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ABSTRACT

Knowledge graph (KG) reasoning aims to infer new facts based on existing facts
in the KG. Recent studies have shown that using the graph neighborhood of a node
via graph neural networks (GNNs) provides more useful information compared to
just using the query information. Conventional GNNs for KG reasoning follow
the standard message-passing paradigm on the entire KG, which leads to over-
smoothing of representations and also limits their scalability. At a large scale,
it becomes computationally expensive to aggregate useful information from the
entire KG for inference. To address limitations of existing KG reasoning frame-
works, we propose a novel retrieve-and-read framework, which first retrieves a
relevant subgraph context for the query and then jointly reasons over the context
and the query with a high-capacity reader. As part of our exemplar instantiation
for the new framework, we propose a novel Transformer-based GNN as the reader,
which incorporates graph-based attention structure and cross-attention from deep
fusing between query and context. This design enables the model to focus on
salient subgraph information that is relevant to the query. Empirical experiments
on two standard KG reasoning datasets demonstrate the competitive performance
of the proposed method.1

1 INTRODUCTION

Knowledge graphs encode a wealth of structured information in the form of “(subject, relation,
object)” triples. The rapid growth of KGs in recent years has led to their wide use in diverse applica-
tions such as information retrieval (Castells et al., 2007; Shen et al., 2015) and data mining (Zheng
et al., 2021). KG reasoning, which is commonly modeled as link prediction (Bordes et al., 2013) that
aims to infer new facts based on existing facts, is a fundamental task on KGs. It finds applications in
relation extraction (Wang et al., 2014; Weston et al., 2013), question answering (Bordes et al., 2014)
and recommender systems (Zhang et al., 2016).

Early methods for KG link prediction have focused on learning a dense embedding for each entity
and relation in the KG, which are then used to calculate the plausibility of new facts via a simple
scoring function (e.g., cosine similarity) (Bordes et al., 2013; Lin et al., 2015; Ji et al., 2015; Socher
et al., 2013; Dettmers et al., 2018). The hope is that an entity’s embedding will learn to compactly
encode the structural and semantic information in its neighborhood in a way that a simple scoring
function would suffice for making accurate link predictions. However, it is challenging to fully
encode the rich information of KGs into such shallow embeddings. Similar to how contextualized
encoding models like BERT (Devlin et al., 2018) have been replacing static embeddings (Mikolov
et al., 2013; Pennington et al., 2014) for natural language representation, several recent studies have
adapted message-passing graph neural networks (GNNs) for KG reasoning (Schlichtkrull et al.,
2018; Shang et al., 2019; Vashishth et al., 2019). By using a higher-capacity GNN to iteratively
encode increasingly larger graph neighborhood, GNN-based KG reasoning methods have shown a
great success. However, the reliance on message passing over the entire KG limits their scalability
to large-scale KGs such as Wikidata (Vrandečić & Krötzsch, 2014). The same reason also leads to
slow inference speed.

Intuitively, for each specific query, e.g., (Barack Obama, collaborate with, ?), only a small subgraph
of the entire KG may be relevant for answering the query (Figure 1). If we could retrieve the

1All the code and data will be released on GitHub upon acceptance.
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Figure 1: Overview of the proposed retrieve-and-read framework and comparison with existing
frameworks for KG reasoning. Embedding-based methods try to encode all relevant information into
the shallow embeddings, while message-passing graph neural networks (GNNs) iteratively learn the
representations through message passing over the entire KG. In contrast, in our framework, we first
retrieve a small context subgraph that is relevant to each input query, and jointly encode the query
and the context for the final prediction. Here for simplicity we assume the context to be a connected
subgraph, but being connected is not a necessary condition.

relevant subgraph from the KG as context, we can then easily use a high-capacity model to read
the query in the corresponding context to make the final inference. To this end, we propose a novel
retrieve-and-read framework for KG reasoning (see Figure 1 for an overview and comparison with
existing frameworks). It consists of two main components: a retriever that identifies the relevant
KG subgraph as context for the input query, and a reader that jointly considers the query and the
retrieved context for inferring the answer. Such a retrieve-and-read framework has been widely used
for the open-domain question answering (QA) problem (Chen et al., 2017; Zhu et al., 2021a), which
faces a similar fundamental challenge: it also needs to answer a question in a massive corpus where
only a small fraction is relevant to each specific question. The modularization provided by this
framework has enabled rapid progress on retriever and reader models separately (Karpukhin et al.,
2020; Xiong et al., 2021; Asai et al., 2020; Khattab et al., 2021; Glass et al., 2020; Deng et al., 2021).

