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ABSTRACT

This paper studies how prior reinforcement learning (RL) experience can accelerate
inverse reinforcement learning (IRL). IRL is the problem of inferring the reward
function of an agent by observing its behavior. IRL can provide a generalizable
and compact representation for apprenticeship learning, or enable accurately in-
ferring the preferences of a person in order to assist them. However, effective
IRL is challenging, because many reward functions can be compatible with an ob-
served behavior. We propose the algorithm BASIS (Behavior Acquisition through
Successor-feature Intention inference from Samples), which leverages multi-task
RL pre-training and successor features to allow an agent to build a strong basis for
intentions that spans the space of possible goals in a given domain. When exposed
to just a few expert demonstrations optimizing a novel goal, the agent uses its basis
to quickly and effectively infer the reward function. Our experiments reveal that
our method is highly effective at inferring and optimizing demonstrated reward
functions, accurately inferring reward functions from less than 100 trajectories (3x
more efficient that competitive baselines).

1 INTRODUCTION

IRL seeks to identify a reward function under which observed behavior of an expert is optimal.
Once an agent has effectively inferred the reward function, it can then use standard (forward) RL to
optimize it, and thus acquire not only useful skills by observing demonstrations, but also a reward
function as an explanation for the demonstrator’s behavior. By inferring the underlying goal being
pursued by the demonstrator, the agent is more likely to be able to generalize to a new scenario in
which it must optimize that goal, versus an agent that merely imitates the demonstrated actions. IRL
has already proven useful in applications including autonomous driving (Huang et al., 2021; Kim &
Pineau, 2016), and is a key component in enabling assistive technologies where a helper agent must
infer the goals of the human it is assisting (Hadfield-Menell et al., 2016).

However, IRL becomes difficult when the model does not know which aspects of the environment are
potentially relevant for obtaining reward. Hence, effective IRL often depends heavily on good features
(Abbeel & Ng, 2004; Ziebart et al., 2008). Inferring relevant features from raw, high-dimensional
observations is challenging, because there are many possible reward functions consistent with a set of
demonstrations. For this reason, previous work has often focused on IRL with hand-crafted features
that manually build in prior knowledge (Ziebart et al., 2008; Abbeel & Ng, 2004; Ratliff et al., 2006).
When learning rewards from scratch, modern deep IRL algorithms often require a large number of
demonstrations and trials (Garg et al., 2021).

In contrast, humans quickly and easily infer the intentions of other people. As shown by Qian et al.
(2021), humans can infer rewards more effectively than our best IRL algorithms, as they bring to
bear strong prior beliefs as to what might constitute a reasonable goal – e.g., that a person moving
towards a wall is more likely to have the intention of turning off the light as opposed to moving
to a random point. This skill comes from humans having access to a lot of previous experience
successfully accomplishing prior goals or watching others pursue their preferences (Baker et al.,
2007). We hypothesize that prior knowledge of the space of probable goals is important to effectively
and efficiently infer intentions with IRL. Rather than build in this knowledge as in prior work
(Ng & Russell, 2000; Abbeel & Ng, 2004; Ratliff et al., 2006), we propose that the path towards
building scalable IRL methods entails being able to learn those features from past experience. Thus,
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Figure 1: BASIS uses multi-task RL pre-training to learn a basis for intentions. It encodes infor-
mation about both the environment dynamics, and—through modeling the rewards for multiple
pre-training tasks—the space of possible goals that can be pursued in the environment. It captures this
information in cumulants �, successor representation  , and preference vectors w1:K . The agent then
leverages knowledge from these parameters to rapidly infer the demonstrator’s goal shown through
demonstrations (st, at, st+1), updating the parameters as needed.

we propose an IRL algorithm, BASIS (Behavior Acquisition through Successor-feature Intention
inference from Samples), that leverages multi-task RL pre-training and successor features to enable
the agent to first learn a basis for intentions that spans the space of potential tasks in a domain. Using
this basis, the agent can then perform more efficient IRL or inference of goals (see Figure 1).

