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ABSTRACT

Cross-lingual in-context learning (XICL) shows promise for adapting large lan-
guage models (LLMs) to low-resource languages. Previous methods typically
rely on off-the-shelf similarity-based approaches or task-specific retrievers trained
with LLM feedback for demonstration selection. However, these methods often
overlook important factors beyond a single criterion or can be resource-intensive.
To address these challenges, we propose a novel approach called Topic-XICL,
which leverages a latent topic model for demonstration selection. We assume that
latent topic variables encapsulate information that more accurately characterizes
demonstrations. By training this topic model on rich-resource language data with
a compact LLM, we obtain more relevant demonstrations through topic inference
and apply them for in-context learning across various LLMs. We evaluated our
method on three multilingual tasks (XNLI, XCOPA, and TyDiQA-GoldP) using
three models with 7 to 8 billion parameters (BLOOM, Qwen1.5, and Llama3.1).
Our approach outperformed the baselines—random selection, semantic similar-
ity, and clustering-based methods—on TyDiQA-GoldP, XCOPA, and XNLI by
3.32%, 2.47%, and 1.77%, respectively, while requiring only moderate additional
resources.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language
understanding across a wide range of NLP tasks in English (Lai et al., 2023; Bang et al., 2023;
Zhang et al., 2023). Recent advancements have extended their multilingual functionalities (Shi
et al., 2023; Cahyawijaya et al., 2023; Chen et al., 2023; Yang et al., 2024); however, achieving
robust performance across multiple languages often requires substantial amounts of data for training
or fine-tuning. In-context learning (ICL) (Brown et al., 2020; Scao et al., 2022; Lin et al., 2022) has
emerged as a promising approach to improve the performance of LLM in low-resource languages.

The impressive comprehension abilities of LLMs in English have fueled interest in Cross-lingual In-
Context Learning (XICL)(Winata et al., 2021; Lin et al., 2022; Asai et al., 2023; Cahyawijaya et al.,
2024; Zhang et al., 2024), which leverages demonstrations from high-resource languages to guide
learning in low-resource languages. However, the effectiveness of XICL relies heavily on the selec-
tion of demonstration examples (Zhao et al., 2021; Perez et al., 2021; Qin et al., 2023; Cahyawijaya
et al., 2024). Researchers have proposed two primary approaches for demonstration selection: using
off-the-shelf retrievers(Nie et al., 2023; Chang & Fosler-Lussier, 2023; Winata et al., 2023; Li et al.,
2023; Cahyawijaya et al., 2024), such as BM25 or Sentence-BERT (Reimers & Gurevych, 2019),
and training task-specific retrievers (Shi et al., 2022) using specially designed task signals, like feed-
back from LLMs. While task-specific retrievers may produce better results for certain LLMs, they
often require access to model parameters or detailed output distributions, which can be costly to
obtain and are typically unavailable for black-box LLMs (Sun et al., 2022). In contrast, off-the-shelf
methods offer a lightweight solution by exploiting semantic similarity between input-label pairs, but
they tend to overlook task-specific information and diversity.

As noted in Qin et al. (2023), the choice between similarity and diversity in demonstrations varies
by task: diversity works better for tasks like commonsense reasoning and question answering, while
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Figure 1: Accuracy scores for 12 languages from the XCOPA dataset (Gordon et al., 2012) using
zero-shot inference (dashed line) and 3-shot in-context learning (ICL) with the BLOOM model
(Scao et al., 2022) (7.1 billion parameters). k denotes the number of demonstrations. ”sem” refers
to semantic-based selection, while ”random” refers to random selection.

similarity is more effective for text classification. Fig. 1 highlights the challenge of balancing these
two dimensions across languages. Semantically similar examples yield better results for Haitian
Creole (ht), Tamil (ta), and Thai (th), whereas randomly selected diverse examples perform better
for Italian (it), Quechua (qu), and Swahili (sw). When selecting demonstrations across languages,
it’s important to account for not just semantic similarity, but also factors like syntactic structure,
task structure, and domain information. We collectively abstract these flexible factors as latent
topic information, which encapsulates characteristics that better represent demonstrations, improv-
ing cross-lingual in-context learning.

Xie et al. (2022) examined in-context learning from a Bayesian inference perspective, while Wang
et al. (2023) treated LLMs as topic models, applying this theory effectively in demonstration selec-
tion for classification tasks. Building on this, we extend Wang et al. (2023)’s approach to cross-
lingual in-context learning across various tasks, proposing a demonstration selection algorithm
based on topic inference (Topic-XICL), as shown in Fig. 2. Our method consists of two phases:
latent topic learning and demonstration selection. In the latent topic learning phase, demonstra-
tion candidates from a rich-resource language are clustered into topics using the K-means algorithm,
based on multilingual representations, and a topic model is trained using an LLM to capture nuanced
topic information. Specifically, the candidate data for a task are grouped into n topics, and for each
topic, we introduce c new tokens to extend the LLM’s vocabulary. These tokens are concatenated
with the input, allowing the LLM to update token embeddings and improve predictions. In the
demonstration selection phase, topic inference is performed on the candidate data to select the k
most representative examples for each topic. For each target language input, its topic is determined
by calculating semantic similarity with the candidate data, using the corresponding representative
examples of its topic as context.

We trained the latent topic model on BLOOMZ-1b7 (Muennighoff et al., 2023) (with 1.7 billion
parameters) and conducted cross-lingual ICL on two multilingual sentence-level tasks and one cross-
lingual reading comprehension task. Our contributions are summarized as follows:

• We propose a cross-lingual demonstration selection algorithm based on topic inference
(Topic-XICL), extending Bayesian inference theory to practical applications in cross-
lingual ICL.

• Intuitively, the Bayesian theorem is primarily suited for classification tasks. To our knowl-
edge, we are the first to apply it to non-classification tasks on XICL, and we have experi-
mentally validated its effectiveness.

• Our topic-based demonstration selection method outperforms the strongest baselines across
three models—BLOOM, Qwen1.5, and Llama3.1—by 3.32%, 2.47%, and 1.77% on aver-
age for TyDiQA-GoldP, XCOPA, and XNLI, respectively.

2 RELATED WORK

Cross-lingual In-context learning The cross-lingual nature of multilingual language models fur-
ther enables the possibility of learning from a different language in-context without parameter up-
dates, as demonstrated by the XICL method (Winata et al., 2021; Lin et al., 2022). Winata et al.
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(2021) first showed that, given a few English examples as context, multilingual pre-trained language
models (such as GPT (Radford et al., 2019) and T5 (Raffel et al., 2020)) can predict not only English
test samples but also non-English ones. Lin et al. (2022) also found that their XGLM demonstrates
strong cross-lingual capability, where using English prompts together with non-English examples
yields competitive zero- and few-shot learning performance. Cahyawijaya et al. (2024) extensively
studied XICL on some low-resource languages from four aspects: cross-lingual alignment, align-
ment formatting, label configuration, and cross-lingual retrieval, highlighting the importance of ad-
vancing ICL research. Our research mainly focuses on the aspect of cross-lingual retrieval to select
demonstrations for XICL.

Cross-lingual Demonstration Selection Different rich-resource language demonstrations yield
varying XICL outcomes for target languages. Current cross-lingual retrieval methods fall into two
categories: using off-the-shelf multilingual representations and leveraging LLM feedback signals.
For example, Nie et al. (2023) conducts cross-lingual retrieval from labeled or unlabeled high-
resource languages based on the semantic similarity of multilingual embeddings. Li et al. (2023)
extended this to focus on zero-shot settings, revealing limitations for complex generation tasks.
Tanwar et al. (2023) augmented prompts with cross-lingual semantic similarity demonstrations and
in-context label alignment, but Cahyawijaya et al. (2024) identified shortcomings and introduced
translation pairs for alignment. Additionally, Winata et al. (2023) emphasized semantic similarity
by selecting the nearest examples from various sub-datasets for classification tasks. In contrast, Shi
et al. (2022) proposed a retrieve-rerank framework for cross-lingual Text-to-SQL, using a bi-encoder
to identify relevant exemplars, and then training a retriever by distilling the LLM’s scoring function.

Training retrievers on specific task data and LLMs can be advantageous, but managing inaccessible
parameters of black-box models is challenging. Our method trains using only accessible LLMs.
Semantic similarity alone may not suffice for complex tasks, so we expect to integrate richer infor-
mation into ”latent topics,” such as article types in question-answering tasks, question types, and
the structural relationship between answers and articles. We use LLMs to mine this latent topic
information and select demonstrations to enhance cross-lingual in-context learning.

In-Context Learning with Bayesian inference Xie et al. (2022) provided a latent topic inter-
pretation to explain in-context learning, showing that the in-context learning predictor approaches
the Bayes optimal predictor as the number of demonstrations increases, assuming both pre-training
and task-specific data follow Hidden Markov Models (HMM). However, the Markovian assumption
about data generation limits empirical validation to synthetic data and toy models, raising questions
about its applicability to natural language.