Embracing the retrieve-and-read framework for KG reasoning could bring multiple potential advan-
tages: 1) It provides great flexibility to explore and develop diverse models for retriever and reader
separately. For example, we will explore several different choices for the retriever, even including
some existing KG reasoning model. Because the reader only needs to deal with a small subgraph in-
stead of the entire KG, we could easily use high-capacity models such as the Transformer (Vaswani
et al., 2017), which has proven extremely successful for other tasks but the application on KG rea-
soning has been limited. 2) Relatedly, separate and more focused progress can be made on each
component, which can then be combined to form new KG reasoning models. 3) Instead of learning
and levering the same static representation for all inferences as in existing frameworks, the reader
can dynamically learn a contextualized representation for each query and context for more accurate
prediction. 4) Finally, this framework could potentially lead to scalable KG reasoning models for
large-scale KGs, similar to how it has enabled open-domain QA to scale up to web-scale corpora
(Karpukhin et al., 2020; Zhu et al., 2021a).

To demonstrate the effectiveness of the proposed framework, we propose a novel instantiation of the
framework, KG-R3 (KG Reasoning with Retriever and Reader). It uses an existing KG reasoning
method (Das et al., 2018) as retriever and a novel Transformer-based GNN as reader. Existing GNNs
are mostly based on message passing (Gilmer et al., 2017), where the representation of a particular

2



Under review as a conference paper at ICLR 2023

node is iteratively updated by its neighbors. A known issue with message-passing GNNs is over-
smoothing (Li et al., 2018), i.e., the representation of distinct nodes become indistinguishable as
GNNs get deeper, which limits model capacity. The time complexity of message passing also grows
exponentially with the number of layers, making it even harder to increase the capacity of such
models. On the other hand, the Transformer model (Vaswani et al., 2017) has been driving the
explosive growth of high-capacity models such as BERT (Devlin et al., 2018). The Transformer can
support very high-capacity models (Brown et al., 2020; Chowdhery et al., 2022), which is one of the
key reasons for its success. While it is challenging to apply Transformer to the entire KG due to its
limited context window, the small context in the retrieve-and-read framework makes it feasible. We
design a novel Transformer-based GNN which has a two-tower structure to separately encode the
query and the context subgraph and a cross-attention mechanism to enable deep fusing of the two
towers. A graph-induced attention structure is also developed to encode the context subgraph.

The major contribution of this work is three-fold:

• We propose a novel retrieve-and-read framework for knowledge graph reasoning.
• We develop a novel instantiation, KG-R3, of the framework, which consists of the first

Transformer-based graph neural network for KG reasoning.
• We conduct empirical experiments on the standard FB15K-237 (Toutanova & Chen, 2015)

and WN18RR (Dettmers et al., 2018) datasets and show that KG-R3 achieves competitive
results with state-of-the-art methods.

2 RELATED WORK

Graph Neural Networks. Graph Neural Networks have emerged as a popular class of neural net-
works for machine learning on graphs. Graphs naturally encode rich semantics of underlying data.
Early models (Bruna et al., 2013; Kipf & Welling, 2016; Defferrard et al., 2016) extended the spec-
tral convolution operation to graphs. Follow-up works (Battaglia et al., 2016; Veličković et al., 2017;
Bresson & Laurent, 2017) introduced attention and gating mechanisms to aggregate the salient in-
formation from a node’s neighborhood. These aforementioned models are applicable only to ho-
mogeneous graphs. In our present work, we develop a novel transformer-based GNN as the reader
module for link prediction in multi-relational graphs like KGs.