We use successor features to enable learning a basis for intentions because they provide a repre-
sentation that naturally decouples the dynamics of the environment from the rewards of the agent,
which are represented with a low-dimensional preference vector (Dayan, 1993; Barreto et al., 2018;
Filos et al., 2021). Via multi-task pre-training, the agent learns a representation in which the same
successor features are shared across multiple tasks, as in Barreto et al. (2018). When the agent is
tasked with inferring the rewards of a novel demonstrator via IRL, it initializes its model of the other
agent with the learned successor features and a randomly initialized preference vector. Thus, the
agent starts with a strong prior over the environment dynamics and the space of reasonable policies. It
can then quickly infer the low-dimensional preference vector, while updating the successor features,
in order to accurately capture the demonstrated behaviour.

In summary, we contribute a novel IRL algorithm which combines multi-task RL pre-training and
successor features. We evaluate BASIS in multiple environment domains, including two autonomous
driving scenarios. On these tasks, BASIS is up to 10x more accurate at recovering the demonstrator’s
reward than state-of-the-art IRL methods (including pre-training with IRL), and achieves up to 15x
more ground-truth reward than state-of-the-art imitation learning methods.

2 RELATED WORK

Inverse RL: IRL methods learn the reward function of an agent through observing expert demonstra-
tions. Depending on whether the goal is imitation, explanation, or transfer, downstream applications
might use the recovered policy, reward function, or both. In environments with high-dimensional
state spaces, there are many possible reward functions that are consistent with a set of demonstrations.
Thus, early work on IRL relied on hand-engineered features that were known to be relevant to the
reward function (Ng & Russell, 2000; Abbeel & Ng, 2004; Ratliff et al., 2006; Syed et al., 2008;
Levine et al., 2010). Ziebart et al. (2008) propose maximum entropy IRL, which assumes that the
probability of an action being seen in the demonstrations increases exponentially with its reward, an
approach we also follow in this paper. A series of deep IRL methods have emerged that learn reward
structures (Jin et al., 2017; Burchfiel et al., 2016; Shiarlis et al., 2016) or features (Wulfmeier et al.,
2016; Fahad et al., 2018; Jara-Ettinger, 2019; Fu et al., 2018) from input. Inverse Q-learning (InvQ)
(Kalweit et al., 2020) is a recent IRL method which uses inverse-action value iteration to recover
the underlying reward. It was benchmarked against (Wulfmeier et al., 2016) and found to provide
superior performance, so we compare to InvQ in this paper. However, we are not aware of a prior
method that leverages past multi-task RL experience as a way to overcome the underspecification
issue to improve IRL.
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Meta-inverse reinforcement learning methods, including those proposed by Yu et al. (2019); Xu et al.
(2019); Gleave & Habryka (2018), have applied meta-learning techniques to IRL, by pre-training on
past IRL problems, then using meta-learning to adapt to a new IRL problem at test time. In contrast
with meta-IRL methods, we pre-train using RL, giving the agent a chance to explore the environment
and learn to obtain high rewards on multiple tasks. Relying on RL rather than IRL pre-training
provides an advantage, since collecting the demonstrations required for IRL can be expensive, but RL
only requires access to a simulator. As we will demonstrate, RL pre-training enables our agent to
rapidly infer rewards even in complex and high-dimensional environments.

Imitation learning: IL methods attempt to replicate the policy that produced a set of demonstrations.
In behaviour cloning (BC)(Ross et al., 2010; Bain & Sammut, 1996), the agent receives training
data of states and actions of the expert demonstrator, and uses supervised learning to imitate this
data (Ross & Bagnell, 2010). The agent can thus learn new behaviors without having to interact
with the environment. Kostrikov et al. (2020); Jarrett et al. (2020); Chan & van der Schaar (2021)
have proposed several other IL methods. Some IL methods allow the agent to interact with the
environment in addition to receiving demonstrations, and include adversarial methods such as Ho &
Ermon (2016); Kostrikov et al. (2018); Baram et al. (2016). Similar to Borsa et al. (2017); Torabi et al.
(2018); Sermanet et al. (2018); Liu et al. (2018); Brown et al. (2019), our approach leverages learning
from demonstrations where actions are available but rewards and task annotations are unknown.
One among these methods is the non-adversarial method IQ-Learn (Garg et al., 2021), which we
compare to in this paper. However, current IL methods that focus on skill transfer by minimizing the
supervised learning loss do not recover the reward function, which BASIS does.

