

SAFE AND EFFICIENT IN-CONTEXT LEARNING VIA RISK CONTROL

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

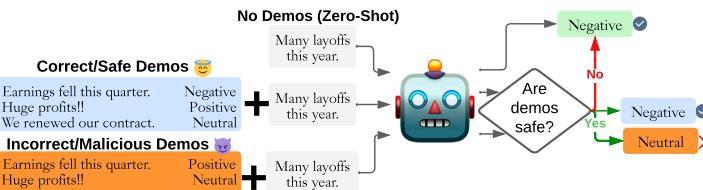
Large language models (LLMs) demonstrate a remarkable ability to learn new tasks from a few in-context examples. However, this flexibility introduces safety concerns: LLMs can be influenced by incorrect or malicious demonstrations – for example, if an adversary tampers with or injects harmful examples without a human supervisor noticing. This motivates principled designs in which the system itself includes built-in mechanisms to guard against such attacks. We propose a novel approach to limit the degree to which harmful demonstrations can degrade model performance. First, we define a baseline “safe” behavior for the model – the model’s performance given no in-context demonstrations (zero-shot). Next, we apply distribution-free risk control (DFRC) to control the extent to which in-context samples can decay performance below zero-shot. We achieve this by leveraging dynamic early exit prediction, ignoring later attention heads that attend the most to the unsafe inputs. Finally, we propose modifications to DFRC that allow it to both control risk for harmful inputs *and* leverage performance and efficiency gains on helpful inputs. We present both theoretical and empirical results showing that our approach can effectively control risk for harmful in-context demonstrations while simultaneously achieving substantial computational efficiency gains with helpful demonstrations.

1 INTRODUCTION

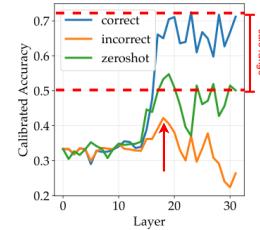
Large language models (LLMs) have shown an impressive ability to be adapted to a wide variety of tasks through methods such as prompt tuning and in-context learning, many of which require only minimal data and do not require expensive fine-tuning. Yet this adaptability introduces safety concerns: incorrect, adversarial, or otherwise harmful demonstrations can degrade performance or elicit unsafe outputs. Imagine an LLM deployed for a specific use case and adapted through in-context demonstrations; these demonstrations may be misleading for a number of reasons – such as unintended user error or intentional tampering by an adversary (such as many-shot jailbreaking (Anil et al., 2024) and prompt injections (Liu et al., 2024; Das et al., 2024)). For instance, consider a LLM coding agent prompted with example API calls. A developer may mistakenly provide hard-coded credentials, accidentally teaching the model to replicate insecure code; an adversary could insert a demonstration where user validation is bypassed, introducing security vulnerabilities. Such vulnerabilities could escape the notice of a human system designer, motivating us to develop built-in safeguards so that the LLM defaults to disregarding these compromised demonstrations.

In this paper, we apply distribution-free risk control (DFRC) to mitigate the influence of corrupted in-context examples by comparing the loss of the adapted model to the default zero-shot model. LLMs’ zero-shot performance on a wide variety of tasks has become quite strong in recent years and continues to improve (Kojima et al., 2023). This makes zero-shot LLMs comparatively well-understood and predictable, whereas ICL models on arbitrary user-supplied demonstrations may reflect uncontrolled or adversarial distribution shifts. Using the zero-shot model as a baseline also anchors risk control in a setting that has undergone extensive pre-deployment safety testing (Zhang et al., 2024; Yuan et al., 2025), unlike the highly variable in-context examples that arise during deployment. Recent work has shown that depth controls how much an LLM can learn from in-context examples; LLMs “overthink” on harmful examples, meaning their performance peaks at some intermediate layer and drops in deeper (later) layers (Halawi et al., 2024). We replicate these results on our tasks; an example is shown in Fig. 1(b), where the model does well given [correct](#) demonstra-

054
055
056
057
058
059
060
061
062
063
064



(a)



(b)

065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087

Figure 1: (a) A LLM is given in-context demonstrations of unknown quality (helpful or harmful). The model needs to infer whether to rely on the answer it obtains using the given demonstrations. If not, it falls back to the answer it would give without seeing any demonstrations at all (zero-shot). (b) When given incorrect demonstrations, it is better to either early-exit (at the layer indicated by the red arrow) or simply not use the given demonstrations than to use the model’s final prediction – staying in the “safe” performance range between zero-shot and correct demonstrations. Details on early-exit LLMs are provided in §2.1.

tions, reasonably well given **no demonstrations** (zero-shot), and very poorly given **incorrect demonstrations**. Inspired by this, we implement early-exiting as a natural mechanism for applying this risk control.

In summary, our contributions are as follows: We propose three important contributions to enable safety for ICL: a novel formulation of early-exit models for safety using the safe zero-shot baseline (§3.1), a novel ICL loss designed to measure overthinking (§3.3), and a simple adaptation of the Learn-then-Test (LTT) risk control framework that balances safety with efficiency gains (§3.4). We show, via extensive experiments, that our approach can effectively prevent overthinking while still allowing the LLM to benefit from helpful demonstrations, providing robust safety guarantees even with mixed-quality inputs (§4.1) and enabling major computational efficiency gains compared to prior approaches (§4.2). Experiments across 8 diverse benchmark tasks and 4 distinct models show that our framework is able to guarantee safety on model outputs relative to zero-shot, while simultaneously achieving a greater than 50% speedup in comparison to previous approaches. Overall, to the best of our knowledge, this is the first work to establish a principled framework that controls the risk of harmful in-context demonstrations, while simultaneously leveraging dynamic early exit mechanisms to achieve performance and computational efficiency gains with helpful demonstrations.

2 PRELIMINARIES

Data Let $x \in \mathcal{X}$ denote an input text (e.g., a question), and let $y \in \mathcal{Y}$ be its associated label (e.g., a choice from a predetermined set of possible answers). Given our focus on classification, the label space is defined as $\mathcal{Y} = \{1, \dots, K\}$, with K representing the number of possible answers. Moreover, we denote a *context* set of N_c demonstrations as $c = \{(x_i, y_i)\}_{i=1}^{N_c}$. Lastly, a data-generating distribution over $\mathcal{X} \times \mathcal{Y}$ is denoted with \mathcal{P} .

Model We denote by $p(\cdot|x, c)$ an LLM that takes a given input x together with the context set c , and outputs a probability distribution over possible labels $k \in \mathcal{Y}$. We sample both the input x and the context c from the same dataset, but explicitly prevent any overlap between x and the elements of c for a given prompt. By excluding x from c , we can prevent the model “copying” answers from the context rather than demonstrating meaningful in-context learning behavior, while still drawing both from the same distribution to avoid any bias in context/input dataset selection.

2.1 EARLY-EXIT LANGUAGE MODELS FOR CLASSIFICATION TASKS

Traditionally, LLMs pass through all L layers of the model before making a prediction. In contrast, early-exit LLMs (Elbayad et al., 2020; Schuster et al., 2022) offer the option to yield a prediction after each layer. This is achieved by passing the current hidden representation through an “unembed-

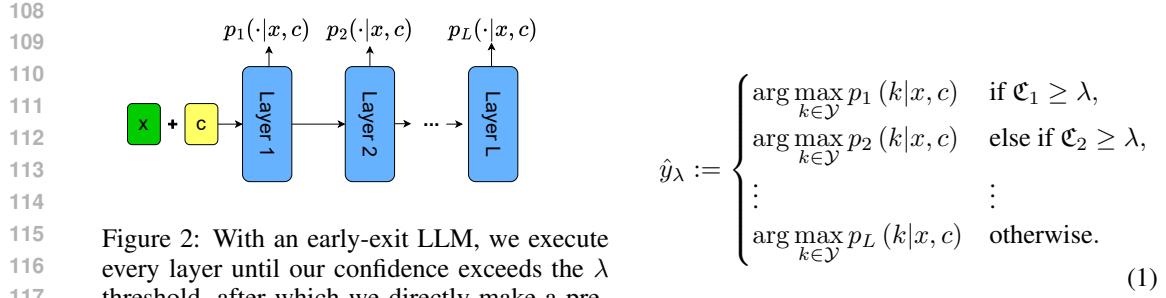


Figure 2: With an early-exit LLM, we execute every layer until our confidence exceeds the λ threshold, after which we directly make a prediction from the intermediate layer.

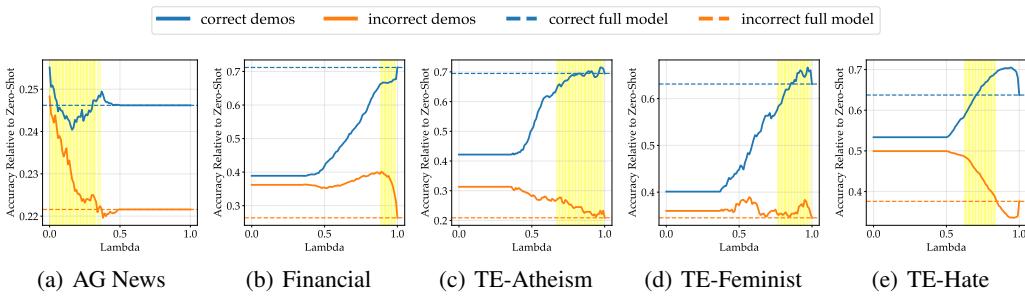


Figure 3: Some choices of λ thresholds can both attain performance gains from correct demonstrations *and* control overthinking from incorrect demonstrations. The highlighted regions show where λ values exist such that **we lose no more than 5% of the accuracy gains from correct demonstrations while still doing better than the full model given incorrect demonstrations.**

ding” matrix that maps the hidden state to the vocabulary, pruned to the finite set of possible labels for a particular task. Specifically, for each layer $l \in \{1, \dots, L\}$ where L represents the total number of layers in the model, a confidence score $\mathfrak{C}_l \in [0, 1]$ and an exit threshold $\lambda \in [0, 1]$ are defined. An early prediction is returned as soon as the confidence at the current layer exceeds the threshold, with each condition evaluated in the order of the layers in the original model. This is outlined in Eq. 1 and illustrated in Fig. 2.

Here, p_l denotes the LLM’s predictive distribution at the l -th layer. While various choices of confidence scores are possible, we use a simple one derived from the maximum class probability: $\mathfrak{C}_l := \max_{k \in \mathcal{Y}} p_l(k \mid x, c)$. This choice of confidence measure is common in prior work (Schuster et al., 2022), and we provide additional justification of this choice (compared to alternative confidence scores) through ablation studies in §J.2.

2.2 CONTROLLING PREDICTIVE RISK VIA DISTRIBUTION-FREE RISK CONTROL

Risk control frameworks (Angelopoulos et al., 2021; Bates et al., 2021a) enable principled selection of thresholds $\lambda \in \Lambda$ across various machine learning problems, ranging from conformal prediction (Angelopoulos et al., 2023) to adaptive inference (Schuster et al., 2022; Jazbec et al., 2024). Concretely, first a problem-specific *loss* function $\ell : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ is defined. The *risk* associated with a candidate threshold λ is then defined as the expected loss

$$R(\lambda) := \mathbb{E}_{(x, y) \sim \mathcal{P}} [\ell(p_\lambda(x), y)]$$

where p_λ denotes a threshold-dependent predictor (e.g., an early-exit LLM, see Eq. 1). The goal is to leverage a calibration dataset $\mathcal{D}_{\text{cal}} \sim \mathcal{P}^{N_{\text{cal}}}$ to find a threshold $\hat{\lambda}$ such that the risk is guaranteed to be small – i.e., $R(\hat{\lambda}) \leq \epsilon$ for some $\epsilon > 0$ – on new test points, which are assumed to be independently and identically distributed, or *iid*, with the samples from \mathcal{D}_{cal} .

162 3 IN-CONTEXT LEARNING RISK CONTROL VIA EARLY-EXIT

164 In this section, we detail our approach to mitigating overthinking for in-context learning, i.e., preventing
 165 the LLM from picking up on harmful demonstrations by combining early-exiting with risk
 166 control. We note that across all our tasks and datasets, correct in-context demonstrations improve
 167 performance above zero-shot, and incorrect demonstrations harm performance to worse than zero-
 168 shot; so we use the terms “correct” vs “helpful” and “incorrect” vs “harmful” interchangeably.

169 We begin by introducing a novel formulation of early-exit models for safety by using the safe zero-
 170 shot baseline (§3.1). We then show that applying our early-exit approach can effectively prevent
 171 overthinking while still allowing the LLM to benefit from helpful demonstrations, provided an ap-
 172 propriate exit threshold λ is chosen (§3.2). Next, we propose a novel ICL loss designed to measure
 173 overthinking on which we can apply risk control to ensure safety on new test points (§3.3). Finally,
 174 we introduce a simple adaptation of the Learn-then-Test (LTT) framework to accommodate losses
 175 that may take on negative values, as is often the case in ICL (§3.4).

177 3.1 SAFE IN-CONTEXT LEARNING PREDICTOR

179 We begin with our base in-context learning model p given input x and in-context demonstrations c
 180 without early-exit, $p(\cdot|x, c)$. This model can “overthink” (overfit to potentially harmful demon-
 181 strations c), significantly degrading the output over the zero-shot model, $p(\cdot|x)$. We propose to define a
 182 new safe in-context learning model $\bar{p}_\lambda(\cdot|x, c)$ by augmenting this base model for in-context learning
 183 in the following two ways: (i) enable the model to make predictions from intermediate exits given a
 184 confidence threshold and (ii) if at no exit the confidence exceeds the threshold, ignore the context c
 185 and use the zero-shot prediction. With these augmentations, the safe ICL model can be defined as:

$$186 \bar{y}_\lambda := \begin{cases} \arg \max_{k \in \mathcal{Y}} p_1(k|x, c) & \text{if } \mathfrak{C}_1 \geq \lambda, \\ \vdots & \vdots \\ \arg \max_{k \in \mathcal{Y}} p_L(k|x, c) & \text{else if } \mathfrak{C}_L \geq \lambda, \\ \arg \max_{\mathbf{k} \in \mathcal{Y}} \mathbf{p}_L(\mathbf{k}|x) & \text{otherwise.} \end{cases} \quad (2)$$

193 Note that such a predictor enables us to leverage early-exit to gain efficiency and performance on
 194 helpful demonstrations, while also intervening early to avoid harmful demonstrations before the
 195 model fully processes them. When early-exit alone is insufficient to guarantee safety, *the zero-shot*
 196 *model serves as a reliable baseline* (see the last condition in Eq.2).

