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Figure 1: Large-scale fine-grained geolocalization. We introduce an approach that can localize a
ground-level image within 100 m at the scale of a continent (here Western Europe) by combining the
scalability and robustness of classification with the precision of cross-view ground-aerial retrieval.
All images shown here are misregistered by either paradigm, but correctly localized by ours.

Abstract

Determining the precise geographic location of an image at a global scale remains
an unsolved challenge. Standard image retrieval techniques are inefficient due to the
sheer volume of images (>100M) and fail when coverage is insufficient. Scalable
solutions, however, involve a trade-off: global classification typically yields coarse
results (10+ kilometers), while cross-view retrieval between ground and aerial
imagery suffers from a domain gap and has been primarily studied on smaller
regions. This paper introduces a hybrid approach that achieves fine-grained geo-
localization across a large geographic expanse the size of a continent. We leverage
a proxy classification task during training to learn rich feature representations
that implicitly encode precise location information. We combine these learned
prototypes with embeddings of aerial imagery to increase robustness to the sparsity
of ground-level data. This enables direct, fine-grained retrieval over areas spanning
multiple countries. Our extensive evaluation demonstrates that our approach can
localize within 200m more than 68% of queries of a dataset covering a large part
of Europe. The code is publicly available at scaling-geoloc.github.io.

1 Introduction

Pinpointing where in the world an image was taken, down to a scale of meters, remains a challenge
in computer vision, especially when scaling beyond city limits [1, 2]. Achieving such fine-grained
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geolocalization across vast geographic expanses, like entire continents, allows us to localize images
without a corresponding GPS tag, such as older and historical images, or images where the EXIF
metadata was accidentally stripped, e.g. after image processing. Such technology would be a powerful
discriminator to validate images distributed in media, verify images for criminal investigations,
or detect AI-generated images. Models trained for large-scale geolocalization need to learn high-
level semantics about geographical and cultural patterns from ground views, which could act as a
valuable pre-training for remote sensing applications. Furthermore, accurate global priors are often
a foundational requirement for more complex downstream tasks, such as 6-DoF positioning based
on 3D point clouds or 2D maps [3, 4, 5, 6, 7, 8, 9], which typically require initial estimates within
approximately 100 meters.

Current approaches to visual geolocalization force a trade-off between geographic scale and localiza-
tion precision. Global classification methods [10, 11, 1, 12, 2, 13, 14, 15, 16] partition the world
into predefined regions (e.g., using administrative boundaries, grid cells, or prominent landmarks) and
train classifiers to assign a query image to one of these regions. While highly scalable, these methods
are fundamentally limited by the granularity of the partitioning, typically yielding coarse results with
errors exceeding 10 km, and are often constrained by the need for sufficient training data per region.
On the other hand, fine-grained retrieval approaches aim for higher precision. Ground-to-ground
image retrieval methods [17, 18, 19, 20, 21, 22, 23, 24] can achieve high accuracy, but struggle to
scale to large areas due to the sheer volume of database images. They also suffer from insufficient or
uneven geographic coverage of ground-level imagery. Cross-view retrieval techniques, matching
ground-level queries to aerial or satellite imagery [25, 26, 27, 28, 29], offer better scalability and
coverage, but must overcome significant viewpoint and appearance variations and have primarily been
studied at sub-country scales. These different streams of research have often evolved independently,
lacking a systematic comparison. Consequently, to the best of our knowledge, no existing solution
effectively provides both meter-level accuracy and broad, continent-scale applicability.

This paper introduces a novel, hybrid approach designed to bridge the gap between these differ-
ent research streams, unlocking scalable yet accurate geolocalization by synergizing classification
principles with cross-view retrieval (Fig. 1). Our key idea is to leverage a proxy classification task
during training, not directly for localization, but to learn rich, location-specific, ground-view feature
prototypes (Fig. 3). These prototypes implicitly aggregate fine-grained geospatial information visible
in ground-level images. Crucially, we then fuse these learned ground prototypes with embeddings
of readily available aerial imagery. This mechanism enables efficient and powerful fine-grained
cross-view retrieval across vast geographic regions without requiring explicit geometric alignment,
dense 3D models, or suffering excessively from the sparse coverage of ground-level training data.

Our contributions are threefold: (i) We propose a novel strategy to combine learned ground-view
prototypes with aerial embeddings for efficient large-scale yet fine-grained geolocalization. (ii) We
demonstrate that fine-grained visual geolocalization is feasible on a continent-sized region encom-
passing multiple countries. Our experiments on a substantial portion of Europe indicate over 68%
top-1 recall within 200 m, previously achievable only by city- or regional-scale retrieval systems [30].
(iii) We conduct a rigorous evaluation on a benchmark that covers most of western Europe at a
much finer scale than previously explored in the literature. We systematically compare our approach
against state-of-the-art classification and retrieval methods and provide detailed analyses of model
components, such as losses, granularity and backbones, and cross-region generalization capabilities.2

By localizing 59.2% of images within 100 m over an area of 284 000 km2, our work demonstrates a
path to overcome the long-standing trade-off between precision and scale in visual geolocalization.

2 Method

Problem definition. Our goal is to localize a query image at ground level IQ with high spatial accuracy
(∼100m) over a very large geographical area (e.g. continent-size), without any prior information
(e.g. GPS). We assume access to a large database of geotagged ground-level images {IGi } and tiled
overhead (aerial or satellite) images {IAj }. Modern solutions [17, 31, 24, 30, 22] encode the query
image into a D-dimensional embedding using a deep neural network Φ : RH×W×3 → RD and
localize it via similarity search against embeddings inferred from the database images.

2Analytical use of StreetView imagery was done with special permission from Google.
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Figure 2: Inference pipeline. The prototypes zP are extracted from the model weights Φ and
upsampled to the target resolution using the S2Cell hierarchy. Aerial tiles roughly covering the cell
are encoded using the aerial encoder ΦA and concatenated. Both databases are combined per-cell
using the calibration factor κ, resulting in the final database of cell codes zcell. During inference
(right), we extract the embedding of a query image zQ with ΦG and we compute the similarity to all
cell codes {zcellj

⊤zQ}. The estimated location is the cell with the highest similarity.

The precision/scaling trade-off. Retrieval-based (VPR) approaches have been studied extensively but
are hard to scale, given their inherent limitation that every query image must have visual overlap with
at least one database image to be localized. With their narrow field-of-view (FOV), this requires an
image database that densely covers the environment. As such, both storing the database embeddings
and querying them quickly becomes prohibitively expensive: a VPR method with performance
comparable to our approach would require storing embeddings for 470 million images for our largest
dataset (EuropeWest, Fig. 1). They can also be difficult to train, as contrastive learning is sensitive
to the sampling of positive and negative pairs, which becomes difficult (and more important) at scale.

One way to approach scaling is via classification, i.e., partitioning the space into disjoint classes, such
as cells in a regular grid, whose prototypes summarize all images in the area. This reduces the size
of the database and eschews the need for negative mining, as each example can be contrasted to all
prototypes—at the cost of accuracy, which is bounded by the granularity of the partitioning. Finer
partitions increase the number of prototypes, which is bounded by the available memory at training
time, and additionally impair convergence and generalization as each class is represented by fewer
examples. Additionally, at inference time, these methods are limited to areas covered at training time.
Despite these limitations, classification-based methods are popular—in fact, VPR methods often train
classification losses as a proxy task [18, 22] and revert to similarity search at inference time.

An alternative approach is cross-view localization using overhead imagery, which is inherently
more scalable, as one image tile can cover (and thus summarize) a larger area, reducing the size of
the database. Overhead imagery is also easier to acquire, and often readily available from public
sources—many rural roads are not covered by any ground-level imagery available on the internet.
These approaches however suffer from a large domain gap between database and query images, as
vertical structures like building facades are usually not visible in near-nadir imagery.

There is thus a clear trade-off between precision (i.e., each image is represented in the database)
and scalability (i.e., classification over larger regions). These different research streams are rarely
compared or studied in combination. In this paper we combine their strengths. We provide more
details on previous work and how it relates to our method in Section 4.