To bridge the gap between theoretical understanding and real-world LLM algorithms, Wang et al.
(2023) developed a practical demonstration selection algorithm. Our method extends Wang et al.
(2023) to an XICL setting. Unlike their approach, which treats each classification data as a topic, we
perform semantic clustering on each task’s data to obtain topics, making our approach applicable
to a wider range of tasks. To our knowledge, this is the first attempt to use Bayesian theory for
demonstration selection beyond classification.

3 METHOD

Based on the theoretical understanding and practical algorithm of Bayesian inference in ICL, we
proposed a cross-lingual demonstration selection framework (as shown in Fig. 2) with topic in-
ference to improve the performance of cross-lingual ICL for various tasks, not only classification
tasks. First, we introduce the notations of problem setting and theoretical analysis of the problem.
Then we describe the pipeline to learn latent topic embedding in Section 3.2 and the algorithm of
demonstration selection in Section 3.3.

3.1 NOTATIONS AND PROBLEM SETTING

In cross-lingual in-context learning, the prompt comprises k rich-resource language demonstrations
(X1, Y1), (X2, Y2), ..., (Xk, Yk) and a low-resource target language test input X , and the gold truth
is Y ∈ Y. For the generation-form task based on decoder-only LLMs, Y is the space of all possible
token sequences. Similar to that of the topic model, a simplified assumption can be made for LLM

3
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Figure 2: An overview of our proposed cross-lingual demonstration selection framework with topic
inference.① Latent topic embeddings are learned for the clustered English candidates using LLMs,
and probabilities of inferring to n topics are calculated for each candidate. The top-k representative
demonstrations for each topic are then obtained. ② For each target input, the semantic relationship
with the candidates is calculated. The most frequent topic in the top-10 examples is used as its
classification topic, denoted as ai. The k most representative examples in the ai topic are used as
the context for the target input, which can be used for ICL in any generative LLM.

(denoted by M ):

PM (Y |X) =

∫
Θ

PM (Y |θ)PM (θ|X)dθ, (1)

θ ∈ Θ is a high dimensional latent topic variable continuously distributed over Θ, where Θ is the
space of the variable.

Following Wang et al. (2023), we posit the existence of an underlying causal relation between X , Y ,
and θ, directly named as X → Y ← θ, which can be represented mathematically as the following
structural equation:

Y a = f(Xa, θa, ϵ), (2)
where ϵ is an independent noise variable. a is the topic of (X,Y ), and θa ∈ Θ is the value of the
topic variable corresponding to the topic a. The in-context learning output probability of LLM for
an input Xa,l classified to a topic in target language l can be denoted by P a,l

M , and the solution can
be defined as:

argmax
y∈Y

P a,l
M (Y a,l = y|Xa

1 , Y
a
1 , ..., X

a
k , Y

a
k , X

a,l). (3)

It is always lower or equal to the Bayes optimal decoder:

argmax
y∈Y

P a,l
M (Y a,l = y|θa, Xa,l).

Equality only holds when

P a,l
M (θa|Xa

1 , Y
a
1 , ..., X

a
k , Y

a
k , X

a,l) = 1 (4)

Following Wang et al. (2023), we focus on estimating an optimal value of θ corresponding to a topic
a. Then, we will discuss how to select an optimal set of demonstrations by using the learned optimal
latent concept variable value.

3.2 LATENT TOPIC LEARNING

As shown in Fig.2, we first cluster the source language task dataset into several topics {ai|i =
1, 2, ..., n} by the multilingual embedding with K-means algorithm, the number of topic n is
a hyper-parameter. For a topic ai, the objection of Bayes optimal decoder is to minimize
EX,Y,ai [−logP

ai

M (Y |θai , X)].
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In practice, we try to align θa to the token embedding space by adding new tokens to the vocabulary
of LLM. Then, the learned new tokens of θa are used as regular tokens in the vocabulary. Specif-
ically, to represent each specific topic ai, c new topical tokens (denoted as θ̂ai ) are added to the
original vocabulary. c is also a hyper-parameter, and corresponding c topical tokens are appended
to the input X as demonstrated, like ”<t1 1><t1 2>...<t1 c>X” for the topic a1. The new topical
token can be anything as long as it does not overlap with the original vocabulary of LLM.

Subsequently, the embedding of these new tokens E(θ̂ai) is fine-tuned while freezing the remaining
parameters of LLM. The fine-tuning objective is to minimize loss:

L(θ̂ai) = EX,Y [−logP ai

M (Y |θ̂ai , X)] (5)

and the fine-tuned LLM denoted as M ′. To obtain the topical tokens for all topics in a task, we
fine-tune all data together with the loss

∑n
i=1 L(θ̂ai).

3.3 DEMONSTRATION SELECTION

About the topic of target instance (X l, Y l), we embed the input X l and measured its semantic
similarity with all source input embeddings by Sentence-BERT (Reimers & Gurevych, 2019). Then,
we statistic the topic category of the top-10 semantic similar source examples and choose the most
frequent topic as the target language topic a.

According to the analysis in Section 3.1, for the target instances with topic a, our goal becomes
selecting demonstrations that can best infer the topic for all inputs:

argmax
Xa

1 ,Y
a
1 ,...,Xa

k ,Y
a
k

EX [P a
M (θa|Xa

1 , Y
a
1 , ..., X

a
k , Y

a
k , X)] (6)

As test examples are sampled independently of the demonstrations and each demonstration is also
sampled independently, the goal can be:

argmax
Xa

1 ,Y
a
1 ,...,Xa

k ,Y
a
k

P a
M (θa|Xa

1 , Y
a
1 , ..., X

a
k , Y

a
k )

=

∏k
i=1 P

a
M (θa|Xa

i , Y
a
i )

P a
M (θa)k−1

(7)

Assuming that θ has a uniform prior, then our goal becomes finding the top k demonstrations that
maximize P̂ a

M ′(θ̂a|Xa
i , Y

a
i ).

For the setting of n, the estimated conditional probability of θ̂ai for instance (X,Y ) would be:

P̂ ai

M ′(θ̂
ai |(X,Y )) =

P ai

M ′(θ̂ai |(X,Y ))∑n
j=1 P

aj

M ′(θ̂aj |(X,Y ))
(8)

We mainly focus on the fundamental effects of topic inference on multilingual demonstration selec-
tion, without discussion of the mutual influence between demonstrations and the impact of order.

4 EXPERIMENTS

4.1 DATASET

This paper presents experiments conducted on three datasets: XNLI (Conneau et al., 2018),
XCOPA1, and TyDiQA-GoldP (Clark et al., 2020). The Cross-lingual Natural Language Inference
dataset (XNLI) is a sentence-pair classification task involving 15 languages, translated from the
English SNLI (Bowman et al., 2015) dataset. Since existing work mainly discusses demonstration
selection methods for classification tasks, we also explored the multilingual causal commonsense
reasoning task XCOPA and the Question Answering (QA) task in our experiments. XCOPA is an
extension and re-annotation of the English Choice of Plausible Alternatives (COPA) dataset (Gordon

1https://github.com/cambridgeltl/xcopa
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et al., 2012), with validation and test examples translated and annotated in 11 typologically diverse
languages. TyDiQA-GoldP is the gold passage task in TyDiQA (Clark et al., 2020), covering 9
typologically diverse languages and serving as a challenging multilingual QA benchmark.

For each dataset, the English training setD serves as the pool of candidate demonstrations, evaluated
across all test sets in each language. We list the English training set volume, 24 target languages,
and their test set sizes in Table 3. The XCOPA test set is a combination of the official open-source
100 validation sets and 400 test sets. Due to the large size of the XNLI training dataset (392,701
instances in total), we only used the first 10,000 instances.

4.2 EXPERIMENTAL SETTING

We employ the K-means algorithm with random initial center points to cluster the training set D,
using three seed values [32, 44, 100] and reporting the average results and standard deviation per
language for k = [2, 3, 4]. Each training data representation is obtained using multilingual Sentence-
BERT2. As for hyper-parameters, the number of cluster classes n = 20 and the length of each topic
token sequence c = 10 are used for XNLI, and n = 20 and c = 15 are for TyDiQA-Gold, while
n = 5 and c = 15 are set for XCOPA (with only 500 English training dataset). The guidelines for
the hyper-parameters section can be seen in A.

We leverage the Bloomz-1b73 model to learn the topic token embeddings and compute the prob-
ability of each candidate. BLOOMZ-1b7 (Muennighoff et al., 2023) is a multilingual supervised
fine-tuning version of BLOOM, which may be more efficient for learning the topic of a task. Greedy
Search is employed for decoding answers in each task. For XCOPA, the gold output is changed to
”1” or ”2”. For two-sentence tasks, we set the output length to 1 to obtain the answer label. For the
QA task, the maximum output length is 16 and the answer is extracted by regular matching, and the
metric is an Exact Match (EM) score. The prompts used for each task are detailed in Appendix B.

4.3 BASELINES

We use the same set of demonstrations for three LLMs, each with about 7 billion parameters, in-
cluding BLOOM(Scao et al., 2022), Qwen1.5(Team, 2024), and Llama3.1(Dubey et al., 2024). We
consider the following demonstration selection methods as baselines:

ICL random: Random select k demonstrations from D for each test example. We also set three
seeds to obtain the average results.

