase the
proportion of negative samples, performance generally decreases. At best, we only see very marginal
gains using CSFT.

C.2 Synthetic Negatives Details

Error Sample Trace

No errors
SFT-filter

A: Tony got twice $1750 which is 2*$1750 = $«2*1750=3500»3500.

The total amount shared was $1750+$3500 =$«1750+3500=5250»5250.

#### 5250 Finish[5250]

No errors
CSFT

<|good|> A: Tony got twice $1750 which is 2*$1750 = $«2*1750=3500»3500.

The total amount shared was $1750+$3500 =$«1750+3500=5250»5250.

#### 5250 Finish[5250]

1 step error
CSFT

<|bad|> A: Tony got twice $1750 which is 2*$1750 = $«2*1750=3500»3500.

The total amount shared was $1750+$3500 =$«1750+3500=5250»5250.

#### 3500 Finish[3500]

2 steps error
CSFT

<|bad|> A: Tony got twice $1750 which is 2*$1750 = $«2*1750=3500»3500.

remove step

#### 3500 Finish[3500]

Table 7: Sample data generated for synthetic negatives, used for finetuning in Ta-
ble 2. Text in red shows changes from the condition in the preceding line. Ques-
tion: Q: Mr. Sam shared a certain amount of money between his two sons, Ken and Tony. If Ken

got $1750, and Tony got twice as much as Ken, how much was the money shared?

13



D Additional Multi-Iteration Experiments

D.1 Applying CSFT

Base Llama-2 (7B)

SFT-filter

SFT-filter (+rationalization)

CSFT

CSFT (+rationalization)

(a) Y-axis shows test set accuracy on CSQA.

Base Llama-2 (7B)

SFT-filter

SFT-filter (+rationalization)

CSFT

CSFT (+rationalization)

(b) Y-axis shows test set accuracy on GSM8K.

Figure 3: Finetuning GPT-J (6B) with iterative SFT-filter and CSFT. In either case, we see CSFT
with generated negatives hurts more than just training on positive samples. Note that (+rationalization)
means we apply the rationalization method from STaR, where we generate prompt the model with
the ground truth answer to generate reasoning in hindsight.

First, in Figure 3, we look at applying conditional training to STaR. Specifically, we follow the
schedule proposed in STaR and finetune the base model from scratch at each iteration and use a fixed
schedule of 40 updates initially and increasing it by 20% after each iteration, matching the batch size
as proposed in the original paper. We find that rationalization is helpful for CSQA but less so for
GSM8K, where the model can learn to mimic the correct final answer even with incorrect rationales.
In either task, with or without rationalization, we find that CSFT hurts performance.

14


	Introduction
	Related Works
	Improving Reasoning in LMs
	Experiments
	Single-Iteration Policy Improvement
	Multi-Iteration Policy Improvement
	Comparing SFT-filter and RL

	Conclusion
	Details on Schemes for Improving Reasoning
	Training Details
	Prompts
	Training Setup

	CSFT Details
	Balancing Positive and Negative Samples
	Synthetic Negatives Details

	Additional Multi-Iteration Experiments
	Applying CSFT