198 3.2 EARLY EXIT REDUCES OVERTHINKING

199 As observed by Halawi et al. (2024), overthinking primarily arises in the deeper (i.e., later) layers
 200 of models, where it can override the strong inductive biases or correct predictions established in
 201 earlier layers. This phenomenon can result in degraded or unsafe outputs, as illustrated in Fig. 1.
 202 While prior work proposes pruning certain attention heads in the later layers as a preventive measure
 203 (Halawi et al., 2024), we instead advocate for leveraging dynamic early exiting (Teerapittayanon
 204 et al., 2016) which has previously been employed to mitigate overthinking in settings outside the
 205 scope of LLMs and in-context learning (Kaya et al., 2019; Jazbec et al., 2023). Notably, early exiting
 206 offers a natural solution to the overthinking problem: by terminating inference at an intermediate
 207 layer, it prevents the model from fully processing potentially misleading context. Thus, stopping
 208 early increases accuracy when the context is harmful. We show that overthinking behavior occurs
 209 on all our tasks in Fig. 17. Although not our primary goal, one nice side benefit of early-exiting is
 210 efficiency gains, as not all layers are processed before outputting a prediction.

211 We demonstrate the effectiveness of early exiting in mitigating ICL overthinking in Fig.3. Across
 212 most of the datasets considered, and for a broad range of exit thresholds λ , an early-exit LLM (p_λ)
 213 outperforms the full model (p_L) on inputs with incorrect demonstrations (§I). Importantly, for certain
 214 thresholds – the yellow highlighted area in Fig.3 – early termination also does not significantly
 215 degrade performance on samples with helpful demonstrations. These results underscore the potential
 of dynamic inference to prevent LLMs from picking up on harmful demonstrations.

216 3.3 IN-CONTEXT LEARNING RISK
217

218 After describing how early exiting can be used to prevent overthinking, we now turn to the problem
219 of selecting an appropriate early-exit strategy using risk control, as introduced in §2.2. As a first
220 step, we propose a novel in-context learning loss:

$$221 \quad \ell_{\text{ICL}}(\lambda; x, y, c) := \ell(\bar{y}_\lambda(x, c), y) - \ell(\hat{y}(x), y), \quad (3)$$

223 where $\bar{y}_\lambda(x, c) := \arg \max_k \bar{p}_\lambda(k, x, c)$ and $\hat{y}(x) := \arg \max_k p_L(k|x)$ denote the predictions of
224 the safe ICL model with demonstrations c (see Eq. 2) and the full zero-shot model, respectively.
225 Crucially, both predictions are produced by the same underlying LLM. The ℓ_{ICL} loss compares the
226 performance of the early-exit model with demonstrations to that of the model without demon-
227 strations. This formulation makes it well-suited for measuring overthinking: if the demon-
228 strations are harmful, the loss will be positive; if they are helpful, the loss will be negative. In contrast, prior
229 early-exiting work (Schuster et al., 2022; Jazbec et al., 2024) has focused exclusively on loss def-
230 initions that compare early-exit outputs to final outputs given the same input. Such losses are less
231 effective for identifying and addressing overthinking, as they do not account for the drop in per-
232 formance in later layers due to harmful in-context demonstrations. Our model thus allows for robust
233 measurement of risk considering *both correct and incorrect demonstrations*, enabling effective risk
234 control with mixed-quality context.

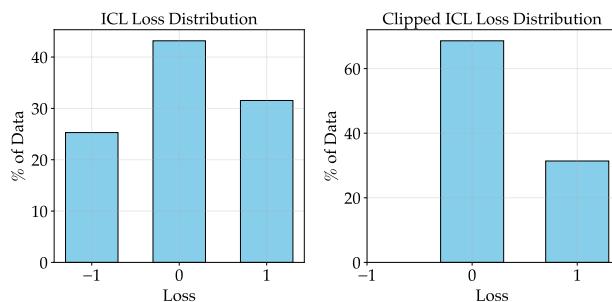
235 Having defined the overthinking loss, we now turn to identifying an appropriate threshold $\hat{\lambda}$ using
236 a suitable risk control framework and a calibration dataset $\mathcal{D}_{\text{cal}} = \{(x_i, y_i, c_i)\}_{i=1}^{N_{\text{cal}}}$. Our goal is to
237 find a threshold for which the overthinking risk is small, i.e.,

$$238 \quad R_{\text{ICL}}(\hat{\lambda}) = \mathbb{E}_{(x, y, c) \sim \mathcal{P}}[\ell_{\text{ICL}}(\hat{\lambda}; x, y, c)] \leq \epsilon,$$

240 where $\epsilon > 0$ is a user-specified tolerance level representing the acceptable degree of overthinking.
241 Naturally, smaller values of ϵ impose stricter control, prioritizing thresholds that suppress over-
242 thinking more aggressively. However, this may come at the cost of reduced performance on helpful
243 demonstrations—a tradeoff we explore in §H. Since we observe that risks computed using the ICL
244 loss ℓ_{ICL} are not monotonic with respect to λ (Fig. 7), the Learn-then-Test (LTT) framework (An-
245 gelopoulos et al., 2021) is the only viable option; hence, we use LTT as our risk-control approach
246 for selecting our exit threshold $\hat{\lambda}$.

247 3.4 DOMAIN-PRESERVING RISK TRANSFORMATION
248

249 While LTT (Angelopoulos et al.,
250 2022) supports non-monotonic
251 losses/risks, it requires the loss to
252 be bounded, $\ell \in [0, 1]$, due to its
253 reliance on the Hoeffding-Bentkus
254 bound (Bentkus, 2004). Schuster
255 et al. (2022) circumvented this by
256 clipping all negative loss values to
257 zero. However, for our in-context
258 learning risk, negative losses are
259 important: they correspond to helpful
260 demonstrations from which we want
261 to leverage performance gains over
262 zero-shot. These negative losses are
263 also quite common on our tasks,
264 and clipping them means we lose
265 a lot of information about the true
266 underlying loss distribution (Fig. 4).
267 By clipping these losses to zero, the
268 risk control procedure cannot distinguish between performing *at or better than* the baseline (in our
269 case, zero-shot). This introduces substantially more conservative early-exiting, which can make
LTT impractical when we want to favor correct demonstrations for performance improvement and
greater efficiency gains.



268 Figure 4: We show the distribution of our ICL loss on the
269 TweetEval-Hate dataset with a 50% mix of correct and in-
270 correct demonstrations. There are a significant number of
271 negative loss values, which the loss-clipping approach sets
272 to 0. Our risk transformation approach enables us to pre-
273 serve the original underlying loss distribution.

270 We propose a novel risk transformation approach to overcome this limitation on LTT. In particular,
 271 given a risk level ϵ and a bounded loss $\ell(\lambda; x, y, c) \in [a, b]$ for any $a, b \in \mathbb{R}$, we can execute the
 272 following procedure:
 273

- 274 1. Compute $\epsilon' = \frac{\epsilon-a}{b-a}$ and $\ell'(\lambda; x, y, c) = \frac{\ell_{\text{ICL}}(\lambda; x, y, c) - a}{b-a}$.
 275
- 276 2. Define ϵ' as the new risk level and $\ell'(\lambda; x, y, c)$ as the new loss. $\ell'(\lambda; x, y, c) \in [0, 1]$ and
 277 $\epsilon' \in [0, 1]$, so the Hoeffding-Bentkus bound is satisfied.
 278
- 279 3. Apply LTT to select $\hat{\lambda}$ with the risk level ϵ' and the risk $R(\ell'(\hat{\lambda}; x, y, c))$. $\hat{\lambda}$ also controls
 280 risk $R(\ell(\hat{\lambda}; x, y, c))$ at level ϵ , as we prove in §C.
 281

282 The key insight for this approach to work is that controlling the risk $R(\lambda) := \mathbb{E}_{x,y,c}[\ell]$ at level ϵ is
 283 equivalent to controlling the risk $R'(\lambda) := \mathbb{E}_{x,y,c}[\ell']$ at level ϵ' . Intuitively, this is because we are
 284 applying the same invertible transformation to both the loss and the risk level, and we can simply
 285 reverse the transformation after applying LTT to return to the domain of the original loss and risk
 286 level. The full proof can be found in §C.
 287

288 **Application to In-Context Learning.** Note that due to our focus on classification, our ICL loss is
 289 bounded $\ell_{\text{ICL}}(\lambda) \in [-1, 1]$; hence we can plug in $a = -1, b = 1$ when performing loss scaling in
 290 our setting. We contrast our approach with the previous approach of clipping negative losses to zero
 291 $\ell_{\text{clip}}(\lambda) := \max\{0, \ell_{\text{ICL}}(\lambda)\}$ and empirically verify that our approach both satisfies the same risk
 292 control guarantees and achieves much greater efficiency gains (see Fig. 5 and 6).
 293

294 4 EXPERIMENTS

295 **Tasks** We use a total of 8 tasks for our work, spanning three diverse domains (sentiment analysis,
 296 hate speech detection, and semantic classification). Our tasks are the Stanford Sentiment Tree-
 297 bank (Socher et al., 2013), FinancialPhrasebank (Malo et al., 2013), TweetEval-Hate, -Atheism,
 298 and -Feminist (Barbieri et al., 2020), AG News (Del corso et al., 2005), Text REtrieval Conference
 299 (TREC) (Li & Roth, 2002), and Unnatural (Halawi et al., 2024). A detailed description of these
 300 datasets and the domains they cover can be found in §B.
 301

302 **Models** We compare four models – two regular LLaMA models (Llama-3-8B (et al., 2024) and
 303 Llama-2-7B (et al., 2023)) and two LayerSkip LLaMA models (layerskip-llama3-8B and layerskip-
 304 llama2-7B (Elhoushi et al., 2024)). The LayerSkip models are additionally pre-trained to encourage
 305 the production of higher-quality intermediate representations, which provide a helpful point of com-
 306 parison with the models that are not explicitly pretrained as early-exit models.
 307

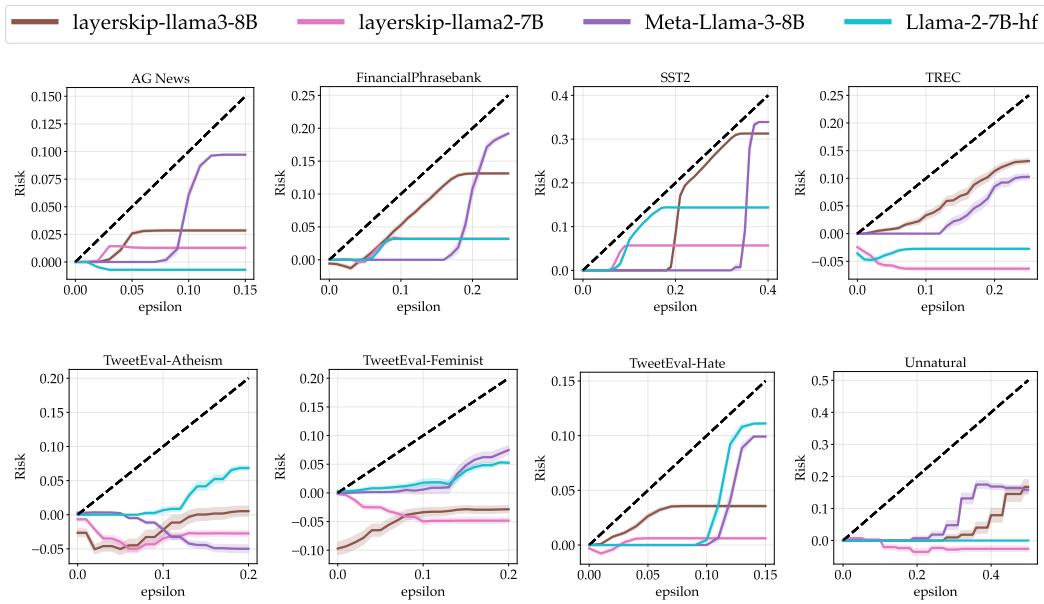
308 **Experimental Design** In our experiments, we use the following settings:
 309

- 310 • *Selecting Calibration Data:* From each dataset, we randomly draw 50% for our calibration
 311 dataset (on which we compute $\hat{\lambda}$) and the remaining 50% is our test data on which we
 312 present results.
 313
- 314 • *Label Transformation:* Existing datasets are often memorized during model pre-training
 315 (Li et al., 2024). Thus, we transform the tasks into a format that is equivalent to, but
 316 distinct from, their original form to mitigate these linguistic biases, mirroring the approach
 317 taken in prior work (Fang et al., 2025; Pan et al., 2023). We show that dataset memorization
 318 happens, and that this label transformation approach mitigates this effect, in §J.4.
 319
- 320 • *In-Context Demonstrations:* During the risk control calibration step, we compute a single
 321 $\hat{\lambda}$ for risk control on a 50-50 mix of *both incorrect and correct demonstrations*. Incorrect
 322 demonstrations are obtained by permuting the labels, as in Halawi et al. (2024).
 323
- 324 • *Contextual Calibration:* Since our focus is on classification tasks, we examine how fre-
 325 quently the model assigns a higher probability to the correct label than to any alternative.
 326 However, model outputs can be highly sensitive to minor changes in the prompt (Gao et al.,
 327 2021), an observation which we verified through additional experiments, detailed in §J.4.
 328 To address this instability, we apply contextual calibration (Zhao et al., 2021) to balance
 329 the label probabilities.
 330

324 • *Evaluation Metrics*: We evaluate our models primarily on the in-context learning risk (as
 325 defined in §3.3), demonstrating that with our approach, risk always remains below the user-
 326 defined ϵ threshold.

