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This work revisits the classical low-rank matrix factorization problem and unveils
the critical role of initialization in shaping convergence rates for such nonconvex and
nonsmooth optimization. We introduce Nyström initialization, which significantly
improves the global convergence of Scaled Gradient Descent (ScaledGD) in both
symmetric and asymmetric matrix factorization tasks. Specifically, we prove that
ScaledGDwithNyström initialization achieves quadratic convergence in caseswhere
only linear rates were previously known. Furthermore, we extend this initialization
to low-rank adapters (LoRA) commonly used for finetuning foundation models.
Our approach, NoRA, i.e., LoRA with Nyström initialization, demonstrates superior
performance in various downstream tasks in large language and diffusion models.

1. Introduction
Compared with learning rates and descent directions, initialization has been a relatively overlooked
aspect of optimization. In the widely studied smooth optimization literature [1, 2], as long as a
suitable (small) learning rate is chosen, most of optimization algorithms such as GD provably
converge to a stationary point at the same rate, regardless of initialization. This work goes beyond
stationary points and highlights the crucial role of initialization for global optimality of a class of
Burer-Monteiro factorization [3] – the same algorithm can exhibit markedly different behaviors, such as
linear vs. quadratic convergence, depending on initialization.
We consider matrix factorization as a canonical example, where the goal is to solve i) symmetric
problems, minX ‖XX> −A‖2F; and ii) asymmetric ones, minX,Y ‖XY> −A‖2F. While these classical
problems can be handled via various approaches, they are notoriously challenging for optimization,
since they are nonconvex, nonsmooth (albeit differentiable), non-coercive (for asymmetric problems),
and do not satisfy Polyak-Lojasiewicz (PL) condition [4]. Let A ∈ Rm×n (or A ∈ Rm×m) for
asymmetric (symmetric) problems, X ∈ Rm×r and Y ∈ Rn×r. Building on the relation of rank(A)
and r, we can categorize matrix factorization into three setups: exact-parametrized (rank(A)=r),
over-parametrized (rank(A)<r), and under-parametrized (rank(A)>r).
The asymmetric problem ii) is thoroughly explored in the literature. For the exact- and over-
parametrized cases, global convergence has been established for GD, Alternating GD (AltGD),
and ScaledGD [5–9], where most of them admit a linear rate. Regarding under-parametrized set-
tings, only asymptotic global convergence of GD is established in [5] to the best of our knowledge.
Common to above algorithms is the small initialization with X0 ∼ N (0, ζ2x) and Y0 ∼ N (0, ζ2y ) for
some sufficiently small ζ2x and ζ2y . However, such initialization results in unfavorable performance
both theoretically and empirically, partly because of the need of escaping from a saddle point (0,0).
This work proposes Nyström initialization to effectively bypass the aforementioned saddle point.
More importantly, it significantly enhances the global convergence rates when applied on top of
ScaledGD. In the exact- and over-parametrized settings, Nyström initialization boosts ScaledGD
to converge at a quadratic rate (i.e., O(log log(1/ε))) on symmetric problems and enables a one-step
convergence for asymmetric problems. For the more challenging case with under-parametrization,
we prove that with our Nyström initialization, ScaledGD converges at a linear rate to the neighbor of
a global optimum on symmetric problems, and then exhibits a sublinear rate to a more fine-grained
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Table 1: Comparison of complexity for global optimality in (a)symmetric matrix factorization in
various settings. Here, EP, OP, and UP are abbreviations for exact-, over- and under- parametrization.
See more explanations in the footnote.

setting alg. ref. init. rate

As
ym

m
etr

ic EP
GD [6] small O

(
κ3 log(1/ε)

)
AltGD [7] special O

(
κ2 log(1/ε)

)
ScaledGD [9] local O(log(1/ε))

ScaledGD Theorem 3 Nyström O(1)

OP AltGD [7] special O
(
κ2 log(1/ε)

)
ScaledGD Theorem 6 Nyström O(1)

UP GD [5] small asymptotic
ScaledGD Theorem 4 Nyström O(1)

Sy
m
m
etr

ic EP GD* [10] small O
(
κ8 + κ2 log(1/ε)

)
ScaledGD Theorem 1 Nyström O

(
κ3
√
r + log log(1/ε)

)
OP GD* [10] small O

(
κ8 + κ6 log(κ/ε)

)
ScaledGD Theorem 5 Nyström O

(
κ3
√
r + log log(1/ε)

)
UP ScaledGD Theorem 2 Nyström O(r/ε · log(1/ε))

neighboring area. Overall, Nyström initialization enables us to improve existing rates in exact-, over-,
and under-parametrized settings; see more detailed comparisons in Tab. 1.1

Our results highlight that the convergence of ScaledGD is critically determined by the initialization.
Taking symmetric and exact-parametrized problems as an example, our quadratic rate slows down
to a linear one when adopting either small initialization or slightly perturbed Nyström initialization.
After demonstrating the theoreticalmerits ofNyström initialization, we further extend its applications
to another scenario with Burer-Monteiro factorization, in the context of LoRA for finetuning deep
neural networks [11]. This is motivated by the fact that asymmetric matrix factorization is equivalent
to LoRA applied on linear models with whitened data [12, 13], and is in line with several recent
works that take insights frommatrix factorization to improve LoRA [14, 15]. Compared with existing
strategies for initializing LoRA [16–18], our Nyström initialization for LoRA (abbreviated as NoRA)
is more economical and aligns better with existing deployment pipelines. The effectiveness of NoRA
is demonstrated on downstream tasks from various domains, through both diffusion and large
language models (LLMs). In a nutshell, our contributions can be summarized as:

v Faster rates. Nyström initialization is provably beneficial to ScaledGD. For symmetric problems,
it catalyzes not only the first quadratic rate in exact- and over- parameterized settings, but also a
(sub)linear rate for under-parametrization where only asymptotic results were known. It also
allows more remarkable improvement on asymmetric problems; see details in Tab. 1. Moreover,
these improved rates are obtained through a unified analysis framework.

v Critical role of initialization. Our theoretical results convey an intriguing message for nonconvex
(nonsmooth) optimization: the behaviors of the same algorithm,whether converging at a quadratic
or linear rate, are critically determined by initialization.

v Practical implications. We further illustrate the power of Nyström initialization for finetuning
diffusion and large language models (LLMs). The resultant approach, NoRA, effectively improves
the performance of LoRA on several representative tasks.
1In Tab. 1, ε is the prescribed optimality error, and κ denotes the condition number of A. The bound for UP

depicts the complexity to near optima. The “special” initialization in AltGD is still a small initialization, but
with more careful designs that will be clear in Sec. 3.1. Works marked with * are designed for another setting
(hence the comparison may not be fair).
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1.1. Related works
We only streamline results on the convergence of matrix factorization under the broad umbrella of
quartic optimization, where the objective is to minimize a forth-order polynomial. Other closely
related topics, such as LoRA variants, can be found in Apdx. A.2.
Quartic optimization. Matrix factorization problems considered in this work are classical examples
of forth-order growth functions. It involves a complex landscape characterized by nonconvexity,
nonsmoothness, and the absence of PL condition. Similar to other works listed in Tab. 1, the goal
of this work is to unveil intriguing behaviors from an optimization perspective. Recent works have
examined the convergence of several algorithms, such as GD, AltGD, and ScaledGD [5–8, 19] in exact-
and over- parametrized settings. Most of them admit linear convergence with different dependences
on the condition number of the factorized matrix A. GD for matrix square root problems is studied in
[20]. Another closely related setting is matrix sensing; see e.g., [10, 21–24]. Linear rates are obtained
for problems with exact- and over- parametrization, despite some of them demand early stopping.
Similar to matrix factorization, not too much is known for under-parametrization. There are other
approaches to tackle general forth-order growth optimization. For example, relative smoothness is
considered in [25]; adaptive step sizes induced by fine-grained geometry are studied in [26]. The
work of [27] also copes with such problems but requires convexity of the objective.

2. The power of initialization for symmetric matrix factorization
We start to examine the critical role of initialization on symmetric matrix factorization problems

min
X∈Rm×r

1

4
‖XX> −A‖2F. (1)

Within this section, we assume that A ∈ Rm×m is positive semidefinite (PSD), otherwise one
can employ the asymmetric formulation as in later sections. Problem (1) also closely links with
matrix sensing, particularly under a sufficient number of Gaussian measurements [23]. From an
optimization perspective, problem (1) is nonconvex and has no global Lipschitz gradient [4, 28].
Notationally, let rA := rank(A) and further denote the compact eigendecomposition as A = QΣQ>,
where Q ∈ Rm×rA and Σ ∈ RrA×rA . Since PSD matrices share the same eigen and singular values,
we employ σi(·) to denote both in this section. Without loss of generality, we assume that the largest
and smallest singular values are σ1(A) = 1 and σrA(A) = 1/κ such that the condition number is κ.
ScaledGD as our optimizer. We investigate the power of initialization on ScaledGD [9], a precondi-
tioned version of GD; see detailed discussions in e.g., [8, 9]. Starting from t = 0 with a learning rate
η > 0, the update of ScaledGD is given by

Xt+1 = Xt − η(XtX
>
t −A)Xt · (X>t Xt)

−1. (2)
The inversion of the r × r matrix X>t Xt is computationally feasible in the low-rank setting with
r � m. Small initialization is widely adopted, i.e., [X0]ij ∼ N (0, ζ2), where ζ is a sufficiently small
positive number. Under such initialization, ScaledGD converges linearly for exact-parametrization
(r = rA), yet less is known for under- and over-parametrization; see more in Tab. 1. Next, we show
that a simple yet effective initialization can provoke faster convergence of ScaledGD.

2.1. Nyström initialization
To improve the convergence rates, it is essential to ensure that the initialization satisfies two conditions
for exact- and under-parametrized problems2: i) each column of X0 is in the column space of A, and
ii) X0 is full rank, i.e., rank(X0) = r. The analytical rationale will be elucidated in the subsequent
sections. A straightforward means to meet these conditions is via Nyström sketch [29]

Nyström initialization: X0 = AΩ, where [Ω]ij ∼ N (0, ξ2),∀i,∀j (3)
2For the ease of presentation, the over-parametrized setting is considered in the appendix.
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where Ω ∈ Rm×r is a Gaussian random matrix. From this initialization, it is not difficult to see that
condition i) is satisfied already. Our next lemma shows that the condition ii) holds w.h.p.
Lemma 1 (Initialization for exact- and under- parametrization). For some universal constant τ > 0,
σr(X0) ≥ ξτ(

√
rA −

√
r − 1)σrA(A) is satisfied with high probability, i.e., rank(X0) = r w.h.p.

The detailed expression for this “high probability” in Lemma 1 can be found in Apdx. B.1.1. Note that
there is a “w.h.p.” over initialization in most of our results. This refers to that rank(X0) = r is needed
for exact- and under-parametrized settings, and rank(X0) = rA is needed when over-parametrized.