ICL sem: We use the same sentence-BERT to calculate the cosine similarity between the inputs of
the source and target language. We select the top k demonstrations from D for each test example.

ICL cluster: Since our method first clusters D and then selects demonstrations, for ICL cluster,
we randomly sample k instances from each category of the clustered data as demonstrations for all
test examples within that category. The topic classification method for the test set follows the same
procedure described in Section 3.3.

4.4 MAIN RESULTS

Table 1 presents our main results for the three datasets, averaged over all languages and based
on the three LLMs. Across all three datasets, our method consistently outperforms the baselines
across the three models. Figure 3 illustrates the performance difference between Topic-XICL and the
best baseline results for individual low-resource languages in three LLMs across the three datasets.
Languages marked with an asterisk (*) denote unseen languages for the models. Please refer to
Appendix C for the definitions of the languages.

As shown in Table 1, our method outperforms the strongest baseline across all three datasets
and models in average performance. For all k-value settings across the models, the average perfor-
mance on the TyDIQA-GoldP, XCOPA, and XNLI tasks exceeds the strongest baseline by 3.32%,
2.47%, and 1.77%, respectively. For the MRC task, with k = 4, our method improves the EM

2https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1
3https://huggingface.co/bigscience/bloomz-1b7
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Model Method
TidyQA-GoldP (EM, %) XCOPA (Accuracy, %) XNLI (Accuracy, %)

k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4

Qwen1.5

Zero-shot 45.8 57.9 46.6
ICL random 51.9±0.49 50.2±2.29 52.7±0.82 59.8±0.58 63.9±1.01 64.3±0.68 48.2±2.93 47.3±2.22 47.2±0.44
ICL sem 54.7 54.5 54.0 61.5 63.1 63.2 48.6 48.6 48.2
ICL cluster 53.0±0.55 53.1±0.49 53.2±0.45 61.1±0.64 63.4±0.70 64.1±0.81 48.6±0.31 48.3±0.22 47.6±0.36
Topic-XICL(ours) 57.3±0.55 58.6±2.65 58.5±1.73 64.6±2.36 66.9±0.96 67.1±0.09 50.1±0.25 50.1±0.26 50.1±0.22

BLOOM

Zero-shot 40.1 49.6 32.8
ICL random 45.0±1.39 43.8±3.03 44.7±3.32 51.3±0.4 51.4±0.21 51.3±0.29 35.3±2.15 34.8±1.56 34.3±1.13
ICL sem 44.6 45.6 45.1 50.8 50.4 51.5 36.6 36.9 37.2
ICL cluster 45.6±0.97 45.1±1.26 45.0±0.88 51.7±0.09 51.0±0.26 51.9±0.17 34.4±0.92 35.2±1.67 36.1±1.59
Topic-XICL(ours) 49.0±1.11 48.3±0.93 49.4±1.32 53.9±0.13 54.5±0.09 54.4±0.16 38.1±0.54 38.5±0.65 39.0±0.91

Llama3.1

Zero-shot 67.9 67.6 44.8
ICL random 69.2±1.30 67.3±2.22 68.2±3.08 72.9±1.50 73.1±1.46 73.3±1.00 41.9±5.16 53.4±2.12 51.2±1.60
ICL sem 69.1 68.8 69.6 71.5 72.2 72.3 51.8 53.0 53.2
ICL cluster 69.6±0.34 69.2±0.23 69.6±0.54 72.9±0.25 73.4±0.25 73.4±0.48 51.1±1.08 52.3±0.61 53.1±0.66
Topic-XICL(ours) 72.3±0.69 72.7±0.28 71.7±0.32 74.7±0.52 75.0±0.41 75.5±0.52 54.4±0.80 55.3±0.17 54.8±0.13

Table 1: Average performance and standard deviation over 3 seeds across languages for three tasks
with different numbers of demonstrations. Detailed results in each language can be found in Ap-
pendix E.

-6.0
-4.0
-2.0
0.0
2.0
4.0
6.0

bn fi sw te

Pe
rf

or
m

an
ce

 
di

ffe
re

nc
e 

(%
)

Qwen1.5

-5.0

0.0

5.0

10.0

15.0

sw te *bn *fi *ko *ru

BLOOM

-3.0

2.0

7.0

bn fi id ko ru sw te

Llama3.1 k=2
k=3
k=4

-1.0

1.0

3.0

5.0

7.0

ht qu sw ta tr
-5.0

0.0

5.0

10.0

15.0

sw *et *ht *it *qu *th *tr *vi
-1.0

1.0

3.0

5.0

et ht id qu sw ta tr vi zh

-2.0

0.0

2.0

4.0

6.0

sw *bg *de *el *ru *th *tr
-1.0

1.0

3.0

5.0

7.0

ar bg hi ru sw tr ur vi zh

(a) TydiQA-GoldP
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Figure 3: Performance difference between Topic-XICL and best baseline results for individual lan-
guages in Three datasets.”*” represents the language is unseen for the models

score by 4.5% over the strongest baseline ICL cluster on the BLOOM model. Furthermore, under
different seed settings, our method achieves a smaller standard deviation compared to the random
sampling method. This may be attributed to the clustering we performed on the dataset to obtain
topics, as similar stability in performance across different seed settings can also be observed in the
ICL cluster method. ICL cluster is a strong baseline that combines both semantic similarity and
diversity. However, our method demonstrates an even greater advantage, suggesting that it not only
benefits from the semantic similarity factors captured through clustering but also learns additional
features automatically through the Topic variables.

In cross-lingual ICL settings, low-resource languages can achieve improvements with lightweight
computational costs. Our method demonstrates significant advantages in languages with rela-
tively less training data (low-resource languages) or unseen languages across various models.
In the XNLI task, apart from BLOOM’s performance on the unseen language Turkish (tr), where it
did not surpass the strongest baseline, our method consistently outperforms existing baselines across
all three models. Notably, our method achieves improvements of 4.2% and 4.0% in the unseen lan-
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guages Greek (el) and Thai (th), respectively, over the best baseline on the BLOOM model with
k = 4.

58 59 60 61 62 63 64 65 66 67 68

ICL_random

ICL_sem

ICL_cluster

Topic-XICL

Qwen1.5

k=2
k=3
k=4
k=6
k=8
k=12

Figure 4: The performance of Qwen1.5
in XCOPA with k = [2, 3, 4, 6, 8, 12].

In XCOPA, our method consistently outperforms the
strongest baselines ICL cluster. Specifically, it shows
significant gains in low-resource languages, achieving a
10.9% improvement in the unseen language Vietnamese
(vi) compared to ICL cluster based on BLOOM. During
our error analysis, we found that the simplicity of the
XCOPA task (with ’1’ and ’2’ as the only possible an-
swers) sometimes led baselines to overfit when there were
too few examples and the labels were the same, causing
the prediction to follow the answers from the demonstra-
tions. To address this, we conducted experiments with
larger k values, e.g. [6, 8, 12]. The results for Qwen1.5
are shown in Figure 4 (other results are in Appendix E).
Almost all methods show improvement as the value of k
increases, and our method maintains its advantage.

For more complex QA tasks like TyDiQA-GoldP, our model demonstrates significant advantages
in certain low-resource languages. For instance, in Finnish (fi) with a k = 4 setting, our method
surpasses the strongest ICL sem baseline on Qwen1.5 by 4.2%, achieving a 64.7% EM score. In
BLOOM, our best result in the unseen language Bengali (bn) exceeds the strongest baseline by
10.3%, reaching a 71.7% EM score. As for Llama3.1, this advantage may be attributed to its training
on multilingual data (despite multilingual tokens making up only 8%), which gives it an edge in more
low-resource languages.

Experimental results show that training the topic model on BLOOMZ-1b7 and selecting appropriate
demonstrations enhances performance across different LLMs. At the task level, our method achieves
notable improvements in more complex reasoning and question-answering tasks, demonstrating that
our approach effectively applies Bayesian theory to non-classification tasks in ICL.

4.5 ABLATION STUDY

54

56

58

60

62

64

66

68

k=2 k=3 k=4

XCOPA
ICL_cluster w/ top-1 topic w/ k-means predict
Topic-XICL w/ top-1 topic w/ k-means predict

Figure 5: The ablation study in XCOPA
based on Qwen1.5.

To validate the necessity of the topic model for demon-
stration selection and test data topic classification (as de-
scribed in Section 3.3), we conducted ablation experi-
ments. In the ICL cluster, demonstration selection was
replaced with random sampling. Our method calculates
semantic similarity between the test data and candidate
examples, selecting the most frequent topic from the top
10 similar candidate examples as its topic. We compared
this with two simpler approaches: (1) using the topic of
the most similar candidate example (top-1 topic) and (2)
predicting the topic with a k-means clustering model (k-
means predict). The results in Figure 5 show that the sim-
pler classification methods outperformed the ICL cluster
baseline, likely due to their effective matching of semantic similarities. However, they did not cap-
ture the broader characteristics of the entire candidate pool, limiting their effectiveness in our topic
inference-based selection. In contrast, our approach consistently achieved the best results, demon-
strating the value of the topic model and the necessity of each module.