KG reasoning models. KG reasoning has received significant attention in the research community
in the past decade. The proposed models range from translation-based models (Bordes et al., 2013;
Lin et al., 2015) to the ones that leverage convolutional neural networks (Dettmers et al., 2018;
Nguyen et al., 2018). These shallow embedding methods learn embeddings for each entity/relation
and use a parameterized score function to predict the plausibility of a “(subject, relation, object)”
triple. To make use of rich graph neighborhood, several approaches have tried to adapt GNNs to
multi-relational graphs for KG reasoning. Schlichtkrull et al. (2018) introduce relation-type depen-
dent aggregation message aggregation. Teru et al. (2020) introduce a novel edge attention operation
for aggregation in GNNs for the task of inductive relation prediction using the subgraph context.
These methods use graph aggregation over the entire KG, thus limiting their application to large-
scale KGs. In contrast, since we use subgraphs as the model input, our approach can potentially
scale to large-scale KGs.

Path-based KB reasoning. Another line of work uses multi-hop paths to synthesize information for
predicting the missing facts in a KG. DeepPath (Xiong et al., 2017) and MINERVA (Das et al., 2018)
formulate it as sequential decision making problem and use reinforcement learning to search paths
to the target entity. For our retriever module, we use MINERVA as one of the baseline methods.
Yang et al. (2017) and Sadeghian et al. (2019) use inductive logic programming to assign weights
to different paths for link prediction. Though these approaches are interpretable, they suffer from
relatively poor performance compared to embedding based KG reasoning methods. Our proposed
framework can utilize the subgraphs generated by these approaches for improved performance.

Transformers for Graph ML tasks. Transformers based models have seen widespread interest in
the domain of graph ML. Dwivedi & Bresson (2021) adapt the GNN neighborhood aggregation to
use Transformer-like self-attention. GRAPH-BERT (Zhang et al., 2020) uses the Transformer model
for self-supervised learning of node representations. Graphormer (Ying et al., 2021) introduces
inductive biases such as centrality encoding, spatial encoding and edge encoding to Transformer
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model, leading to improved performance on OGB benchmarks (Hu et al., 2021). These approaches
share the same limitation of aggregation over the whole graph, leading to poor scalability.

Open-domain Question Answering. The task of open-domain QA is to answer a question using
knowledge from a massive corpus such as Wikipedia. A popular and successful way to address
the challenge of large scale is through a two-stage retrieve-and-read pipeline (Chen et al., 2017;
Zhu et al., 2021a), which leads to rapid developments of retriever and reader separately (Karpukhin
et al., 2020; Xiong et al., 2021; Asai et al., 2020; Khattab et al., 2021; Glass et al., 2020; Deng et al.,
2021). We draw inspiration from this pipeline and propose to use a retrieve-and-read framework for
KG reasoning.

3 METHODOLOGY

Knowledge Graph. Given a set of entities E and a set of relations R, a knowledge graph can be
defined as a a collection of facts F ⊆ E ×R×E where for each fact f = (h, r, t), h, t ∈ E , r ∈ R.

Link Prediction. The task of link prediction is to infer the missing facts in a KG. Given a link
prediction query (h, r, ?) or (?, r, t), the model ranks the target entity among the set of candidate
entities.

3.1 RETRIEVER

The function of the retriever module is to select a subset of the KG relevant to the query. This resul-
tant subset is called a subgraph. We use the following off-the-shelf methods to generate subgraph
inputs for the Transformer-based reader model in our framework:

• Breadth-first search: For breadth-first search, we sample edges starting from the source
entity in breadth-first order till we reach the context budget.

• One-hop neighborhood: The one-hop neighborhood comprises of edges in the immediate
one-hop neighborhood of the source entity.