328 **4.1 EMPIRICAL VERIFICATION OF RISK CONTROL GUARANTEES**

330 We empirically verify that our approach always controls the risk across all models and datasets,
 331 even when given a mix of correct and incorrect demonstrations in the prompts. Fig. 5 shows that our
 332 approach satisfies the DFRC guarantees on risk: the in-context learning risk is controlled across all
 333 models, tasks, and risk levels ϵ . We provide additional results in the appendix (§E) comparing these
 334 results with the loss-clipping approach, showing that our risk transformation approach is consistently
 335 less conservative and better matches the user-defined risk level ϵ than loss-clipping approach. This
 336 highlights both the validity of our theoretical results as well as applicability to real-world tasks.
 337 We additionally demonstrate that our risk-control guarantees hold regardless of the distribution of
 338 correct vs incorrect demonstrations in the data distribution (§G).



359 Figure 5: Empirical risk vs the user-specified risk level ϵ using our safe ICL model and ℓ_{ICL} loss
 360 over a set of mixed correct and incorrect demonstrations. Aligning with the theoretical guarantees,
 361 the risk is controlled across all models and tasks. Shaded regions correspond to one standard error
 362 over 100 experiments and are included on all plots.

364 **4.2 COMPARISON OF EFFICIENCY GAINS WITH LOSS CLIPPING**

366 Our adaptation of the loss-bounding approach outperforms prior LTT approaches (Jazbec et al.,
 367 2024; Schuster et al., 2022) by increasing efficiency gains while preserving the same risk control
 368 assurances. At all ϵ levels, our efficiency gains – the number of layers of computation we save by
 369 applying our approach – are strictly greater than when using clipped risk (Fig. 6), and are often
 370 significantly greater. For example, controlling the prediction gap risk with our approach at $\epsilon = 0.05$
 371 results in an average of 53% less layers evaluated over all datasets and models compared to loss-
 372 clipping, while still satisfying the same rigorous risk control guarantees. Though not a primary goal
 373 of our work, it is a notable side benefit of our approach.

375 **4.3 CLASS-CONDITIONAL EFFECTS FOR CORRECT AND INCORRECT DEMONSTRATIONS**

376 We examine the effects of our chosen $\hat{\lambda}$ on different sub-populations of our data, corresponding to
 377 whether the model is given correct or incorrect demonstrations. We find that where there exists a $\hat{\lambda}$

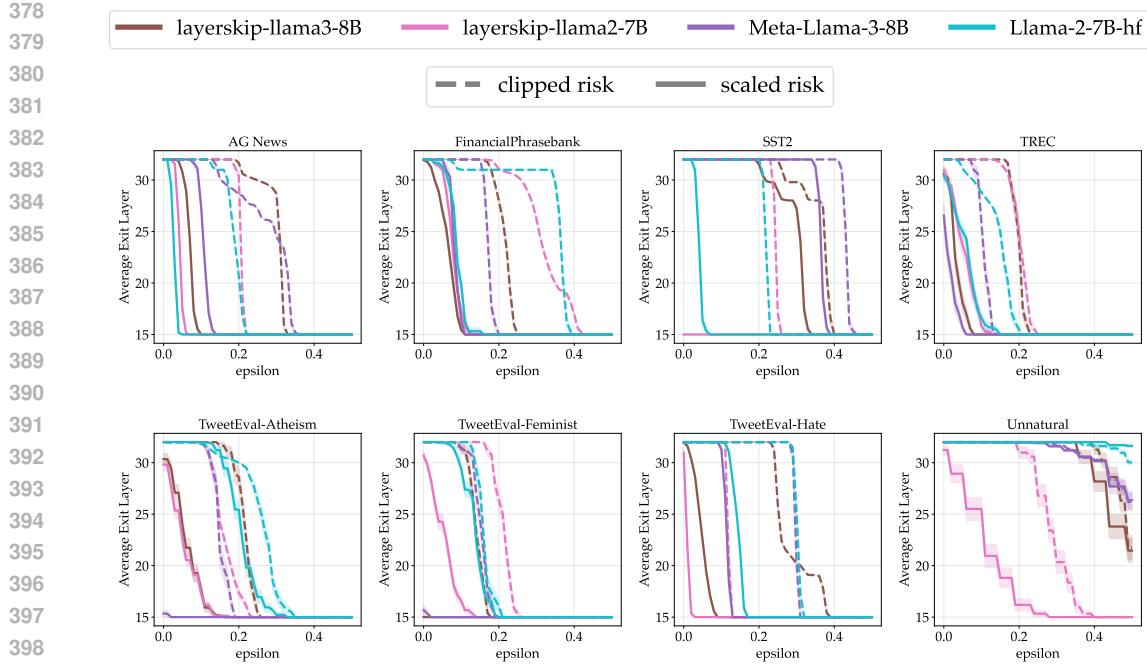


Figure 6: We demonstrate that our risk transformation approach enables much greater efficiency gains than the loss-clipping approach by leveraging performance gains from correct demonstrations.

that both controls overthinking risk and preserves the accuracy gains from correct demonstrations, our approach is able to find it. In other cases, we find that there can be a direct tradeoff between taking advantage of performance gains given correct demonstrations and controlling overthinking risk given incorrect demonstrations, depending on the choice of $\hat{\lambda}$; results are shown in the appendix in Fig.16.

Though the marginal guarantees from risk control do not extend in theory to class-conditional risk control (how well our risk control works within each subgroup of our data, i.e. correct vs incorrect demonstrations) when using a mixed calibration dataset with both incorrect and correct in-context demonstrations, our approach still shows promise for finding an appropriate $\hat{\lambda}$ when one exists that *can* perform well for both correct and incorrect demonstrations. In practice, for applications where controlling risk given unsafe prompts is more important than performance gains from helpful prompts or achieving greater efficiency gains, we can instead use the loss-clipping approach, which is much more conservative and therefore may better control risk on unsafe prompts alone, as shown in Fig.14 and 15. However, even with loss clipping, there are no guarantees for risk control on incorrect demonstrations alone for the same reason; as shown in Fig.14 and 15, loss clipping can still violate the risk-control on the subclass of only incorrect demonstrations.

Ideally, we would like to condition on these sub-populations separately, but we cannot know ahead of time whether we are given correct or incorrect demonstrations. Future work should investigate how we can integrate additional control mechanisms with our approach to ensure safe behavior in *all* subgroups of safe and unsafe prompts, potentially by borrowing ideas from class-conditional conformal prediction literature (Ding et al., 2023).

5 RELATED WORK

In-context learning (ICL). In-context learning, also known as few-shot learning, enables LLMs to perform new tasks by conditioning on a limited number of input-output examples within the prompt without requiring gradient-based fine-tuning (Dong et al., 2024; Radford et al., 2019; Brown et al., 2020; Srivastava et al., 2023). This allows LLMs to adapt to novel tasks by generalizing from examples in the prompt, but this flexibility also makes LLMs vulnerable. For example, novice

432 users who provide incorrect examples may make an LLM perform worse on a task than it would
 433 have without the user’s input (Halawi et al., 2024), or adversarial users can design prompts to make
 434 LLMs bypass their safeguards (Xu & Wang, 2024). In our work, we consider how the *quality* of
 435 in-context demonstrations can impact the safety of the model’s outputs.

436 **Evolution of representations through LLM layers.** Recent studies have begun mapping how
 437 LLM hidden representations evolve with depth, revealing structured processing phases. Cheng et al.
 438 (2025); Cheng & Antonello (2024); Cheng et al. (2023) identify a pronounced intermediate-layer
 439 “abstraction phase” in which hidden states predict brain responses to language stimuli, showing that
 440 LLMs compress inputs into low-dimensional manifolds early in processing. Layer-wise analysis has
 441 also been applied to tasks such as ciphers (Fang et al., 2025), long-context failures (Lu et al., 2024),
 442 and multilingual representations (Bafna et al., 2025; Muller et al., 2021; Wendler et al., 2024; Schut
 443 et al., 2025) in LLMs. We leverage these intermediate representations to determine when to safely
 444 make a prediction on a task.

445 **Distribution-free risk control (DFRC).** Risk control is a statistical framework for controlling var-
 446 ious measures of risk in machine learning systems. Given a trained model, a finite set of calibration
 447 data, and a loss function reflecting the chosen measure of safety, DFRC bounds the expected loss,
 448 i.e., *risk*, as a function of some low-dimensional parameter λ (Angelopoulos et al., 2023; Bates et al.,
 449 2021b). Among existing frameworks, Learn Then Test (LTT) (Angelopoulos et al., 2022) is widely
 450 used, as it is the only method that provides guarantees without requiring monotonicity of the loss
 451 or risk. However, LTT assumes the loss is bounded within $[0, 1]$, which can be restrictive in cer-
 452 tain scenarios (see §3.4 for a discussion on the implications of bounded loss in the ICL setting and
 453 our approach to addressing this limitation). Notable examples of using risk control in the context
 454 of LLMs include controlling performance degradation due to accelerated inference (Schuster et al.,
 455 2022; Jazbec et al., 2024) and mitigating prompt-induced variability (Zollo et al., 2024). In contrast,
 456 our work is the first to leverage risk control for managing the impact of harmful demonstrations on
 457 the downstream performance of LLMs.

458 **Early Exiting.** Early exiting in deep neural networks enhances computational efficiency by termi-
 459 nating inference at intermediate layers for simpler inputs, thereby reducing resource consumption
 460 with minimal performance degradation (Teerapittayanon et al., 2016). While early exiting has been
 461 widely adopted to accelerate inference (Huang et al., 2018; Zhou et al., 2020; Elbayad et al., 2020;
 462 Han et al., 2021; Schuster et al., 2022), our work introduces a novel application of early exit archi-
 463 tectures: mitigating the influence of incorrect demonstrations in in-context learning. Although the
 464 use of early exiting to prevent ICL overthinking has also been discussed in Halawi et al. (2024), their
 465 approach relies on static layer pruning. In contrast, our method employs dynamic, per-sample early
 466 exiting based on confidence thresholding, which enables us to make robust guarantees for safety via
 467 risk control.

470 6 CONCLUSION AND DISCUSSION

471 Our work introduces a novel risk-controlled early-exit framework for safe in-context learning (ICL)
 472 that robustly handles demonstrations of mixed quality. We present three important contributions
 473 to enable safety for ICL: a novel early-exit model formulation using a zero-shot baseline; a novel
 474 ICL loss designed to measure overthinking; and an adaptation of the LTT risk control framework
 475 to work for our setting. This integrated approach improves the safety, reliability, and computational
 476 efficiency of ICL under mixed-quality demonstrations.

477 A potential limitation of our work – and of prior work on risk control – is that we do not make
 478 conditional guarantees on risk control for correct vs incorrect demonstrations when a model is pre-
 479 sented with demonstrations of mixed quality. Future work could investigate class-conditional risk
 480 control to provide more robust safety assurances under mixed-quality prompts. Additionally, future
 481 approaches could be applied where both correct and incorrect demonstrations are provided within
 482 the same prompt; this may reflect many real-world use cases, as a human user may have inconsistent
 483 performance even when constructing the same prompt.

486 ETHICS STATEMENT
487

488 This work contributes to safer deployment of LLMs by introducing a principled method to detect
489 and mitigate “overthinking” by accounting for potential user error. Our approach additionally im-
490 proves computational efficiency, making LLM inference more environmentally and economically
491 sustainable. However, though our approach improves safety in the average case, it does not pro-
492 vide strong guarantees for specific subpopulations or worst-case prompts, potentially leaving some
493 harmful scenarios unmitigated. Additionally, the increased reliance on automated risk control mech-
494 anisms may give users a false sense of security, especially if deployed without proper monitoring or
495 human oversight.

496 REPRODUCIBILITY STATEMENT
497

498 Detailed descriptions of the experiment setup, including datasets, methods, and implementation
499 details, are referenced in §4. The exact prompt formats used for all tasks are presented in §L and
500 data processing steps are outlined in §4, with justification provided through ablation studies in §J. We
501 provide a proof in §C showing the validity of our risk transformation approach (§3.4). Additionally,
502 source code for all experiments is provided along with this paper submission and a GitHub link will
503 be included in the final camera-ready paper.

504 REFERENCES
505

506 Anastasios N. Angelopoulos, Stephen Bates, Emmanuel J. Candès, Michael I. Jordan, and Lihua
507 Lei. Learn then Test: Calibrating Predictive Algorithms to Achieve Risk Control. *arXiv Preprint*
508 (*arXiv:2110.01052*), 2021.

509 Anastasios N. Angelopoulos, Stephen Bates, Emmanuel J. Candès, Michael I. Jordan, and Lihua Lei.
510 Learn then test: Calibrating predictive algorithms to achieve risk control, 2022. URL <https://arxiv.org/abs/2110.01052>.

511 Anastasios N. Angelopoulos, Stephen Bates, Adam Fisch, Lihua Lei, and Tal Schuster. Conformal
512 risk control, 2023. URL <https://arxiv.org/abs/2208.02814>.