2.2. Nyström initialization in the exact-parametrized setting
We start with Nyström initialization for exact-parametrized problems, i.e., rA = r. Our first result
dives into the implicit regularization induced by the ScaledGD under the proposed initialization.
Lemma 2. If X0 is obtained by Nyström initialization (3) and rank(X0) = r is satisfied, ScaledGD in (2)
ensures that for all t ≥ 0

• every column of Xt is in the column space of A, and Xt = QΦt for some Φt ∈ Rr×r; and,
• the smallest eigenvalue of XtX

>
t satisfies that

σr(Xt+1X
>
t+1) ≥ (1− η)2t+2σr(X0X

>
0 ) + (1− η)σr(A)− (1− η)2t+3σr(A).

Lemma 2 implies the full rankness of Xt over the trajectory, i.e., rank(Xt) = rank(Φt) = r, ∀t. This
ensures an invertible preconditioner X>t Xt. In other words, iteration (2) is well-defined. The most
important implication of Lemma 2 is the alignment of Xt with the directions of eigenvectors of A,
that is, Xt = QΦt. This can be equivalently understood as the elimination of the residual space, i.e.,
(I −QQ>)Xt = 0,∀t. While we will expand this discussion shortly, this alignment in directions
enables us to establish a quadratic rate for ScaledGD.
Theorem 1. ScaledGD (2)with Nyström initialization (3) has a two-phase behavior w.h.p. over initialization.
• Phase 1 (linear convergence). Let η = O( 1

κ3‖A‖F ). After T1 := O(κ3
√
r log κ) iterations, ScaledGD

ensures that ‖XT1X
>
T1
−A‖F ≤ O(1/κ2); and,

• Phase 2 (quadratic convergence). After Phase I, ScaledGD converges quadratically with η = 0.5. In
particular, ‖XTX>T −A‖F ≤ ε is achieved after T = O

(
log log( 1

κε )
) iterations.

Theorem 1 establishes that ScaledGD attains global optimality of (1) withinO(κ3
√
r log κ+log log 1

κε )
iterations. ScaledGD linearly converges to a local region satisfying ‖XtX

>
t −A‖F ≤ O( 1

κ2 ), after
which a quadratic rate can be granted. This is, to the best of our knowledge, the first quadratic rate
for problem (1). Interestingly, it is achieved without requiring (exact) Hessian on a nonconvex
and nonsmooth problem. A graphical illustration of this quadratic rate can be found in Fig. 1 (a)
using data detailed in Apdx. E.1, where ScaledGD with Nyström initialization outperforms linearly
converging algorithms such as GD and ScaledGD with small initialization. Moreover, it is worth
emphasizing that Theorem 1 has no requirement on the magnitude of Nyström initialization – it
does not need ξ in (3) to be small, avoiding escaping from the stationary point 0.
The critical role of initialization. As shown in Lemma 2, Nyström initialization aligns Xt to the
directions of eigenvectors Q, thereby eliminating the residual space, i.e., (I−QQ>)Xt = 0,∀t. This
is in stark contrast with most of existing works [5, 6, 8], where small initialization only guarantees
that ‖(I −QQ>)Xt‖F converges to 0 at a linear rate. By getting rid of the residual space via Nys-
tröm initialization, ScaledGD can achieve a quadratic rate. We graphically illustrate this point in
Fig. 1 (b), where we perturb Nyström initialization slightly to inject noise into the residual space.
Reflected in the dotted lines, even if the noise is so small such that the earlier convergence does not
differ from Nyström initialization, only a linear rate is observed for perturbed initialization.
Extensions to the case of over-parametrization. Nyström initialization is further extended to cope
with over-parametrized case (r > rA) in Apdx. B.4. We slightly modify ScaledGD by substituting
the possibly non-invertible (X>t Xt)

−1 in (2) with (X>t Xt)
†; see (26). Unlike previous works [21, 24],
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Figure 1: Optimality error vs. iteration of ScaledGD under Nyström initialization in different
settings. (a) Comparison of GD, and ScaledGD with small / Nyström initialization (ours). (b) Solid
lines show that our initialization is not sensitive to magnitude of ξ; and dotted lines illustrate that
quadratic convergence cannot be obtained after perturbing the initialization, i.e., X0 = AΩ + N,
where [N]ij ∼ N (0, ξ2n). (c) Comparison of ScaledGD under Nyström initialization with various η.

our modification requires no damping parameters thanks to our Nyström initialization. This leads to,
as far as we know, the first quadratic rate for over-parametrized problems. Numerical experiments
on over-parametrized problems are provided in Fig. 4 in appendix to validate the quadratic rate.

2.3. Nyström initialization in the under-parametrized setting
Next, we consider the under-parametrized case of (1), i.e., r < rA. To the best of our knowledge,
only asymptotic convergence is established for GD on such problems [5]. This is partially because
that even the local PL condition is challenging to be verified. With Nyström initialization, we will
show that ScaledGD converges under a slightly weaker criterion.
Definition 1 (Weak optimality). Matrix X ∈ Rm×r is weakly optimal to (1) if X>A†X− Ir = 0.

Our first result characterizes that all global optima are also weakly optimal. In other words, if weak
optimality is ensured, this algorithm has a chance to reach a global optimum as well.
Lemma 3. All globally optimal solutions to (1) are also weakly optimal.

We then focus on the convergence of ScaledGD to weak optimality. In the case of under-
parametrization, Nyström initialization also aligns Xt to the directions of eigenvectors of A.
Lemma 4. ScaledGD in (2) with Nyström initialization (3) ensures Xt = QΦt,∀t for some Φt ∈ RrA×r.

Lemma 4 shows that (I−QQ>)Xt = 0,∀t also holds, namely, Nyström initialization eliminates the
residual space. Building upon this, the convergence of ScaledGD can be established.
Theorem 2. The following holds w.h.p. for ScaledGD (2) with Nyström initialization (3):
i) (Linear convergence to neighborhood of weak optima). If one chooses a constant η ≤ 1, ScaledGD ensures
that ‖X>t A†Xt − Ir‖F ≤ O(ηr) + ε in O(log 1

ε ) iterations; or,
ii) (Convergence to weak optima). Let η = O(ε/r), weak optimality is ensured by ScaledGD after O( rε log 1

ε )
iterations, i.e., ‖X>t A†Xt − Ir‖F ≤ ε.

If one chooses a constant learning rate e.g, η = 0.1, linear convergence can be established until
reaching a neighboring area of a weakly optimal solution. The error ‖X>t A†Xt − Ir‖F = O(ηr) is
low, given that r is typically small in practice. A graphical illustration of this linear rate can be found
in Fig. 1 (c). On the other hand, if the learning rate is chosen according to the prescribed accuracy ε,
one can obtain a sublinear rate O( rε log 1

ε ) to exact weak optimality. These behaviors clearly indicate
a step scheduling of learning rates (e.g., setting η = 0.1, 0.01, . . . every a few iterations) for both fast
convergence and exact weak optimality in practice. It is also worth mentioning that the convergence
under both choices of η has no dependence on κ.
Finally, we show that even in the worst case, ScaledGD guarantees that Xt converges to a point that
is adequately close to a global solution, and the relative distance is sublinear in r.
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Lemma 5. Let Q1 be the first r column on Q, and Σ1 be the top-left r × r block of Σ. Denote an optimal
solution to (1) as X∗ = Q1Σ

1/2
1 . W.h.p. over the initialization, ScaledGD (2) with Nyström initialization

(3) ensures that limt→∞ ‖Xt −X∗‖F ≤ O(r3/4).

3. The power of initialization for asymmetric matrix factorization

3.1. Initialization and modified ScaledGD
This section demonstrates that the power of initialization is even more striking in solving asymmetric
matrix factorization than symmetric ones. Given A ∈ Rm×n, consider the following problem

min
X∈Rm×r,Y∈Rn×r

1

2
‖XY> −A‖2F. (4)

Denote rank(A) = rA, and the compact SVD as A = UΣV>, where U ∈ Rm×rA , Σ ∈ RrA×rA , and
V ∈ Rn×rA . Similar to the previous section, we assume that σ1(A) = 1 and σrA(A) = 1/κ.
Nyström initialization. We adopt an asymmetric manner to initialize X0 and Y0 for (4), i.e.,

Nyström initialization: X0 = AΩ, Y0 = 0 (5)
where Ω is a Gaussian random matrix of Rn×r with [Ω]ij ∼ N (0, ξ2),∀i,∀j. We can follow the same
steps of Lemma 1 to show that X0 in (5) is rank r w.h.p. in exact- and under-parametrized settings.
Moreover, there is no requirement on the magnitude of ξ, meaning that it is possible to start far from
the saddle point (0,0). This asymmetry of X0 and Y0 in (5) is in contrast with small initialization
which typically induces ‖X0‖F ≈ ‖Y0‖F [5, 8]. Themerits will become clear shortly. Note that AltGD
[7] also adopts sketch at initialization, i.e., X0 = O(AΩ1/σ1(A)) and Y0 = O(σ1(A)Ω2), where Ω1

and Ω2 are Gaussian random matrices. Besides the requirement on small variance of Ω1 and Ω2

and the explicit need of σ1(A), this initialization cannot eliminate the residual space. Consequently,
AltGD demands early stopping in exact- and over-parametrized problems.
Modified ScaledGD. To adapt to the non-invertible Y>0 Y0 = 0 in Nyström initialization (5), we
modify the first iteration of ScaledGD. More precisely, the updates are summarized below

X1 = X0, and Xt+1 = Xt − η(XtY
>
t −A)Yt(Y

>
t Yt)

−1,∀t ≥ 1; (6a)
Yt+1 = Yt − η(XtY

>
t −A)>Xt(X

>
t Xt)

−1,∀t ≥ 0. (6b)

3.2. Nyström initialization in the exact-parametrized setting
We start with the exact-parametrized case, i.e., rA = r in (4). The benefit of Nyström initialization
(5) for iteration (6) is again the alignment of Xt and Yt to the directions of singular vectors.
Lemma 6. ScaledGD in (6) under Nyström initialization (5) guarantees that Xt = UΦt and Yt = VΨt,
∀t ≥ 0 for some Φt ∈ Rr×r and Ψt ∈ Rr×r.
Similar to the symmetric problems, the implication of Lemma 6 is the elimination of residual space,
i.e., (I−UU>)Xt = 0 and (I−VV>)Yt = 0. This turns out to be evenmore beneficial for asymmetric
problems, as it induces one-step convergence of ScaledGD.
Theorem 3 (One-step convergence). With η = 1 and Nyström initialization (5), ScaledGD in (6) ensures
X1Y

>
1 = A w.h.p. over the initialization. In other words, global convergence is achieved in one step.