5 ANALYSIS

The experimental results demonstrate that our topic model effectively captures latent information
beneficial for in-context learning. We visualized the embeddings of the topic tokens to understand
the relationships between different categories. Through case studies, we analyzed the characteristics
of representative demonstrations within each topic. Additionally, we explored the performance of
our method concerning model scale and source language.
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5.1 VISUALIZATION OF TOPIC TOKEN EMBEDDING
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t0_0

t15_0

t19_0

t18_0

t10_0

t11_0

t12_0

Figure 6: t-SNE plot of the learned
topic tokens for TyDiQA-GoldP.
”tx 0” represents the first token of
the xth topic.

As shown in Figure 6, the embeddings of the 20 topics trained
on the TyDiQA-GoldP dataset are distributed into three to
four distinct regions. This distribution indicates that the topic
model successfully captures similarities across different top-
ics. For instance, while topics ”t10,” ”t11,” and ”t12” are part
of separate clusters, they remain close in token sequence space.
This demonstrates that even if initial clustering lacks preci-
sion, the topic model effectively identifies and groups similar
topics. As a result, our method adapts well to different seed
settings during initial clustering, resulting in lower standard
deviations. For non-classification tasks, where topic classifi-
cation may be ambiguous, our method displays strong adapt-
ability. This highlights the broader applicability of our frame-
work, extending the use of Bayesian theory in context sample
selection to a wider range of tasks.

5.2 CASE STUDY FOR TOPIC-BASED DEMONSTRATION SELECTION

We examined representative examples from various topics in TyDiQA-GoldP, with detailed cases
presented in Appendix D. Examples from topic ”t0” mainly consist of paragraphs introducing items
or concepts, often related to biology or species. Topic ”t4” features shorter passages with only a few
sentences, while topic ”t18” focuses on sports and football themes. These examples demonstrate
that our topic inference method not only captures simple semantic similarity but also structural and
domain-level information.

5.3 RESULTS WITH LESS PARAMETER TOPIC MODEL
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Figure 7: The 4-shot performance of BLOOM
in three tasks based on the Topic-XICL model
trained with fewer parameters (BLOOMZ-560m).

Considering that the boundaries between clus-
ters can often be unclear when grouping source
language candidate examples, we primarily
trained our Topic model on BLOOMZ with 1.7
billion parameters. To verify the applicability
of our method to smaller models, we also con-
ducted experiments on BLOOMZ with 560 mil-
lion parameters (BLOOMZ-560m). Figure 7
presents the ICL test results for three datasets
on BLOOM with k = 4. Our method, when
implemented on BLOOMZ-560m, continues to
outperform the strongest baselines on XCOPA
and TyDiQA-GoldP. Notably, for the MRC
task in the Qwen1.5 model on the Arabic (ar)
language, our method achieved an EM score
of 65.8, exceeding the strongest baseline by
13.4%. However, in the XNLI task, only Viet-
namese (vi) and Hindi (hi) languages showed
improvements compared to the Topic model
based on BLOOMZ-1b7, while other languages
fell below the strongest baseline. This suggests
that for simpler classification tasks, more clar-
ity clustering information may be necessary.

In terms of time and resource consump-
tion, given the similarity in training parame-
ter size, training times for BLOOMZ-560m and
BLOOMZ-1b7 are approximately the same, taking only 15-30 minutes. Thus, for more complex rea-
soning or reading comprehension tasks, our method can leverage a smaller LLM while achieving
performance improvements with minimal additional cost.
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5.4 RESULTS WITH OTHER SOURCE LANGUAGES

For multilingual LLMs, besides English, other languages like Chinese and Italian also have relatively
rich pre-training data. To explore how our method performs with different source languages, we
conducted experiments using these two languages as the source languages for implementing Topic-
XICL. We translated the English XCOPA training data into Chinese and Italian using the Google
Translation API. The average results are shown in Table 9.

46.0 
48.0 
50.0 
52.0 
54.0 
56.0 
58.0 
60.0 
62.0 

English
Chinese

Vietnamese

Indonesian

Swahili

*Estonian
*Haitian

*Italian

*Quechuan

*Tamil

*Thai

*Turkish

BLOOM

Topic XICL

Topic XICL /w zh

Topic XICL /w it

best baseline

Figure 8: Results of 4-shot ICL for Individ-
ual Languages in XCOPA based on BLOOM
by the Topic-XICL model trained with Chi-
nese and Italian.

Model method k=2 k=3 k=4

Qwen1.5

best baseline 61.5 63.9 64.3
Topic XICL 64.6 66.9 67.1
Topic XICL /w zh 59.4 62.1 63.5
Topic XICL /w it 65.3 65.7 64.4

BLOOM

best baseline 51.7 51.4 51.9
Topic XICL 53.9 54.5 54.4
Topic XICL /w zh 53.0 52.9 53.0
Topic XICL /w it 52.4 52.8 52.7

Llama3.1

best baseline 72.9 73.4 73.4
Topic XICL 74.7 75.0 75.5
Topic XICL /w zh 74.6 74.8 74.6
Topic XICL /w it 74.5 75.6 75.6

Figure 9: The average accuracy of the Topic-
XICL model trained with Chinese and Italian.

In both BLOOM and Llama3.1, the ICL performance of Topic-XICL demonstrations based on Chi-
nese and Italian consistently outperforms the strongest baselines. On BLOOM, the non-Latin script
Indonesian (id) language showed significant improvement, outperforming the English-based method
by 2%, as shown in Figure 8. Moreover, in the Llama3.1 model, the average performance of Topic-
XICL using Italian as the source language was even better than the English-based baseline. The
improvements in Llama3.1 may stem from its better performance in relatively well-resourced tar-
get languages. For the Qwen1.5 model, which has more Chinese pre-training data, using Italian as
the source language resulted in improvements over the baseline, but it failed to surpass the perfor-
mance of the baseline when using Chinese. This could be because the stronger Chinese capabilities
reduced alignment with other languages, making it harder to transfer knowledge effectively across
languages.

English and Italian consistently achieve good XICL results across all models, but Chinese performs
poorly as a source language for XICL in Qwen1.5. Across different target languages, there is no
clear conclusion as to which source language’s demonstrations provide more benefit. Zhang et al.
(2024) conducted a multidimensional study on ICL for low-resource languages and found that the
effectiveness of demonstration samples varies significantly across different models, tasks, and lan-
guages, which aligns with our conclusions. They also found that carefully designed templates can
sometimes entirely negate the benefits of demonstration samples for certain tasks and languages. In
our experiments, we also observed that for some languages, adjusting the prompt could yield greater
improvements than ICL itself. However, this phenomenon is not consistent across all languages,
posing a challenge for automatic multilingual prompt design. Our primary focus is on comparing
the performance of ICL sample selection, while prompt selection will be explored in future work.

6 CONCLUSION

This work presents Topic-XICL, a novel demonstration selection algorithm for cross-lingual in-
context learning that leverages latent topic inference. By integrating richer diversity information
from latent topic variables based on a compact LLM, our method addresses the limitations of tra-
ditional similarity-based and task-specific retrievers. We validate its effectiveness across three task
categories and three models, particularly in low-resource languages, demonstrating that latent topic
variables effectively capture valuable diversity information for cross-lingual in-context learning.
This approach provides a generalizable framework for enhancing XICL with only moderate addi-
tional resources.
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A EMPIRICAL GUIDELINES FOR HYPER-PARAMETER SELECTION

Regarding the choice of the number of topics (n) and tokens (c), there are empirical guidelines. For
tasks with a large amount of English candidate data (greater than or equal to 2000), the number of
clustering categories is set to n = 20, and for tasks with other data sizes, it is selected from (5,
10, 15), such as XCOPA with only 500 training data, which chooses n = 5. As for the topic tag
sequence length, it is set to c = 10 for general classification tasks, and c = 15 for tasks that require
reasoning or understanding of longer texts.

B PROMPT TEMPLATE

Table 2 shows the prompt template we used for three tasks. For the TyDiQA-GoldP task with
Qwen1.5, we translated the task description and the prompt ’Based on the passage, the answer to
the question is’ into the corresponding target language.

C LOW-RESOURCE LANGUAGES

All 24 languages in the three datasets are not always pre-trained on the three baseline LLMs. Based
on the language distribution in the pre-training data for each model, we selected some languages as
low-resource or unseen languages, as shown in Table 4. For BLOOM (Scao et al., 2022), English
training data accounts for 30.4% of the total, with pre-training data covering 46 natural languages.
We define languages accounting for less than 0.1% as low-resource languages, and languages with-
out training data are unseen languages. In Qwen 1.5 (Team, 2024), which boasts 7 billion parame-
ters, the model supports a diverse set of 12 languages from Europe, East Asia, and Southeast Asia.
We classify languages not included in their support as low-resource languages, as there is no clear
distribution across all languages, making it difficult to define extremely low-resource languages.
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Llama 3.1 (Dubey et al., 2024) supports English, German, French, Italian, Portuguese, Hindi, Span-
ish, and Thai. Other languages outside this list are considered low-resource languages, as Llama 3.1
uses about 8% multilingual tokens in their pre-train data (across 176 languages).