513 Cem Anil, Esin Durmus, Nina Panickssery, Mrinank Sharma, Joe Benton, Sandipan Kundu,
514 Joshua Batson, Meg Tong, Jesse Mu, Daniel Ford, Francesco Mosconi, Rajashree Agrawal,
515 Rylan Schaeffer, Naomi Bashkansky, Samuel Svenningsen, Mike Lambert, Ansh Radhakrishnan,
516 Carson Denison, Evan J Hubinger, Yuntao Bai, Trenton Bricken, Timothy Maxwell,
517 Nicholas Schiefer, James Sully, Alex Tamkin, Tamera Lanhan, Karina Nguyen, Tomasz Korbak,
518 Jared Kaplan, Deep Ganguli, Samuel R. Bowman, Ethan Perez, Roger Baker Grosse,
519 and David Duvenaud. Many-shot jailbreaking. In A. Globerson, L. Mackey, D. Bel-
520 grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural In-
521 formation Processing Systems*, volume 37, pp. 129696–129742. Curran Associates, Inc.,
522 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/ea456e232efb72d261715e33ce25f208-Paper-Conference.pdf.

523 Niyati Bafna, Tianjian Li, Kenton Murray, David R. Mortensen, David Yarowsky, Hale Sirin, and
524 Daniel Khashabi. The translation barrier hypothesis: Multilingual generation with large language
525 models suffers from implicit translation failure. *arXiv preprint arXiv:2506.22724*, 2025. URL
526 <https://arxiv.org/abs/2506.22724>.

527 Francesco Barbieri, Jose Camacho-Collados, Leonardo Neves, and Luis Espinosa-Anke. Tweeteval:
528 Unified benchmark and comparative evaluation for tweet classification, 2020. URL <https://arxiv.org/abs/2010.12421>.

529 Stephen Bates, Anastasios Angelopoulos, Lihua Lei, Jitendra Malik, and Michael Jordan.
530 Distribution-free, risk-controlling prediction sets. *Journal of the ACM (JACM)*, 2021a.

531 Stephen Bates, Anastasios Angelopoulos, Lihua Lei, Jitendra Malik, and Michael Jordan.
532 Distribution-free, risk-controlling prediction sets. *J. ACM*, 68(6), September 2021b. ISSN 0004-
533 5411. doi: 10.1145/3478535. URL <https://doi.org/10.1145/3478535>.

534 Vidmantas Bentkus. On hoeffding’s inequalities. *Annals of probability*, 2004.

540 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
 541 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
 542 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
 543 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
 544 Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
 545 Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
 546 <https://arxiv.org/abs/2005.14165>.

547 Emily Cheng and Richard J. Antonello. Evidence from fmri supports a two-phase abstraction pro-
 548 cess in language models, 2024. URL <https://arxiv.org/abs/2409.05771>.

549

550 Emily Cheng, Corentin Kervadec, and Marco Baroni. Bridging information-theoretic and geometric
 551 compression in language models, 2023. URL <https://arxiv.org/abs/2310.13620>.

552

553 Emily Cheng, Diego Doimo, Corentin Kervadec, Iuri Macocco, Jade Yu, Alessandro Laio, and
 554 Marco Baroni. Emergence of a high-dimensional abstraction phase in language transformers,
 555 2025. URL <https://arxiv.org/abs/2405.15471>.

556 Nilanjana Das, Edward Raff, and Manas Gaur. Human-interpretable adversarial prompt attack on
 557 large language models with situational context, 2024. URL [https://arxiv.org/abs/](https://arxiv.org/abs/2407.14644)
 558 [2407.14644](https://arxiv.org/abs/2407.14644).

559

560 Gianna Del corso, Antonio Gulli, and Francesco Romani. Ranking a stream of news. pp. 97–106,
 561 01 2005. doi: 10.1145/1060745.1060764.

562

563 Tiffany Ding, Anastasios Angelopoulos, Stephen Bates, Michael Jordan, and Ryan J Tibshirani.
 564 Class-conditional conformal prediction with many classes. *Advances in neural information pro-*
 565 *cessing systems*, 36:64555–64576, 2023.

566

567 Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
 568 Zhiyong Wu, Tianyu Liu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-
 569 context learning, 2024. URL <https://arxiv.org/abs/2301.00234>.

570

571 Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer, 2020.
 URL <https://arxiv.org/abs/1910.10073>.

572

573 Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen
 574 Lai, Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed Aly, Beidi Chen,
 575 and Carole-Jean Wu. Layerskip: Enabling early exit inference and self-speculative decoding.
 In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 12622–12642. Association for Computational Linguistics, 2024.
 doi: 10.18653/v1/2024.acl-long.681. URL <http://dx.doi.org/10.18653/v1/2024.acl-long.681>.

576

577 Aaron Grattafiori et al. The llama 3 herd of models, 2024. URL [https://arxiv.org/abs/](https://arxiv.org/abs/2407.21783)
 578 [2407.21783](https://arxiv.org/abs/2407.21783).

579

580 Hugo Touvron et al. Llama 2: Open foundation and fine-tuned chat models, 2023. URL [https://arxiv.org/abs/](https://arxiv.org/abs/2307.09288)
 581 [2307.09288](https://arxiv.org/abs/2307.09288).

582

583 Zhouxiang Fang, Aayush Mishra, Muhan Gao, Anqi Liu, and Daniel Khashabi. ICL Ciphers: Quan-
 584 tifying “Learning” in In-Context Learning via Substitution Ciphers. In *Conference on Empiri-
 585 cal Methods in Natural Language Processing (EMNLP)*, 2025. URL <https://arxiv.org/abs/2504.19395>.

586

587 Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
 588 learners. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the
 589 59th Annual Meeting of the Association for Computational Linguistics and the 11th International
 590 Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 3816–3830, On-
 591 line, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.
 592 295. URL <https://aclanthology.org/2021.acl-long.295/>.

593

594 Danny Halawi, Jean-Stanislas Denain, and Jacob Steinhardt. Overthinking the truth: Understanding
 595 how language models process false demonstrations, 2024. URL <https://arxiv.org/abs/2307.09476>.

596

597 Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
 598 networks: A survey. *IEEE transactions on pattern analysis and machine intelligence*, 44(11):
 599 7436–7456, 2021.

600

601 Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Weinberger.
 602 Multi-scale dense networks for resource efficient image classification. *International Conference
 603 on Learning Representations*, 2018.

604

605 Metod Jazbec, James Allingham, Dan Zhang, and Eric Nalisnick. Towards anytime classification in
 606 early-exit architectures by enforcing conditional monotonicity. *Advances in Neural Information
 607 Processing Systems*, 36:56138–56168, 2023.

608

609 Metod Jazbec, Alexander Timans, Tin Hadži Veljković, Kaspar Sakmann, Dan Zhang, Christian
 610 Andersson Naesseth, and Eric Nalisnick. Fast yet safe: Early-exiting with risk control. *Advances
 611 in Neural Information Processing Systems*, 37:129825–129854, 2024.

612

613 Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-deep networks: Understanding and
 614 mitigating network overthinking. In *International conference on machine learning*, pp. 3301–
 3310. PMLR, 2019.

615

616 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 617 language models are zero-shot reasoners, 2023. URL <https://arxiv.org/abs/2205.11916>.

618

619 Sudhanshu Kumar, Partha Pratim Roy, Debi Prosad Dogra, and Byung-Gyu Kim. A comprehen-
 620 sive review on sentiment analysis: Tasks, approaches and applications, 2023. URL <https://arxiv.org/abs/2311.11250>.

621

622 Xin Li and Dan Roth. Learning question classifiers. In *COLING 2002: The 19th International
 623 Conference on Computational Linguistics*, 2002. URL <https://aclanthology.org/C02-1150/>.

624

625 Yucheng Li, Frank Guerin, and Chenghua Lin. An open source data contamination report for large
 626 language models, 2024. URL <https://arxiv.org/abs/2310.17589>.

627

628 Xiaogeng Liu, Zhiyuan Yu, Yizhe Zhang, Ning Zhang, and Chaowei Xiao. Automatic and universal
 629 prompt injection attacks against large language models, 2024. URL <https://arxiv.org/abs/2403.04957>.

630

631 Taiming Lu, Muhan Gao, Kuai Yu, Adam Byerly, and Daniel Khashabi. Insights into llm long-
 632 context failures: When transformers know but don't tell. In *Conference on Empirical Methods
 633 in Natural Language Processing (EMNLP) - Findings*, 2024. URL <https://arxiv.org/abs/2406.14673>.

634

635 Pekka Malo, Ankur Sinha, Pyry Takala, Pekka Korhonen, and Jyrki Wallenius. Good debt or bad
 636 debt: Detecting semantic orientations in economic texts, 2013. URL <https://arxiv.org/abs/1307.5336>.

637

638 Benjamin Muller, Yanai Elazar, Benoît Sagot, and Djamel Seddah. First align, then predict: Un-
 639 derstanding the cross-lingual ability of multilingual bert, 2021. URL <https://arxiv.org/abs/2101.11109>.

640

641 Jane Pan, Tianyu Gao, Howard Chen, and Danqi Chen. What in-context learning "learns" in-context:
 642 Disentangling task recognition and task learning, 2023. URL <https://arxiv.org/abs/2305.09731>.

643

644 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 645 models are unsupervised multitask learners. *OpenAI blog*, 2019. URL <https://openai.com/blog/better-language-models/>.

648 Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q. Tran, Yi Tay, and
 649 Donald Metzler. Confident adaptive language modeling, 2022. URL <https://arxiv.org/abs/2207.07061>.

650

651 Lisa Schut, Yarin Gal, and Sebastian Farquhar. Do multilingual llms think in english?, 2025. URL
 652 <https://arxiv.org/abs/2502.15603>.

653

654 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
 655 Christopher Potts. Recursive deep models for semantic compositionality over a sentiment tree-
 656 bank. In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu, and Steven Bethard
 657 (eds.), *Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing*,
 658 pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for Computational
 659 Linguistics. URL <https://aclanthology.org/D13-1170/>.

660

661 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
 662 Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
 663 Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W.
 664 Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain,
 665 Amanda Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders
 666 Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew Dai, Andrew La,
 667 Andrew Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh
 668 Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabas-
 669 sum, Arul Menezes, Arun Kirubarajan, Asher Mollokandov, Ashish Sabharwal, Austin Herr-
 670 ick, Avia Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph,
 671 Bartłomiej Bojanowski, Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin
 672 Inden, Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinon, Cameron
 673 Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta, César Ferri Ramírez, Chandan Singh,
 674 Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Chris Waites,
 675 Christian Voigt, Christopher D. Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera,
 676 Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Gar-
 677 rette, Dan Hendrycks, Dan Kilman, Dan Roth, Daniel Freeman, Daniel Khashabi, Daniel
 678 Levy, Daniel Moseguí González, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne
 679 Ippolito, Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep
 680 Ganguli, Denis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hup-
 681 kes, Diganta Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Dylan
 682 Schrader, Ekaterina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth
 683 Barnes, Elizabeth Donoway, Ellie Pavlick, Emanuele Rodola, Emma Lam, Eric Chu, Eric Tang,
 684 Erkut Erdem, Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan Jerzak, Ethan Kim, Eunice En-
 685 gefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar, Fernando Martínez-Plumed,
 686 Francesca Happé, Francois Chollet, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Ger-
 687 ard de Melo, Germán Kruszewski, Giambattista Parascandolo, Giorgio Mariani, Gloria Wang,
 688 Gonzalo Jaimovich-López, Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah
 689 Rashkin, Hannaneh Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Shevlin, Hinrich Schütze,
 690 Hiromu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack
 691 Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B. Si-
 692 mon, James Koppel, James Zheng, James Zou, Jan Kocoń, Jana Thompson, Janelle Wingfield,
 693 Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosin-
 694 ski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse En-
 695 gel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden,
 696 John Miller, John U. Balis, Jonathan Batchelder, Jonathan Berant, Jörg Frohberg, Jos Rozen,
 697 Jose Hernandez-Orallo, Joseph Boudeman, Joseph Guerr, Joseph Jones, Joshua B. Tenenbaum,
 698 Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakr-
 699 ishnan, Katerina Ignatyeva, Katja Markert, Kaustubh D. Dhole, Kevin Gimpel, Kevin Omondi,
 700 Kory Mathewson, Kristen Chiaffullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle
 701 Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-
 Ochando, Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt,
 702 Luheng He, Luis Oliveros Colón, Luke Metz, Lütfi Kerem Şenel, Maarten Bosma, Maarten Sap,
 703 Maartje ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco
 704 Marelli, Marco Maru, Maria Jose Ramírez Quintana, Marie Tolkiehn, Mario Giulianelli, Martha
 705 Lewis, Martin Potthast, Matthew L. Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna

702 Baitemirova, Melody Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen, Michael Gu,
 703 Michael Ivanitskiy, Michael Starritt, Michael Strube, Michal Swkedrowski, Michele Bevilac-
 704 qua, Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mitch Walker,
 705 Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T,
 706 Nanyun Peng, Nathan A. Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas
 707 Roberts, Nick Doiron, Nicole Martinez, Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Ni-
 708 tish Shirish Keskar, Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang,
 709 Omar Agha, Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth
 710 Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy
 711 Liang, Peter Chang, Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, Piyush
 712 Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade,
 713 Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramon Risco, Raphaël Millière, Rhythm
 714 Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Ro-
 715 han Sikand, Roman Novak, Roman Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui
 716 Zhang, Ruslan Salakhutdinov, Ryan Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang,
 717 Sahib Singh, Saif M. Mohammad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman,
 718 Samuel Gruetter, Samuel R. Bowman, Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwa-
 719 tra, Sarah A. Rous, Sarik Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian
 720 Gehrmann, Sebastian Schuster, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivas-
 721 tava, Sherry Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shub-
 722 ham Toshniwal, Shyam Upadhyay, Shyamolima, Debnath, Siamak Shakeri, Simon Thormeyer,
 723 Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene, Srihar-
 724 sha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie Lin,
 725 Stephen Prasad, Steven T. Piantadosi, Stuart M. Shieber, Summer Misherghi, Svetlana Kir-
 726 itchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto,
 727 Te-Lin Wu, Théo Desbordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkiny-
 728 ili, Timo Schick, Timofei Kornev, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala
 729 Neeraj, Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyu-
 730 mai, Vikas Raunak, Vinay Ramasesh, Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Sriku-
 731 mar, William Fedus, William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu
 732 Tong, Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu
 733 Song, Yasaman Bahri, Yejin Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov,
 734 Yu Hou, Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang,
 735 Zirui Wang, and Ziyi Wu. Beyond the imitation game: Quantifying and extrapolating the ca-
 736 pabilities of language models. *Transactions on Machine Learning Research (TMLR)*, 2023. URL
 737 <https://arxiv.org/abs/2206.04615>.
 738

739 Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference
 740 via early exiting from deep neural networks. In *2016 23rd international conference on pattern
 741 recognition (ICPR)*, pp. 2464–2469. IEEE, 2016.