Comparing to symmetric matrix factorization (cf. Theorem 1), Theorem 3 suggests that problem (4)
requires less iterations to be solved owing to the asymmetry of X0 and Y0 at initialization (5). This
partially agrees with results in [23], which illustrate the benefit of asymmetry in Burer-Monterio
factorization for matrix sensing.
Lastly, we present a result that may be of independent interest – the asymmetric and symmetric
problems are interconnected under our Nyström initialization. This link is made clear in the proof
of the following corollary (to Theorem 1), which states that ScaledGD admits quadratic convergence
under different choices of step sizes.
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Figure 2: Which singular values have the largest change after finetuning with LoRA of rank r?
Orange: top-r singular values; blue: other singular values. Note that here we only plot the first 64
singular values as others rarely have sufficiently large change.

Corollary 1 (Quadratic convergence). With Nyström initialization (5) and different choices of step sizes,
ScaledGD in (6) has a similar behavior as Theorem 1, that is, a two-phase behavior w.h.p. over the initialization:
• Phase 1 (linear convergence). Let η = O( 1

κ3‖A‖F ). After T1 := O(κ3
√
r log κ) iterations, ScaledGD

ensures that ‖XT1
Y>T1

−A‖F ≤ O(1/κ2).
• Phase 2 (quadratic convergence). After Phase I, ScaledGD converges quadratically with η = 0.5. In

particular, ‖XTY>T −A‖F ≤ ε is ensured after T = O
(

log log( 1
κε )
) iterations.

Extensions to over-parametrization. One-step global convergence can also be established for over-
parametrized asymmetric problems under Nyström initialization. More on this can be found in
Apdx. C.3, where we provide the first convergence result on ScaledGD under such a setup.

3.3. Nyström initialization in the under-parametrized setting
Lastly, we tackle the case of under-parametrization in the asymmetric problem (4), where rA > r.
Similar to the symmetric case in Sec.2.3, we consider a slightly weaker version of optimality.
Definition 2 (Generalized weak optimality). We say (X,Y) is weakly optimal if Y>A†X− Ir = 0.

Generalized weak optimality is satisfied by any global optimum, which is proved in Lemma 13 in
the appendix. With this preparation, we are ready to show that ScaledGD converges in a single step.
Theorem 4. If η = 1, ScaledGD in (6) with Nyström initialization (5) ensures generalized weak optimality
in one iteration w.h.p., i.e., Y>1 A†X1 − Ir = 0.

4. NoRA: Nyström low rank adapters
Our theoretical results highlight the merits of suitable initialization for matrix factorization problems.
One of the key insights is that the Burer-Monterio factorization benefits from good directions of X0

and Y0 at initialization; cf. Lemmas 2 and 6. We term this as directional alignment. In this section, we
extend the benefit of initialization to practical scenarios, showing that directional alignment is also
beneficial for low-rank adapters (LoRA) in finetuning deep neural networks [11].
LoRA enhances parameter efficiency of finetuning by approximating the unknown parameter-change
∆W ∈ Rm×n through Burer-Monterio factorization

W0 + ∆W ≈W0 + XY> (7)
where W0 ∈ Rm×n is the pretrained weight, and X ∈ Rm×r and Y ∈ Rn×r with r � min{m,n}; see
a more detailed recap in Apdx. A.2. Directional alignment can be achieved if singular vectors for ∆W
are leveraged to initialize X0 and Y0. While ∆W is unavailable a priori, empirical wisdom suggests
that there exists a set of well-performed adapters that lie in the column (row) span of the pretrained
weight matrix [30], i.e., ColSpan(∆W) ⊆ ColSpan(W0) and RowSpan(∆W) ⊆ RowSpan(W0). In
other words, W0 can be adopted as a suitable replacement of ∆W for directional alignment.
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Table 2: Training loss of NoRA and NoRA+ with stable-diffusion.
loss(↓) LoRA LoRA-P NoRA NoRA+
avg 0.092±0.012 0.093±0.012 0.084±0.017 0.084±0.015

Having ColSpan(W0) alone is insufficient for directional alignment, since it does not specify which
directions are more crucial. To answer this question, we examine the singular values that undergo
the most significant change after LoRA finetuning on a few-shot learning task [31]. OPT-1.3B is
chosen as the base model and LoRA is applied to its query and value matrices with r = 8; more
details can be found in Apdx. E.3. For each LoRA layer, we count the indices of r singular values
that exhibit the largest changes after finetuning, and summarize their frequencies across all layers
in Fig. 2. It is observed that the top-r singular values tend to have larger change, explaining the
success of LoRA initialization approaches that aligns X0 with the directions corresponding to these
singular values, such as PiSSA and OLoRA [16, 17]. However, across all tested datasets, a substantial
portion of non-top-r singular values also demonstrate significant variation, and the frequency is
positively linked to the singular values. In other words, the directions corresponding to larger
singular values tend to be more important. This is akin to the principle of Nyström initialization
X0 = W0Ω, evidenced by its spectrum, i.e., E[X0X

>
0 ] ∝W0W

>
0 .

Building upon these observations, and considering the accelerated convergence with Nyström ini-
tialization in ScaledGD, we propose two novel variants of LoRA:
• Nyström LoRA (NoRA) applies (5) directly on top of LoRA, that is, X0 = W0Ω and Y0 = 0.
• Nyström preconditioned LoRA (NoRA+) not only advances LoRA initialization with (5), but

also leverages ScaledGD for optimization.
We note that ScaledGD has already been applied for LoRA training in [14], which we refer to as
LoRA-P (P for preconditioning). We will show that both LoRA and LoRA-P benefit significantly
from Nyström initialization. Due to space limitation, we summarize NoRA and NoRA+ in Algs. 1
and 2, respectively in the appendix, with additional explanations in Apdx. A.4.
Deployment efficiency. NoRA offers practical advantages over other initialization methods such as
PiSSA and OLoRA. It not only bypasses the computationally expensive SVD or QR decomposition,
but also avoids the need to modify to the pretrained weights. NoRA is thus an off-the-shelf solution
to enhance LoRA without altering existing pipelines. We expand on this in Apdx. A.4.

5. Numerical results for NoRA
The efficiency of proposed NoRA and NoRA+ is demonstrated on large-scale finetuning tasks
involving diffusion and LLMs. The experiments are conducted with PyTorch [32] on NVIDIA H100
GPUs. Details on datasets and experimental procedures can be found in Apdx. E.

5.1. Subject-driven image generation with stable-diffusion
We focus on subject-driven image generation [33] by finetuning a diffusion model with only a few
user-specific images so that the modal can generate the same object in various contexts. The base
model is selected as StableDiffusion v1.4 [34] (0.98B parameters). We finetune the U-Net with LoRA,
whose rank is set as 4, amounting to 0.8M trainable parameters. The diffusion model is finetuned on
a user-specific training set containing pictures of a dog labeled “a photo of Vdog,” with the aim to
generate proper images under the prompt “a Vdog eating nachos.”
To demonstrate the power of initialization, we compare NoRA and NoRA+ with LoRA and LoRA-P.
The averaged training loss of considered approaches are summarized in Tab. 2. It can be seen that
NoRA andNoRA+ have 9.6% smaller training loss comparedwith LoRA and LoRA-P, demonstrating
the benefits of directional alignment at initialization. The generated images are listed in Fig. 3. Some
of images generated by LoRA are not natural. For instance, the third one does not have a nice
expression for nachos, and the tenth is not vivid. For LoRA-P, the dog in the third image is also not
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Figure 3: Generated images from NoRA and NoRA+ with stable-diffusion.

Table 3: Test accuracy of various algorithms for commonsense reasoning on LLaMA2-7B. The results
marked with ‡ are taken from [38].

LLaMA2-7B BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA avg (↑)
LoRA‡ 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
LoRA-P 71.47 81.50 78.81 85.97 80.43 81.14 66.55 81.00 78.35
NoRA 71.16 83.08 79.53 85.90 81.85 80.64 66.13 81.80 78.76
NoRA+ 70.52 81.94 79.07 87.66 82.24 82.70 67.06 80.20 78.92

natural. NoRA and NoRA+, on the other hand, both generate high-fidelity pictures. However, there
is a floating plate in the 8th image of NoRA+, but ensuring diffusion models to follow physical laws
goes beyond the scope of this work. Additional results are provided in Apdx. E.5, where we finetune
on images of a cat toy. The generated images from NoRA and NoRA+ have more lively facial details
compare to those not using Nyström initialization.

5.2. Commonsense reasoning with LLaMA-7B and LLaMA2-7B
Our evaluation is further scaled to LLMs using LLaMA2-7B [35, 36]. We tackle commonsense
reasoning tasks following the setup in [37]. Training data are merged from 8 datasets listed in Tab.
3. The test sets remain separate for individual evaluation. The rank of LoRA is chosen as 32.
The numerical results on LLaMA2-7B are presented in Tab. 3. It is observed that LoRA is unstable,
henceforth the results for LoRA are taken from [38]. This instability is not observed in other tested
approaches. The benefit of the Nyström initialization is particularly pronounced. These results
underscore the significance of initialization for optimizing LoRA.
Additional numerical results on OPT-1.3B and Gemma-7B are provided in Apdx. E.

6. Concluding remarks
This work characterizes how initialization can crucially determine the convergence behavior of the
same optimization algorithm on matrix factorization problems. We prove that Nyström initialization
can significantly improve the complexity bounds of ScaledGD under a wide spectrum of settings;
see details in Tab. 1. One of the key improvements is that Nyström initialization enables a quadratic
convergence for exact- and over-parametrized problems, whereas small initialization only guarantees
a linear rate on ScaledGD. This performance gap calls for more careful investigation into the role
of initialization in optimization. Additionally, the proposed Nyström initialization offers practical
merits when applied on finetuning with LoRA, delivering deployment flexibility and promising
numerical performance on large-scale problems with LLMs and diffusion models.
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Supplementary Document for
“On the Crucial Role of Initialization for Matrix Factorization”

A. Missing details

A.1. Notation

Bold lowercase (capital) letters denote columnvectors (matrices); (·)>, (·)† and ‖·‖F refer to transpose,
pseudo inverse, and Frobenius norm of a matrix; ‖ · ‖ is the `2 (spectrum) norm of a vector (matrix);
σi(·) and λi(·) denote the i-th largest singular value and eigenvalue, respectively.