• MINERVA (Das et al., 2018): MINERVA formulates KG reasoning as generation of multi-
hop paths from the source entity to the target entity. The environment is represented as a
Markov Decision Process on the KG, where the reinforcement learning agent gets a positive
reward on reaching the target entity. The set of paths generated by MINERVA provides an
interpretable provenance for KB reasoning. The retriever model utilizes the union of these
paths decoded using beam search as the subgraph output.

Among these approaches, breadth-first search and one-hop neighborhood make use of uninformed
search, i.e., they only enrich the query using surrounding context without going towards the target.
On the other hand, the subgraph obtained using MINERVA aims to provide context which encloses
information towards reaching the target entity.

3.2 READER ARCHITECTURE

Embedding layer. The input to the Transformer is obtained by summing the token lookup embed-
ding, token type embedding and the segment embedding (Figure 2):

• Token lookup embedding: We use learned lookup embeddings for all entities and relations
in the KG. These lookup embeddings store the global semantic information for each token.

• Token type embedding: Entities and relations have different semantics, so we use token
type embeddings help the model distinguish between them.

• Segment embedding: It denotes whether a particular entity token corresponds to the ter-
minal entity in a path starting from the source entity. This helps the model to differentiate
between the terminal tokens, which are more likely to correspond to the final answer v.s.
others.

The input to the model is query e.g. (h, r, ?) and the associated subgraph g, a connected subset of
the KG. The subgraph consists of nodes {e1, e2, · · · , em} ∈ E and edges {r1, r2, · · · , rn} ∈ R.
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Figure 2: Schematic representation of embedding layer for subgraph input. The Transformer input
is the sum of token lookup embedding, token type embedding and segment embedding.

The input sequence is constructed by concatenating the nodes and edges. Each edge has a unique
token in the input though there might be multiple edges with the same predicate. The query and
subgraph are first encoded by their respective Transformer encoders, which make use of graph-
induced attention structure (details in below). Then the cross-attention module is used to modulate
the subgraph representation, conditioned on the query.

Graph-induced Self-Attention. The attention structure (Ai) governs the set of tokens that a partic-
ular token can attend to in the self-attention layer of the Transformer model, which aims to incorpo-
rate the (sub)graph structure into the transformer representations. We define the attention structure
such that 1) all node tokens can attend to each other; 2) all edge tokens can attend to each other,
and 3) for a particular triple (h, r, t), the token pairs (h, r) and (r, t) can attend to each other. This
design is motivated by the need to balance the immediate graph neighborhood of a token v.s. its
global context in the subgraph.

More formally, let {hℓ
i}

m+n

i=1 denote the hidden representations of the tokens in layer ℓ.

hℓ+1
i = Oℓ

h

Hn

k=1

( ∑
j∈Ai

wk,ℓ
ij V k,ℓhℓ

j

)
(1)

wk,ℓ
ij = softmaxj∈Ai

(Qk,ℓhℓ
i ·Kk,ℓhℓ

j√
dk

)
(2)

Here, Qk,ℓ,Kk,ℓ, V k,ℓ ∈ Rdk×d, Oℓ
h ∈ Rd×d are projection matrices, H denotes the number of

attention heads, dk denotes the hidden dim. of keys and ∥ denote concatenation.

Cross-Attention. In order to answer a link prediction query, the model needs a way to filter the
subset of the edges in the subgraph relevant for a particular link prediction query. To accomplish
this, we introduce cross-attention from the query to the subgraph (Figure 3b). Following Vaswani
et al. (2017), the queries come from query hidden states whereas the keys and values are provided by
the subgraph hidden states. The resultant representation encodes the subgraph information relevant
to the query at hand. This is concatenated with the contextualized representation of the source entity
in the subgraph to output the feature vector for predicting the plausibility scores. Figure 3a illustrates
the overall model architecture for the Transformer-based reader.

More formally, Let {eq,ℓ
i } and {esub

i } denote the self-attention hidden representations of query and
subgraph respectively.