Our solution: Combine cell prototypes and cross-view retrieval (Fig. 2). We propose to perform
retrieval over cell codes that combine classification prototypes and embeddings of aerial tiles: a
surprisingly simple formulation that has, to our knowledge, not been explored until now. We thus
learn l2-normalized class prototypes {zPj } via a classification proxy task. For partitioning we rely on
the S2 cell library [32], which defines a hierarchy over the Earth: a cell of a given level L=X can
be split into 4 cells of level L=X+1 (higher is finer). We use cells at fixed levels, with cells being
roughly (but not exactly) equal. While previous works have used adaptive cell sizes to ensure that
each cell includes enough training examples, we find that this degrades accuracy in rural areas with
a lower density of database images. Instead, we rely on aerial information to constrain such cells.
Administrative regions, as used in previous works [1, 33], are far too coarse for our use-case.
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We define aerial tiles IAi of fixed size and ground sampling distance, centered at each cell. Aerial
tiles are encoded by a neural network ΦA into l2-normalized embeddings zAi . We typically use cell
codes at L=15 (average edge length ∼281 m), which is the upper limit we can store at training
time, and aerial tiles at L=16 (average edge length ∼140 m). Prototypes and aerial embeddings are
then combined into cell codes at the finest granularity (typically level L=16) in a straightforward
manner: zcelli = κ · zPP (i) + zAi , where P (i) defines the index of the cell at L′ that is parent of cell
i at level L. The calibration factor κ ∈ R is introduced to account for the empirical observation
that the similarities from queries to prototypes are generally smaller in magnitude than to the aerial
embeddings—we attribute this to the different granularity levels: cell code prototypes encode a larger
area (and more images), so the deviation of their embeddings is larger. Empirically we set κ to match
the average top-1 similarities over the training set. We then embed a given query image into zQ using
the ground-level encoder ΦG and search for its nearest neighbors in the database {zcelli }.

Both aerial and ground-level encoders ΦA and ΦG use the same architecture, but with different
weights. The aggregation of patch embeddings into a single vector is performed with the optimal
transport head introduced in SALAD [24].
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Figure 3: Supervision: We train query, aerial,
and prototype embeddings, zQ, zA and zP,
to be similar for corresponding locations and
different otherwise. We interpolate prototypes
to account for the coarseness of their cells.

Training recipe (Fig. 3). We use database ground-
level images as “simulated” queries. Each training
example includes a ground-level query and an asso-
ciated aerial tile. The aerial tile is centered at the
location of the query, with a random rotation and
translation offset, for data augmentation. We train the
aerial and ground-level encoders ΦA and ΦG, as well
as the prototypes {zPi }, jointly. Prototypes learn to
summarize a given area based on the training with
corresponding queries.

We follow a contrastive learning formulation, in
which we want ground-level, aerial, and prototype
embeddings to be similar when they correspond to the
same spatial location and distinct otherwise. These
three elements form a triangle with three constraints,
one along each edge: ground-prototype, ground-aerial, aerial-prototype. (i) Each query is contrasted to
all prototypes, such that they learn to encode features that represent what is visible from corresponding
ground-level images—e.g. facades, bridges, small details, elements under vegetation. (ii) Each query
is also contrasted to all aerial tiles that are in the batch, such that ground-level and aerial encoders
learn to embed similar information. (iii) Finally, each aerial tile is contrasted to all prototypes, such
that aerial embeddings are trained to be globally discriminative, eschewing the need for hard negative
mining. Because we build a separate aerial database, we detach the prototype gradients in this edge,
forcing the network to only aggregate ground-view information in the prototypes. We ablate these
loss terms in detail in the supplementary material, Table 9.

Loss formulation. The positive and negative terms of each of the three constraints are combined into
a multi-similarity loss [34]. We define the total loss as L =

∑
i∈B(L

pos
i + Lneg

i ), where the positive
term is computed for each query i in the batch B as

Lpos
i =

1

α
log

(
1 + γ(zQi

⊤zAi ) + γ(zQi
⊤zPi ) + γ(zAi

⊤zPi )
)

, (1)

and the negative term is

Lneg
i =

1

β
log

1 +
∑

j∈B\{i}

(
δ(zQi

⊤zAj ) + δ(zAi
⊤zQj )

)
+

∑
j∈N (i)

(
δ(zQi

⊤zPj ) + δ(zAi
⊤zPj )

) .

(2)
Here N (i) denotes the indices of all prototype cells whose spatial distance to the query i is larger
than a threshold. The functions γ, δ : R → R enforce positivity with scale and bias hyper-parameters
α, β, λ ∈ R and are defined as γ(s) = e−α(s−λ), and δ(s) = eβ(s−λ).

Prototypes are associated with discrete cells but ground-level and aerial images are sampled con-
tinuously through space. Those located at cell boundaries should thus be treated carefully to avoid
artifacts that can impair the training. We linearly interpolate each positive prototype zPi with its
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Table 1: Recall on BEDENL. (a) In traditional retrieval methods, the database size corresponds to
the number of ground-level images in the training set: they perform best yet are often intractable
(the state-of-the-art SALAD generates a 5 TB database). (b) Cross-view retrieval is faster but lags in
performance. (c) Classification produces smaller databases and suffers less from domain gap, but s
bound by device memory at training time (L=15 ⇒ coarser cells). (d) Our hybrid approach combines
the benefits of (b-c) and performs comparably to (a) with a 30-60× smaller database.

Eval Method cell
level

Recall@K@200m Recall@K@1km database

K=1 K=5 K=100 K=1 K=5 K=100 size elems. dim.

(a)

gr
ou

nd
re

tr
ie

va
l SALAD [24]

16
OOM OOM OOM OOM OOM OOM 5.1 TB 150M 8448

Ours (cell prototypes) 56.3 66.2 80.4 57.5 66.9 81.3 1.3 TB 150M 2176Ours (full) 64.0 73.8 85.7 65.3 74.5 86.5

(b)

ae
ri

al
re

tr
ie

va
l Fervers et al. [30]

16

33.3 48.9 74.2 36.2 51.3 75.5

42 GB 4.8M 2176+ negative mining 36.5 51.1 75.5 39.3 53.4 76.5
SALAD [24]-Aerial 39.2 53.6 74.1 42.6 56.2 77.0
Ours (full) 49.7 63.2 81.0 52.0 64.8 82.7

(c) ce
ll

pr
ot

ot
yp

es CosFace loss [38]

15

7.4 13.3 19.4 10.3 18.3 26.9

18 GB 2M 2176
Hierarchical loss [2] 8.1 14.5 27.8 14.0 23.2 43.2
Haversine loss [1] 10.2 19.5 36.2 17.8 25.7 42.0
Ours (cell prototypes) 47.3 59.4 74.7 49.9 60.9 76.9
Ours (full) 57.1 68.6 81.8 59.5 69.9 83.0

(d) hybrid
Ours (smaller dim.)

16
58.0 69.3 83.8 57.2 67.6 81.3 21 GB 4.8M 1088

Ours (full) 60.3 71.6 85.6 62.0 72.4 86.4 42 GB 4.8M 2176
Ours (DINOv3-L) 70.2 79.0 89.9 71.8 79.5 90.4 42 GB 4.8M 2176

neighbors, with weights computed based on either (i) the overlap between the respective prototype
cells and the camera frustum of the query, which is defined as a 2D triangle with 50 m depth, or
(ii) the distance between the centers of the aerial tile and of the 4 closest prototype cells (Fig. 3).

We empirically observe that this multi-similarity loss outperforms cross-entropy losses like In-
foNCE [35] and DCL [36]. It constrains the absolute similarity instead of the relative similarities.
We hypothesize this prevents images that cannot be localized, e.g. because of occlusion or lack of
distinctive features, from dominating the loss, as the gradient of their negative term remains small.

Pushing the boundaries of scalability. When scaling up classification models to a very large number
of classes, the devil is often in the details—our largest model is trained with 7M cell codes (Table 2).
We highlight our most important learnings. The size of the prototypes during training is the limiting
factor when naively replicating them across devices. For example, with dimension D=2176, only
∼250k prototypes can fit on each device. As a reference, this roughly covers Belgium at L=15.
To alleviate this, we uniformly shard the N prototypes across all d devices, such that each holds
only N/d of them. The backbone is replicated across devices for a fast forward pass. We gather the
image embeddings over all devices and compute the image-prototype similarity per-device. We then
compute a subset of the negative sum (Eq. (2)) locally and broadcast it to all devices. This minimizes
data transfers and thus keeps the training fast. It is faster than replicating the entire forward pass,
which transfers prototype gradients between devices. We train with 128 16GB TPUv2 [37].