A.2. More on related work

Convergence of over-parametrized matrix factorization problems. Consider again the asymmetric
problem as an example, i.e., minX,Y ‖XY> − A‖2 with A ∈ Rm×n, X ∈ Rm×r and Y ∈ Rn×r.
Over-parametrization refers to the case where rank(A) ≤ r. The gradient flow on the extreme over-
parametrized problems, where r ≥ max{m,n}, is studied in [39]. There are also papers [10, 21–23]
considering the matrix sensing problem, which partially relates to our problem when there are
sufficient Gaussian measures. The work of [12] considers deeper problem (i.e., having more than 3
layers) while assuming A is full rank. Our results on over-parametrization can be found in Apdx. B.4
and Apdx. C.3 for symmetric and asymmetric problems, respectively. The comparison of ScaledGD
with other works on over-parametrized problems can be found in Tab. 1.
LoRA and parameter-efficient finetuning. LoRA [11] is a notable example of parameter-efficient
finetuning (PEFT) [40] approaches. The goal of PEFT is to reduce the resource requirement for
finetuning LLMs on downstream tasks. Other commonly adopted PEFT methods include, e.g.,
adapters [41], zeroth-order optimizers [31, 42, 43], and prefix tuning [44]. There are also various
efforts to further enhance LoRA via adaptivity [45], chaining [46, 47], regularization [48, 49], low-bit
training [50, 51], modifications for long-sequences [52], weight decomposition [38], and combining
with sparsity [53]. Additionally, there are several approaches aiming at further reducing the number
of trainable parameters in LoRA; examples include [30, 54–58]. While originally designed for
finetuning LLMs, LoRA also finds its applications in other domains, such as image generation [59]
and continual learning [60].
LoRA initialization. When first proposed, LoRA initialization was largely overlooked. The work of
[61] justifies that whether setting X0 or Y0 to be 0 affects performance from a stability perspective.
Recent works [16, 17] observe a fundamental difference between initialization of LoRA and neural
networks, emphasizing the availability of prior knowledge. These works experimentally demonstrate
that pretrained model can serve as prior to guide the direction of adapters, and hence perform QR
or SVD on the pretrained matrix and using (scaled) top-r singular vectors for LoRA initialization.
Follow-up study [18] exploits stability for further improvement. However, these initialization
methods are computationally expensive and lack flexibility for deployment. The proposed NoRA
initialization overcomes these limitations.
Nyström sketch. Nyström sketch has well-documented success in signal processing and machine
learning for coping with large-scale matrices under memory constraints. It has been applied in
various settings; see e.g., [29, 62, 63]. This work only employs this approach to ensure full-rankness
required in certain settings, yet the properties for recovery is not explored. We believe that other
sketches are also applicable once full rankness is ensured.

A.3. LoRA for linear models as asymmetric matrix factorization

We argue that LoRA applied on linear models given a whitened dataset is equivalent to the asymmet-
ric matrix factorization problem. The whitened dataset is widely adopted for theoretical analyses,
and we refer to [12, 13, 15] for more details.
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Algorithm 1 NoRA for a spe-
cific LoRA layer
1: Initialize: ξ – standard de-

viation of random matrix
Ω

2: Set X0 and Y0 via Nys-
tröm initialization (5)

3: Standard training process

Algorithm 2 NoRA+ for a specific LoRA layer
1: Initialize: ξ – standard deviation of random matrix Ω; λ – nu-

merical stability of matrix inversion
2: Set X0 and Y0 via Nyström initialization (5)
3: for t = 0, . . . , T − 1 do
4: Get gradient GXt

and GYt

5: if t > 0 then
6: GXt ← GXt(Y

>
t Yt + λIr)

−1/‖(Y>t Yt + λIr)
−1‖F

7: end if
8: GYt ← GYt(X

>
t Xt + λIr)

−1/‖(X>t Xt + λIr)
−1‖F

9: Optimizer update
10: end for

Assume that we have a pretrained (linear) model W0 ∈ Rm×n. Applying LoRA on this layer with
whitened data B is equivalent to solving the following problem

1

2
‖(W0 + XY>)−B‖2F. (8)

It is clearly that this problem (8) is the same as (4) by setting A = B−W0.
Unfortunately, existing works provide no theoretical support on the most widely adopted initializa-
tion approach for LoRA in practice – either X0 or Y0 is chosen as 0 to preserve W0 + X0Y

>
0 = W0.

In this sense, our Nyström initialization in (5) is the first means of initialization that justifies one
variable can be set to 0.
Additional similarities between LoRA and matrix factorization. LoRA and matrix factorization
share similar mathematical properties. For example, they both have no spurious local minima
[5, 64, 65]. There are also recent efforts using insights from matrix factorization to further improve
LoRA; see e.g., [15, 53].

A.4. More on NoRA and NoRA+
As discussed in Sec. 4, LoRA can significantly benefit from the aligned directions at initialization.
Besides the theoretical benefits of applying Nyström initialization on ScaledGD (NoRA+), Nys-
tröm initialization can also be used directly with Adam (or AdamW), i.e., NoRA. There are several
reasons for this. First, directional alignment from initialization is beneficial to most optimizers. While
our theoretical results focus on ScaledGD, we believe that the aligned directions also improve GD.
Despite the improvement may be less significant as in ScaledGD, we conjecture that the linear term in
[6, Theorem 1.1] can be removed with Nyström initialization, because it can be roughly understood
as the price of searching for proper directions. In other words, the benefits of Nyström initialization
extend to other optimizers as well. Second, Adam also affords an explanation of preconditioning,
and the preconditioner for Xt is also closely related to Yt. In other words, Adam shares similarities
with ScaledGD in (6). These two reasons prompt the proposed NoRA, as summarized in Alg. 1.
For NoRA+ in Alg. 2, we modify the vanilla ScaledGD iterations in (6) with two add-ons. First,
a small parameter λ is introduced for numerical stability of matrix inversion. This is a standard
practice for numerical optimizers such as Adam [66, 67]. Second, the gradient is normalized by the
Frobenius norm of its preconditioner. The reason is that an optimal λ is difficult to tune as shown
in [14], where they use λ from 10−6 to 100. With this normalizer, we can set λ = 10−6 in all our
experiments without any tuning. Moreover, this normalizer is useful to prevent the instability in
earlier iterations due to the non-invertable Y0 = 0.
Deployment efficiency of NoRA.One benefit of NoRA (as well as NoRA+) is that it can be deployed
jointly with adapters trained with LoRA – and hence there is no need to modify the current pipeline
for deployment. This is because both of NoRA and LoRA do not need to modify the pretrained
parameters, and the finetuned model is just W0 + XTY>T , where W0 is the pretrained model, and
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XT and YT are finetuned adapter weights. On the contrary, other initialization approaches such
as PiSSA and OLoRA [16, 17] are less efficient for using jointly with LoRA at deployment because
both approaches modify the pretrained weights, so that the finetuned model becomes Ŵ0 + XTY>T ,
where Ŵ0 = W0 − X0Y

>
0 . The use of Ŵ0 comes from the fact that initialization in PiSSA and

OLoRA does not satisfy X0Y
>
0 = 0. Consequently, when deploying PiSSA jointly with LoRA, one

needs to store both W0 (for LoRA) and Ŵ0 (for PiSSA), leading to reduced memory efficiency.

B. Missing proofs for symmetric settings

B.1. Initialization of exact- and under-parametrized problems
B.1.1. Proof of Lemma 1

Proof. Let the compact eigenvalue decomposition of A be A = QΣQ>, where Q ∈ Rm×rA and
Σ ∈ RrA×rA . We then have that

X0 = (QΣ)(Q>Ω). (9)

It is not hard to verify that the matrix Q>Ω ∈ RrA×r is also a Gaussian random matrix, where each
entry follows N (0, ξ2). Applying Lemma 19 on Q>Ω, it can be seen that

P
(σr(Q>Ω)

ξ
≤ τ(
√
rA −

√
r − 1)

)
≤ (C1τ)rA−r+1 + e−C2rA := δ

where C1 and C2 are universal constants independent of rA and r. This inequality shows that with
probability at least 1− δ, σr(Q>Ω) ≥ ξτ(

√
rA −

√
r − 1).

Note that inequality σmin(CD) ≥ σmin(C)σmin(D) holds given full column rank of C; see Lemma 17.
Applying it to (9), we have that

σr(X0) ≥ σrA(QΣ)σr(Q
>Ω) = σrA(A)σr(Q

>Ω)

(a)

≥ ξτ(
√
rA −

√
r − 1)σrA(A)

where (a) holds with probability at least 1− δ.

B.2. Missing proofs for the symmetric and exact-parametrized setting

In the exact-parametrized setting, it is convenient to define

Bt := ΦtΦ
>
t (10)

where Φt ∈ Rr×r comes from Lemma 2, i.e., Xt = QΦt. The notation Bt will be used frequently
in this subsection. With the help of Lemma 2, Bt can be understood as the “core” part of XtX

>
t ,

because XtX
>
t = QΦtΦ

>
t Q> = QBtQ

>. Once proving Lemma 2, it allows us to study dynamics
using a simpler but equivalent notion ‖Bt −Σ‖F, i.e.,

‖XtX
>
t −A‖F = ‖Q(ΦtΦ

>
t −Σ)Q>‖F = ‖ΦtΦ

>
t −Σ‖F = ‖Bt −Σ‖F.

B.2.1. Proof of Lemma 2

Proof. The proof relies onBt defined in (10). Wewill prove this lemma by induction. SinceX0 = AΩ
in Nyström initialization, we have that Φ0 = ΣQ>Ω. Moreover, our base assumption σr(B0) > 0 is
true because rank(B0) = rank(X0X

>
0 ) = r, which is the result of Lemma 1.
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For induction, assume that Xt can be written as Xt = QΦt with a full rank Φt ∈ Rr×r at iteration t.
By the update (2), we have that

Xt+1 = Xt − η(XtX
>
t −A)Xt(X

>
t Xt)

−1

= QΦt − ηQ(ΦtΦ
>
t −Σ)Q>QΦt(Φ

>
t Q>QΦt)

−1

(a)
= Q

Å
Φt − η(ΦtΦ

>
t −Σ)Φt(Φ

>
t Φt)

−1
ã

(b)
= Q

Å
(1− η)Φt + ηΣΦ−>t

ã
︸ ︷︷ ︸

:=Φt+1

,

(11)

where (a) uses Q>Q = Ir; and (b) uses Φt is full rank (hence invertible). Note that Q and A share
the same column space. This proves the first claim i) of this lemma.
Next we show that the smallest eigenvalue of Bt+1 is bounded away from 0, or equivalently, Φt+1 is
full rank. To start with, we have that from the expression of Φt+1 in (11),

Bt+1 = Φt+1Φ
>
t+1 = (1− η)2ΦtΦ

>
t + 2η(1− η)Σ + η2ΣΦ−>t Φ−1t Σ

= (1− η)2Bt + 2η(1− η)Σ + η2ΣB−1t Σ.
(12)

Note that Bt+1 is a PSD matrix by definition (hence the eigenvalues and singular values are the
same). To see the smallest eigenvalue of Bt+1 is lower bounded, we will apply Lemma 15 on (12)
twice, i.e.,

σr(Bt+1)

(c)

≥ 2η(1− η)σr(Σ) + σr

(
(1− η)2Bt + η2ΣB−1t Σ

)
(d)

≥ 2η(1− η)σr(Σ) + (1− η)2σr
(
Bt

)
(e)

≥ (1− η)2t+2σr(B0) + 2η(1− η)σr(Σ)
1− (1− η)2t+2

2η − η2
(f)

≥ (1− η)2t+2σr(B0) + (1− η)σr(Σ)− (1− η)2t+3σr(Σ),

(13)

where (c) and (d) are because of Lemma 15; (e) is by unrolling σr(Bt) using (d); and (f) is by
2η

2η−η2 ≥ 1. Combining (11) and (13) concludes the induction.