742 Chris Wendler, Veniamin Veselovsky, Giovanni Monea, and Robert West. Do llamas work in en-
 743 glish? on the latent language of multilingual transformers, 2024. URL <https://arxiv.org/abs/2402.10588>.

744 Yue Xu and Wenjie Wang. LinkPrompt: Natural and universal adversarial attacks on prompt-based
 745 language models. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of
 746 the 2024 Conference of the North American Chapter of the Association for Computational Lin-
 747 guistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 6473–6486, Mexico
 748 City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 naacl-long.360. URL <https://aclanthology.org/2024.naacl-long.360/>.

749 Xiaohan Yuan, Jinfeng Li, Dongxia Wang, Yuefeng Chen, Xiaofeng Mao, Longtao Huang, Jialuo
 750 Chen, Hui Xue, Xiaoxia Liu, Wenhui Wang, Kui Ren, and Jingyi Wang. S-eval: Towards au-
 751 tomated and comprehensive safety evaluation for large language models, 2025. URL <https://arxiv.org/abs/2405.14191>.

752

753 Zhexin Zhang, Leqi Lei, Lindong Wu, Rui Sun, Yongkang Huang, Chong Long, Xiao Liu, Xuanyu
 754 Lei, Jie Tang, and Minlie Huang. Safetybench: Evaluating the safety of large language models,
 755 2024. URL <https://arxiv.org/abs/2309.07045>.

756 Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Im-
 757 proving few-shot performance of language models, 2021. URL <https://arxiv.org/abs/2102.09690>.
 759

760 Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. Bert loses pa-
 761 tience: Fast and robust inference with early exit. *Advances in Neural Information Processing*
 762 *Systems*, 2020.

764 Thomas P. Zollo, Todd Morrill, Zhun Deng, Jake C. Snell, Toniann Pitassi, and Richard Zemel.
 765 Prompt risk control: A rigorous framework for responsible deployment of large language models,
 766 2024. URL <https://arxiv.org/abs/2311.13628>.
 767
 768

769 A APPENDIX

771 B DETAILED DESCRIPTION OF TASKS

774 **Sentiment analysis.** Sentiment analysis refers to the computational study of opinions, emotions,
 775 and attitudes expressed in text (Kumar et al., 2023), which requires inferring polarity or stance from
 776 often subtle or domain-specific cues. We use three sentiment analysis datasets: Stanford Sentiment
 777 Treebank (SST-2) (Socher et al., 2013) involves binary sentiment classification of movie reviews,
 778 Financial Phrasebank (Malo et al., 2013) extends this task to the financial domain, and TweetEval-
 779 Feminist (Barbieri et al., 2020) centers on sentiment detection toward feminism in social media
 780 posts.

781 **Hate Speech Detection.** Hate speech detection involves identifying language that expresses hatred,
 782 discrimination, or hostility toward individuals or groups, often within socially sensitive contexts. We
 783 examine two datasets from the TweetEval benchmark (Barbieri et al., 2020) that address this problem
 784 in distinct but related ways. The TweetEval-Hate dataset consists of tweets directly annotated for
 785 the presence or absence of hate speech, whereas the TweetEval-Atheism dataset is used in studying
 786 hate speech due to its focus on religion-related discourse, where antagonistic or prejudiced language
 787 is common.

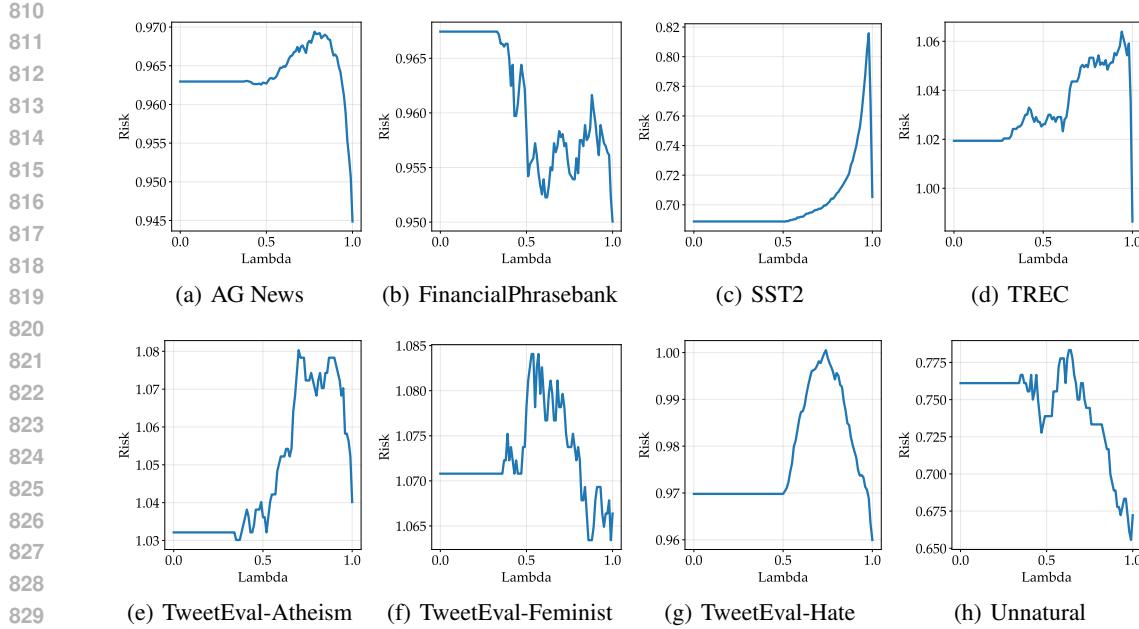
788 **Semantic Classification.** Semantic classification tasks involve assigning text to high-level con-
 789 ceptual categories based on meaning, structure, or subject matter, focusing on identifying the core
 790 informational content of input text. We examine three semantic classification tasks: AG News
 791 (Del corso et al., 2005) involves classifying news headlines into four broad areas – World, Sports,
 792 Business, and Science/Technology. The Text REtrieval Conference (TREC) dataset (Li & Roth,
 793 2002) involves classifying open-domain questions into six semantic types (e.g., entity, location, nu-
 794 meric). The Unnatural dataset, a toy dataset constructed by (Halawi et al., 2024), assigns short text
 795 descriptions to one of three semantic categories: sports, animals, or plants.

796 C PROOF OF RISK TRANSFORMATION APPROACH

799 Here, we prove that our risk transformation approach chooses an appropriate $\hat{\lambda}$ that controls our ICL
 800 risk.

802 **Proof.** Let $\ell(\lambda, x, c, y) \in [a, b]$, and choose a risk level $\epsilon \in (a, b)$ and some probability δ . Compute
 803 $\epsilon' = \frac{\epsilon-a}{b-a}$ and $\ell' = \frac{\ell(\lambda, x, c, y)-a}{b-a}$. Apply the Learn Then Test procedure to ϵ' , ℓ' to select $\hat{\lambda}$. Formally,
 804 as shown in (Angelopoulos et al., 2021), this guarantees that $\mathbb{P}(R(\ell') \leq \epsilon') \geq 1 - \delta$ for a fixed δ .
 805 So, with probability at least $1 - \delta$, we have that $R(\ell') \leq \epsilon'$.

806 Towards contradiction, assume that $\hat{\lambda}$ does not control the original risk $R(\ell(\lambda, x, c, y))$ at level
 807 ϵ . Thus, $R(\ell(\hat{\lambda}, x, c, y)) = \mathbb{E}_{x,y,c}[\ell(\hat{\lambda}, x, c, y)] > \epsilon$. By definition of ℓ' , we have that
 808 $\mathbb{E}_{x,y,c}[\ell(\lambda, x, c, y)] = \mathbb{E}_{\ell'}(b-a) + a = R(\ell')(b-a) + a$. Similarly, by definition of ϵ' , we
 809 have that $\epsilon = \epsilon'(b-a) + a$. So we can show the following:

Figure 7: We show that across many of our models and datasets, the risk is non-monotonic in λ .

$$\begin{aligned}
 R(\ell(\hat{\lambda}, x, c, y)) &> \epsilon \\
 R(\ell')(b-a) + a &> \epsilon'(b-a) + a \\
 R(\ell')(b-a) &> \epsilon'(b-a) \\
 R(\ell') &> \epsilon'
 \end{aligned}$$

However, we know that $\hat{\lambda}$ controls $R(\ell')$ at level ϵ' . This is a contradiction. This proves that $\hat{\lambda}$ must also control $R(\ell(\hat{\lambda}, x, c, y))$ at level ϵ .

D NON-MONOTONICITY OF RISK

We show that our risk is non-monotonic in λ across many of our models and datasets in Fig. 7. This indicates that we cannot use many of the existing methods in the conformal risk control literature, because they require an assumption of monotonicity (Jazbec et al., 2024), and motivates our choice of Learn Then Test in our work as it does not require this assumption.

E COMPARISON OF RISK CONTROL APPROACHES

Across all tasks and models, we find that our risk transformation approach is less conservative and better matches the user-defined risk level ϵ than the loss-clipping approach. A direct comparison is illustrated in Fig. 8 with a mix of 50% correct and 50% incorrect demonstrations.

F DEMONSTRATING ROBUSTNESS OF RISK CONTROL WITH VARIATION IN THRESHOLD λ

We provide a plot, Figure 9, with confidence intervals added to our results in Fig. 3 by bootstrapping samples from the datasets. We then only highlight λ values for which no point within our confidence interval loses more than 5% of the accuracy gains from correct demonstrations while still doing better than the full model given incorrect demonstrations. We also include error bars for the accuracy

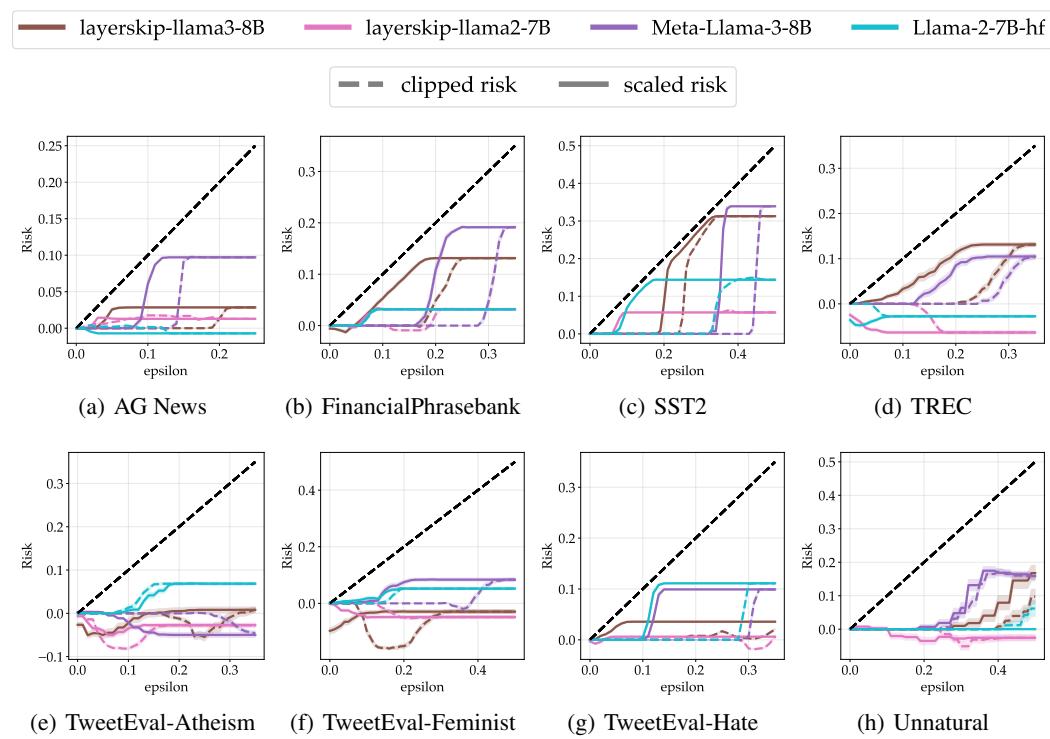


Figure 8: We show that across all tasks and models, our risk transformation approach is less conservative and better matches the user-defined risk level ϵ than the loss-clipping approach. These experiments used 50% correct and 50% incorrect demonstrations.

of correct and incorrect demonstrations. Notably, even with these confidence bounds, there remain regions where the yellow band persists—demonstrating that even when accounting for the variance in samples, there still exist values of λ that satisfy our desiderata. This provides clearer evidence for the robustness of our results.

G RISK CONTROL AT ANY PROPORTION OF CORRECT VS INCORRECT DEMOS

Here, we show results demonstrating that regardless of the proportion of correct vs incorrect demos in the calibration data, we are still able to control the combined risk over a test set drawn i.i.d. from the same distribution. Results shown in Figures 10, 11 and 12 for cases when there are more correct than incorrect demonstrations (a scenario that is likely in real-world applications), but we also show in Fig.13 that even when we have many more incorrect than correct demonstrations, our risk-control guarantees still hold.