3 Experiments

Datasets. Our model ingests both overhead and ground-level imagery. Publicly available ground-level
datasets are not of sufficient scale or density for our purposes. We use Google StreetView imagery,
captured by six rolling-shutter, fish-eye cameras mounted on cars. StreetView rigs all have similar
camera models and angles relative to the road, so we found data augmentation crucial to prevent
overfitting: we stitch StreetView images into panoramas and sample crops of 224×224 pixels with a
pinhole camera model and random roll, pitch, yaw, and FOV. In order to sample a consistent number
of images per region, we select panoramas via farthest point sampling over both space and capture
time in order to maximize spatial and temporal coverage. We consider a maximum of 120 panos per
L=14 S2 cell [32], enforce that panos are least 40 m apart to prevent oversampling, and skip cells
that contain less than 5 panos. We then generate 4 image crops per pano. We use sequences captured
in year 2023 for evaluation only and sequences from the remaining years 2017–2024 for training.
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Figure 4: Impact of the density of the training data. We slice the recall@K@200m on
EuropeWest (Table 3) by the temporal (left) and spatial (right) density of StreetView images within
L=15 cells. We compare our full (hybrid) model (blue) with one relying only on ground-level images
(red). The aerial embeddings help improve the accuracy especially when ground-level data is sparse.

For overhead assets, we use both aerial (captured by planes) and satellite images. We pick the
highest-resolution asset available and sample 256×256 px tiles at a 60 cm/px resolution. For training,
we sample tiles with a maximum offset of 80 m w.r.t. the ground-level images, and randomly rotate
them. For inference, we sample north-aligned tiles centered at the S2 cells.

We consider two geographical regions: BEDENL, consisting of three countries (BE, DE, NL), and
a larger superset EuropeWest, with ten countries comprising most of western Europe (PT, ES, IT,
AT, CH, DE, FR, BE, NL, CZ). We use BEDENL for most experiments and ablation studies and
EuropeWest to demonstrate the scalability to larger regions.

We evaluate generalization capabilities on three other datasets, see Table 2: (i) UK+IE: Two additional
countries (UK, IE) for which we build the database using only overhead images and query with
StreetView images without re-training. (ii) Trekker: StreetView images from backpacks [39],
worn by walking operators, as queries for models trained on BEDENL. They have a different spatial
distribution (i.e., pedestrian-centric) and suffer from occlusions as the devices are often close to walls.

Table 2: Datasets. Number of ground-level images and S2
cells (at L=15) and approximate area covered (km2).

Dataset Training Evaluation

Images Cells Area Images Cells Area

BEDENL 150M 2.0M 139k 1.5M 378k 25.7k
EuropeWest 470M 7M 433k 4.5M 1.2M 69.7k
UK+IE N/A N/A N/A 1.2M 194k 16k
Trekker N/A N/A N/A 130K 4.3k 1.5k
GoogleUrban N/A N/A N/A 767k 3.1k 1.1k

Table 3: Left: Recall on EuropeWest. Note that VPR is
infeasible at this scale (470M images). Right: Recall on
UK+IE for the model trained on EuropeWest. The database
is built from aerial tiles only, without retraining.

Method
EuropeWest Cross-Area (UK+IE)

Recall@K@200m Recall@K@200m

K=1 K=5 K=100 K=1 K=5 K=100

Fervers et al. [30] 32.6 47.6 72.1 11.6 19.5 39.3
Ours (prototypes) 46.4 58.4 72.7 N/A N/A N/A
Ours (full) 57.5 69.4 84.3 18.4 28.1 47.2

Ours (DINOv3-L) 68.7 78.1 89.1 27.4 38.2 58.6

(iii) GoogleUrban: Images captured
by consumer phones, covering 5 cities
included in BEDENL, part of a propri-
etary dataset previously used to eval-
uate localization algorithms in urban
settings [5] and in the 2022 Kaggle
Image Matching Challenge [40].

Metrics. At inference time we extract
embeddings for a new (unseen) set
of images and find the database em-
beddings with highest similarity. The
database can be be built from ground-
level images (“ground retrieval” in Ta-
ble 1, i.e., VPR), aerial tiles (“aerial
retrieval”), cell codes learned via clas-
sification, or a combination of aerial
and cell code retrieval. Note that for
models trained for classification, sim-
ilarity search in feature space and top-
K classification are equivalent. We
evaluate performance in terms of lo-
calization recall at different spatial
thresholds and for different number
of nearest neighbors K. The accuracy
of classification-based methods is limited by their granularity level, i.e., L=15 (average cell edge
length 281 m), whereas our aerial and hybrid models work at L=16 (average cell edge length 140 m).
Given space constraints and for a fair comparison we report recall at 200 m and 1 km, irrespective of
cell granularity. Refer to the appendix for localization results at 100 m on the EuropeWest dataset.
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Table 4: Generalization to pedestrian
viewpoints. We report localization recall
on the urban Trekker dataset.

Method Recall@K@200m

K=1 K=5 K=100

Ours (VPR) 21.5 29.9 46.1

Fervers et al. [30] 11.1 20.6 47.1
SALAD [24]-Aerial 13.4 23.1 46.0
Ours (prototypes) 15.5 24.8 44.3
Ours (full) 18.7 29.3 51.3

Ours (full/BEDENL+) 30.3 44.2 63.5

Evaluation—Scaling to a continent (Table 1& 3–left).
We conduct large-scale experiments over multiple coun-
tries in Europe. Setup: Because of the large compute re-
quirements, we do hyper-parameter search on BEDENL and
then train a larger model on EuropeWest. Baselines: For
cross-view retrieval, we re-train a model similar to that
of Fervers et al. [30], but with the same granularity and
aerial tile size used by our method. To strengthen this
baseline, we perform offline hard-negative mining (using
k-NN) between aerial embeddings once during training.
We also adapt SALAD [24], a state-of-the-art ground-
based retrieval model [24], to cross-view retrieval with
the multi-similarity loss [34]. For classification, we train
two baselines with variants of the cross-entropy loss: a
hierarchical loss from OSV-5M [2] and with the smoothing introduced by PIGEON [1], based on the
Haversine distance between training images and cell centers. We provide additional details on the
baselines and a full ablation of loss terms in the supplementary. For completeness, we also report
results for traditional ground-based retrieval for BEDENL in Table 1 —for EuropeWest (Table 3) the
database would simply be too large. Results: On BEDENL, classic image-to-image retrieval exhibits
high accuracy but is computationally infeasible. Cross-view retrieval drastically reduces the size of
the database, but the domain gap impairs recall. Classification achieves higher recall, but the sparsity
and diversity of the data hinders the embedding averaging in a cell. Our approach combines the
strengths of both. A larger backbone, DINOv3-L [41], yields another substantial performance gain.

Table 5: Impact of cell size L and fea-
ture dimensionality D. We report recall on
BEDENL. N is the number of S2 cells.

L D
Recall@K@200m

N
K=1 K=5 K=10

12 2048+128 37.8 50.7 70.3 86K
14 2048+128 50.2 62.8 78.9 760K
15 2048+128 60.3 71.6 85.6 2.0M
16 2048+128 63.3 73.8 87.1 4.8M

13 8192+256 46.1 59.3 76.2 278K
14 4096+128 52.8 64.8 80.6 760K
15 1024+64 58.0 69.3 83.8 2.0M
16 1024+64 60.7 72.5 86.4 4.8M

Table 6: Impact of the frustum and cell
interpolation. We compare them to nearest
neighbour sampling, on BEDENL.

Ground Aerial Recall@K@200m

K=1 K=5 K=100

NN NN 57.8 69.8 84.6
Frustum NN 58.9 70.5 85.0

NN Interp. 58.5 70.3 84.9
Interp. Interp. 57.7 69.5 84.3

Frustum Interp. 60.3 71.6 85.6

Evaluation—Cross-area generalization (Table 3–
right). A fundamental shortcoming of geolocalization
methods based on classification techniques is that they
require retraining when faced with new data. We show
that our approach can generalize to completely unseen
areas by building the database using only aerial im-
agery. Despite a drop in performance, our approach re-
mains applicable and can recover over half the queries
at K=100. Note that given ground-level images, we
could also do VPR with their image embeddings, but
this would require indexing 109M images for UK+IE.
Here we use 2.8M aerial tiles.