Cross-Attention({eq,ℓ
i }, {esub

i }) = Oℓ
h

Hn

k=1

(m+n∑
j=1

wk,ℓ
ij V k,ℓesub

j

)
(3)

wk,ℓ
ij = softmax

(Qk,ℓeq,ℓ
i ·Kk,ℓesub

j√
dk

)
(4)
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(a) Overall model architecture (b) Cross-Attention Encoder architecture.

Figure 3: Reader module architecture. In the cross-attention encoder, the link prediction query
serves as query input, while the subgraph serves as key and value input.

For a link prediction query, e.g., (h, r, ?) the model predicts a score distribution over all tail entities.
The model is trained using cross-entropy loss, framing it as a multi-class classification problem.

4 EXPERIMENTS

4.1 DATASETS

We use standard link prediction benchmarks FB15K-237 (Toutanova & Chen, 2015) and WN18RR
(Dettmers et al., 2018) to evaluate our model. FB15K-237 is a subset of the original FB15K dataset
after removing the train-test leakage due to inverse triplets. Similarly, WN18RR is a subset of
Wordnet (Fellbaum, 2010) which is a lexical knowledge base. The statistics of these two datasets
are given in Table 1. Among these, WN18RR is much sparser than FB15K-237.

4.2 EVALUATION PROTOCOL

For each test triplet (h, r, t), we corrupt either the head (corresponding to the link prediction query
(?, r, t)) or the tail entity and rank the correct entity among all entities in the KG. Following (Bordes
et al., 2013), we use the filtered evaluation setting i.e. the rank of a target entity is not affected by
alternate correct entities. We report results on standard evaluation metrics: Mean Reciprocal Rank
(MRR), Hits@1, Hits@3 and Hits@10.

4.3 IMPLEMENTATION DETAILS

We implement our models in Pytorch (Paszke et al., 2017). We use L = 3, A = 8, H = 320 for the
Transformer model (both self-attention and cross-attention), where L, A and H denote the number
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of layers, number of attention heads per layer and the hidden size respectively. We use the Adamax
(Kingma & Ba, 2015) optimizer for training. The learning rate schedule includes warmup for 10%
of the training steps followed by linear decay. For both datasets, we tune the learning rate on the
development set and report results on the test set with the best development setting. The batch size
is set to 512. For MINERVA retriever, we use decoding beam size of 100 and 40 for FB15K-237
and WN18RR respectively. For BFS retriever, we use upto 100 and 30 edges for FB15K-237 and
WN18RR respectively. Following (Chen et al., 2020), the one-hop neighborhood retriever uses 50
and 12 edges for FB15K-237 and WN18RR respectively.

Dataset |E| |R| # Facts Avg. node degree

Train Valid Test

FB15K-237 14,505 237 272,115 17,535 20,466 18.76
WN18RR 40,945 11 86,835 3,034 3,134 2.14

Table 1: Dataset statistics

FB15K-237 WN18RR

Framework Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Embedding- RESCAL (Nickel et al., 2011) .356 .266 .390 .535 .467 .439 .478 .516
based TransE (Bordes et al., 2013) .310 .218 .345 .495 .232 .061 .366 .522

DistMult (Yang et al., 2014) .342 .249 .378 .531 .451 .414 .466 .523
ComplEx (Trouillon et al., 2016) .343 .250 .377 .532 .479 .441 .495 .552
ComplEx-N3 (Lacroix et al., 2018) .350 - - .540 .470 - - .540
RotatE (Sun et al., 2019) .338 .241 .375 .533 .476 .428 .492 .571

CNN-based ConvKB (Nguyen et al., 2018) .243 .155 .371 .421 .249 .057 .417 .524
ConvE (Dettmers et al., 2018) .338 .247 .372 .521 .439 .409 .452 .499

Path-based NeuralLP (Yang et al., 2017) .240 - - .362 .435 .371 .434 .566
DRUM (Sadeghian et al., 2019) .343 .255 .378 .516 .486 .425 .513 .586

GNN-based R-GCN (Schlichtkrull et al., 2018) .248 .151 - .417 - - - -
CompGCN (Vashishth et al., 2020) .355 .264 .390 .535 .479 .443 .494 .546
NBFNet (Zhu et al., 2021b) .415 .321 .454 .599 .551 .497 .573 .666