Dataset Prompt

XNLI
<premise>
Question: <hypothesis> True, False, or Inconclusive?
Answer: [True/False/Inconclusive]

XCOPA

Question: What might be the cause of / What might have happened as a result
of ”<premise>”?
Options:
1-<Choice1>
2-<Choice2>
You should tell me the choice number 1 or 2.
Answer: [1/2]

TyDiQA-GoldP

Answer the question from the given passage. Your answer should be directly
extracted from the passage, and it should be a single entity, name, or number,
not a sentence.
Passage: <passage>
question: <question>
Answer: Based on the passage, the answer to the question is ”[a span in pas-
sage]”

Table 2: Prompt template for three tasks.

Dataset Task Languages Train num. Dev num.

XNLI natural language inference English(en), German(de), Russian(ru), French(fr), Spanish(es), Chinese(zh),
Vietnamese(vi), Turkish(tr), Arabic(ar), Greek(el), Thai(th), Bulgarian(bg),
Hindi(hi), Urdu(ur), Swahili(sw)

10,000 5010

XCOPA commonsense reasoning Chinese(zh), Italian(it), Vietnamese(vi), Indonesian(id), Turkish(tr), Thai(th),
Estonian(es), Tamil(ta), Swahili(sw), Haitian(ht), Quechua(qu)

500 500

TyDiQA-GoldP TyDiQA-GoldP English(en), Russian(ru), Indonesian(id), Korean(ko), Arabic(ar), Finnish(fi),
Bengali(bn), Telugu(te), Swahili(sw)

3,695 113-921

Table 3: The detailed information of datasets.

Model Dataset low-resource languages extremly low-resource languages

BLOOM
XNLI Swahili(sw) German(de), Russian(ru), Turkish(tr), Greek(el), Thai(th), Bulgarian(bg)
XCOPA Swahili(sw) Italian(it), Turkish(tr), Thai(th), Estonian(et), Haitian(ht), Quechua(qu)
TyDiQA-GoldP Telugu(te), Swahili(sw) Russian(ru), Korean(ko), Finnish(fi), Bengali(bn)

Qwen1.5
XNLI Turkish(tr), Greek(el), Bulgarian(bg), Hindi(hi), Urdu(ur), Swahili(sw) —
XCOPA Turkish(tr), Estonian(et), Tamil(ta), Swahili(sw), Haitian(ht), Quechua(qu) —
TyDiQA-GoldP Finnish(fi), Bengali(bn), Telugu(te), Swahili(sw) —

Llama3.1
XNLI Russian(ru), Chinese(zh), Vietnamese(vi), Turkish(tr), Arabic(ar), Greek(el), Bulgarian(bg), Hindi(hi), Urdu(ur), Swahili(sw) —
XCOPA Chinese(zh), Vietnamese(vi), Indonesian(id), Turkish(tr), Estonian(et), Tamil(ta), Swahili(sw), Haitian(ht), Quechua(qu) —
TyDiQA-GoldP Russian(ru), Indonesian(id), Korean(ko), Arabic(ar), Finnish(fi),Bengali(bn), Telugu(te), Swahili(sw) —

Table 4: Classification of languages for three datasets (XNLI, XCOPA, TyDiQA-GoldP) across three
LLMs (BLOOM, Qwen1.5, Llama3.1).

D CASE STUDY

Table 5 shows the representative examples selected from some topics in TyDiQA-GoldP.

E DETAILED RESULTS

All results in individual languages of three tasks are reported in Tables 6, 7, and 8. For XCOPA, we
report the results with large k value settings in Figure 10.
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Topic
Top-4 Examples

Passage Question Answer

t0

Brontosaurus was a large, long-necked quadrupedal animal with a long, whip-like tail,
and forelimbs that were slightly shorter than its hindlimbs. ... The largest species, B.
excelsus, weighed up to 15 tonnes (15 long tons; 17 short tons) and measured up to 22m
(72ft) long from head to tail...

How tall were brontosaurs? 22m (72ft)

Pteranodon was the first pterosaur found outside of Europe. Its fossils first were found
by Othniel Charles Marsh in 1870,...

Where was the first Pteranodon fossil
found?

Othniel Charles Marsh

Sawfishes, also known as carpenter sharks, are a family of rays characterized by a long,
... They are among the largest fish with some species reaching lengths of about 7–7.6m
(23–25ft)...

How long do sawfishes get?? 7–7.6m (23–25ft)

The name ”Haflinger” comes from the village of Hafling, which today is in northern
Italy. ..The desired height today is between 13.2 and 15 hands (54 and 60 inches, 137
and 152 cm). ...

How tall does Haflingers get? (54 and 60 inches)

t4

HGTV (an initialism for Home & Garden Television) is an American basic cable and
satellite television channel that is owned by Discovery, Inc.

Who owns HGTV? Discovery, Inc

The pope is the bishop of Rome. He is also, by virtue of that office:Vicar of Jesus Christ,
Successor of the Prince of the Apostles, Supreme Pontiff of the Universal Church, Patri-
arch of the Latin Church, Primate of Italy, Archbishop and Metropolitan of the Roman
Province, Sovereign of the Vatican City State, Servant of the servants of God.

Who runs the Catholic Church? The pope

The National Insurance number is a number used in the United Kingdom in the admin-
istration of the National Insurance or social security system. It is also used for some
purposes in the UK tax system. The number is described by the United Kingdom gov-
ernment as a ”personal account number.

What is the average age that people
have their first child in the UK?

27 to 29 years old

The National Insurance number is a number used in the United Kingdom in the admin-
istration of the National Insurance or social security system. It is also used for some
purposes in the UK tax system. The number is described by the United Kingdom gov-
ernment as a ”personal account number.”

What is the British equivalent of So-
cial Security?

The National Insurance number

t18

The 2009 Stanley Cup Finals was the championship series of the National Hockey
League’s (NHL) 2008–09 season, and the culmination of the 2009 Stanley Cup play-
offs. It was contested between the Eastern Conference champion Pittsburgh Penguins
and the Western Conference champion Detroit Red Wings. ...

Who won the 2009 Stanley Cup Pittsburgh

The history of the Philadelphia Eagles begins in 1933. In their history, the Eagles
have appeared in the Super Bowl three times, losing in their first two appearances but
winning the third, in 2018. They won three NFL Championships, the precursor to the
Super Bowl, in four appearances...

How many times have the Philadel-
phia Eagles played in the Super
Bowl?

three times

The Pittsburgh Steelers (6–2) have won the most Super Bowls with six championships,
while the New England Patriots (5–5), the Dallas Cowboys (5–3), and the San Francisco
49ers (5–1) have five wins. New England has the most Super Bowl appearances with
eleven, while the Buffalo Bills (0–4) ...

Who won the last Super Bowl? New England Patriots

Adam Matthew Vinatieri (born December 28, 1972) is an American football place-
kicker for the Indianapolis Colts of the National Football League (NFL). He has
played in five Super Bowls: four with the New England Patriots and one with the Colts,
winning with the Patriots in 2001, 2003, and 2004 ...

Who is the oldest player in the NFL? Vinatieri

Table 5: The top-4 representative samples of some topics in TyDiQA-GoldP selected by our Topic-
XICL model.

58 59 60 61 62 63 64 65 66 67 68

ICL_random

ICL_sem

ICL_cluster

Topic-XICL

Qwen1.5

48 50 52 54 56

BLOOM

70 71 72 73 74 75 76

Llama3.1

k=2
k=3
k=4
k=6
k=8
k=12

Figure 10: The performance of BLOOM-7b1, Qwen1.5-7B and Llama-3.1-8B models in XCOPA
with k = [2, 3, 4, 6, 8, 12].
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TyDiQA-GoldP ar bg en fi id ko ru sw te avg
Qwen1.5-7B 44.3 46.9 62.3 53.2 63.0 52.5 43.2 37.3 9.1 45.8

k=2

ICL random 42.1±0.41 37.5±1.10 63.9±0.74 56.8±0.80 64.5±0.87 62.1±0.95 46.4±0.46 59.7±2.30 33.9±2.26 51.9±0.49
ICL sem 45.4 42.5 63.6 60.9 65.8 62.3 48.9 62.3 40.4 54.7
ICL cluster 45.1±1.07 40.7±1.45 65.2±0.74 56.1±0.97 65.5±0.66 62.7±0.30 48.1±0.41 59.9±0.34 33.3±2.40 53.0±0.55
Topic-XICL(ours) 53.4±4.70 40.7±1.10 68.2±1.06 63.2±2.31 72.2±3.07 71.4±3.02 49.0±0.86 62.7±0.33 34.7±0.55 57.3±0.55

k=3

ICL random 40.6±3.49 39.2±1.10 63.5±1.72 54.9±4.13 64.4±1.01 62.9±1.97 45.7±1.37 53.8±5.15 27.1±4.50 50.2±2.29
ICL sem 44.8 40.7 63.6 61.3 65.8 64.1 47.4 61.9 40.4 54.5
ICL cluster 45.0±0.58 40.1±0.42 65.6±0.54 56.9±2.27 64.6±1.15 62.8±2.10 48.1±0.61 59.3±2.69 35.2±1.31 53.1±0.49
Topic-XICL(ours) 54.0±5.12 43.4±1.50 69.8±1.93 63.8±2.29 73.3±3.52 74.6±3.97 49.4±1.01 62.7±1.18 36.6±2.65 58.6±2.65

k=4

ICL random 42.6±1.38 37.8±1.10 65.2±1.03 58.9±1.39 65.5±1.28 62.4±1.52 47.3±1.16 58.4±2.20 36.0±0.97 52.7±0.82
ICL sem 42.8 41.6 64.5 60.5 65.8 64.5 48.0 58.7 39.8 54.0
ICL cluster 43.8±0.71 40.1±0.42 65.7±0.81 56.9±0.70 65.9±0.73 62.6±1.20 47.5±0.79 60.4±0.50 35.6±2.61 53.2±0.45
Topic-XICL(ours) 55.7±5.76 39.8±1.25 70.9±2.15 64.7±2.52 73.3±3.28 73.2±3.70 49.3±0.79 62.3±0.62 36.9±1.73 58.5±1.73