B.2.2. Proof of Theorem 1

Proof. The proof is by combining Lemmas 7 and 8.
Lemma 7 (Phase I. Linear convergence to near optima). Let η = O( 1

κ3‖A‖F ). After O(κ3
√
r log κ)

iterations, ScaledGD (2) with Nyström initialization (3) ensures that ‖XtX
>
t −A‖F ≤ O(1/κ2).

Proof. Subtracting Σ from both sides of (12), we can obtain that
Bt+1 −Σ = (1− η)2(Bt −Σ)− η2Σ + η2ΣB−1t Σ.

This implies that
‖Bt+1 −Σ‖F

(a)

≤ (1− η)2‖Bt −Σ‖F + η2‖Σ‖F + η2‖ΣB−1t ‖2‖Σ‖F
(b)

≤ (1− η)2‖Bt −Σ‖F + η2‖Σ‖F + η2‖Σ‖2‖B−1t ‖2‖Σ‖F

≤ (1− η)‖Bt −Σ‖F + η2‖Σ‖F + η2
σ1(Σ)‖Σ‖F
σr(Bt)
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where (a) is by ‖MN‖F ≤ ‖M‖2‖N‖F; and (b) follows from the sub-multiplicity of ‖ · ‖2.
By Lemma 2, if η ≤ 2/3 and there exists T1 such that σr(BT1

) ≥ σr(Σ)/3, then it holds that σr(Bt) ≥
σr(Σ)/3,∀t ≥ T1. According to Lemma 1, we can choose ξ in (3) sufficiently large such that σr(B0) ≥
σr(Σ)/3, i.e., T1 = 0. Alternatively, to avoid such a requirement on ξ, we can simply choose a constant
step size, e.g., η = 0.5, and run a constant number of steps, T1 = O(1/η), to ensure σr(BT1) ≥ σr(Σ)/3;
see Lemma 2. For simplicity of the results, our proof below goes with the first method, i.e., T1 = 0.

‖Bt+1 −Σ‖F

≤ (1− η)‖Bt −Σ‖F + η2‖Σ‖F + η2
σ1(Σ)‖Σ‖F
σr(Bt)

≤ (1− η)‖Bt −Σ‖F + η2‖Σ‖F + 3η2
σ1(Σ)‖Σ‖F
σr(Σ)

(c)

≤ η‖Σ‖F + 3ηκ‖Σ‖F + (1− η)t+1−T1‖BT1
−Σ‖F

= η‖A‖F + 3ηκ‖A‖F + (1− η)t+1−T1‖BT1 −Σ‖F

where (c) is by Lemma 14. From this inequality it is not difficult to see that once η = O( 1
κ3‖A‖F ), one

will have ‖Bt+1 −Σ‖F ≤ O(1/κ2) within the stated iterations.

Lemma 8 (Phase II. Quadratic convergence to global optima). If we choose η = 0.5 and suppose that
after T2 iterations, σr(BT2

) ≥ σr(Σ)/3 and ‖BT2
−Σ‖F ≤ 2/(3κ2) are satisfied, ScaledGD then ensures

that for any t ≥ T2,

‖Xt+1X
>
t+1 −A‖F = ‖Bt+1 −Σr‖F ≤

4

3κ2
1

22t+1 .

Proof. Let Ct = Σ−1Bt. We can rewrite (12) as
Ct+1 = (1− η)2Ct + 2η(1− η)Ir + η2C−1t .

Subtracting Ir and rearranging it, we arrive at
Ct+1 − Ir = (1− 2η)(Ct − Ir) + η2C−1t (Ct − Ir)

2.

By choosing η = 0.5, we have that

Ct+1 − Ir =
1

4
C−1t (Ct − Ir)

2.

Multiplying both sides with Σ, we have that

Bt+1 −Σ =
1

4
ΣB−1t Σ(Ct − Ir)(Ct − Ir)

=
1

4
ΣB−1t (Bt −Σ)Σ−1(Bt −Σ).

This implies that

‖Bt+1 −Σ‖F ≤
1

4
‖Σ‖2‖B−1t ‖2‖Bt −Σ‖F‖Σ−1‖2‖Bt −Σ‖F

(a)

≤ 3

4

σ1(Σ)

σ2
r(Σ)

‖Bt −Σ‖2F
(b)
=

3κ2

4
‖Bt −Σ‖2F

where (a) is by Lemma 2, i.e., once σr(BT2
) ≥ σr(Σ)/3, then σr(Bt) ≥ σr(Σ)/3 holds for all t ≥ T2;

and (b) is by σ1(Σ) = 1 and σr(Σ) = 1/κ.
Finally, applying Lemma 16, it can be seen that a quadratic rate can be established long as ‖BT2 −
Σ‖F ≤ 2

3κ2 , and this condition is satisfied from Lemma 7.
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B.3. Missing proofs for the symmetric and under-parametrized setting
We start with some notation that would be helpful for this subsection. Let the compact eigenvalue
decomposition of A = QΣQ>, where Q ∈ Rm×rA , and Σ ∈ RrA×rA .
In Lemma 4, we will prove that Xt = QΦt always holds if we employ Nyström initialization and
ScaledGD in (2), where Φt ∈ RrA×r. We also denote Θt := Φt(Φ

>
t Φt)

−1, where the invertibility of
(Φ>t Φt) will become clear in the proof.
Lastly, let Bt := Φ>t Σ−1Φt. Note that Bt ∈ Rr×r and Bt = X>t A†Xt.

B.3.1. Proof of Lemma 3

Proof. We start with rewriting A,

A = [Q1,Q2]

ï
Σ1 0
0 Σ2

ò ï
Q>1
Q>2

ò
= Q1Σ1Q

>
1 + Q2Σ2Q

>
2 (14)

where Q1 ∈ Rm×r and Q2 ∈ Rm×(rA−r) are the first r and other columns of Q, respectively; and
Σ1 ∈ Rr×r and Σ2 ∈ R(r−rA)×(r−rA) are diagonal matrices formed by the first r and the rest diagonal
entries of Σ.
It is not difficult to see that the optimal solution of (1) is X∗ = Q1Σ

1/2
1 U>, where U ∈ Rr×r is

any unitary matrix that accounts for rotation. Note that the pseudo-inverse of A can be written as
A† = QΣ−1Q>. Plugging X∗ into the definition of weak optimality, we arrive at

X>∗ A†X∗ = UΣ
1/2
1 Q>1 (Q1Σ

−1
1 Q>1 + Q2Σ

−1
2 Q>2 )Q1Σ

1/2
1 U>

(a)
= Ir

where in (a) we use the facts Q>1 Q1 = Ir and Q>1 Q2 = 0r×(rA−r). This concludes the proof.

B.3.2. Proof of Lemma 4

Proof. The proof is based on induction. First we have that X0 = AΩ = QΣQ>Ω. It is clear that
Φ0 = ΣQ>Ω. Now suppose that one can write Xt = QΦt, following the update (2), it is not hard to
see that

Φt+1 = Φt − η
(
ΦtΦ

>
t −Σ

)
Φt(Φ

>
t Φt)

−1

= (1− η)Φt + ηΣ Φt(Φ
>
t Φt)

−1︸ ︷︷ ︸
:=Θt

. (15)

The variable Θt ∈ RrA×r can be roughly viewed as a pseudo-inverse of Φ>t because Φ>t Θt = Ir. We
note that the invertibility of (Φ>t Φt) will become clear in Lemma 9.

B.3.3. Proof of Theorem 2

Proof. Using Φ>t Θt = Ir, definition of Bt = Φ>t Σ−1Φt (at the start of Apdx. B.3), and the update of
Φt+1 in (15), it is not difficult to verify that

Bt+1 = (1− η)2Bt + 2η(1− η)Ir + η2Θ>t ΣΘt. (16)

Subtracting Ir on both sides of (16), we can get
Bt+1 − Ir = (1− η)2(Bt − Ir)− η2Ir + η2Θ>t ΣΘt.

This ensures that
‖Bt+1 − Ir‖F
≤ (1− η)2‖Bt − Ir‖F + η2

√
r + η2‖Θ>t ΣΘt‖F

≤ (1− η)2‖Bt − Ir‖F + η2
√
r + η2

r

σr(Bt)
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where the last inequality is because of Lemma 10. Suppose that η ≤ 2/3, from Lemma 9, one can see
that there exists a time T1 such that σr(Bt) ≥ 1/3,∀t ≥ T1. We assume T1 = 0 following the same
argument (i.e., initialized large with large ξ) as previous proofs. With these arguments, we obtain
that

‖Bt+1 − Ir‖F
≤ (1− η)‖Bt − Ir‖F + η2

√
r + 3rη2

≤ η
√
r + 3ηr + (1− η)t+1−T1‖BT1 − Ir‖F

≤ η
√
r + 3ηr + (1− η)t+1−T1‖BT1 − Ir‖F.

(17)

This implies a linear rate, i.e, ‖Bt+1 − Ir‖F ≤ O(ηr) + ε if η = O(1) with sufficient iterations.
Inequality (17) also implies that choosing η = O(ε/r), ‖Bt+1 − Ir‖F ≤ ε at a rate of O( rε log 1

ε ). The
proof is thus completed.

B.3.4. Proof of Lemma 5

Proof. We start with notation. Let

Σ =

ï
Σ1 0
0 Σ2

ò
, Φt =

ï
Mt

Nt

ò
, (18)

where Σ1 ∈ Rr×r is the learnable eigenvalues, while Σ2 ∈ R(rA−r)×(rA−r) are the unlearnable
eigenvalues, and Mt ∈ Rr×r and Nt ∈ R(rA−r)×r. Ideally at global convergence, we hope that
Mt → Σ

1/2
1 up to rotation; while Nt → 0.

We consider a scenario with t→∞, i.e., ε→ 0 and Bt = Ir. Using (18) to rewrite Bt = Ir, we have
that

M>
t Σ−11 Mt + N>t Σ−12 Nt = Ir. (19)

The above equation implies that

Tr(M>
t Σ−11 Mt) = Tr(M>

t Σ
−1/2
1 Σ

−1/2
1 Mt) (20)

= ‖Σ−1/21 Mt‖2F
(a)

≤ r

where (a) is by (19) and Lemma 18.
Since we hope Σ

−1/2
1 Mt → Ir, we have that

‖Σ−1/21 Mt − Ir‖2F

= Tr
Å

(Σ
−1/2
1 Mt − Ir)

>(Σ
−1/2
1 Mt − Ir)

ã
= Tr(M>

t Σ
−1/2
1 Σ

−1/2
1 Mt

)
+ Tr(Ir)− 2Tr(M>

t Σ
−1/2
1 )

(a)

≤ Tr(M>
t Σ
−1/2
1 Σ

−1/2
1 Mt

)
+ Tr(Ir) + 2r3/2

(b)

≤ 2r + 2r3/2,

(21)

where (a) is because that i) for any r × r matrix C, we have that Tr(C) ≥ rmini Cii ≥ −r‖C‖F, ii)
take C = M>

t Σ
−1/2
1 and then apply (20); and (b) is by (20).