Evaluation–Cross-domain generalization (Table
4). We evaluate our approach on queries from the
Trekker dataset, which contains Google StreetView
images taken from the vantage point of pedestrians.
In addition to drastic viewpoint differences (road vs
sidewalk), many images are unlocalizable, as cameras
often closely face building facades. We feed them to
our model trained on BEDENL, without any fine-tuning.
The drop in performance is primarily explained by
three factors: (i) viewpoint difference, (ii) unlocaliz-
able images, and (iii) this dataset is only available
for urban centers, while our training recipe prioritizes
good coverage of all cells, the majority being in ru-
ral areas. To validate (iii), we train a new model on
BEDENL+, a dataset covering the same areas in BEDENL but sampling a number of images per cell
proportional to the number of training sequences, instead of uniformly. This greatly improves perfor-
mance (as urban areas contain more sequences) and highlights the trade-off between localization in
urban centers and rural areas, dominated by roads.
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Table 7: Ablation of encoders on BEDENL.
Larger models and input images yield a better
localization. The initialization matters too.

Image
size (px)

Encoder
size & init.

Recall@K@200m

K=1 K=5 K=100

224

DINOv2-S14 57.0 67.6 82.0

SigLIP 2-B16 57.4 64.6 83.2
iBOT-B16 60.3 71.6 85.6
DINOv2-B14 63.5 73.4 86.2
DINOv3-B16 64.1 74.1 86.8

DINOv2-L14 69.7 78.5 89.5
DINOv3-L16 70.2 79.0 89.9

448 DINOv3-L16 76.1 84.1 93.0

Table 8: Generalization to phone images on
GoogleUrban. Fine-tuning with different image res-
olutions helps generalization.

Image size (px)
Encoder

Recall@K@200m

test training K=1 K=5 K=100

224
224 DINOv2-L14 24.5 39.3 70.8

DINOv3-L16 27.5 42.7 73.2

224 & 448 DINOv2-L14 23.4 38.1 70.0
DINOv3-L16 30.3 46.1 76.0

448
448 DINOv2-L14 29.4 45.6 75.6

DINOv3-L16 42.7 59.1 83.3

224 & 448 DINOv2-L14 27.1 43.2 75.4
DINOv3-L16 38.8 55.2 81.6

Ablation—Granularity (Table 5). The resolution of the grid at cell level L and the feature dimen-
sionality D have a large impact on accuracy. We use our ‘hybrid’ model and report recall at 200 m.
For a given D, coarser grids yield lower recall, especially at L≤14. Coarse cells, often employed
in the literature [2, 1, 10], need to encode a quadratically growing area, thus increasing the visual
diversity within a class. While some works aim to alleviate this problem by finding semantically
meaningful clusters [1], there is no guarantee that these features are observable in each image. At
constant database size, using more compact features with a higher-resolution grid is thus a better
trade-off between scalability and accuracy.

Ablation—Border interpolation (Table 6). We study strategies to align query and aerial embeddings
to their corresponding prototypes. The simplest one selects the cell nearest to the query or aerial tile.
We compare this to bilinear interpolation based on frustum/tile overlap and for queries, to selecting
all cells covered by their 2D camera frustum. We report the recall for our best, ‘hybrid’ model at
200 m. The results show that the interpolation is always beneficial for aerial tiles. On the other hand,
it impairs recall for queries, likely because it does not consider how far the scene is visible from the
ground. Surprisingly, selecting all overlapping cells works best.

Ablation—Backbones and image resolution (Table 7 & Table 8). We ablate the ViT vision
foundation models iBOT [42] (default), DINOv2 [43], SigLIP 2 [44] and DINOv3 [41], and their
variants. On BEDENL, Table 7, larger backbones yield substantial improvements. DINOv3 [41]
generally works best, while finetuning and evaluation on larger images (448x448 px) yields again
significant improvements. In Table 8, we study the model’s generalization capabilities to casual images
from smartphones in urban areas, GoogleUrban. Our model with DINOv3-L16 [41] backbone,
finetuned and evaluated at 448px images, achieves almost 60% top-5 recall, suggesting strong
generalization to casual images. Note that, for generalization to non-square images, we augment the
training images with random zero padding on either the outer rows or columns.

Qualitative results. Figure 5 shows the prototypes learned from the EuropeWest dataset, visualized
with PCA, and the localization errors of our test set. Figure 6 shows examples of queries.

Implementation details. We train our models with 64 examples per batch per device (8192 examples
in total) for 200k steps (∼3 epochs on EuropeWest), with ∼1 s per step and a total time of 2.5 days.
We use the Adam [45] optimizer with learning rates of 0.003 for the encoders and 0.01 for the
prototypes, both annealed to 10−6 by the end of training using a cosine schedule. Unless stated
otherwise, we use Vision Transformers [46] (B16) initialized with the iBOT [42] weights, and scale
the best setups to larger models. During training we randomly drop layers with a probability of
0.1. The SALAD head [24] has 32 64-D clusters and a 128-D class token. All embeddings are
l2-normalized. The loss is parameterized by α=0.2, β=100, and λ=0.2.

4 Related Works

Visual Place Recognition (VPR) approaches image localization as matching a query image against a
large database of geo-tagged ground-level images, typically via pre-extracted image features designed
to be robust to changes in viewpoint and illumination and to occlusions [47, 48, 49, 50, 51, 52, 53, 31].
In its simplest form, the query is then assigned the location of the closest image in the database. While
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Figure 5: Left: PCA visualization of the learned prototypes, which appear in different colors for
e.g., urban, forested, or coastal areas. The high-frequency noise suggests that they also encode
local distinctive information. Right: Test queries that are successfully localized (•) are uniformly
distributed over the map, while failures (•) are prevalent in rural areas, where training data is sparser.

early papers relied on handcrafted features [54, 55, 56], the main focus of modern VPR is learning
discriminative and compact representations. CosPlace [18] introduced a city-sized dataset and showed
that previous methods fail to scale to it, proposing to learn descriptors for retrieval with a proxy
classification loss to bypass the expensive mining required by contrastive learning. Vo et al. [57]
similarly concluded that the best features for retrieval are trained via classification. EigenPlaces [19]
defined classes as to enforce viewpoint invariance in the learned features. TransVPR [58] signaled
a move towards ViTs [46] and self-attention [59]. MixVPR [60] proposed an MLP-based feature
mixer to aggregate features from off-the-shelf foundation models, while AnyLoc [20] explored
unsupervised aggregation techniques [61, 62, 63, 50]. SALAD [24] proposed an aggregation strategy
based on optimal transport with DINOv2 features and was subsequently improved with a mining
strategy that accounts for geographic distance [23]. MegaLoc [22] trained a single retrieval model on
five large datasets and showed it outperforms most previous models. Other research topics within
this scope include geometric verification and re-ranking [4, 64, 53, 65, 66, 67, 21] and uncertainty
estimation [68, 69, 70, 71, 72]. Recently, MeshVPR [73] combined global features for retrieval with
a visual localization step based on local features and dense 3D textured meshes.

Cross-View localization compares ground-level images to overhead views, such as satellite imagery.
In practice, ground-level imagery is often too scarce to ensure global coverage. Early efforts relied on
warping image semantics to the overhead reference frame before matching [74, 75, 76, 77]. This topic
gained traction with the advent of deep learning [78, 79]. Liu et al. [80] learned orientation-aware
features by explicitly encoding per-pixel orientation information. Shi et al. [25] used polar transforms
to warp aerial images into panoramas, with an attention mechanism to alleviate distortions, while
[81] used feature transport for domain transfer across views. Ye et al. [27] proposed a technique to
convert panorama images into overhead views, while also directly matching unwarped panoramas to
satellite images. ConGeo [28] enhanced robustness on non-north-aligned panoramas and variable
fields of view. Zhang et al. [26] used synthetic augmentations to benchmark cross-view localization
methods against weather, blur, or image compression. In a different direction, OrienterNet [7] matched
ground-level images to overhead semantic maps and SNAP [9] learned neural maps directly from
images—both use very small tiles and require GPS priors. Recently, Fervers et al. [30] demonstrated
the applicability of such methods to areas the size of the state of Massachusetts, with ∼60% accuracy
at 50m. Their approach partitions regions into cells that factor in spherical distortions and combines
multiple scales of overhead images. Our approach shows higher accuracy over much larger areas.