H CLASS-CONDITIONAL RISK CONTROL

We provide all results from our experiments investigating the class-conditional risk levels over all datasets and models using a 50-50 split of correct and incorrect demonstrations. Results are shown in Figures 16 and 15.

I OVERTHINKING ACROSS DATASETS

We show that overthinking occurs across all of our datasets in Fig.17. This provides additional motivation for using early-exiting as a natural approach to control risk on all tasks.

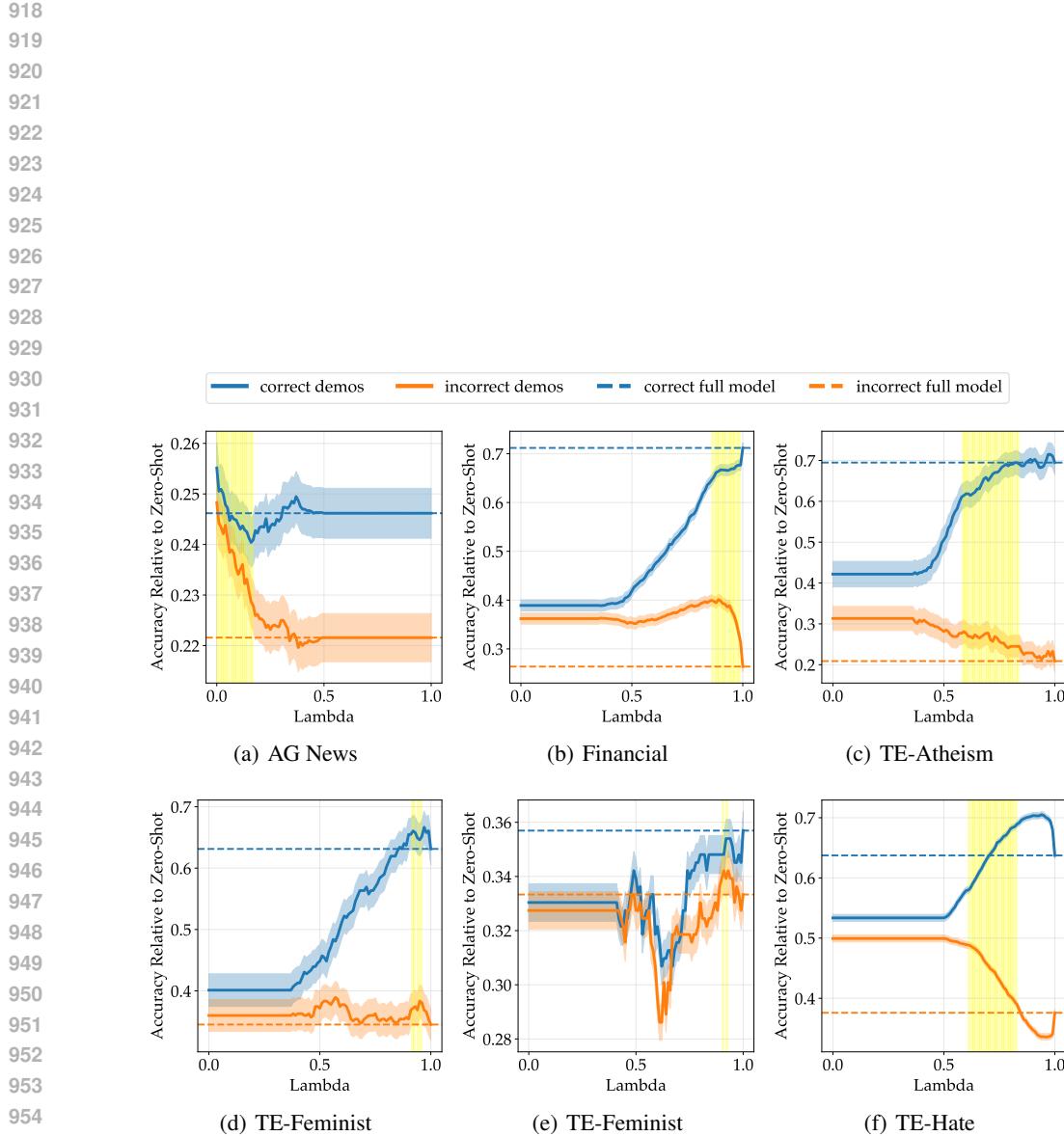


Figure 9: Some choices of λ thresholds can both attain performance gains from correct demonstrations *and* control overthinking from incorrect demonstrations. We show the robustness of our approach to different selections of λ by adding error bars that further restrict the choices of λ . Collecting more i.i.d. samples from the dataset will simply yield narrower error bars and thus more choices of λ .

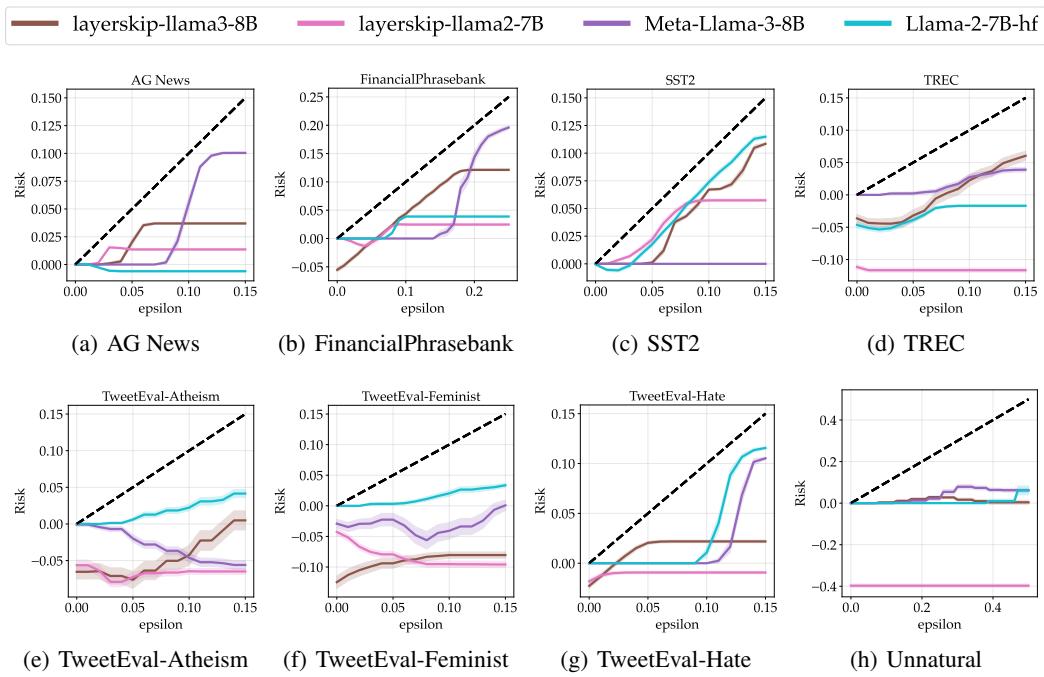


Figure 10: Empirical risk vs the user-specified risk level ϵ using our risk transformation approach over a set of 75% correct and 25% incorrect demonstrations.

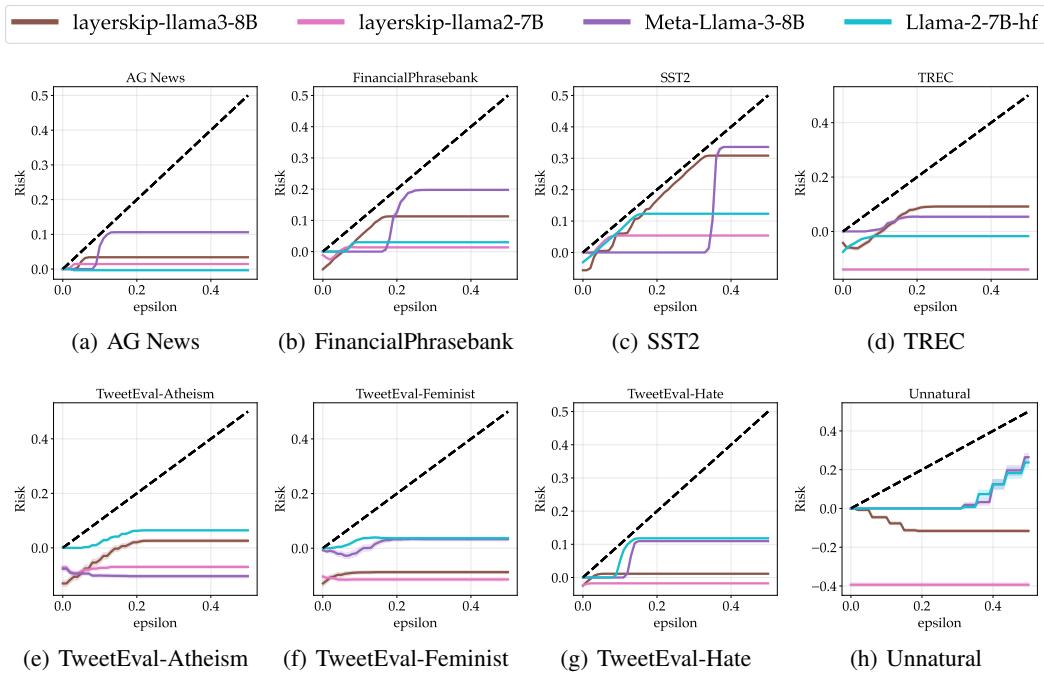
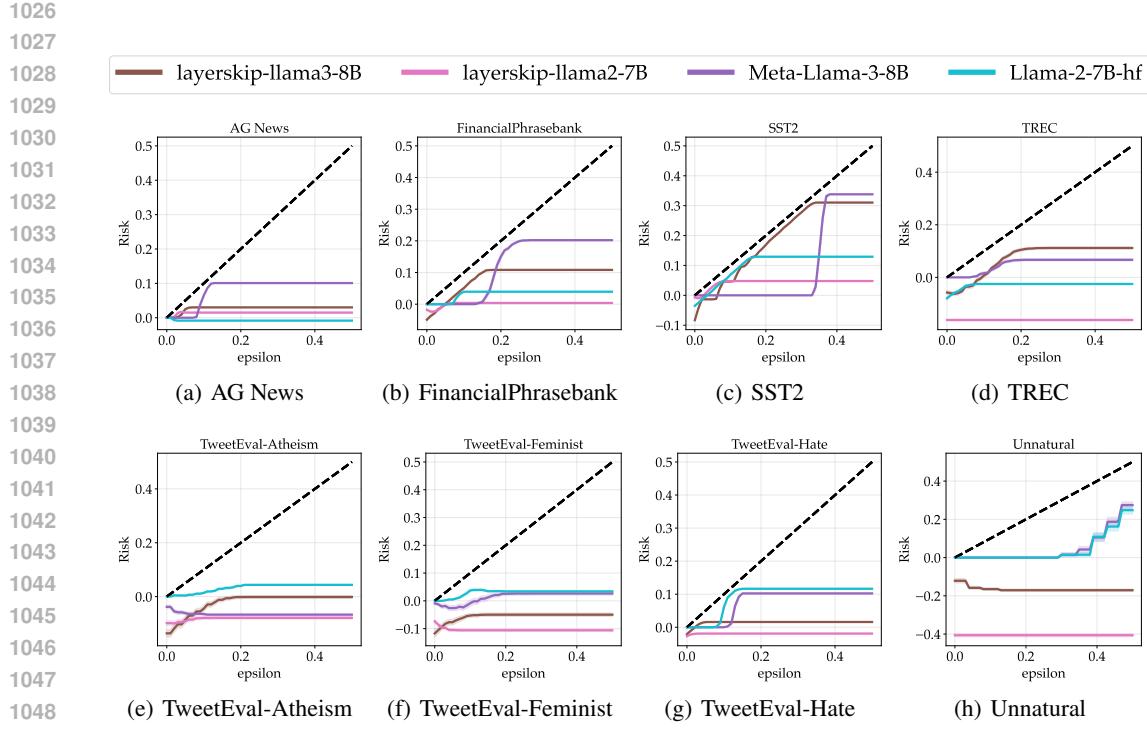


Figure 11: Empirical risk vs the user-specified risk level ϵ using our risk transformation approach over a set of 90% correct and 10% incorrect demonstrations.



1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 12: Empirical risk vs the user-specified risk level ϵ using our risk transformation approach over a set of 95% correct and 5% incorrect demonstrations.

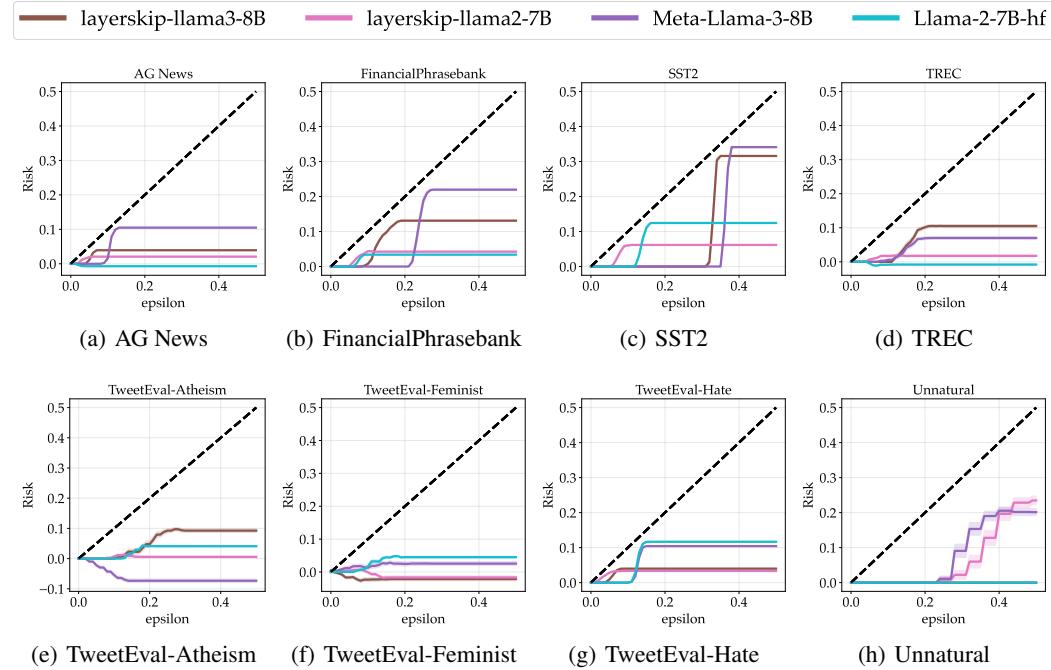


Figure 13: Empirical risk vs the user-specified risk level ϵ using our risk transformation approach over a set of 10% correct and 90% incorrect demonstrations.