Successor features: Barreto et al. (2018) derives generalized successor features from successor
representations (Dayan, 1993) to create a representation that disentangles task reward from envi-
ronment dynamics. They have been used for applications including planning (Zhu et al., 2017),
zero-shot transfer (Lehnert et al., 2017; Borsa et al., 2018; Barreto et al., 2020; Filos et al., 2021),
exploration (Janz et al., 2019; Machado et al., 2020), skill discovery (Machado et al., 2018; Hansen
et al., 2020), apprenticeship learning (Lee et al., 2019), and theory of mind (Rabinowitz et al., 2018).
PsiPhi-Learning (Filos et al., 2021) illustrates that generalized value functions, such as successor
features, are a very effective way to transfer knowledge about agency in multi-agent settings, and
includes an experiment which uses successor features for IRL. Unlike PsiPhi, which learns a new set
of successor features for each agent it models, we learn a shared set of successor features spanning
all tasks that have been seen in our multi-task learning phase, enabling more effective transfer to new
tasks that have not been encountered during training. While our multi-task formulation is similar to
Barreto et al. (2018), they do not not address IRL or learning from demonstrations.

3 BACKGROUND AND PROBLEM SETTING

Markov decision processes: An agent’s interaction in the environment can be represented by a
Markov decision process (MDP) (Puterman, 1994). Specifically, an MDP is defined as a tuple
M=hS,A, P,R, �i; S is the state space, A is the action space, P :S⇥A 7! S is the state transition
probability function, R is the reward function, and �2 [0, 1) is the discount factor. An agent executes
an action at each timestep t according to its stochastic policy at ⇠ ⇡(at|st), where st 2 S. An
action at yields a transition from the current state st to the next state st+1 2 S with probability
P (st+1|st, at). An agent then obtains a reward according to the reward function rt⇠R(st, at). An
agent’s goal is to maximize its expected discounted return E [

P
t �

trt|s0, a0] = Q(s0, a0).

Successor features decompose the RL value function into features (which support many tasks)
and preference vectors (which are specific to a particular reward function) Barreto et al. (2018);
Dayan (1993). Thus, SFs enable quick adaptation to optimizing a new reward function in the same
environment (with the same transition dynamics). The one-step expected reward is represented as:

r(st, at, st+1) = �(st, at, st+1)
>w, (1)

where �(st, at, st+1) 2 Rd are features (cumulants), and the weights w 2 Rd are a representation of
a possible goal or task that has a particular reward function, with each w giving rise to a separate task.
We use the terms ‘task’, ‘goal’, and ‘preferences’ interchangeably. The state-action value function for
a particular policy ⇡ can now be decomposed with the following linear form (Barreto et al., 2018):

Q⇡(s, a) =  ⇡(s, a)>w and  ⇡(s, a) = E[st=s,at=a]

1X

i=t

�i�t�(si+1, ai+1, si+1) (2)
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where � 2 [0, 1), and  ⇡(s, a) are the successor features of ⇡.

Maximum-entropy IRL: Given a set of demonstrations D = [(s0, a0), (s1, a1) . . . ] provided by an
expert, the IRL problem (Ng & Russell, 2000) is to uncover the expert’s unknown reward function R.
Ziebart et al. (2008) propose the maximum entropy IRL framework, under which highly rewarding
actions are considered exponentially more probable in the demonstrations, an assumption which
we follow in this work. Specifically, MaxEnt IRL states the expert’s preference for any given
trajectory between specified start and goal states is proportional to the exponential of the reward
along the path: P (s, a|r)/exp{

P
s,a Rs,a}. Thus, the MaxEnt IRL model (Ziebart et al., 2008) is:

P (a|si) = exp(Q(si, a)). The optimal parameters can be found by maximizing the log likelihood
with respect to the parameters of the reward, often utilizing either a tabular method similar to value
iteration, or approximate gradient estimators based on adversarially trained discriminators.

4 BASIS IRL

We now present our algorithm, BASIS, (Behavior Acquisition through Successor-feature Intention
inference from Samples), illustrated in Figure 1. The agent first learns a basis for intentions using
successor features and multi-task RL pre-training. Then, the agent uses the pre-trained successor
representation as an initialization for inferring the reward function of an expert from demonstrations
with IRL. The successor features learned via pre-training act like a prior over intentions, enabling
the agent to learn the features for linear MaxEnt IRL. Thus, we get the benefits of simplicity and
efficiency due to good features, without having to specify those features manually. These successor
features can then be refined to recover the demonstrator’s policy using IRL.