Global geolocalization focuses on scaling up to much larger areas, up to Earth-scale. While they
employ different design paradigms, classification techniques are most common. Early works such as
IM2GPS [47] extracted simple image features from a database of 6M geo-tagged images and used
retrieval for inference—our largest database consists of 470M images, rendering retrieval prohibitive.
PlaNet [10] partitioned the Earth’s surface into S2 cells [32] into which images are classified, but
suffers from limited precision, with only 26k cells of variable size. Clark et al. [13] introduced
learned latent features over hierarchical S2 cells, but remain limited to a similar number of cells at the
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Figure 6: Qualitative examples. Localization examples of easy, medium, and difficult cases, along
with their rank (the position of the first cell within 200m in the sorted database list according to
descriptor similarity). A larger rank corresponds to a lower localization accuracy.

finest level. CPlaNet [11] applied combinatorial partitioning techniques to increase this number to
2.8M—our largest model can accommodate 18M cells. Translocator [82] used RGB images and their
segmentation maps as inputs to increase robustness against weather or illumination changes. OSV-
5M [2] introduced a global-scale dataset of open-sourced ground-level images and evaluated different
image encoders, pretraining sets, and supervision schemes, including regression, classification, and
a hybrid approach, as well as contrastive objectives at semantic partitions such as administrative
regions. It relies on a strict spatial split, where images in the test set are at least 1 km away from any
image in the training set, and evaluates the classification accuracy at country, region, and city levels.
OSV-5M aims to learn geographical features without explicitly encoding appearance, while our goal
is different—we wish to summarize appearance, which is needed for fine-grained localization, and
thus use much smaller cells and a temporal split for evaluation. PIGEON [1] introduced semantic
cells and a regularization to relate adjacent cells to each other. Other works explored contrastive
learning to align images to GPS locations or text captions [12, 83, 1]. In a different direction, Dufour
et al. [16] explored a generative approach based on diffusion.

5 Conclusion

We address the challenge of high precision in visual geolocalization at very large scales. Previous
methods fall short due to the inherent tradeoff between accuracy and applicability. Classification
methods must fall back to coarse partitions to train with current-day hardware. Retrieval methods
suffer from unfeasibly large databases at inference time. We introduce a novel, hybrid approach that
synergizes classification principles with cross-view retrieval by learning rich, ground-view feature
prototypes in the same feature space as overhead feature embeddings. Our extensive evaluations on a
continent-scale deployment across Western Europe demonstrate >68% top-1 recall accuracy within
∼200 meters , establishing the feasibility of fine-grained geolocalization at an unprecedented scale.
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Appendix

We first discuss the societal impact of our work and later present additional ablation studies that
motivate the design decisions of our approach, shedding light into its inner workings. We then evaluate
the image embeddings learned by our model, study the data distribution of our dataset, and show
extensive qualitative examples.

A Societal Impact

This work addresses the research question of geolocating images over very large geographical areas
(countries, continents) without the need for rough priors, like GPS. A solution to this problem will
undoubtedly raise concerns about privacy, surveillance, discrimination, and personal safety. While
these concerns apply to any other works in the field, which we build and improve upon, they grow
larger by scaling up the size of the database. As the potential of misuse is significant, we offer this
as a proof-of-concept only, and will refrain from releasing model weights to the public. We note,
however, that the same risks apply to any current visual place recognition (VPR) systems, which also
typically perform best (albeit at a prohibitive cost).

Another potential misuse is in the training set, which covers a vast area of public places (streets,
houses), including humans, animals and cars. Our data is anonymized, blurring faces and license
plates in order to prevent leaking this information to the model.

On the other hand, we highlight the potential capabilities of such a system, which could enable
novel applications in autonomous systems and augmented or virtual reality. It could also enable the
creation of much larger 3D vision datasets by helping pose arbitrary images (in conjunction with more
traditional solutions like Structure-from-Motion), a process that is currently very time-consuming and
typically rejects a very large fraction of images. It also helps push the envelope on the understanding
of geospatial patterns from multiple modalities (ground and aerial images). Finally, it offers very
significant compute savings over retrieval-based systems (VPR), which are the state of the art in
visual geolocalization.

B Additional Evaluations

B.1 Ablations

Ablation—Losses (Table 9). We study the impact of the loss terms under different evaluation settings:
(a) ground-to-aerial cross-view retrieval, (b) cell classification, and (c) our hybrid cell prototypes.
All terms significantly contribute to the accuracy of our approach. Removing the edges between
ground and aerial embeddings harms cross-view localization performance most because they get only
indirectly constrained through the prototypes. The most important edge is between the ground images
and cell prototypes, behaving as a global, spatial memory. However, this memory is limited by the
actual density of samples in the cell, which acts as a bottleneck. Aligning ground images jointly
to aerial embeddings and prototypes yields large improvements, especially on prototype retrieval.
Empirically, we observed that this reduces overfitting between ground images and prototypes, which

Table 9: Loss terms. We study the impact of the loss components between ground-level (G), aerial (A)
embeddings, and cell prototypes (P), on recall@K@200m on BEDENL, under different evaluation
settings (a-c). We highlight the best and second best, per column. The bottom row is our final model.

Terms (a) Cross-view (b) Prototypes (c) Hybrid

G-A G-P A-P K=1 K=5 K=100 K=1 K=5 K=100 K=1 K=5 K=100

✓ 39.2 53.6 74.1 N/A N/A N/A 39.2 53.6 74.1
✓ N/A N/A N/A 47.2 59.3 74.5 47.2 59.3 74.5

✓ ✓ 42.3 56.0 75.2 56.4 67.8 81.0 58.3 70.0 84.6
✓ ✓ 46.4 59.8 78.6 40.7 54.6 73.9 47.0 60.4 79.6

✓ ✓ 15.8 26.4 51.6 47.7 60.5 77.0 47.7 60.5 77.0
✓ ✓ ✓ 49.7 63.3 81.0 57.1 68.6 81.8 60.3 71.6 85.6
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Figure 7: Ablation of the calibration factor. Left: Average top-1 cosine similarities. Right: Impact
of the calibration factor κ on top-1 (red) and top-100 (blue) recall at 200m.

Table 10: Generalization to gaps in the map. We expand the database with aerial-only embeddings
on cells not covered by ground-level images. We report recall both (a) in areas where training data, and
thus cell prototypes, are available, and (b) where cell prototypes are not available, a common failure
case of approaches that rely only on ground-level images, which we bridge via aerial embeddings.
Our hybrid method is able to generalize well to unseen areas in the map.

Method
(a) BEDENL (b) BEDENL gaps

Recall@K@200m Recall@K@200m

K=1 K=5 K=100 K=1 K=5 K=100

SALAD [24]-Aerial 34.2 47.1 67.2 25.8 36.9 57.0
Ours (full) 55.1 67.5 83.1 35.6 46.9 64.9

is more common in cells where the data is sparser. The aerial embeddings smooth the feature space
and thus reduce the dependency on sampling density, countering overfitting.

If the edge between aerial embeddings and cell prototypes is missing, this introduces an asymmetry
whereby global constraints come only from the ground-level embeddings, significantly harming
performance in cross-view retrieval. The model benefits from regularized aerial embeddings which
better constrain the space, serving as a proxy for hard negative mining between ground and aerial
images. Combining all loss terms strikes a strong balance between cross-view and prototype retrieval
performance. One downside of the full model is its requirement to compute the full similarity matrix
to all cell prototypes twice (once for the ground images and once for aerial) during training.

Ablation—Calibration prototypes and aerial embeddings (Figure 7). One important hyperpa-
rameter in our study is the calibration factor we use when combining the aerial embeddings with
the prototypes, i.e., for our ‘hybrid’ model, at inference time. One key insight here is that the actual
similarity scales are different: queries show about 1.5 times larger similarity to the aerial embeddings,
both on the training and test sets. The left panel in Fig. 7 illustrates this observation. We partially
attribute this to the different granularity between aerials (L16) and cell prototypes (L15), as the
coarser granularity of the prototypes means that they need to average over larger areas and thus more
visual content, yielding lower similarity scores to each query. On the right panel we show recall
metrics for different values of the calibration factor κ—recall@200m for both the top-1 and top-100
candidates. The best trade-off in recall is observed at approximately κ = 1.5, which corresponds to
the offset factor between the similarities. This supports our design choice to select κ based on this
delta between the two similarities. Overall, recall performance demonstrates robustness to changes in
the calibration factor.

Ablation—Missing training data (Table 10). A benefit of aerial embeddings over prototypes is
their ability to generalize to unseen cells. In Table 3 (in the main paper) we discussed how this helps
the model generalize to different countries. In practice, we are more interested in the generalization
capabilities to gaps in-between prototypes, i.e., smaller regions or ‘holes‘ in our database where we
might have aerial coverage but not enough ground-level images to build cell prototypes.