BLOOM-7b1 27.1 39.8 54.5 29.2 59.5 29.7 31.8 69.1 19.7 40.1

k=2

ICL random 50.8±5.23 64.6±1.45 53.8±1.87 11.8±2.00 57.9±2.49 33.2±0.62 36.7±1.48 63.1±1.56 33.0±2.06 45.0±1.39
ICL sem 52.8 57.5 55.5 18.8 56.1 28.6 36.0 61.3 35.0 44.6
ICL cluster 56.5±3.20 60.8±2.21 54.7±0.84 15.5±2.22 59.4±0.80 31.6±0.34 37.7±0.86 62.6±2.62 31.1±2.21 45.6±0.97
Topic-XICL(ours) 56.0±1.08 69.9±1.45 56.1±0.57 18.7±0.88 64.1±1.89 32.6±0.17 39.0±0.95 69.3±2.78 34.8±1.11 49.0±1.11

k=3

ICL random 48.2±6.54 61.9±4.74 53.9±4.84 14.0±2.77 55.6±4.59 31.2±2.63 35.3±3.23 61.3±3.03 32.9±3.03 43.8±3.03
ICL sem 52.0 59.3 58.6 16.8 57.2 30.1 38.5 61.7 36.5 45.6
ICL cluster 55.4±2.41 62.8±2.50 55.4±0.75 14.7±1.25 57.2±1.95 29.3±2.13 38.1±1.67 61.3±2.16 31.2±3.88 45.1±1.26
Topic-XICL(ours) 55.5±1.90 69.0±0.72 58.2±1.13 17.5±0.34 61.8±0.80 33.0±0.34 37.8±0.31 67.5±1.80 34.4±0.93 48.3±0.93

k=4

ICL random 47.4±6.72 61.4±4.17 54.9±4.70 16.7±3.52 55.8±5.06 32.2±2.35 36.2±4.12 62.7±2.05 35.5±2.97 44.7±3.32
ICL sem 48.9 57.5 58.2 16.2 57.5 33.3 37.9 60.7 36.0 45.1
ICL cluster 52.4±1.93 58.4±1.91 57.2±1.09 15.9±2.08 56.7±1.03 30.8±1.57 37.2±1.92 62.5±0.75 33.6±3.81 45.0±0.88
Topic-XICL(ours) 56.4±1.30 71.7±2.32 60.0±0.70 17.4±0.89 63.2±0.60 34.1±0.17 39.2±0.27 67.5±1.58 35.4±1.32 49.4±1.32

Llama-3.1-8B 61.0 57.5 70.7 65.5 70.1 77.5 51.2 78.4 79.4 67.9

k=2

ICL random 60.0±2.31 64.9±1.10 71.1±1.42 65.0±1.74 70.3±1.53 81.0±1.52 53.4±2.44 79.1±0.50 77.6±0.85 69.2±1.30
ICL sem 59.7 61.1 71.4 66.4 69.4 81.5 52.6 80.4 80.0 69.1
ICL cluster 61.2±1.22 66.7±1.82 71.3±0.28 65.9±0.91 68.8±0.38 80.2±0.62 54.2±1.31 79.9±0.57 77.9±0.92 69.6±0.34
Topic-XICL(ours) 65.4±2.69 67.3±2.50 74.3±1.61 68.3±1.05 72.9±0.83 82.6±0.00 59.0±2.63 82.0±0.66 78.9±0.69 72.3±0.69

k=3

ICL random 57.4±3.90 62.8±3.15 68.6±2.19 62.4±2.90 67.9±1.31 81.3±1.40 52.1±2.85 76.6±0.66 76.4±2.24 67.3±2.22
ICL sem 57.4 63.7 71.1 64.5 70.3 80.1 52.0 80.2 80.1 68.8
ICL cluster 60.6±0.40 67.8±1.50 70.1±0.39 64.7±0.36 69.6±0.17 80.1±0.30 53.7±0.50 78.4±0.96 77.4±1.06 69.2±0.23
Topic-XICL(ours) 66.1±3.16 68.1±3.15 75.0±2.04 70.1±1.88 72.4±1.18 83.3±0.59 59.4±3.31 82.2±1.25 77.7±0.28 72.7±0.28

k=4

ICL random 58.8±4.84 64.9±3.34 69.7±4.29 63.9±3.76 69.3±2.30 81.8±1.81 53.6±3.27 77.7±2.65 74.3±3.76 68.2±3.08
ICL sem 57.7 66.4 71.6 66.4 70.3 82.2 53.8 80.2 78.3 69.6
ICL cluster 60.3±0.85 69.0±1.91 70.5±0.57 66.5±0.49 69.6±0.60 80.1±0.78 53.8±1.16 79.2±0.81 77.4±1.29 69.6±0.54
Topic-XICL(ours) 64.6±2.45 68.1±1.45 73.6±1.24 68.3±0.85 71.7±0.66 81.9±0.34 59.1±3.14 81.4±1.23 77.0±0.32 71.7±0.32

Table 6: F1 score of TyDiQA-GoldP in 9 languages based on BLOOM-7b1, Qwen1.5-7B and
Llama-3.1-8B models.

XCOPA en ar bg de el es fr hi ru sw th tr ur vi zh AVG
Qwen1.5-7B 58.5 49.1 41.1 53.4 46.0 52.2 54.5 42.3 44.1 36.6 37.8 44.7 39.7 50.4 49.4 46.6

k=2

ICL random 63.1±5.19 45.6±3.22 48.5±3.16 50.0±3.33 49.2±3.58 52.3±3.90 49.6±3.69 45.9±1.37 48.6±2.83 35.4±0.99 46.6±3.48 43.0±1.51 40.8±1.81 51.6±4.28 53.7±2.44 48.2±2.93
ICL sem 58.1 46.0 49.8 51.6 48.5 51.2 50.8 46.9 48.1 38.5 46.8 45.2 42.4 52.7 52.6 48.6
ICL cluster 58.8±0.26 45.5±0.74 49.3±1.18 50.9±0.58 47.4±0.75 52.7±1.07 50.3±0.39 47.6±0.51 49.0±0.43 38.0±0.88 48.1±3.95 44.7±0.99 41.1±2.33 52.8±1.88 53.3±0.75 48.6±0.31
Topic-XICL(ours) 59.6±0.22 47.3±0.91 50.6±0.79 51.8±0.34 49.9±0.11 52.0±0.20 51.2±0.12 48.2±0.05 49.5±0.49 40.3±0.33 50.9±1.50 46.1±0.95 44.3±0.55 55.0±1.81 54.6±0.25 50.1±0.25

k=3

ICL random 59.2±1.93 44.2±2.76 47.6±2.07 49.8±2.96 47.6±1.33 50.8±2.55 49.4±2.77 47.6±1.89 47.8±2.46 35.1±0.77 44.6±3.75 42.5±1.61 40.7±2.02 49.9±2.70 53.3±1.95 47.3±2.22
ICL sem 56.7 46.3 49.5 51.0 49.5 50.8 50.7 48.0 48.7 37.4 47.6 45.0 43.2 52.5 52.0 48.6
ICL cluster 58.2±0.75 45.1±0.49 48.4±0.92 50.4±0.42 48.3±2.01 51.4±0.91 49.9±0.27 48.0±0.09 47.6±0.73 38.6±1.95 48.1±2.71 44.7±0.99 41.4±2.38 52.4±2.39 51.6±0.66 48.3±0.22
Topic-XICL(ours) 59.9±0.45 46.7±0.81 49.8±0.74 52.4±0.45 49.9±0.49 53.0±0.45 51.9±0.56 48.7±0.18 49.4±0.20 40.8±1.60 50.1±1.18 45.9±0.77 45.0±0.82 54.6±1.07 54.0±0.26 50.1±0.26

k=4

ICL random 60.0±0.75 44.1±0.69 47.3±0.54 50.0±0.75 47.5±0.60 50.9±0.31 49.8±0.92 48.0±1.04 47.9±0.40 34.4±0.30 43.1±1.99 41.8±0.18 40.2±1.68 49.6±0.35 53.4±0.69 47.2±0.44
ICL sem 56.1 45.4 48.6 50.9 49.2 50.5 50.2 48.1 48.7 36.7 47.2 44.7 42.9 52.2 51.7 48.2
ICL cluster 58.4±0.44 44.8±0.82 47.1±0.64 50.6±0.44 47.6±2.18 50.6±0.93 49.7±0.14 48.1±0.44 47.4±0.85 36.9±2.45 46.4±2.31 43.5±0.91 41.6±3.15 50.8±3.16 50.6±0.54 47.6±0.36
Topic-XICL(ours) 59.1±0.52 47.3±1.14 50.0±1.35 51.4±0.48 50.7±1.33 52.8±0.84 51.5±0.81 48.3±0.05 49.2±0.87 40.7±2.05 50.1±1.15 46.4±1.30 45.3±0.84 55.1±1.44 53.0±0.22 50.1±0.22