To bound Nt, it can be seen that
1

σr+1(A)
Tr(N>t Nt

)
≤ Tr(N>t Σ−12 Nt

) (c)

≤ r (22)

where (c) is by applying Lemma 18 on (19). This suggests that ‖Nt‖F ≤
√
rσr+1(A).
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Lastly, note that X∗ can be written as X∗ = Q[Σ
1/2
1 ,0]> and Xt = QΦt. Using this fact and

combining (21) and (22), we have that
‖Xt −X∗‖2F = ‖Mt −Σ

1/2
1 ‖2F + ‖Nt‖2F

= ‖Σ1/2
1 (Σ

−1/2
1 Mt − Ir)‖2F + ‖Nt‖2F

≤ σ1(Σ
1/2
1 )2‖Σ−1/21 Mt − Ir‖2F + ‖Nt‖2F

= O(r3/2),

(23)

where we used σ1(Σ) = 1 and σr+1(Σ) ≤ 1. The proof is thus completed.

B.3.5. Useful lemmas for symmetric and under-parametrized problems

It is clear that Bt is symmetric by definition, i.e., Bt = Φ>t Σ−1Φt. This enables us to give a lower
bound on σr(Bt) using Lemma 15.
Lemma 9. σr(Bt) is lower bounded by

σr(Bt+1) ≥ (1− η)− (1− η)2t+3 + (1− η)2t+2σr(B0).

Proof. Given the definition of Bt, it is not difficult to see that Bt is PSD for all t. We can then apply
Lemma 15 on (16) to arrive at

σr(Bt+1)

≥ 2η(1− η) + σr
(
(1− η)2Bt + η2Θ>t ΣΘt

)
≥ 2η(1− η) + (1− η)2σr

(
Bt

)
(a)

≥ (1− η)2t+2σr(B0) + 2η(1− η)
1− (1− η)2t+2

2η − η2
(b)

≥ (1− η)2t+2σr(B0) + (1− η)− (1− η)2t+3

where (a) uses Lemma 14 to unroll σr(Bt); and (b) is because 2η
2η−η2 ≥ 1.

Lemma 10. Let Θt and Bt defined the same as those in Apdx. B.3. It is guaranteed to have that

‖Θ>t ΣΘt‖F ≤
r

σr(Bt)
.

Proof. Using the inequality ‖A>A‖F ≤ ‖A‖2F, we have that
‖Θ>t ΣΘt‖F = ‖Θ>t Σ1/2Σ1/2Θt‖F ≤ ‖Σ1/2Θt‖2F. (24)

Now let Et := Σ1/2Θt and Ft := Σ−1/2Φt. Since we have that F>t Et = Ir, we have that
‖F>t Et‖F = ‖Ir‖F =

√
r.

Since we also have that
√
r = ‖F>t Et‖F

(a)

≥ σr(Ft)‖Et‖F
(b)
=
»
σr(Bt)‖Et‖F, (25)

where (a) holds because Et and Ft share the same column space and row space and both of them
have rank r, which implies that 〈Null(F), [Et]i〉 = 0,∀i ([Et]i is the ith column of Et). Note that
(a) does not hold true for general two matrices Et and Ft. (b) is because F>t Ft = Bt, which
means that the singular values of Ft are just square root of eigenvalues of Bt. This implies that
‖Et‖F ≤

√
r/
√
σr(Bt). Combining this inequality with (24), we have that

‖Θ>t ΣΘt‖F ≤ ‖Θ>t Σ1/2‖2F = ‖Et‖2F ≤
r

σr(Bt)
.

The proof is thus completed.
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B.4. Symmetric and over-parametrized setting
Nyström initialization for over-parametrization. While the initialization still follows (3), we need
to adapt Lemma 1 to the over-parameterized setting, i.e., r > rA.
Lemma 11 (Initialization for over-parametrization). There exists a universal constant τ > 0 such that
σrA(X0) ≥ ξτ(

√
r −
√
rA − 1)σrA(A) is satisfied with high probability. In other words, rank(X0) = rA

w.h.p.

Proof. Similar to the proof of Lemma 1, let the compact eigenvalue decomposition of A be A =
QΣQ>, where Q ∈ Rm×rA and Σ ∈ RrA×rA . This implies that X0 = (QΣ)(Q>Ω).
It is not hard to verify that the matrix Q>Ω ∈ RrA×r is also a Gaussian random matrix, where each
entry follows N (0, ξ2). Applying Lemma 19 on (Q>Ω)>, and using the fact (Q>Ω)> and (Q>Ω)
share the same singular values, it can be seen that

P
(σrA(Q>Ω)

ξ
≤ τ(
√
r −
√
rA − 1)

)
≤ (C1τ)r−rA+1 + e−C2r := δ2

where C1 and C2 are universal constants independent of rA and r. This inequality shows that with
probability at least 1− δ2, σrA(Q>Ω) ≥ ξτ(

√
r −
√
rA − 1).

Note that inequality σmin(CD) ≥ σmin(C)σmin(D) holds given full column rank of C; see Lemma 17.
Applying it to (9), we have that

σrA(X0) ≥ σrA(QΣ)σrA(Q>Ω) = σrA(A)σrA(Q>Ω)

(a)

≥ ξτ(
√
r −
√
rA − 1)σrA(A)

where (a) holds with probability at least 1− δ2.

Next, we provide additional results of Nyström initialization on over-paramtrized setting of problem
(1), where we have rA < r. For a desirable convergence rate, we need to slightly modify the ScaledGD
update to

Xt+1 = Xt − η(XtX
>
t −A)Xt(X

>
t Xt)

†. (26)
Compared with iteration (2) for exact-parametrization, the modification is on (X>t Xt)

†. This pseudo-
inverse is necessary because (X>t Xt) is not necessarily invertible in the over-parametrized setting.
We note that unlike previous work [24] which modifies the same term to (X>t Xt + λI)−1, (26) does
not need the damping parameter λI in the preconditioner. We will observe shortly in Fig. 4 that the
quadratic rate is not achieved with the damping factor.
Let the compact eigendecomposition of A = QΣQ> for Q ∈ Rm×rA , and Σ ∈ RrA×rA . We can also
establish that Xt affords a simpler representation.
Lemma 12. Under the Nyström initialization (3) and iteration (26), the variable Xt can be written as
Xt = QΦt for some Φt ∈ RrA×r. Moreover, we have that

Φt+1 = (1− η)Φt + ηΣ(Φ†t)
>. (27)

Proof. We prove this by induction. Clearly, our initialization satisfies this because X0 = AΩ =
QΣQ>Ω, i.e., Φ0 := ΣQ>Ω. Now suppose that Xt = QΦt holds for t. We then show that Xt+1 =
QΦt+1 to finish the induction. In particular, plugging Xt = QΦt into (26), we arrive at

Xt+1 = Q

ï
Φt − η(ΦtΦ

>
t −Σ)Φt(Φ

>
t Φt)

†
ò

︸ ︷︷ ︸
:=Φt+1

.

Clearly, the term inside the brackets is Φt+1. The induction is thus finished.
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Now we proof the second part of this lemma. Let the SVD of Φt := UtΣtV
>
t , where Ut ∈ RrA×rA ,

Σt ∈ RrA×rA , and Vt ∈ Rr×rA . We note that Ut is unitary for this case. With the SVD, we have that
ΦtΦ

>
t = UtΣ

2
tU
>
t , and (Φ>t Φt)

† = VtΣ
−2
t V>t . Plugging these into Φt+1 defined earlier, we arrive

at
Φt+1 = Φt − η(UtΣ

2
tU
>
t −Σ)UtΣtV

>
t VtΣ

−2
t V>t

= Φt − η(UtΣ
2
tU
>
t −Σ)UtΣ

−1
t V>t

= Φt − ηUtΣtV
>
t + ηΣUtΣ

−1
t V>t

= (1− η)Φt + ηΣ(Φ†t)
>.

This completes the proof.

Next, let Bt = ΦtΦ
>
t . With (27) we have that

Bt+1 = (1− η)2ΦtΦ
>
t + η(1− η)ΦtΦ

†
tΣ + η(1− η)Σ(Φ†t)

>Φ>t + η2Σ(Φ†t)
>Φ†tΣ

(a)
= (1− η)2Bt + 2η(1− η)Σ + η2Σ(Φ†t)

>Φ†tΣ

(b)
= (1− η)2Bt + 2η(1− η)Σ + η2ΣB−1t Σ,

(28)

where in (a) we used the SVD ofΦt := UtΣtV
>
t , whereUt ∈ RrA×rA , Σt ∈ RrA×rA andVt ∈ Rr×rA ,

Φ†t = VtΣ
−1
t U>t , and Ut is unitary; and in (b) we assume that Bt is full rank. Note that this

assumption can be easily verified given rank(B0) = rA; and the iteration on Bt (28) is exactly the
same as in exact-parametrized cases (12). The latter allows us to bound σrA(Bt) away from 0 in the
same way as Lemma 2.
In other words, the over-parametrized case under our initialization reduces to the exact-parametrized
case given the same iteration on Bt (28) (cf. (12)). This allows as to use the same argument of
Theorem 1 to derive a quadratic rate for over-parametrized case.
Theorem 5. With high probability over the initialization, the behavior of update (26) under Nyström initial-
ization (3) can be described as:
Phase 1 (linear convergence). Let η = O( 1

κ3‖A‖F ). After T1 := O(κ3
√
r log κ) iterations, ScaledGD ensures

that ‖XT1X
>
T1
−A‖F ≤ O(1/κ2).

Phase 2 (quadratic convergence). After Phase I, ScaledGD converges quadratically with η = 0.5. In particular,
‖XTX>T −A‖F ≤ ε is ensured after T = O

(
log log( 1

κε )
) iterations.

Proof. The proof is the same as Theorem 1 given the same iteration on Bt in (28). We omit it to avoid
redundancy.

Numerical illustration. A numerical illustration for ScaledGD under Nyström initialization in
over-parametrized case can be found in Fig. 4. We adopt ScaledGD-(λ) [24], the damping version
of ScaledGD, as another baseline. It can be seen that only our approach achieves a quadratic rate;
see Fig. 4(a). We also slightly perturb our initialization with small noise, and it can be seen that the
quadratic convergence breaks down immediately. This demonstrate the critical role of initialization:
i) it helps to get rid of damping using pseudo-inverse; and ii) it ensures a quadratic rate.