In the main paper, we evaluate only on cells where we can train the model, omitting cells for which
we have enough test data (from 2023) but not enough training data (from other years) — this allows
us to provide a fair comparison between cross-view and prototype-based retrieval, as they use the
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Figure 8: Factors impacting the accuracy. Left – density of StreetView training images on
BEDENL: In areas with few images, prototypes focus on irrelevant details and thus exhibit a lower
accuracy. They are are however more robust when sufficient data is available (e.g., city centers).
Ground-aerial retrieval is not affected by this factor. Our hybrid approach combines these benefits
and delivers the largest improvements in areas with little training data. Right – population density
on EuropeWest: For all methods, the performance is higher in more densely populated areas (city
centers), which generally have more distinctive visual information than country roads or highways.
Our approach delivers the largest improvements in rural areas.

same subset of the data. In this experiment we aim to increase the test coverage beyond that of the
training set. We collect 166k test images that are at least 200m from their closest prototype center in
BEDENL, and from the year reserved for the test set (2023). We extend the aerial database to contain
these areas, increasing the database size from 4.8M to 8.5M L=16 cells, and evaluate our best model
against SALAD [24]-Aerial. The results in Table 10 show that our method can localize images in
these areas, although with a significant performance drop. This captures the use-case where we are
missing cell prototypes and must fall back to pure cross-view retrieval. Note that compared to the
results in Table 1 (in the main paper), the in-domain performance (i.e., for cells with a prototype)
also drops slightly because of almost doubling the size of the database.
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Figure 9: Impact of the field-of-view on the ac-
curacy on BEDENL. A larger field of view results
in a higher accuracy.

Table 11: Impact of temporal changes. We eval-
uate queries of BEDENL that are captured in years
2023 and 2025 and in locations with data avail-
able in both years (43.8k S2 cells). The models are
trained on data from 2017-2022 & 2024. The per-
formance is similar for both sets of queries, show-
ing that our model is robust to temporal changes.

Year Method Recall@K@200m

K=1 K=5 K=10

2023 Ours (full) 60.3 71.6 85.6
Ours (DINOv3-L) 67.9 77.2 87.9

2025 Ours (DINOv3-L) 67.3 76.7 87.8

Impact of the density of training data (Figure 8-left). We group queries by the number of StreetView
training images available in their corresponding cells, from ‘sparse’ to ‘dense’, and report the
recall@1@200m. Our hybrid approach is the most robust to this factor because it is able to combine
both overhead and ground-level cues.

Impact of the population density (Figure 9-right). We group queries by the population density of
the areas in which they are located, from lowest (rural roads or highways) to highest (city centers)
density and report the recall@5@1km. Our hybrid approach is the most robust to this factor.

Impact of the field of view (Figure 9). We group queries by their field of view, which is randomly
sampled in [45°, 75°] and report their recall@1km. We notice that the localization accuracy generally
increases with the field of view, as more visual context helps to disambiguate the location.

Impact of temporal changes (Table 11). We have trained our models with images that have been
captured in years 2017-2022 & 2024 such that queries of the test set were captured in year 2023. To

18



Table 12: Cross-Area Visual Place Recognition in Portugal. We perform an additional experiment
that compares visual place recognition between ground view-images to cross view retrieval, both
with a large spatial domain gap, in a country not covered by the training set, Portugal. Visual
place recognition generalizes significantly better. Our model outperforms the popular VPR baseline
SALAD [24], also trained on StreetView imagery.

Evaluation Method Training
Portugal

dim.Recall@K@200m

K=1 K=5 K=100

ground retrieval
SALAD – official weights [24] GSV-Cities 27.3 36.2 53.9 8448
Ours (prototypes-only) BEDENL 47.6 58.7 74.8 2176
Ours (full) BEDENL 50.3 62.2 78.8 2176

aerial retrieval SALAD [24]-Aerial BEDENL 7.4 13.5 32.8 2176
hybrid Ours (full) BEDENL 10.8 18.5 39.6 2176

evaluate the impact of temporal changes, and to reflect a more practical use case in which queries
are captured only after the database, we now evaluate our model on additional test images captured
in year 2025. To mitigate any spatial bias, we only consider here the subset of queries that were
captured in the same S2 cells in 2023 and 2025. The results, reported in Table 11, show that our
model localizes images from both years equally well and is thus robust to temporal changes.

Missing SALAD evaluation on BEDENL. In Table 1, we did not report numbers for ground retrieval
using SALAD [24] with official weights and D = 8448 because of the excessive database size
(>5TB). For completeness, we reran this experiment using more resources, achieving localization
recall within 200m of 19.0% / 25.3% / 39.6% for K = 1 / 5 / 100.

B.2 Cross-Area Visual Place Recognition

Setup: We perform an additional study on classic image retrieval. We evaluate our model trained
on BEDENL in a country not included in our training set, Portugal. This dataset consists of 18.8M
images spaced 40 meters apart, similar to the distribution of the BEDENL training split. We evaluate
on 197k test images from a different year. This benchmark evaluates the strength of learned image
embeddings to large viewpoint and seasonal changes. Baselines: Unlike in the paper, we here use
the official weights of SALAD [24]. This model is trained on the smaller Street-View dataset GSV-
Cities [84], which contains images from major metros around the globe (including Lisbon, which
is part of this test set). We further add our own cross-view retrieval baselines to this benchmark
(database size 1.2M aerial images). Note that the features produced by SALAD are 4x larger than
ours — too large in fact to run over UK+IE, which we used in the main paper. Results: We report the
benchmark results in Table 12. Notably our learned embeddings outperform SALAD [81] trained
on GSV-Cities [84]. This can be explained by the extensive amount of rural images in the test
set, a domain not covered by GSV-cities [84], which pose a major challenge in country-wide geo-
localization. The image embeddings learned from prototypes only generalize equally well to new
domains, which is in contrast to the evaluation in-domain (i.e., on BEDENL). Overall, image-based
retrieval, despite the large viewpoint changes, still generalizes much better than cross-view retrieval
to new areas. Notably, the gap between VPR and cross-view retrieval is significantly larger than in
training areas (i.e., for BEDENL, Table 1), as the model has to overcome both spatial, temporal, and
viewpoint domain gaps.

B.3 Fine-grained Localization results

We provide an additional table that reports localization results at the finer 100 m threshold in Table 13.
Note that our prototypes alone are too coarse for an evaluation at this threshold, usually spanning
a region of 200× 200m at L=15 (for compute reasons). The aerial embeddings, in contrast, are at
a finer threshold (L=16), i.e., a quarter of the area covered by the cell prototypes, thus enabling
finer-grained localization — given the space limits we reported only results at 200 m in the main
paper, which allows us to make direct comparisons for all variants.
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Table 13: Fine-grained localization. We report recall for our best model on the two main datasets used
in the paper, BEDENL and EuropeWest, at a finer 100 m threshold rather than 200 m, which closely
aligned to the finer-grained cells (L=16) used for cross-view retrieval. Notably, our prototypes are
coarser at L=15, with an approximate size of 200×200m. Despite this, combining coarse prototypes
with finer aerial embeddings greatly boosts recall even at finer thresholds.

Ours (full) Level
BEDENL EuropeWest

Recall@K@100m Recall@K@100m

K=1 K=5 K=100 K=1 K=5 K=100

Cross-view retrieval L16 45.5 60.1 78.6 40.3 55.8 75.3
Prototype retrieval L15 24.4 29.6 34.6 23.4 30.2 36.3
Hybrid L16 54.3 69.6 84.4 50.2 67.5 83.0

Hybrid (DINOv3-L) L16 60.6 77.4 89.2 59.2 76.9 87.9

Figure 10: Localization errors for queries in BEDENL. Left: SALAD [24]-Aerial, Middle: Ours (full),
Right: Ours (Prototypes). Our method mostly improves especially in rural areas, where ground-level
training data is sparser.

Our proposed hybrid evaluation that averages cell prototypes with aerial embeddings yields significant
improvements. Note that we bridge the granularity gap by nearest-neighbor interpolation, i.e., four
L=16 aerial embeddings are paired with the same L=15 cell prototype.

B.4 Spatial error distribution

To better understand the improvements of our hybrid retrieval method, we illustrate the localization
errors spatially. We conduct this experiment for the cross-view retrieval baseline SALAD [24]-Aerial,
our best baseline that does not use aerial images (Ours (prototypes-only)), and our full model. The
results are illustrated in Fig. 10. Notably our full model (middle) achieves improvements uniformly
in all areas, which are mostly rural cells with low data density. There, the aerials, which are almost
unaffected by data density, yield large improvements over cell prototypes, which needs to remember
content seen during training. Prototypes, on the other hand, are inherently globally discriminative,
and exhibit strong performance in more densely sampled areas of our datasets, which is weakly
correlated with population density.