4.1 RL PRE-TRAINING: LEARNING A BASIS FOR INTENTIONS

We use multi-task RL pre-training and successor features to learn a representation that enables the
agent to solve a large variety of tasks. We assume that each of the tasks share the same state space and
transition dynamics, but differ in their reward functions. These assumptions are relevant to the setting
in which a human demonstrator may have one of several possible goals in the same environment.
We learn a global cumulant function �, successor features  , and per-task preference vectors w1:K .
As the agent operates under the same state space and transition dynamics across the different tasks,
we can share � across tasks, which enables learning a common basis for reward functions. Thus,
� is a task-agnostic set of state features that are relevant to predicting rewards across any training
task. The agent’s policy is captured by  , which estimates the future accumulation of these state
features according to eq. (2). We learn a separate preference vector w1:K for each of the K tasks,
which enables representing the different reward functions of the tasks. For simplicity, we refer to a
preference vector specific for a task as w. We use a neural network to learn both  and �, as shown in
Figure 2. Initial features are extracted from raw, high-dimensional observations st via a shared trunk
of convolution layers. Separate heads output � and  (parameterized by ✓� and ✓�, respectively).
The preference vectors w1:K do not depend on the state, and are learned separately.

As shown in Eq. 2, combining  with a particular preference vector w produces Q⇡,w =  ⇡(s, a)>w,
which can be used as a policy ⇡. To ensure our representation is suitable for later IRL training, we fit
the Q function using a modified version of the Bellman error with a softmax function, following the
formulation of MaxEnt IRL (Ziebart et al., 2008):

LQ(✓ )
4
= E(st,at,st+1,rt)⇠B[||Q⇡,w(at, st; ✓ )� rt � � softmax

at+1

Q⇡,w(st+1, at+1; ✓̃ )||], (3)

where B represents the replay buffer. Note that this formulation of Q-learning is equivalent to Soft
Q-Learning Haarnoja et al. (2017), which is a maximum entropy RL method that can improve
exploration, and is thus a reasonable choice for a forward RL objective.

To ensure that environment features extracted by � are sufficient to represent the space of possible
reward functions, and that each w accurately represents its task-specific reward function, we train
both using the following reward loss:

LR(✓�, w)
4
= E(st,at,rt)⇠D||�(st, at; ✓�)>w�rt||. (4)

As shown in Eq. eq. (2), the successor features  should represent the accumulation of the cumulants
� over time. To enforce this consistency, we train ✓ with the following inverse temporal difference
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Figure 2: Architecture diagram for learning global cumulants �, successor features  , and task-
specific preference vectors w. The input st is passed through shared convolution layers (blue). This
intermediate representation is passed into networks for  and �. Taking the dot product of the
output from  and w, we obtain the action-value function Q. The dot product of � and w gives us
the predicted reward at st. Networks that are updated in both RL pre-training and during IRL are
highlighted in purple ( , w) and those learned solely with RL are highlighted in red. The same colour
conventions are used to represent the loss functions used for each network parameter, with losses
only computed during IRL highlighted in green.

(ITD) loss (Barreto et al., 2018), which is similar to a Bellman consistency loss:

LTD(✓ )
4
= E(st,at,st+1,at+1)⇠B[|| (st, at; ✓ )� �(st, at; ✓�)� � (st+1, at+1; ✓̃ )||]. (5)

We do not train ✓� with this loss (the gradient is not passed through �(st, at; ✓�)). This is because
we first force � to represent the rewards through Eq. 4, then construct  out of the fixed �, which
leads to more stable training. Through this process of successor feature learning, our method learns a
“basis for intentions” that can be used as an effective prior for IRL in the next phase.