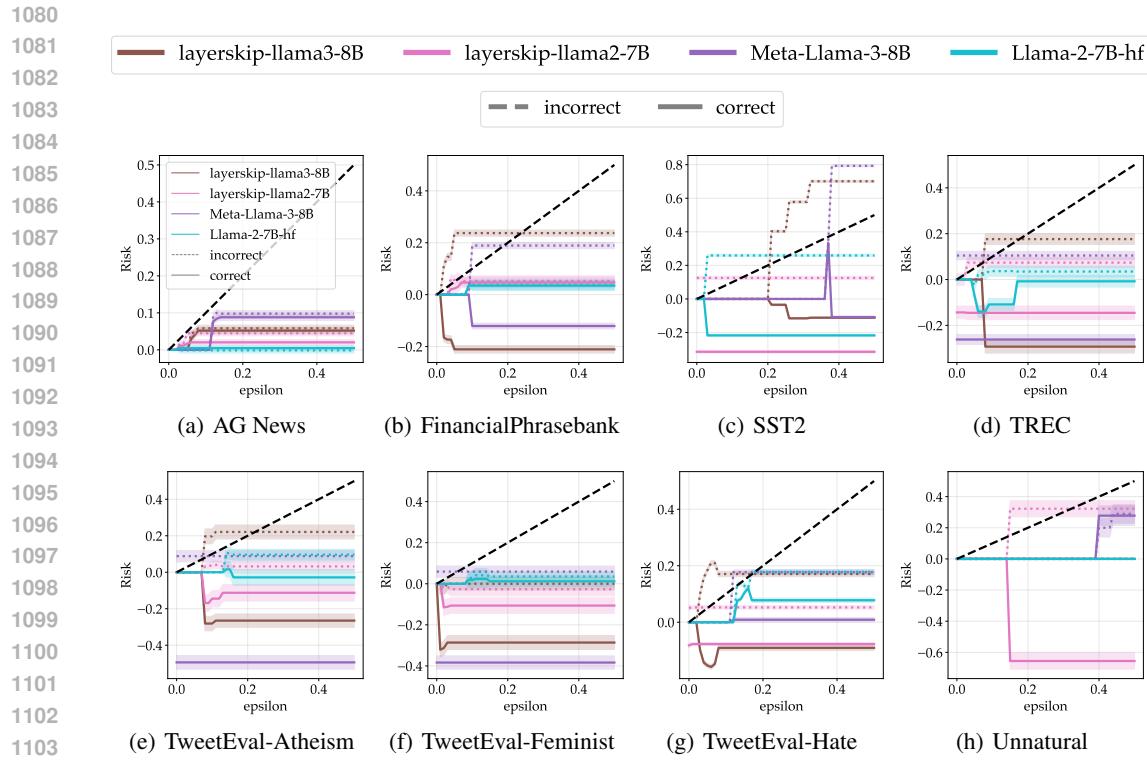


Figure 14: Empirical risk vs the user-specified risk level ϵ using our risk transformation approach over a set of 50% correct and 50% incorrect demonstrations. We examine the class-conditional risks for correct and incorrect demonstrations respectively. Shaded regions correspond to one standard error computed over 100 experiments.

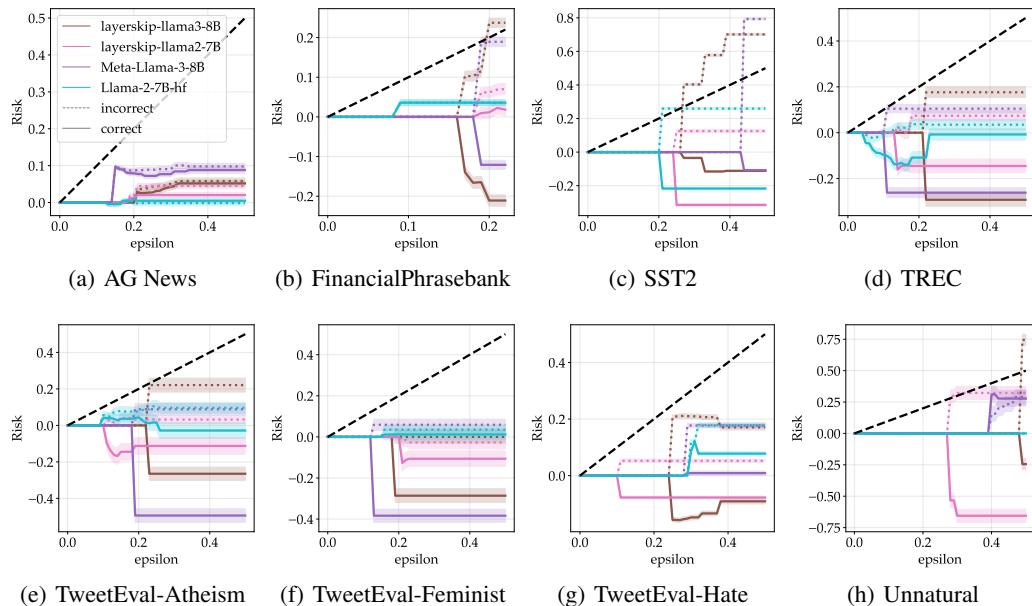
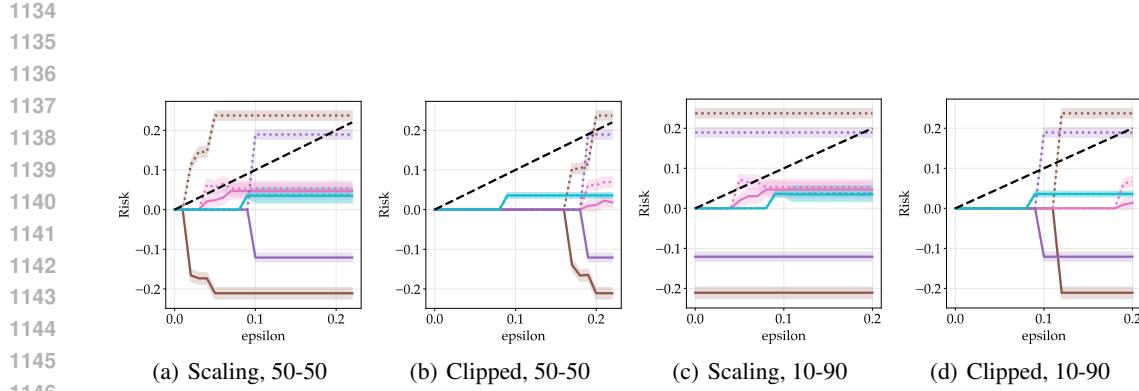


Figure 15: Empirical risk vs the user-specified risk level ϵ using the clipped-loss approach over a set of some correct and some incorrect demonstrations. This approach prioritizes controlling risk for incorrect demonstrations but can reduce performance gains when given correct demonstrations.



1147
1148
1149
1150
1151
1152
1153
1154

Figure 16: Empirical risk vs the user-specified risk level ϵ using our risk transformation approach over a set of some correct and some incorrect demonstrations. We examine the class-conditional risks for correct and incorrect demonstrations respectively on the FinancialPhrasebank dataset, where we either have a 50-50 balanced split of correct vs incorrect demos, or 10% incorrect and 90% correct demos. We find that our approach defaults to the zero-shot behavior much less often than the loss-clipping approach regardless of the proportion of correct demonstrations (as seen by the risk 0 regions for small ϵ). Shaded regions correspond to one standard error computed over 100 experiments.

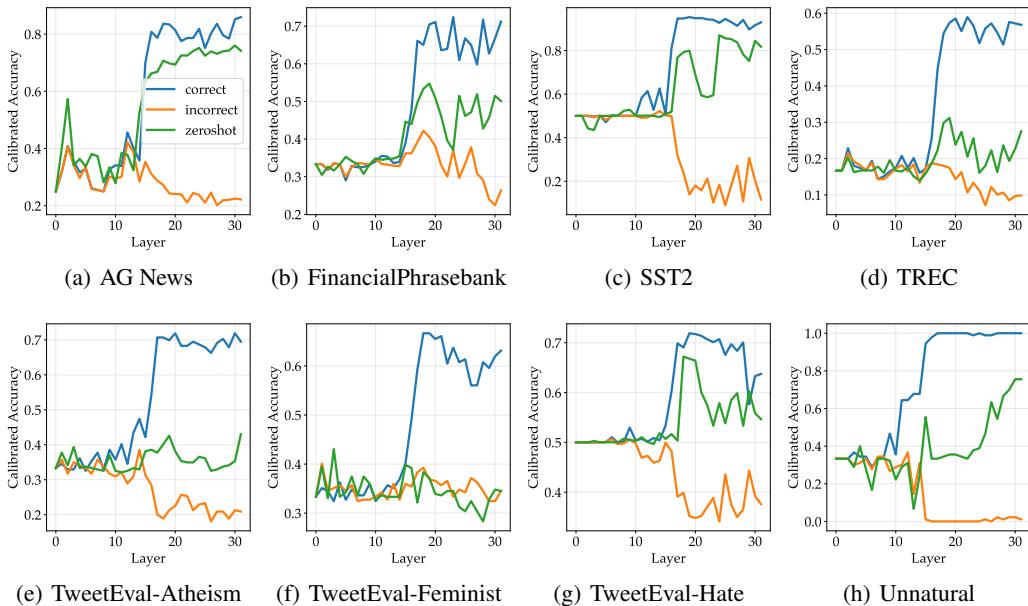


Figure 17: Overthinking occurs across widely varying datasets - demonstrating that, if given incorrect in-context demonstrations, we should either early-exit or default to zero-shot behavior to ensure safety. However, if we are given correct demonstrations, we would like to both take advantage of the performance benefit (relative to zero-shot) and early-exit when we do not need all layers of the model to arrive at the correct answer. All plots are generated using the LayerSkip LLaMA-3 8B model.

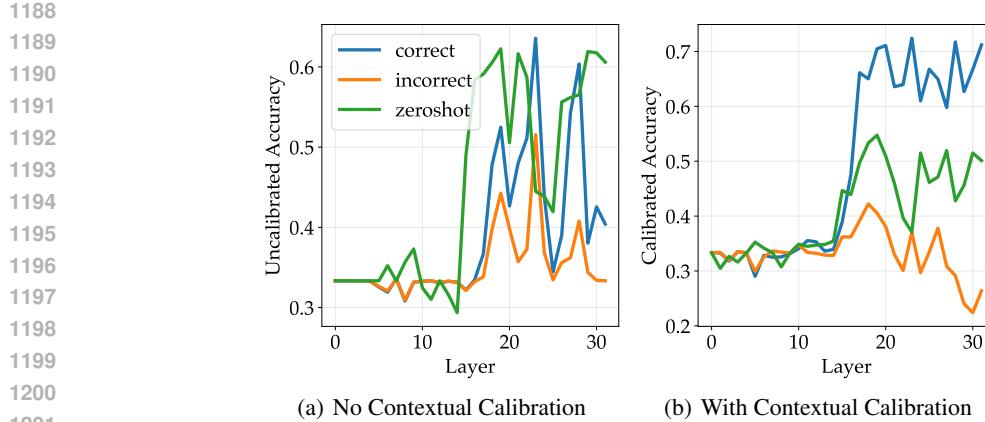


Figure 18: We find that calibration is necessary to stabilize accuracy and confidence across layers of the model. This enables effective early-exit for risk control. An example is shown here for FinancialPhrasebank.

J ABLATIONS

We performed many ablation studies to arrive at the setup of our experiments in this paper. Details of these ablations are provided here, as well as the particular settings under which we ran our experiments.

J.1 CONTEXTUAL CALIBRATION

Contextual calibration (Zhao et al., 2021) reduces instability arising from the specific choice of prompt format and the choice and ordering of in-context examples; it has been widely applied in recent work, including in (Halawi et al., 2024). We performed ablations with and without contextual calibration, and found that contextual calibration was necessary to stabilize accuracy and confidence across the layers of the model. A plot comparing an experiment with and without contextual calibration is shown in Fig.18.