C. Missing proofs for asymmetric settings

C.1. Missing proofs for asymmetric and exact-parametrized setting
C.1.1. Proof of Lemma 6

Proof. The proof is finished by induction. From our Nyström initialization, one has that Ψ0 = 0 and
Φ0 = ΣV>Ω. Now assume that one can write Xt = UΦt and Yt = VΨt for some iteration t. We
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Figure 4: Convergence of ScaledGD under Nyström initialization (optimality error vs. iteration) on
over-parametrized problems detailed in Apdx. E.1. (a) Comparison of GD, ScaledGD-(λ) with small
initialization, and ScaledGD with our initialization. (b) Solid lines show that our initialization is not
sensitive to magnitude; and dotted lines illustrate that quadratic convergence cannot be obtained
even with slightly perturbed initialization, i.e., X0 = AΩ + N, where [N]ij ∼ N (0, ξ2n).

will show that Xt+1 = UΦt+1 and Yt+1 = VΨt+1 under iteration (6). Let us start with Xt+1. Note
that if t = 0, X1 = UΦ1 is trivial. We only focus on t ≥ 1, where we have

Xt+1 = Xt − η(XtY
>
t −A)Yt(Y

>
t Yt)

−1

= UΦt − η(UΦtΨ
>
t V> −UΣV>)VΨt(Ψ

>
t V>VΨt)

−1

= UΦt − ηU(ΦtΨ
>
t −Σ)Ψt(Ψ

>
t Ψt)

−1

= U

Å
Φt − η(ΦtΨ

>
t −Σ)Ψt(Ψ

>
t Ψt)

−1
ã

︸ ︷︷ ︸
:=Φt+1

.

Note that the invertible of (Ψ>t Ψt) will become clear in the proof of Corollary 1.
Using a similar argument, it is not hard to show that Yt = VΨt for all t. We do not repeat here.

C.1.2. Proof of Theorem 3

Proof. Based on the initialization (5) and iteration (6), we can obtain that

Φ1 = Φ0 (29a)

Ψ1 = V>Y1 = 0− ηV>(0−A)>UΦ0(Φ>0 U>UΦ0)−1

= ηV>VΣU>UΦ0(Φ>0 U>UΦ0)−1

= ηΣΦ0(Φ>0 Φ0)−1

= ηΣΦ−>0 .

(29b)

This ensures that
Φ1Ψ

>
1 = ηΣ.

Choosing η = 1 completes the proof.

C.1.3. Proof of Corollary 1

Proof. The corollary is proved through an asymmetric-to-symmetric reduction.
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Step 1. Positive definiteness of ΦtΨ
>
t . We will first show that ΦtΨ

>
t is symmetric and positive

definite (PD) for any t ≥ 1. From the proof of Theorem 3, it can be seen that Φ1Ψ
>
1 = ηΣ is

symmetric and PD. This means that the base case of induction holds. Now suppose that ΦtΨ
>
t is

symmetric and PD at iteration t. Based on Lemma 6, we can write the iteration as
Φt+1 = (1− η)Φt + ηΣΨ−>t (30a)
Ψt+1 = (1− η)Ψt + ηΣΦ−>t . (30b)

This gives that
Φt+1Ψ

>
t+1 = (1− η)2ΦtΨ

>
t + 2η(1− η)Σ + η2Σ(ΦtΨ

>
t )−1Σ. (31)

The symmetry of Φt+1Ψ
>
t+1 directly follows from (31). For the positive definiteness of Φt+1Ψ

>
t+1,

we can apply Lemma 15 to get
λmin(Φt+1Ψ

>
t+1) ≥ (1− η)2λmin(ΦtΨ

>
t ) + 2η(1− η)λmin(Σ) + η2λmin(Σ(ΦtΨ

>
t )−1Σ) > 0.

This concludes the PD of Φt+1Ψ
>
t+1.

Step 2. Define Bt := ΦtΨ
>
t , then (31) can be rewritten as
Bt+1 = (1− η)2Bt + 2η(1− η)Σ + η2ΣB−1t Σ (32)

which is exactly the same iteration as (12) for the symmetric exact-parametrized case. Based on the
results from Step 1, that is, Φt+1Ψ

>
t+1 is symmetric and PD, we can apply the same analysis steps for

symmetric exact-parametrized problems, i.e., Theorem 1 to get the bounds stated in this corollary.
We do not repeat for conciseness.

C.2. Missing proofs for asymmetric and under-parametrized setting
C.2.1. How good is weak optimality?

Lemma 13. Every global optimum for (4) is also weakly optimal.

Proof. We start with rewriting the SVD of A = UΣV> as

A = [U1,U2]

ï
Σ1 0
0 Σ2

ò ï
V>1
V>2

ò
= U1Σ1V

>
1 + U2Σ2V

>
2 (33)

where U1 ∈ Rm×r and U2 ∈ Rm×(rA−r) are the first r and other columns of U, respectively;
Σ1 ∈ Rr×r and Σ2 ∈ R(r−rA)×(r−rA) are diagonal matrices formed by the first r and rest diagonal
entries of Σ; and V1 ∈ Rn×r and V2 ∈ Rn×(rA−r) are the first r and other columns of V.
It is not hard to see that the optimal solutions of (1) are X∗ = U1Σ

1/2
1 Q and Y∗ = V1Σ

1/2
1 Q−>,

where Q ∈ Rr×r is any invertible matrix. Using these notation, we have that

Y>∗ A†X∗ = Q−1Σ
1/2
1 V>1 (V1Σ

−1
1 U>1 + V2Σ

−1
2 U>2 )U1Σ

1/2
1 Q

(a)
= Ir

where in (a) we use the facts U>1 U1 = Ir and U>1 U2 = 0r×(rA−r). This concludes the proof.

C.2.2. Proof of Theorem 4

Proof. The update in (6) ensures that
Φ1 = Φ0, (34a)
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Ψ1 = V>Y1 = 0− ηV>(0−A)>UΦ0(Φ>0 U>UΦ0)−1

= ηV>VΣU>UΦ0(Φ>0 U>UΦ0)−1

= ηΣΦ0(Φ>0 Φ0)−1

(a)
:= ηΣΘ0

(34b)

where in (a) we define Θt := Φt(Φ
>
t Φt)

−1.
From the Definition 2, we can see that

Y>1 A†X1 = Ψ>1 V>VΣ−1U>UΦ1 = Ψ>1 Σ−1Φ1

= ηΘ>0 ΣΣ−1Φ0 = ηIr.

This means that when η = 1, generalized weak optimality can be achieved in one step for under-
parametrized problems.

C.3. Asymmetric and over-parametrized setting
Next, we establish the one step convergence with Nyström initialization in the asymmetric over-
parametrized setting, where rA < r. We also need to slightly modify the ScaledGD update to

X1 = X0, and Xt+1 = Xt − η(XtY
>
t −A)Yt(Y

>
t Yt)

†,∀t ≥ 1 (35a)
Yt+1 = Yt − η(XtY

>
t −A)>Xt(X

>
t Xt)

†,∀t ≥ 0. (35b)
Comparing with (6), the difference is that here we use pseudo-inverse to bypass the possible non-
invertibility of (X>t Xt) and (Y>t Yt) in the over-parametrized case. We also note that to the best
of our knowledge, there is no previous result that establishes the convergence of ScaledGD (or its
variants) for asymmetric over-parametrized problems.
Theorem 6. Under Nyström initialization (5), the modified ScaledGD iterations (35) converge globally in a
single step w.h.p. over the initialization, i.e., X1Y

>
1 = A if the learning rate is chosen as η = 1.

Proof. Let the compact eigendecomposition of A = UΣV> for U ∈ Rm×rA , Σ ∈ RrA×rA , and
V ∈ Rn×rA .
The Nyström initialization ensures that X0 = X1 = UΦ0, where Φ0 ∈ RrA×r and clearly Φ0 =
ΣV>Ω. Using the expression of X1, iteration (35) gives that

Y1 = ηVΣΦ0(Φ>0 Φ0)†.

Let the compact SVD of Φ0 := PDQ>, where P ∈ RrA×rA , D ∈ RrA×rA and Q ∈ Rr×rA . Note that
P is unitary. With the compact SVD of Φ0, we have that (Φ>0 Φ0)† = QD−2Q>, which implies that

X1Y
>
1 = ηUPDQ>QD−2Q>QDP>ΣV>

(a)
= UΣV> = A

where (a) is because P is unitary and the choice of η = 1.

D. Other useful lemmas
Lemma 14. Let At+1 = (1− θ)At + β with some α ∈ (0, 1) and β ≥ 0, then we have

At+1 = (1− θ)t+1A0 + β
1− (1− θ)t+1

θ
≤ (1− θ)t+1A0 +

β

θ
.

Proof. The proof can be completed by simply unrollingAt+1 and using the fact 1+α+α2 + . . .+αt ≤
1

1−α .
Lemma 15. If A ∈ Rn×n and B ∈ Rn×n are positive semi-definite matrices, we have λmin(A + B) ≥
λmin(A) + λmin(B).
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Proof. The smallest eigenvalue of A + B can be expressed as

λmin(A + B) = min
x6=0

x>(A + B)x

x>x
= min

x1 6=0,x1=x2

x>1 Ax1

x>1 x1
+

x>2 Bx2

x>2 x2
. (36)

On the other hand, we also have that

λmin(A) + λmin(B) = min
x1 6=0,x2 6=0

x>1 Ax1

x>1 x1
+

x>2 Bx2

x>2 x2
. (37)

Because (36) is a constrained version of theminimization problem (37), they share the same objective,
but (36) has shrinked feasible region. It is not difficult to see that λmin(A + B) ≥ λmin(A) +λmin(B).
The proof is thus completed.

Lemma 16. Consider a sequence {At}t with At ≥ 0,∀t. If there exists α such that At+1 ≤ αA2
t and

A0 ≤ 1
2α , At converges to 0 at a quadratic rate, i.e.,

At+1 ≤
1

α

1

22t+1 .

Proof. Unrolling At+1, we get that

At+1 ≤ αA2
t ≤ α3A4

t−1 ≤ α7A8
t−2 ≤

1

α
(αA0)2

t+1

≤ 1

α

1

22t+1 .

The proof is thus completed.

Lemma 17. Let A ∈ Rm×n be a matrix with full column rank and B ∈ Rn×p be a non-zero matrix. Let
σmin(·) be the smallest non-zero singular value. Then it holds that σmin(AB) ≥ σmin(A)σmin(B).

Proof. Using the min-max principle for singular values,

σmin(AB) = min
‖x‖=1,x∈ColSpan(B)

‖ABx‖

= min
‖x‖=1,x∈ColSpan(B)

∥∥∥A Bx

‖Bx‖

∥∥∥ · ‖Bx‖

(a)
= min
‖x‖=1,‖y‖=1,x∈ColSpan(B),y∈ColSpan(B)

‖Ay‖ · ‖Bx‖

≥ min
‖y‖=1,y∈ColSpan(B)

‖Ay‖ · min
‖x‖=1,x∈ColSpan(B)

‖Bx‖

≥ min
‖y‖=1

‖Ay‖ · min
‖x‖=1,x∈ColSpan(B)

‖Bx‖

= σmin(A)σmin(B)

where (a) is by changing of variables, i.e., y = Bx/‖Bx‖.

Lemma 18. For PSD matrices A and B, if A + B = Ir, then we have Tr(A) ≤ r and Tr(B) ≤ r.

Proof. The proof is straightforward and is omitted here.