4.2 INFERRING INTENTIONS WITH IRL

The goal of IRL is to use observations from a demonstrator to not only recover its policy ⇡e(a|s) but
accurately infer its reward function. Our agent is given access to demonstrations without rewards,
denoted D = ⌧1, ⌧2 . . . ⌧N , where the trajectory ⌧ 4

= (s0, a0, . . . ) is generated by the demonstrator.
The demonstrator is optimizing an unknown, ground-truth reward function re(st, at) that was not
part of the pre-training tasks. We will now clarify how successor features (Barreto et al., 2018) can
be related to the demonstrator’s policy and reward function by drawing a parallel between successor
features and MaxEnt IRL. This motivates our formulation of IRL with SFs.

MaxEnt IRL assumes that the demonstrator’s actions are distributed in proportion to exponen-
tiated Q-values, i.e., ⇡(a|s) / exp(Q(s, a)) (see Section 3). We then learn the parameters
of the expert’s Q-function, ✓e, by maximizing the log-likelihood of the expert’s actions: ✓⇤e =
argmax✓e

PaT

a=1 logP (a|⇡e). Since we can represent the expert’s Q-value with successor features
 e and preference vector we (Eq. 2), we can express the expert’s policy as ⇡e(a|s) / exp( >

e we).
This leads to the following loss to fit our task-specific preferences we and successor features  e:

LBC(✓ e ,!e)
4
= �E⌧⇠D log

exp( e(s, a)>we)P
a(exp e(s, a)>we).

(6)

However, this BC-like loss is insufficient to produce an effective IRL method, since we have no way
to infer the reward function of the expert. To predict the expert’s rewards, we need to use �; i.e.:

�e(s, a)
>we = re(s, a) (7)

To ensure that  e and �e remain consistent during this optimization, we also require an ITD loss:

LTD(✓ e)
4
= ED|| e(st, at; ✓ e)� �e(st, at; ✓�e)� � e(st+1, at+1; ✓̃ e)||. (8)

Now we can draw a direct connection to MaxEnt IRL, which proposes inferring the demonstrator’s
reward function using a linear transformation applied to a set of state features: R(f(s); ✓) = ✓T f(s)
where the mapping f : S ! [0, 1]k is a state feature vector, ✓ are the model parameters, and
R(f(s), ✓) is the reward function. Our approach instead uses successor features to learn a set of
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continuous state features �e to replace f , and we is analogous to learning ✓. Thus, according to the
MaxEnt IRL model, if  ⇡e (s, a) remains Bellman consistent with �e (by minimizing the ITD loss)
and we and  ⇡e

e (s, a) are optimized so as to maximize the probability of the observed demonstration
actions (as in Eq. 6), we will have recovered the demonstrator’s Q-function as  e(s, a)Tw, and the
demonstrator’s reward function as �e(s, a)Twe.

Benefitting from RL pre-training: To initialize  e and �e, the agent uses the parameters ✓� and
✓ that it learned during RL pre-training; i.e. ✓ e   and ✓�e  ✓�. It also initializes a new
preference vector we as the average of all w vectors across tasks learned in during RL pre-training, to
begin with an agnostic representation of the demonstrator’s goals. The � learned during RL training
represents a shared feature space that can be used to explain all the pre-training tasks. When the agent
initializes �e with �, it is given a strong prior that can help explain the expert’s behavior. Hence, even
though at the beginning of the IRL stage the agent has never been directly trained on behavior for
the new task, it can potentially extrapolate from the learned basis in order to quickly ascertain the
demonstrator’s preferences. To the extent that the pre-trained successor features  provide a good
basis for the expert’s policy, then this learning process might primarily modify we, and only make
minor changes to  e to make it consistent with the new policy. In this case, the method can recover
the reward and policy for the new task very quickly. However, the astute reader will notice that the
basis for intentions learned during RL pre-training and encoded in ✓� and ✓ does not necessarily
constitute a policy that is optimal for the new task that is being demonstrated by the expert. Hence,
the ITD loss (Eq. 5) is necessary to learn the correct  e. Even if the demonstrator policy differs from
the  learned during RL pre-training, ITD allows us to accurately infer the demonstrated policy.