BLOOM-7b1 34.1 33.6 33.7 33.1 33.4 35.8 36.5 31 33.4 32.9 21.2 33.6 33.3 33.1 32.7 32.8

k=2

ICL random 37.8±5.13 35.1±2.47 34.7±1.49 34.5±0.94 34.5±0.27 38.3±5.14 37.9±5.62 33.8±0.65 34.0±0.42 36.2±2.65 34.9±2.34 34.6±1.58 34.4±1.51 34.6±1.52 34.2±1.33 35.3±2.15
ICL sem 37.9 35.9 36.3 35.8 36.1 38 37.6 36.2 36.2 38.8 35.3 36.5 34.7 38.6 35.1 36.6
ICL cluster 35.7±1.63 33.8±1.33 34.9±0.2 34.3±1.1 35.0±1.3 35.3±1.49 35.5±1.58 32.5±1.09 35.5±0.35 36.1±0.47 33.9±1.4 33.7±0.28 33.2±0.93 33.5±0.83 33.7±1.41 34.4±0.92
Topic-XICL(ours) 38.7±0.11 38.1±0.08 37.8±0.41 37.0±0.07 37.1±1.43 37.3±0.68 38.3±0.75 42.1±4.05 39.0±0.44 39.2±0.38 36.7±1.84 34.7±0.36 37.4±0.72 39.8±2.94 38.5±0.88 38.1±0.54

k=3

ICL random 35.9±3.29 34.8±3.24 34.3±0.3 34.9±1.54 36.3±2.56 35.1±3.23 35.0±2.47 34.2±2.31 35.0±2.28 34.3±2.06 33.9±0.83 33.3±0.41 34.5±2.18 35.4±4.11 35.0±3.18 34.8±1.56
ICL sem 38.3 37.6 36.7 35.7 36.6 37.6 37.7 36.4 37.3 37.7 34.1 36.6 36.2 38.1 36.2 36.9
ICL cluster 36.4±1.38 35.6±2.53 35.7±1.54 35.2±1.53 34.2±1.54 36.2±1.59 36.3±1.16 34.9±2.77 35.9±1.8 38.0±1.46 33.4±0.94 34.5±0.81 34.1±2.57 33.8±4.16 33.8±2.19 35.2±1.67
Topic-XICL(ours) 41.1±0.69 35.2±0.82 37.2±0.09 36.8±0.42 38.7±1.88 39.8±0.61 39.9±0.41 41.5±2.30 37.7±0.38 41.1±1.55 37.8±1.57 35.1±0.34 37.8±0.91 39.8±1.85 38.7±0.24 38.5±0.65

k=4

ICL random 33.6±2.17 34.9±2.34 33.4±0.64 35.0±0.82 33.4±0.53 33.1±0.72 33.5±0.91 35.1±2.63 35.8±0.95 34.6±0.76 33.1±0.38 33.2±0.61 34.1±1.19 35.9±3.53 35.3±2.39 34.3±1.13
ICL sem 38.9 37.8 35.8 36.3 36.5 39 39.3 36.3 37.3 38.1 34.1 36.1 36.6 38.1 37.4 37.2
ICL cluster 36.6±1.61 36.3±1.79 35.1±1.83 36.0±1.63 33.9±0.33 36.7±1.48 36.7±0.83 37.7±1.51 36.4±1.84 36.2±2.68 33.8±1.71 34.0±0.51 36.6±2.61 39.2±3.22 36.9±2.07 36.1±1.59
Topic-XICL(ours) 41.0±1.01 40.6±0.51 38.1±1.34 36.5±0.45 40.7±3.00 38.3±0.65 38.9±0.61 41.9±3.46 37.6±0.25 38.8±2.23 38.1±1.88 35.4±0.38 38.5±0.94 40.7±3.14 39.6±1.17 39.0±0.91

Llama-3.1-8B 52.3 36.8 45.5 45.7 41.4 51.4 50.9 44.0 46.2 38.6 46.6 44.5 31.3 47.3 49.4 44.8

k=2

ICL random 47.5±9.35 43.6±2.86 42.6±7.65 47.8±2.93 45.2±7.87 41.4±5.16 43.4±4.62 40.6±6.03 42.2±6.82 38.1±1.95 37.0±3.17 41.0±5.89 37.4±2.98 39.8±3.46 40.9±7.41 41.9±5.16
ICL sem 60.5 51.6 52.3 54.0 52.2 54.6 54.8 48.8 53.0 46.5 47.9 51.1 46.0 50.8 52.2 51.8
ICL cluster 58.9±1.86 51.7±0.95 52.4±2.52 54.1±0.82 44.7±7.43 55.8±0.84 53.2±3.22 51.4±2.63 51.5±2.03 44.3±0.83 47.0±3.46 51.6±2.10 44.5±4.76 53.2±0.34 51.9±0.71 51.1±1.08
Topic-XICL(ours) 61.3±0.20 53.2±0.77 54.6±0.18 55.8±0.83 56.1±0.30 56.3±1.14 56.4±1.11 52.6±0.11 54.2±0.27 48.3±0.93 52.7±1.95 52.6±0.64 51.1±2.48 55.8±0.78 54.5±0.80 54.4±0.80

k=3

ICL random 64.0±2.49 53.5±2.11 54.3±1.95 56.3±1.78 52.0±2.80 58.0±4.59 57.4±4.31 51.1±2.62 53.1±2.56 46.2±2.90 48.2±3.76 53.4±2.38 46.3±1.55 54.4±4.52 52.5±3.06 53.4±2.12
ICL sem 62.4 52.6 53.7 55.1 53.2 56.5 56.0 51.0 54.5 46.3 49.4 52.4 46.5 51.9 53.4 53.0
ICL cluster 61.3±1.50 52.4±0.60 52.5±3.36 54.6±1.02 55.0±1.54 56.1±0.49 54.8±0.67 52.1±2.16 50.6±2.06 44.3±1.48 48.1±3.39 53.0±0.74 45.4±4.25 51.6±1.12 52.5±2.10 52.3±0.61
Topic-XICL(ours) 63.6±0.24 53.6±0.53 56.7±0.61 56.3±0.38 56.2±0.40 57.9±0.80 57.4±0.54 54.6±0.68 55.2±0.43 49.1±0.31 52.4±0.08 53.8±0.41 50.6±0.28 56.6±0.84 55.1±0.17 55.3±0.17

k=4

ICL random 59.4±4.06 52.8±0.22 50.8±3.48 56.3±1.31 48.7±1.74 55.3±3.27 57.0±2.92 48.4±2.98 49.8±4.96 45.3±0.58 46.3±2.39 50.9±2.01 45.3±2.02 51.7±2.18 49.6±3.49 51.2±1.60
ICL sem 62.9 52.6 54.0 54.8 53.3 56.4 56.0 51.2 55.3 45.9 50.9 52.6 46.7 51.8 53.1 53.2
ICL cluster 62.9±0.92 52.1±0.51 54.0±1.23 54.8±0.76 55.6±1.71 56.4±0.73 54.5±0.56 52.6±1.26 52.0±1.82 45.0±1.64 50.0±2.39 52.7±0.45 46.2±3.63 54.7±0.44 52.3±2.26 53.1±0.66
Topic-XICL(ours) 63.8±0.42 53.4±0.26 55.7±0.04 55.5±0.22 56.2±0.22 56.3±0.44 56.2±0.50 54.4±0.43 56.0±0.30 48.1±0.44 52.3±0.31 53.3±0.20 50.4±0.46 56.0±0.47 54.6±0.13 54.8±0.13