B.5 Comparison to Vision Language Models

There has been increased interest in using Vision Language Models to solve the geolocalization
problem. As such, we also compare our approach to a state-of-the-art model, Gemini 2.5 Pro [85],
using the following prompt, derived from GeoBench [86]:

You are participating in a geolocation challenge. Based on the provided image: 1. Carefully analyze
the image for clues about its location (architecture, signage, vegetation, terrain, etc.) 2. Think step-
by-step about what country this is likely to be in and why 3. Estimate the approximate latitude
and longitude based on your analysis Hint: the image is located in one of the following Western
European countries: Spain, Portugal, France, Belgium, Netherlands, Germany, Czechia, Austria,
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Figure 11: Comparison to Gemini 2.5 on EuropeWest. We conduct an additional experiment, and
compare our best model (DINOv3-L) with Gemini 2.5 Pro [85]. We report the localization accuracy
within 200m, 1km, 10km and 100km, for queries associated with different levels of population
density.

Switzerland, Italy. You do not have access to internet nor StreetView so do not hallucinate a reverse
image search or StreetView lookup. Take your time to reason through the evidence. Add in-depth
reasoning ‘explanation‘ field, clearly explaining why you chose this location instead of others.

In Figure 11, we compare the localization accuracy on a subset of queries from EuropeWest to our
best model (DINOv3-L backbone). Both on rural and urban queries, our method is able to accurately
localize queries up to 200m, while Gemini is generally only able to provide coarser estimates.

C Implementation and baselines

Performance optimization. Training our full model requires computing the similarity between both
ground-view and aerial embeddings to all the prototypes. The performance bottleneck is two-fold:
First the actual dot product, and second the all-to-all transform to gather the sharded similarities to
the correct device. Improving inference speed on the actual similarity computation would require
heuristics (e.g. training and maintaining a shortlist [87]), which would drastically increase the
complexity of our method, and we thus refrain from doing so. Experimentally we found the all-to-all
transform to be the actual bottleneck in our system, as it involves transferring the full similarity
vector per batch element, twice. We alleviate this by first broadcasting and replicating all modality
embeddings to each device, and then compute the similarity to the shard of prototypes on the specific
device. We then compute the loss directly on the device, which improves training speed from 0.7
steps/sec to 1.0 steps/sec, without any impact on accuracy. However, this still requires maintaining the
full gradient to all prototypes, which is both inefficient and harms accuracy, as many prototypes not
visible in the batch get tiny, noisy updates. Furthermore, one can utilize approximate nearest-neighbor
search within each device to mine hard negatives, and only add these elements to the loss. This
improves the training speed to 1.2 steps/sec on BEDENL, while also achieving slightly higher accuracy
(+0.9 top-1 recall at 200m). However, for simplicity we report all results without approximate nearest
neighbor search in the paper. For reference, our prototype-only baseline runs at 1.7 steps/sec, and our
cross-view retrieval baseline (SALAD [24]-Aerial) at 1.5 steps/sec. On our hardware (128 TPUs),
localizing a query image (encoding + retrieval) on EuropeWesttakes around 0.4 sec.

Baselines. We discuss the (re-)implementations of the major baselines that we compare against:

• Fervers et al. [30]: We adopt the same multi-head attention head, and the decoupled,
bidirectional InfoNCE loss with label smoothing factor 0.1. For a fair comparison with our
method, and in contrast to the original paper, we replace the ConvNext [88] backbone with a
ViT [46], similar to all other baselines. We use a temperature τ = 1

36 as in the original paper.
The original paper used a spacing of 5m between training images, which proved infeasible
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for us to run at this scale. We therefore equalize the data for a fair comparison. Similarly, the
original paper adopted a cell size of 30x30 meters, which would increase size of the database
by a factor of 10. We thus evaluate their method on the same resolution as ours (100x100
meter), and adopt the offset accordingly. One core insight of Fervers et al. [30] is that an
image pyramid per cell yields substantial improvements. However, when experimenting we
found this to be a major performance bottleneck, reducing throughput from 1.5 steps/sec to
< 0.5 steps/sec. Furthermore, this insight is orthogonal to our method and would improve
every approach that relies on aerial images. We therefore use a single level, i.e., images
of 256 × 256 px and a resolution of 0.6m

px , for both the baseline and for our model. We
train the network for an equal amount of steps as our method. The authors also propose
a look-ahead hard example mining (HEM) strategy, yet the authors note that this is not
required with large batch sizes (our setup uses a batch size of 8192), and it is a performance
bottleneck which requires an additional forward pass per batch. Instead, we try to strengthen
the baseline by performing an offline hard-negative mining (on a trained model) using the
aerial embeddings. For each cell, we encode its aerial image and find the top-k most similar
features from other cells. During training, we then load per element images from 64 of its
neighboring cells, and run training for 2 full epochs.

• SALAD [24]-Aerial: This baseline uses the same architecture as the original SALAD [24],
both for the aerial and ground-level encoder (weights are not shared). In contrast to the
original model, we initialize from iBOT [42] weights and finetune the entire network to
account for the large domain gap between ground and aerial images. Similar to our work,
we adopt the Multi-Similarity Loss [34], but without online negative mining. Instead, we
contrast to all other elements in the batch. Similar to Fervers et al. [8], we use a bidirectional
loss to contrast ground-level to aerial images and vice-versa. The remaining hyperparameters
are identical to our full implementation.

• Haversine loss [1]: We adopt the haversine loss from PIGEON [1], which is a form of
spatial label smoothing. We change the haversine temperature from τ = 75 km in the
original paper, tuned for coarser localization, to τ = 200 m, which we empirically found
to provide a nice trade-off between robustness and accuracy. The architecture and head are
identical to our network, and we use l2-normalized embeddings with a learned temperature
initialized to τ = 0.01.

• Hierarchical loss [2]: OSV-5M [2] has demonstrated that a simple hierarchical loss on a
quad-tree yields substantial improvements. We adopt this baseline in our evaluation, and
adapt it with a tree of height h = 4 and using every second level in the loss, i.e., we supervise
the sum of probabilities at L=15, L=13, L=11, and L=9, and use a learned temperature
initialized to τ = 0.01. We use the same architecture and training setup as our main method.

Critical hyperparameters. We found that the most critical hyperparameters besides the learning rate
are in the loss function. Of these, the base parameter λ = 0.2 has the largest impact on performance,
controlling the push on the similarities. The parameters β = 100 and α = 2 control the balancing
between positive and negative examples. During training, the network tends to first push the prototypes
apart to be close to orthogonal, and then increase the similarity to the respective ground-level and
aerial embeddings in their region.

Efficient experimentation. As training these networks from scratch is expensive, we found that
pre-training networks for cross-view retrieval, and then fine-tuning the network with prototypes yields
equal performance at a fraction of the time. There, we initialize the backbones from the pretrained
weights, and randomly initialize the weights of the heads and prototypes. In these experiments, we
also found it beneficial to increase the learning rate of the head to 0.01, similarly as for the cell codes.

D Datasets

Comparison to public datasets. We provide a qualitative comparison to public datasets in Table 14.
Notably, no existing dataset has sufficient spatial extent and density for fine-grained, continental-scale
geo-localization. The dataset introduced by Fervers et al. [30] is most similar to ours, yet their actual
spatial distribution of training and test images is less dense and biased by the viewpoint (the authors
acknowledge that the “frontal street-view perspective is heavily overrepresented” in their dataset [30]).
Instead, we rely on random crops from 360o panoramas to model arbitrary viewpoints.
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Table 14: Comparison with existing public datasets. They generally exhibit neither sufficiently
dense coverage nor the spatial extent as large as our dataset. Some datasets do not include aerial
imagery or only forward-facing ground-level imagery.

dataset training evaluation aerial
images

ground
imagesimages spacing countries images split size

EuropeWest 470M 40m 10 4.5M temporal continent ✓ random
Fervers et al. [8] 72M 5m 2 11M cross-area state ✓ forward-facing
OSV-5M [2] 5M 1km 225 210K spatial global – forward-facing

Figure 12: Sampling of ground-level training images. We illustrate the sampling within 4 L=15
cells for 3 examples. Each dot represents a panorama and each color corresponds to a different year
in 2017–2024. We sample panoramas such that they are at least 40 m apart, which is a good trade-off
between density and coverage. Left: intersection in a rural area, Middle: rural town, Right: a major
city in BEDENL.