Algorithm 1 RL pre-training: learning a basis

1: Initialize ✓�, ✓ , and wkK
k=1

2: B = [] . Replay buffer initialization
3: for each iteration do
4: Get initial observation st
5: Sample task k from K tasks
6: for each environment step do
7: Get action a ⇠ ⇡
8: Take action a and observe x0 and r
9: B  B [ {x, a, r, x0, k}

10: for each gradient step do
11: Update ✓ , w w/ Bellman Eq. 3
12: Update ✓�, w w/ reward loss Eq. 4
13: Update ✓ , w w/ ITD loss Eq. 5

Algorithm 2 IRL: Inferring Intentions
1: Input: expert demonstrations D
2: Initialize ✓�e  �, ✓ e   , we  PK

1 wk/K from multi-task RL pre-training
3: for each demo <st, at, st+1, at+1> do:
4: Update  e, we with BC loss in eq. (6)
5: Update  e, we with ITD loss in eq. (8)

Algorithm summary: We now summarize the procedure for both training stages. Algorithm 1 uses
multi-task RL pre-training to learn a basis for intentions, updating cumulants, SFs, and preference
vectors via the Bellman error, reward loss, and ITD loss. In Algorithm 2 (inferring intentions with
IRL), we begin the learning process with parameters initialized from the RL pre-training. We iterate
through a batch of a fixed set of demonstrations from D, computing the BC loss and ITD loss to
maintain consistency between  and � as aforementioned. At test time, we use the inferred cumulants
�e, preference vector we, and successor representation  e, to produce a policy that can be executed
in the test environment, and measure how well it matches the demonstrator’s reward (as in Figure 1).

5 EXPERIMENTS

Below we describe the research questions that our empirical experiments are designed to address.

Question 1: Will BASIS acquire the behaviors of a demonstrator expert more quickly and
effectively than conventional IRL and imitation learning methods?
A central goal of IRL is to be able to reproduce the demonstrated behavior of the expert in a
generalizable way. We hypothesize that the RL pre-training and successor representation of BASIS
will allow it do this more accurately and with fewer demonstrations than existing techniques. To
measure how well a method can acquire demonstrated behaviors, we evaluate performance using the
expected value difference, which is the difference between the return achieved by the expert policy
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and the policy inferred with IRL, both measured under the ground truth reward function (thus, a
lower value difference is better). Intuitively, this metric captures how much worse the policy that
IRL recovers is vs. the expert demonstrator’s policy, and is the metric of choice in for evaluating IRL
methods in prior work (Levine et al., 2011; Wulfmeier et al., 2016; Xu et al., 2019). We evaluate the
performance of each algorithm with different numbers of demonstrations to study whether BASIS
can perform IRL more efficiently (i.e., with fewer demonstrations).

Question 2: Can BASIS more accurately predict the true reward with fewer demonstrations? It
is often easier to optimize for the correct behavior of a demonstrator agent than accurately predict its
reward function. Even with inaccurate reward values, the agent could still demonstrate the correct
behavior as long as it estimated the relative value of different actions correctly. Hence, we perform
further analysis to observe how well the agent is able to predict the expert’s true reward function.
We compute the mean squared error between the agent’s prediction of the reward, and the true
environment reward that is observed: MSE = (�e(st, at)Twe � rt)2. This allows us to understand
how accurately the agent is able to infer intentions by leveraging its basis for intentions.

Question 3: How closely does BASIS match the demonstrated policy and adhere to the demon-
strator’s preferences? We visualize the behaviors of agents to understand how well they are able to
adhere to the demonstrator’s preferences. For example, we show the distribution of behaviors for
each method vs. the distribution of the expert’s policy.

Question 4: How does multi-task pre-training & successor features benefit IRL? We address
this question through ablations that show how much multi-task RL pre-training vs successor features
contribute to learning an IRL task. We compare BASIS to two ablations. The first is uses no multi-task
pre-training, but does perform IRL via BC and successor features. Denoted as “No pre-training
(BC + successor features)”, it is used to assess the importance of RL pre-training. The second, “No
successor features (pre-train with DQN)”, is an algorithm which performs multi-task pre-training via
DQN and IRL via BC, and assesses the importance of successor features.

5.1 DOMAINS

We evaluate BASIS on a gridworld environment Fruit-Picking (which allows us to carefully analyze
and visualize performance) and high-dimensional autonomous driving environments Highway and
Roundabout (which necessitate the use of deep IRL). We modified the domains to be able to create
multiple tasks with differing reward functions, enabling us to test generalization to novel demonstrator
tasks outside of the set of pre-training tasks. See Appendix 8.1 for further details.