Table 7: Accuracy of XCOPA in 12 languages based on BLOOM-7b1, Qwen1.5-7B and Llama-3.1-
8B models.
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Qwen1.5-7B 86.8 54.8 47.6 70.4 77.0 51.2 53.8 2.0 59.2 61.4 68.2 62.8 57.9

k=2

ICL random 89.2±0.59 55.0±1.61 49.9±0.25 69.2±0.59 70.8±2.63 51.6±0.57 51.5±1.32 27.7±7.74 59.2±2.29 58.0±0.59 66.7±3.58 69.1±5.75 59.8±0.58
ICL sem 91.4 53.6 52.2 64.4 70.8 53.2 52.6 48.4 62.4 54.2 63.0 71.6 61.5
ICL cluster 88.6±2.04 54.7±1.46 48.6±1.42 66.1±2.53 71.3±1.39 51.3±0.68 52.4±0.99 42.1±1.89 61.2±3.77 57.3±1.75 70.7±2.23 68.6±3.68 61.1±0.64
Topic-XICL(ours) 91.4±0.16 58.2±0.09 53.4±0.47 70.0±0.09 73.8±0.28 54.4±0.50 53.6±0.50 47.6±0.90 64.8±0.47 58.4±0.57 72.0±0.81 77.6±2.36 64.6±2.36

k=3

ICL random 91.3±0.50 56.3±1.82 48.7±1.11 71.3±1.33 75.4±3.69 54.0±1.56 52.1±1.82 47.0±5.40 63.9±0.50 59.9±0.66 70.5±3.17 77.1±2.65 63.9±1.01
ICL sem 90.6 54.0 52.6 70.4 71.6 52.4 51.0 46.2 64.2 57.8 70.8 75.2 63.1
ICL cluster 89.9±1.09 54.4±2.72 49.7±1.09 69.7±1.72 75.8±1.02 51.5±1.33 51.5±2.61 50.0±0.75 64.5±0.62 57.1±0.94 72.4±1.13 74.2±2.54 63.4±0.70
Topic-XICL(ours) 91.6±0.09 57.8±0.33 52.6±0.71 71.4±0.25 76.4±0.41 56.2±1.09 57.2±1.70 51.2±0.34 67.6±0.98 62.8±0.82 76.2±0.66 82.0±0.96 66.9±0.96

k=4

ICL random 91.1±1.05 55.4±1.14 49.5±1.06 69.8±0.59 76.5±4.30 52.1±1.23 51.7±1.27 50.7±1.52 64.8±3.02 59.9±1.05 70.7±3.62 80.1±0.82 64.3±0.68
ICL sem 92.0 51.8 45.2 71.4 73.6 53.8 50.6 50.4 65.2 56.6 72.4 75.2 63.2
ICL cluster 90.9±1.59 53.8±1.77 50.0±1.23 69.6±0.59 77.7±1.75 50.1±1.31 51.9±2.37 50.9±0.52 65.2±1.66 58.4±2.29 71.7±1.48 78.9±2.07 64.1±0.81
Topic-XICL(ours) 92.2±0.09 59.2±1.06 51.6±0.33 70.6±0.25 77.8±0.38 55.4±1.55 54.8±0.75 52.2±0.74 69.4±1.09 62.6±0.59 75.6±0.50 83.2±0.09 67.1±0.09

BLOOM-7b1 45.8 49.8 49.6 49.8 49.4 50.2 49.6 49.4 50.4 50 51 50.4 49.6

k=2

ICL random 56.4±0.93 49.5±0.34 49.6±1.31 51.6±0.9 50.1±0.33 50.9±1.33 49.6±1.75 51.6±0.75 52.8±0 53.2±0.68 50.9±0.82 49.6±0.43 51.3±0.4
ICL sem 55.2 49 44.8 52.4 47 52.6 50.2 54.2 53 52.4 49.2 49 50.8
ICL cluster 57.4±0.65 49.5±0.82 50.5±0.9 52.3±0.57 49.8±0.29 49.9±0.84 50.5±0.29 53.1±0.82 52.6±1.02 53.0±1.72 51.0±1.72 50.5±0.62 51.7±0.09
Topic-XICL(ours) 58.0±0 53.8±0.82 50.4±0.66 53.6±1.36 50.8±0.9 52.4±0.19 55.0±1.32 53.6±1.43 53.8±0.93 54.0±1.71 56.8±1 54.8±0.62 53.9±0.13

k=3

ICL random 56.6±0.34 51.1±0.49 49.4±0.93 51.9±0.81 50.3±0.47 51.9±1.52 50.4±0.52 50.5±0.78 52.4±0.98 53.3±0.34 49.5±0.19 49.9±0.62 51.4±0.21
ICL sem 56 50 51 52.2 46.8 48.2 47.8 51.4 53.6 53.8 46.6 47.6 50.4
ICL cluster 58.2±0.29 48.6±0.43 49.7±0.52 52.6±0.16 48.2±0.47 49.4±1.16 50.3±0.68 48.9±0.84 52.9±0.96 53.5±0.75 50.7±0.57 48.5±0.38 51.0±0.26
Topic-XICL(ours) 58.6±0.66 50.2±0.9 53.2±0.34 53.2±0.9 51.4±0.56 52.0±0.84 52.0±0.66 54.2±1.73 56.4±1.57 54.2±1 61.6±1.14 57.0±0.57 54.5±0.09

k=4

ICL random 57.3±0.34 49.6±0.68 49.1±0.85 51.7±0.9 49.9±0.41 50.1±0.57 50.0±0.65 52.1±0.73 52.3±1.18 53.7±0.1 49.8±0.66 49.9±0.65 51.3±0.29
ICL sem 56.8 49 51.4 51.6 51 48.8 49.2 53.2 54.8 54.6 50 47.4 51.5
ICL cluster 59.3±0.19 49.7±0.33 50.3±0.47 52.1±0.78 49.9±1.23 49.9±1.14 50.3±0.19 52.9±0.9 53.1±0.1 54.4±0.71 49.9±0.16 50.6±0.66 51.9±0.17
Topic-XICL(ours) 59.4±0.75 54.0±0.87 50.4±1 53.0±0.34 50.8±1.39 51.0±1.14 55.6±0.49 53.2±0.34 53.6±1.96 55.2±0.85 58.6±1.7 58.0±0.41 54.4±0.16

Llama-3.1-8B 86.8 60.2 52.2 78.4 77.6 50.2 53.8 64.2 65.0 68.0 75.0 79.2 67.6

k=2

ICL random 94.8±0.28 64.2±2.01 54.9±0.90 83.5±1.54 86.9±0.41 50.9±0.84 59.7±2.90 66.6±2.44 74.2±4.55 71.3±2.00 81.1±1.32 86.7±1.00 72.9±1.50
ICL sem 95.0 62.4 54.2 80.4 85.4 49.8 61.0 67.0 70.2 69.8 79.8 83.4 71.5
ICL cluster 94.8±0.59 63.3±1.52 55.9±0.41 82.4±1.66 86.3±0.41 50.5±0.57 61.6±0.59 67.3±0.50 71.5±0.90 73.5±0.52 81.1±0.38 85.9±0.74 72.9±0.25
Topic-XICL(ours) 95.6±0.19 66.0±0.77 57.0±0.25 84.6±0.68 88.4±0.25 52.6±0.57 62.2±0.25 69.6±0.81 76.0±0.85 74.0±0.16 82.4±0.25 88.0±0.52 74.7±0.52

k=3

ICL random 95.4±0.28 63.7±2.32 54.9±1.48 82.6±1.31 87.8±1.34 50.9±1.05 60.1±3.13 66.5±1.52 74.9±4.20 70.9±2.71 82.4±1.70 87.3±0.90 73.1±1.46
ICL sem 94.8 62.8 54.0 81.8 86.6 50.2 58.8 66.2 74.6 71.2 81.6 83.4 72.2
ICL cluster 95.4±0.43 63.3±1.80 56.3±0.34 83.1±1.39 86.9±0.68 51.5±0.50 60.0±0.16 68.2±0.82 74.5±0.74 72.7±1.15 81.9±0.81 86.9±1.16 73.4±0.25
Topic-XICL(ours) 96.0±0.09 65.8±0.41 56.8±0.16 84.8±0.43 88.6±0.25 52.2±0.34 62.4±0.50 70.0±0.43 77.6±0.71 74.2±0.81 83.4±0.38 88.8±0.41 75.0±0.41

k=4

ICL random 95.3±0.68 63.6±1.23 54.7±0.98 83.7±0.98 88.1±1.36 50.4±1.02 60.4±1.88 66.5±0.98 75.1±2.16 72.1±1.68 83.0±1.30 87.2±0.98 73.3±1.00
ICL sem 95.4 62.2 53.4 82.8 86.0 51.2 61.0 66.8 73.6 69.6 82.4 82.8 72.3
ICL cluster 95.7±0.41 63.7±1.86 55.8±0.28 83.5±1.20 87.2±0.98 51.5±1.60 60.7±0.38 66.9±0.09 73.9±0.57 72.8±1.45 81.0±1.18 87.9±1.09 73.4±0.48
Topic-XICL(ours) 96.2±0.19 66.2±0.28 56.2±0.09 85.4±0.62 89.4±0.09 53.8±0.75 62.8±0.81 71.0±0.94 76.4±0.34 74.2±0.57 84.6±0.65 89.4±0.52 75.5±0.52

Table 8: Accuracy of XNLI in 15 languages based on BLOOM-7b1, Qwen1.5-7B and Llama-3.1-8B
models.
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