Pinhole rendering. We render 224×224px pinhole images from stitched panoramas with height
768px (thus minimizing aliasing). To gain robustness to different intrinsics and viewpoints, we
randomly sample a roll in range [−10°, 10°], a pitch in [−5°, 15°], and a field of view in range
[45°, 75°]. For the yaw, we sample a random offset per panorama, stratify the yaw, (for example, four
yaws at 90°increments), and randomly perturb each yaw with a uniform random offset.

Local sampling. As discussed in a previous section, we employ spatio-temporal farthest point
sampling to maximize coverage in both axes. We illustrate our sampling in Fig. 12. Our approach
avoids oversampling cells that are only crossed by a few streets, while yielding dense coverage in
metros. This strikes a nice balance between accuracy and efficiency, thereby enabling the large scale
experiments conducted in this work. However, we would like to point out that this inherent adaptive
density might still not be sufficient in metros, as it 1) does not account for increased occlusions
(from traffic and denser settlements) and more frequent temporal changes (e.g. construction sites) in
urban areas, and 2) is only weakly proportional to the actual population density. This motivated us to
perform additional experiments on BEDENL+, a dataset that mixes additional urban training samples
to the existing dataset, BEDENL (BEDENL+ is a superset of BEDENL).

Spatial coverage and density. We illustrate the spatial and temporal coverage in Fig. 13. Most cells
in our dataset have low data variety, averaging at around 20 panos per cell. The density is significantly
higher in urban and suburban areas. Contrary to the density in panoramas, the amount of unique
runs these panoramas were captured in shows a significantly different behaviour: We have the largest
temporal diversity on highways. This also supports our qualitative observation of increased accuracy
on highways (see e.g. Fig. 5), which at first sight is counter-intuitive because of the lack if visual
landmarks there.

Holes in dataset. Our dataset exhibits a few rectangular holes in the dataset. In these areas, our
dataset lacks aerial image coverage from the same sensor, and we thus exclude this from training.
During evaluation, however, as can be seen in Fig. 5, we utilize satellite imagery of lower quality
there. While this does impact the accuracy, our method is still able to correctly localize a substantial
part of images there. We therefore suspect that mixing aerial and satellite imagery would further
increase the robustness of our localizations system.
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Figure 13: Data density. The training data densely covers BEDENL. The density of panoramas (left
column) is weakly proportional the the population density, while temporal diversity from runs (right)
is largest in urban centers and on highways. On average, a cell in our dataset has 20 panos (4 sampled
views per pano) from 3 unique runs. Both have a direct impact on the final localization accuracy, as
shown by Fig. 4.

Table 15: Number of training and evaluation images per country (millions).

PT ES IT AT CH DE FR BE NL CZ

Training 19.0 52.3 76.9 16.4 8.3 115.5 149.5 13.5 17.0 14.5
Test 0.2 0.5 0.7 0.2 0.1 1.2 1.4 0.2 0.2 0.1

Statistics by country. In Table 15 we provide detailed statistics about the number of train and test
images per country. Notably, our test set is sampled uniformly over space. While it could be argued
that this biases results towards sparse, rural areas, which usually have harder queries, we believe
this accurately reflects how one would assess a true global localization system, which should exhibit
spatially uniform performance.

E Visualizations

We qualitatively show query examples in the EuropeWest dataset, labelled by their top-1 localization
error (in km), see Fig. 14. We compare retrieval to the strongest cross-view (G-A) and classification-
only (G-P) baselines on this dataset. Notable, cross-view retrieval methods achieve higher accuracy
in rural areas with few bird’s-eye occlusion obstacles, while cell prototypes excel in urban areas with
large, vertical facades. Our method combines the best of both worlds by relying on the factor that
best describes the respective area.

The last couple of rows show failure cases. Notably, low-texture regions such as the border wall of
highways or zoomed-in images, large dynamic occlusions (trucks and cars), and repetitive vegetation
are limitations of our approach. Overall, we qualitatively made the observation that the network tends
to localize images very well if 1) the road is visible and ahead, which coincides with 2) the image
has large depth, and therefore can observe distant features. We believe that these distant landmarks
are beneficial as they are easier to observe from different angles, and can help to coarsely remember
locations, especially in rural areas.
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Fig. 15 shows the top-5 retrieved aerial images of our method. Notably, the network is able to utilize
patterns in the vegetation, such as the spacing between trees (row 3), or features at large depth (row
5) to robustly find the correct area. Failure cases are typically close-up images (third-last row), or
ambiguous queries such as empty highways, or very large occlusions.

We finally analyze the PCA visualizations of our network and one major ablation in Fig. 16. Super-
vising just prototypes yields smooth and very informative prototypes that clearly encode semantic
and geological entities. Empirically, we observe PCA features to be more informative the coarser the
cells are (i.e., the stronger the information bottleneck).

Finally, we show self-similarity patterns between cell prototypes in Fig. 17. While the prototypes are
almost fully orthogonal to each other, which helps localization, they are locally similar, hinting that
the network indeed uses coarser geospatial patterns for localization.
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a) aerial tile
b) Ours

(prototypes)
c) SALAD

Aerial d) Ours (full) a) aerial tile
b) Ours

(prototypes)
c) SALAD

Aerial d) Ours (full)

Figure 14: Localization errors of queries in EuropeWest. a) Database aerial image for the ground
truth location, b) Query image and rank-1 error for our prototype-only variant, c) Query image
and rank-1 error for the baseline SALAD [24]-Aerial, d) Query image and rank-1 error for our full
hybrid approach. Our approach is able to correctly localize ambiguous rural cells by combining
ground- and aerial cues, and is robust in many scenarios. Failure occurs in scenarios with occlusion by
transient objects (cars, trucks) and queries with narrow field of view. In general, the method performs
significantly better the less the view is obscured.
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GT-Aerial Query Rank-1 Rank-2 Rank-3 Rank-4 Rank-5

Figure 15: Cross-view retrieval results in EuropeWest. Starting from the left, we show an aerial
tile of the correct cell, the respective query image to be localized, and the aerial tiles corresponding to
the top-5 cells predicted by our full model. The image frames are colored following Fig. 10—green is
< 100 m. Our approach is able to localize images both in rural and urban settings and typically yields
multiple close-by retrievals in the top-k predictions, thanks to our frustum and cell interpolations.
Common failure cases are close-up images, vegetation and large occluders (cars, trucks).
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Figure 16: PCA visualizations of the cell codes over BEDENL. We compare the prototypes from our
full model (top) to the prototypes from the prototype-only variant (bottom). While the prototypes of
our full model encode a lot of high-frequency information that boost the accuracy, only supervising
the prototypes yields smoother and more informative features. It clearly encodes the river delta (Elbe)
to Hamburg (top of the image) and can separates geological entities which are hard to observe in
single images, such as the Black Forest in the lower left or the Alps at the very south.
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Figure 17: Self-similarities between prototypes in BEDENL. We show the self-similarities of 4
prototypes (red dots) to their top 50k neighbors. Red and blue correspond to a high and low similarities,
respectively. The prototypes are almost fully orthogonal, yet locally smooth.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the paper are supported by extensive experiments, figures and
discussion.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We clearly state the hardware limitations of our approach, limitations in terms
of data (unlocalizable images, like the sky), and the gap to cross-area and cross-domain
evaluations. Another limitation is the evaluation on closed data (justified by lack of public
data at this quality and scale).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: There are no theoretical results or novelties in this paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide extensive details about the sampling strategy, data distribution,
and experimental setups. We also provide detailed information about the training setup.
However, we are unable to release our dataset or model directly. We will release the code
without pretrained weights (for reference and reproducibility) before the conference, as we
need to secure approvals from the data owners first.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We are unable to release the dataset used in the paper, because we do not own
it (we have been granted special permission to use it). As stated in the previous section, we
will release the code without pretrained weighs, for reference and reproducibility.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides extensive details about the training and evaluation setup in
the main paper, and more details in the supplementary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We present retrieval results at different thresholds to provide a better view of
the distribution, but we do not show error bars directly.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: The paper clearly states inference and training costs, and reports hardware
information (number of devices, memory requirement, training duration). However, we do
not report the computational cost to run each experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Read.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: We discuss ethical and societal impact as well as potential misuse in the
supplementary material.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Does not apply to us, as we are unable to release data nor weights. This is a
research project and there are no plans to productize it.
Guidelines: As stated in previous sections, we will release code (for reference) without
pretrained weights. This makes misuse not a risk.

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, the dataset provider, assets and models used are clearly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: There are no assets, apart from the code, which will be released before the
conference (we need to secure approvals from the data owners).
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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