Fruit-Picking is a custom environment based on Chevalier-Boisvert et al. (2018), with different
colored fruits the agent must gather. In each task, the number and type of fruits varies, along with
the reward received for gathering a specific type of fruit. During RL pre-training, the agent learns to
pick one type of fruit per task. For the IRL phase, the demonstrated task is different from the training
tasks in that the demonstrator shows a preference for multiple types of fruit i.e. 80% preference for
red, 20% preference for orange. This behavior was not seen during pre-training.

Highway-Env & Roundabout-Env are autonomous driving and tactical decision-making environ-
ments Leurent (2018). We have modified the agent’s reward objective to maintain a target speed,
target distance from the front vehicle, and target lane, while avoiding collisions with neighbouring
vehicles. As there are many continuous parameters that determine the reward function for the agent,
it is not possible to sample all combinations of behaviors within the training tasks. Thus, it is
straightforward to create a novel test task for the demonstrator.

5.2 BASELINES AND COMPARISONS

We compare BASIS to three baselines. For all baselines, we use the same hyperparameters as BASIS
when applicable, and maintain default values from source code otherwise. IQ-learn (Garg et al.,
2021) is a state-of-the-art, dynamics-aware imitation learning (IL) method that is able to perform with
very sparse training data, scaling to complex image-based environments. As it is able to implicitly
learn rewards, this method can also be used in IRL. We use the authors’ original implementation
from: https://github.com/Div99/IQ-Learn. InvQ (Inverse Q-learning) (Kalweit et al.,
2020) is a state-of-the-art inverse RL method, which uses inverse-action value iteration to recover the
underlying reward of an external agent, providing a strong comparison representative of recent inverse
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RL methods. Multi-task IRL pre-training is included to enable a fair comparison to methods which
leverage multi-task pre-training. To our knowledge there is no prior method that uses RL pre-training
to acquire a starting point for IRL. Closest in spirit is prior work on meta-IRL (Yu et al., 2019; Xu
et al., 2019; Gleave & Habryka, 2018), which pre-train on other IRL tasks, rather than pretraining on
a set of standard RL problems, as in our method. Since these works generally assume a tabular or
small discrete-state MDP, they are not directly applicable to our setting. We thus create a multi-task
IRL pre-training baseline by applying the same network architecture and BC and ITD losses as our
own method (essentially performing our IRL phase (Algorithm 2) during pre-training as well). We
note that in general, IRL pre-training has the significant disadvantage that it requires many more
expert demonstrations during the pre-training phase, whereas our method does not.

6 RESULTS

We demonstrate BASIS’s ability to leverage prior experience to help infer preferences quickly and effi-
ciently on a diverse suite of domains. The code is at https://github.com/3047iclr2023/
basis-irl and videos are at https://sites.google.com/view/basis-irl.

Question 1: Acquiring demonstrated behavior. Figure 3 (top row) shows the value difference (VD)
when evaluating an agent after learning from a series of demonstrations for all three environments. In
Fruit-Picking, we observe that BASIS is better able to optimize the demonstrated policy than IQ-learn,
InvQ, and multi-task IRL pre-training, achieving the lowest VD of 15 at 10000 demonstrations,
and surpassing the final performance of the baselines with less than 1/3 of the demonstrations. We
see similar trends in Figures 3b and 3c, showing the VD when inferring previously unseen driving
preferences in the Highway and Roundabout domains. The VD for BASIS is significantly lower
than all baselines across all numbers of demonstrations, and it is once again able to surpass the best
baseline with only 1/3 of the data requirements. This experiment allows us to determine whether
BASIS fulfills the first requirement of being an IRL algorithm as well as an IL algorithm: being
able to reproduce the behavior demonstrated by the expert. Further, because the performance of
BASIS after only a few demonstrations surpasses the performance of both baselines after three times
the number of demonstrations, this provides evidence that building a strong prior over the space of
reasonable goals helps BASIS infer the expert’s behavior rapidly and efficiently.