Lemma 19 (Rudelson and Vershynin [68]). Let W be an d× r matrix with d ≥ r. The entries of W are
drawn independently from N (0, 1). Then for every τ > 0, we have that

P
(
σr(W) ≤ τ(

√
d−
√
r − 1)

)
≤ (C1τ)d−r+1 + e−C2d.

where C1 and C2 are universal constants independent of d and r.
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Figure 5: The dog dataset.

Figure 6: The cat-toy dataset.

E. Missing experimental details

E.1. Details for problems with synthetic data

This subsection contains the detailed setup for the problems with synthetic data in Figs. 1 and 4.
Recall that here we focus on symmetric problems under exact-, under-, and over-parametrization.
For the exact-parametrized problem in Fig. 1 (a) and (b), we choose the PSD matrix A ∈ Rm×m
in the following manner. We set m = 1000 and r = rA = 20. The non-zero singular values are
set as {1.0, 0.99, 0.98, . . . , 0.82, 0.01}, where we intentionally set σrA = 0.01 to enlarge the condition
number. We choose the step size of GD as 0.01 to avoid divergence. The learning rate for ScaledGD
is 0.5.
For the under-parametrized problem in Fig. 1 (c), we choose PSD matrix A ∈ Rm×m in
the following manner. We set m = 1000 and rA = 40. The singular values of A are
{1.0, 0.99, 0.98, . . . , 0.65, 0.64, 0.05, 0.025, 0.01}. We choose r = 20 to ensure the under-parametrized
nature of this problem.
For the over-parametrized case in Fig. 4 (a) and (b), we choose PSD matrix A ∈ Rm×m in the
following manner. We set m = 1000 and rA = 20. The non-zero singular values are chosen
as {1.0, 0.99, 0.98, . . . , 0.82, 0.01}, where we intentionally set σrA = 0.01 to enlarge the condition
number. We set X to be over-parametrized by letting r = 60. We choose the step size of GD as 0.01.
The learning rate of ScaledGD-λ is set as 0.5, and its damping parameter λ is chosen as 0.01. The
learning rate for ScaledGD with Nyström initialization is 0.5.

E.2. Datasets

The evaluation of NoRA and NoRA+ is carried out on commonly adopted datasets in the literature.
GLUE benchmark. GLUE is designed to provide general-purpose evaluation of language under-
standing [69]. Those adopted in our work include SST-2 (sentiment analysis, [70]), RTE3 (inference).
These datasets are released under different permissive licenses.

3https://paperswithcode.com/dataset/rte
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SuperGLUE benchmark. SuperGLUE [71] is another commonly adopted benchmark for language
understanding, and it is more challenging compared with GLUE. The considered datasets include CB
(inference, [72]), ReCoRD (question answering, [73]), WSC (coreference resolution, [74]), BoolQ
(question answering, [75]), and MiltiRC (question answering, [76]). These datasets are released
under different permissive licenses.
Commonsense reasoning. These datasets are a collection tasks that require commonsense reasoning
to answer. The considered datasets include WinoGrande [77], PIQA [78], SOCIAL-I-QA (SIQA)
[79], HellaSwag [80], ARC-easy, ARC-challenge [81] and OpenbookQA [82]. These datasets are
released under different permissive licenses.
Math. For mathematical problems, we consider GSM8K [83] dataset that consists of high quality
linguistically diverse school math problems created by human problem writers. This dataset is under
MIT license. We also adopt MetaMathQA dataset [84], which is constructed through bootstrapping
mathematical questions by rewriting the question from multiple perspectives. This dataset is under
MIT license.
Additional datasets. We also use SQuAD (question answering, [85]) in our experiments, which is
released under license CC BY-SA 4.0.
Datasets for DreamBooth. The datasets (dog and cat-toy) used for Sec. 5.1 are obtained directly
from Huggingface. The dog dataset4 contains 5 dog images; see Fig. 5. The cat-toy5 dataset has
4 images; see Fig. 6. Both datasets are representative examples for the purpose of DreamBooth –
finetuning with only few images for personalized generalization.

E.3. Details for Fig. 2
The experiment setting and training protocols are the same as few-shot learning with OPT-1.3B in the
following subsection. Here, we are interested in the change of singular values after LoRA finetuning.
For each LoRA layer, we compare the singular values of W0 and W0 + XTY>T , where XT ,YT are
LoRAweights after training, and find out the indices of r singular values that have the largest change
after finetuning. We then count the indices across all LoRA layers. Fig. 2 plots indices vs. counts.

E.4. Few-shot learning with OPT-1.3B
Consider a few-shot learning task following [31]. The objective is to rapidly adapt a language model
with a small training set. The datasets for this experiment are drawn from GLUE and SuperGLUE
benchmarks [69, 71]. Consistent with [31], we randomly sample 1,000 data points for training and
another 1,000 for testing.
We embrace OPT-1.3B as our base model [86] and apply LoRA to the query and value matrices in
the attention module. This aligns with common practice for models of this size. The rank of LoRA
is set to 8, leading to approximately 1.5M trainable parameters, which is significantly less than the
model size. We compare the proposed NoRA and NoRA+ with LoRA, prefix tuning [44], OLoRA
[16], and PiSSA [17]. Note that the latter two serve as alternative methods for initializing LoRA.
For this experiment, we first search for the best batchsizes for LoRA, and the same batchsize is
applied for other tested algorithms as well. Then we search additionally for the best learning rate
for each algorithm. This ensures that different algorithms see the same amount of data, while still
having their best performed learning rate. The hyperparameters adopted are searched over values in
Tab. 4. Adam is adopted for optimization.
The performance of different algorithms is summarized in Tab. 5. It is evident that OLoRA, PiSSA,
NoRA, and NoRA+ all outperform LoRA because their initialization strategies have provided more
favorable directions for optimization. Among these initialization approaches, NoRA and NoRA+
have the best average accuracy, with absolute improvement over LoRA by 1.8 and 1.9, respectively.

4https://huggingface.co/datasets/diffusers/dog-example
5https://huggingface.co/datasets/diffusers/cat-toy-example
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Table 4: Hyperparameters used for few-shot learning with OPT-1.3B.

Hyperparameters Values
LoRA r 8
LoRA α 16

LoRA module q_proj, v_proj
# epochs 5
batchsize 2, 4, 8

learning rate 1×10−5, 5×10−5, 1×10−4

NoRA ξ 0.05, 0.1, 0.2

Table 5: Test accuracy of NoRA and NoRA+ for few-shot learning with OPT-1.3B.
OPT-1.3B SST-2 WSC BoolQ CB RTE ReCoRD MultiRC SQuAD avg (↑)
Prefix 92.9±0.9 59.6±1.6 73.1±2.3 71.6±2.9 65.2±2.6 69.7±1.0 64.4±3.2 82.2±1.4 72.3
LoRA 93.1±0.2 59.1±2.0 70.6±5.2 72.6±3.7 69.1±4.7 70.8±1.0 68.0±1.4 81.9±1.8 73.2
OLoRA 92.7±0.5 60.0±2.3 70.9±3.1 80.3±2.7 69.7±1.0 71.3±1.2 66.7±0.9 80.0±1.4 74.0
PiSSA 92.7±0.6 60.6±3.7 70.4±0.7 78.0±7.2 70.4±2.8 70.9±1.2 67.9±2.1 82.1±0.4 74.1
NoRA 93.4±0.7 60.6±3.8 73.2±0.6 79.2±5.2 72.0±1.3 71.3±1.0 68.5±1.2 81.8±0.7 75.0
NoRA+ 93.2±0.5 61.2±0.6 72.9±1.3 79.5±5.8 72.4±3.6 71.5±0.9 68.4±1.2 82.0±0.9 75.1

E.5. DreamBooth with stable-diffusion

Stable Diffusion V1.4 [34] is adopted as base model, where LoRA is applied to the UNet. The
text-encoder is not finetuned. We adopt the default parameter-choice from Huggingface, which is
summarized in Tab. 6. We adopt AdamW as the optimizer with a weight decay of 0.01.

Table 6: Hyperparameters used for DreamBooth with stable-diffusion.

Hyperparameters Values
LoRA r 4
LoRA α 4

LoRA module to_q, to_k, to_v, to_out
# iterations 500
batchsize 1

learning rate 1×10−4

NoRA ξ 0.1

We provide additional results to further support the efficiency of NoRA by finetuning the stable-
diffusion-v1.4 model using the same protocol as in Sec. 5.1. Here we adopt a dataset with 4 toy-cat
images; see Fig. 6. After finetuning 500 steps using prompt “a photo of toy cat”, our goal is to
generate images “a toy cat wearing glasses.” The generated images are shown in Fig. 7. In general, all
tested algorithms do not distinguish the hands and the tail of toy cat well. However, both LoRA and
LoRA-P generate images with less accurate facial details. For example, the glasses are not wearing
well, or the eyes are not clear. However, the details of faces generated by NoRA and NoRA+ are
quite clear.

E.6. Commonsense reasoning with LLaMA2

The base models considered is LLaMA2-7B. The experimental setup and choices of hyperparameters
follow [38]. The hyperparameters are summarized in Tab. 7.
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Figure 7: Generated images from NoRA and NoRA+ with stable-diffusion.
Table 7: Hyperparameters used for commonsense reasoning with LLaMA2-7B.

Hyper-parameters Values
LoRA r (rank) 32

LoRA α 64
LoRA module q_proj, k_proj, v_proj, up_proj, down_proj

epoch 3
learning rate 3× 10−4

batchsize 16
cutoff length 256

NoRA ξ 0.02, 0.05, 0.1

E.7. Math reasoning with Gemma-7B
Our last evaluation tackles mathematical reasoning. Gemma-7B [87] is finetuned for 2 epochs on
MetaMathQA-100K dataset [84]. LoRA rank is set as 32, leading to 100M trainable parameters. The
performance is assessed on GSM8K [83], and hyperparameters are summarized in Tab. 8.

Table 8: Hyperparameters used for math reasoning with Gemma-7B.

Hyper-parameters Values
LoRA r (rank) 32

LoRA α 64
LoRA module q_proj, k_proj, v_proj, o_proj, up_proj, down_proj, gate_proj

epoch 2
learning rate 3× 10−4, 4× 10−4, 5× 10−4

batchsize 128
NoRA ξ 0.02, 0.05, 0.1

The performance of various approaches is summarized in Tab. 9. We also include PiSSA [17] into
the comparison. Note that PiSSA uses LoRA rank as 64 but is only finetuned for a single epoch.
Despite this difference, the computational cost on backward passes is the same for PiSSA and
NoRA. The results clearly show that NoRA (NoRA+) outperforms LoRA (LoRA-P), highlighting
the effectiveness of our Nyström initialization.
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Table 9: Performances of different algorithms for math reasoning tasks. The results marked with ‡
are taken from [17].

GSM8K LoRA PiSSA‡ NoRA LoRA-P NoRA+
Gemma-7B 76.72 77.94 78.62 77.03 78.47
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