J.2 CONFIDENCE MEASURES

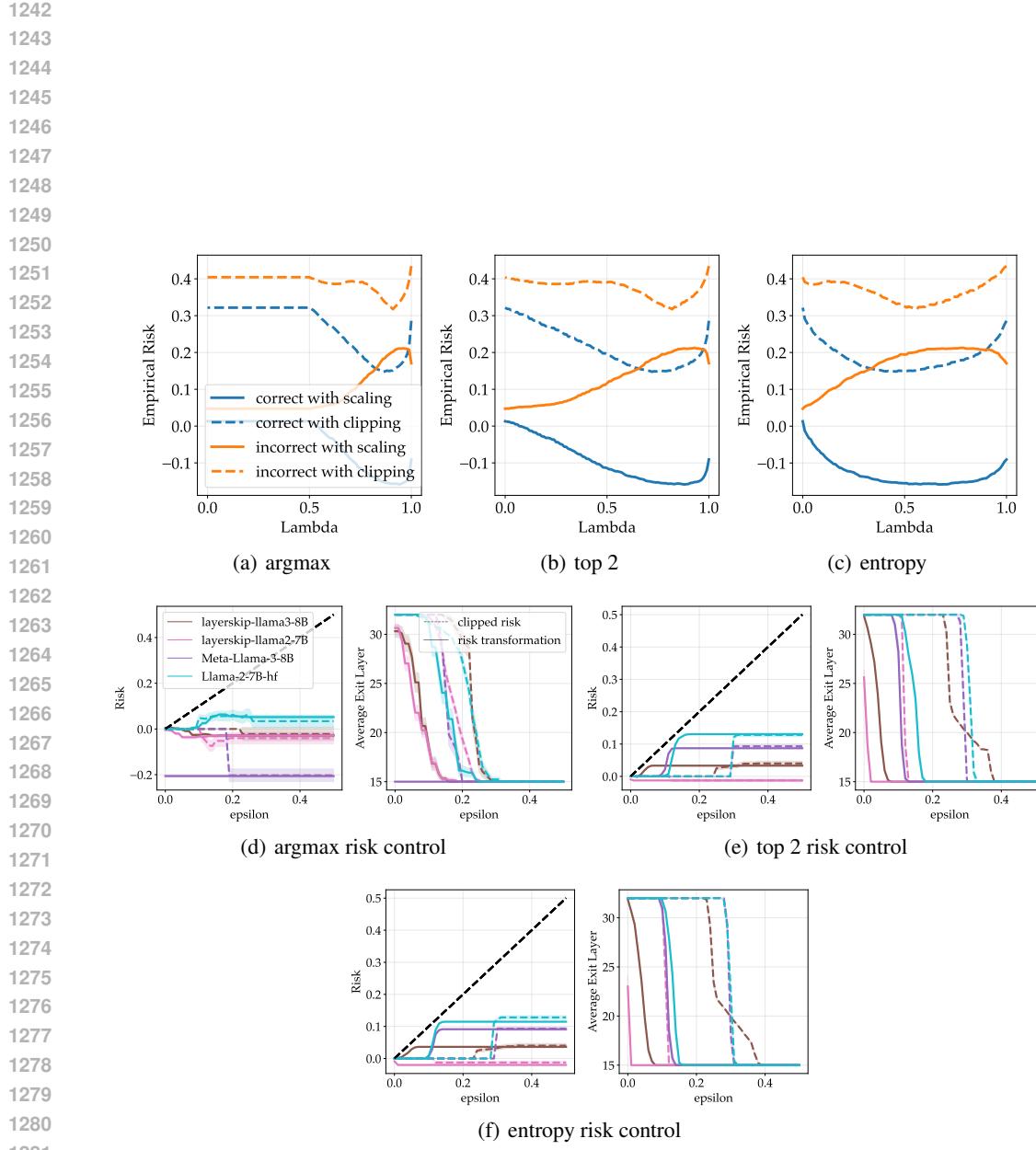
We test different ways of measuring confidence in the model’s prediction to evaluate whether this impacts our risk control approach. The three measures we use are as follows:

- *argmax*: Taking the simple argmax of the logits after applying softmax.
- *top 2*: Take the difference between the top 2 largest values of the logits after applying softmax.
- *entropy*: Compute the entropy over the logits post-softmax.

We present results on the TweetEval Hate dataset in Fig.19. We find that though the choice of confidence measure will affect the level of risk for specific λ values, there is no significant impact on our risk-control approach, as it works under all scenarios. We choose *argmax* as our confidence measure for all experiments in the paper, as this is the most common approach taken in other work.

J.3 FIRST EXIT

We find that the models are frequently overconfident in the wrong answers in earlier layers. Through detailed examination of the models’ generated text from intermediate layers, we also find that the quality in very early layers is extremely low and gradually improves through the layers. This means that risk control based on model confidence will provide trivial results when we early-exit from anywhere in the model; we cannot have a confidence-based λ threshold which allows us to early-exit while preserving performance. We address this by applying our risk-control approach only on



1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Figure 19: The top row shows λ vs risk for different measures of confidence for the TweetEval-Hate dataset with the LayerSkip LLaMA 3 model, showing that different measures of confidence can impact the way that λ -thresholds on confidence affect risk (both with loss-clipping and true relative loss). The risk control plots for all models on TweetEval-Hate are shown in the last three plots; there is no significant impact on the choice of confidence measure on our risk-control approach, which works equally well on all three, without any significant differences in efficiency gains or risk level across models.

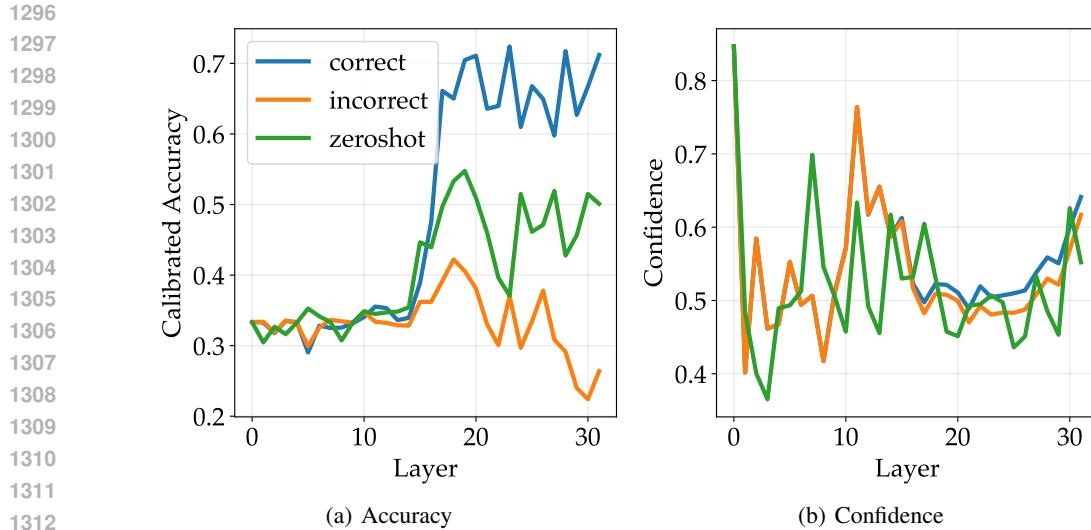


Figure 20: We empirically find that the models become less overconfident and more accurate in the last half of the layers (from roughly layer 16 of 32), a finding which is consistent across all four of our models and all eight datasets. This motivates our choice to apply our early-exit risk control procedure on only the *last half* of the layers in the model. Results are shown here for FinancialPhrasebank; we found similar results across all models and datasets.

the last half of the layers, meaning that the earliest possible exit for our 32-layer models is layer 16. Empirical results justifying this choice are shown in Fig.20.

J.4 TRUE DATASET LABELS

We show that the model has already memorized existing datasets during pre-training; results displayed in Fig.21. These results are also confirmed in prior work (Pan et al., 2023; Fang et al., 2025). This motivates our approach of transforming the task to a format that is equivalent to, but distinct from, their original form by assining arbitrary “dummy” labels for each label of the dataset.

K COMPUTE RESOURCES

To run all experiments with language models, we used 4 A100 GPUs on the Johns Hopkins DSAI compute cluster. Plots and risk-control were executed locally.

L PROMPT FORMAT

The prompt format is presented below for the AG News dataset. The same format is used across all datasets, with the only difference being the list of possible labels. $\{\text{text}\}$ indicates the input on which the model is asked to make a prediction. $\{\text{demo i}\}$ and $\{\text{label i}\}$ indicate the text-label pairs that constitute the in-context examples (where the label either corresponds to the true label or the substituted “incorrect” label).

List of “dummy” labels. We define a fixed substitution between the true labels of each dataset and the “dummy” labels we use in our prompts. In particular, for each true label, we substitute each label with one of the following words: river, stone, cloud, chair, table, grass. We find that there is not a significant effect of using any particular substitution, so we simply randomly select label-substitute pairs.

Zero-Shot Prompt. Your job is to classify the topic of a news article given a description of the article. The possible topics are: world, sports, business, science/technology. Output only the topic

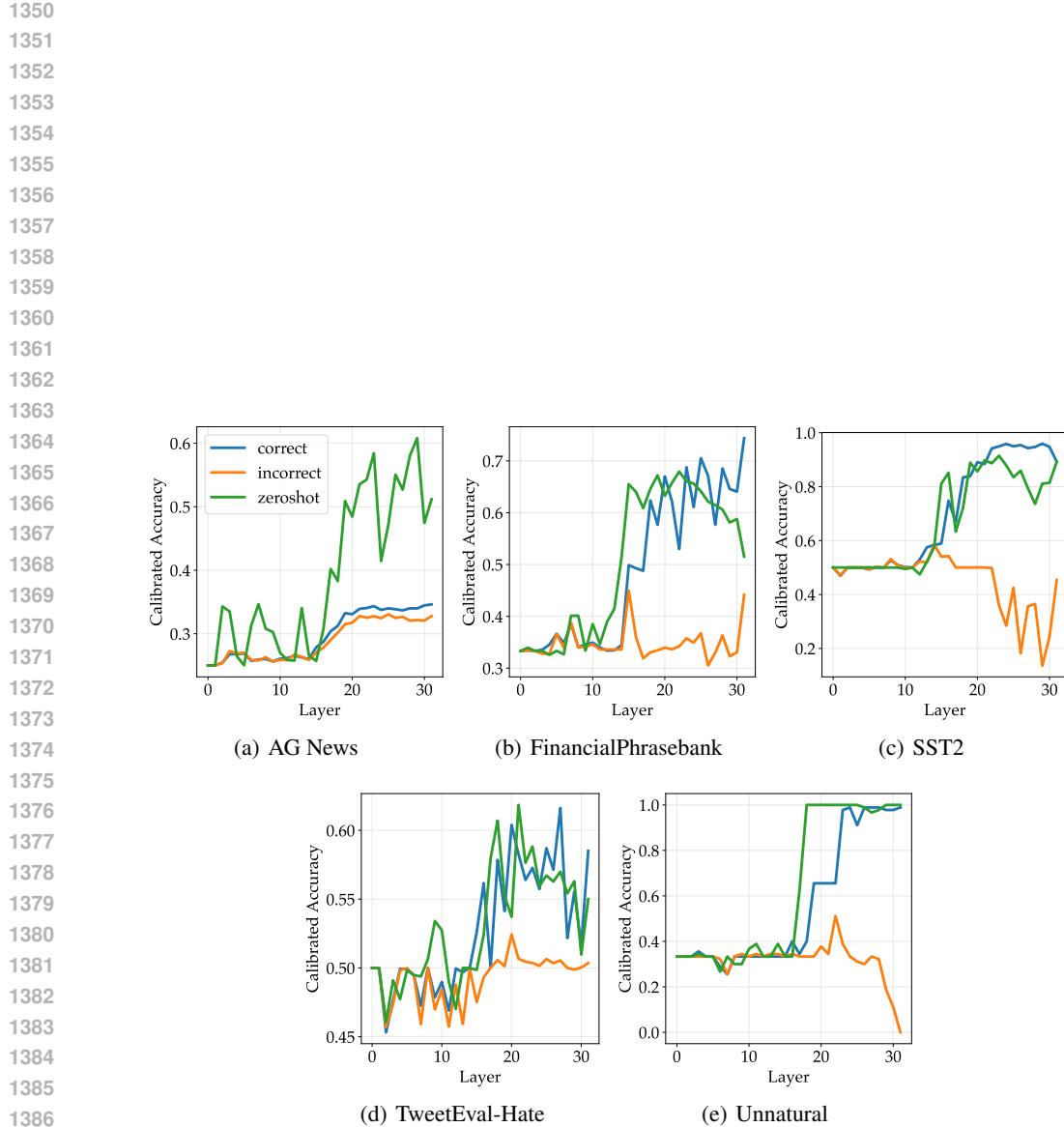


Figure 21: Here, we show the accuracy of predictions from each layer of the model. We show that our models have already memorized many of our datasets during pre-training, as shown by the fact that zero-shot will often do as good or better than the model even given correct in-context demonstrations.

1404 of the news article and nothing else. Do not provide chain of thought reasoning before your answer.
1405 Description: {text} Topic:
1406

1407 **In-Context Demonstrations.** Your job is to classify the topic of a news article given a description
1408 of the article. The possible topics are: world, sports, business, science/technology. Output only the
1409 topic of the news article and nothing else. Do not provide chain of thought reasoning before your
1410 answer. Below are a few examples of description-topic pairs. Description: {demo 1} Topic: {label
1411 1} Description: {demo 2} Topic: {label 2} ... Description: {text} Topic:
1412

1413 **Dummy Labels - Zero-Shot Prompt.** Your job is to classify the topic of a news article given a
1414 description of the article. Output river if the topic is world, stone if the topic is sports, cloud if
1415 the topic is business, and chair if the topic is science/technology. Output only the topic of the news
1416 article and nothing else. Do not provide chain of thought reasoning before your answer. Description:
1417 {text} Topic:
1418

1419 **Dummy Labels - In-Context Demonstrations.** Your job is to classify the topic of a news article
1420 given a description of the article. Output river if the topic is world, stone if the topic is sports, cloud
1421 if the topic is business, and chair if the topic is science/technology. Output only the topic of the news
1422 article and nothing else. Do not provide chain of thought reasoning before your answer. Below are
1423 a few examples of description-topic pairs. Description: {demo 1} Topic: {label 1} Description:
1424 {demo 2} Topic: {label 2} ... Description: {text} Topic:
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457