Question 2: Predicting rewards. Figure 3 (bottom row) shows the reward loss (MSE in predicting
the ground truth reward) obtained by each of the methods. Across all three environments, BASIS
achieves the lowest error vs. any of the baseline techniques, often reaching the best performance in
a fraction of the examples. In Fruit-Picking (Fig. 3d), BASIS achieves the best performance after
only 100 demonstrations, surpassing the performance of other techniques after 1000 demonstrations.
Similarly, as shown in 3e, BASIS converges to a lower reward MSE loss than any of the other
techniques after only one demonstration. This rapid inference of the expert’s reward suggests that the
basis acquired during pre-training was sufficient to explain the expert’s behavior, and the algorithm
was able to adapt rapidly to the expert’s task by simply updating we (as explained in Section 4.2).
This is consistent with prior work using successor features for multi-agent learning (Filos et al., 2021),
which also showed 1-shot adaptation to a novel test task.

Question 3: Matching behavior statistics. To assess how well the different methods match the
demonstrated behavior, we visually compare the distribution of behaviors for each technique to the
expert’s distribution. For the fruit-picking task in Fig. 4, InvQ gathers all fruits in roughly equal
proportion, showing it has not learned to discern which fruits the expert prefers. This could be due to a
failure to scale to high-dimensional environments. Although IQ-learn and Multi-task IRL pre-training
are better able to capture the correct distribution, BASIS shows a distribution closer to the ground
truth than either of the baselines. Figure 5 conducts a a similar analysis in Highway, visualizing how
well the learned agent adheres to staying in the preferred left lane. BASIS shows a preference for the
left lane 80% of the time, compared to IQ-learn which matches the expert’s preference 60% of the
time. Both InvQ and Multi-task IRL pre-training show an almost uniform lane preference.

Question 4: How does multi-task pre-training & successor features benefit IRL? We conduct
ablation experiments to assess which components of BASIS contribute to its effectiveness. We
observe value difference and reward loss in Figure 3 to be larger without successor features and

without multi-task pre-training, demonstrating the benefit of both components of our approach.
We note that for both Fruit-Picking and Highway, the No pre-training baseline does best, actually
outperforming or matching the performance of all three baseline techniques (IQ-Learn, InvQ, and
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(a) Fruit-Picking (b) Highway (c) Roundabout

(d) Fruit-Picking (e) Highway (f) Roundabout

Figure 3: Top row: value difference, the difference in the return obtained by each algorithm and the
expert policy. Across the Fruit-Picking (a), Highway (b), and Roundabout (c) domains, BASIS shows
the lowest value difference indicating its behavior is closest to that of the optimal policy. It is able to
surpass the performance of all baselines with less than one third of the data. Bottom row: reward
loss, the error in predicting the expert’s true reward. BASIS is able to converge to a lower reward loss
compared to baselines in all three domains, i.e. it is most accurate in predicting the expert’s reward.
The error bars show the standard deviation of 10 seeds.

multi-task IRL pre-training), suggesting successor features are highly effective for IRL. However,
No pre-training performs poorly in the more complex Roundabout environment. In Roundabout, No

successor features actually gives better performance than two of the baseline techniques (InvQ and
multi-task IRL pre-training), demonstrating a strong benefit of learning a prior with RL pre-training.

Figure 4: On Fruit-Picking, the agent must infer
the demonstrator’s preference to consume 80%
red and 20% orange fruits. BASIS is able to
achieve this distribution more accurately than
baselines. Plots show the mean of 10 seeds.

Figure 5: State occupancy map for the degree
of left lane preference in the Highway Domain.
BASIS is best able to adhere to the demonstrator
agent’s preferences (ground truth).

7 CONCLUSION

A major challenge in inverse RL is that the problem is underconstrained. With many different reward
functions consistent with observed expert behaviour, it is difficult to infer a reward function for a
new task. BASIS presents an approach to this problem by building a strong basis of intentions by
combining multi-task RL pre-trainin with successor features. BASIS leverages past experience to
infer the intentions of a demonstrator agent on an unseen task. We evaluate our method on domains
with high dimensional state spaces, and compare to state-of-the-art inverse RL and imitation learning
baselines, as well as pre-training with multi-task IRL. Our results show that BASIS is able to achieve
better performance than prior work in less than one third of the demonstrations. The limitation of
this approach is that it requires the design of a set of tasks for RL pre-training that are relevant to the
expert demonstrations. Nevertheless, this work shows the potential of building a generalizable basis
of intentions for efficient IRL.
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