Transformer- KG-BERT (Yao et al., 2019) - - - .420 - - - .524
based HittER (Chen et al., 2021) .373 .279 .409 .558 .503 .462 .516 .584

KG-R3 (this work) .387 .313 .408 .536 .458 .421 .471 .532

Table 2: Comparison of our framework with baseline methods. For all metrics, higher is better.
Missing values are denoted by -. The baseline metrics correspond to best results obtained after
extensive hyper-parameter tuning (Ruffinelli et al., 2020).

4.4 MAIN RESULTS

Table 2 shows the overall link prediction results. We compare our model with several translation-
based methods: TransE (Bordes et al., 2013), RESCAL (Nickel et al., 2011), DistMult (Yang et al.,
2014), RotatE (Sun et al., 2019), ComplEx (Trouillon et al., 2016), CNN-based methods: ConvE
(Dettmers et al., 2018), ConvKB (Nguyen et al., 2018), Path-based KB reasoning methods: Neu-
ralLP (Yang et al., 2017), DRUM (Sadeghian et al., 2019), message-passing GNN methods: R-GCN
(Schlichtkrull et al., 2018), CompGCN (Vashishth et al., 2020), NBFNet (Zhu et al., 2021b) and
Transformer-based methods: KG-BERT (Yao et al., 2019) and HittER (Chen et al., 2021). We don’t
include baselines that use extra information such as description information for comparison. Also,
we omit path-based methods that report link prediction performance only for one direction.

For FB15K-237, our proposed model with MINERVA subgraphs outperforms all embedding-based
baselines, CNN-based approaches, path-based approaches, and HittER (Chen et al., 2020), a base-
line Transformer model. This shows that the inductive biases in our model help it better utilize
neighboring context. For WN18RR dataset, our model is competitive compared to established base-
lines.
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4.5 FINE-GRAINED ANALYSIS

To gain further insights into the reader, we report a breakdown of the link prediction performance
based on whether the target entity is present in the input subgraph (Table 3). When the target entity
is present in the subgraph, the performance is very high (Hits@1 is almost 8× the value when it is
absent). This can be explained by the fact that the coverage of target entity provides the reader some
potentially correct reasoning paths to better establish the link between the source and target entity.
This also shows that the coverage of the target entity in the subgraph could be a useful indicator of
the retriever module’s performance.

MRR Hits@1 Hits@3 Hits@10

Target entity present in subgraph .675 .591 .714 .846
Target entity absent in subgraph .135 .073 .139 .259

Table 3: Performance breakdown based on whether the target entity is present in the input subgraph
on FB15K-37 dev. set. The performance is signicantly better when the target entity is present in the
subgraph.

FB15K-237 WN18RR

Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

MINERVA .390 .317 .411 .541 .472 .435 .486 .542
BFS .303 .215 .334 .475 .370 .308 .412 .479

One-hop neigh. .303 .215 .330 .481 .437 .395 .456 .516

Table 4: Ablations for Retriever module (FB15K-237 dev. set). MINERVA retriever outperforms
others by a wide margin.

4.6 ABLATION STUDIES

We do several ablations of both the retriever and the reader modules to understand the contribution
of different components towards the final performance. For the retriever, we experiment with three
choices - MINERVA, breadth-first search and one-hop neighborhood (Table 4). For both datasets,
the MINERVA retriever outperforms BFS and one-hop neighborhood by a significant margin. This
can be attributed to the fact that MINERVA is explicitly trained to find paths that lead to target
entity using RL, whereas the other two approaches correspond to uninformed search strategies. This
provides interesting insights into development of a good retriever. We further analyse the statistics
for target entity coverage in the subgraph (Table 5). This shows that higher target entity coverage in
subgraph potentially leads to better performance.

Retriever Target entity coverage (%)

MINERVA 46.28
BFS 16.44

Table 5: Comparison of target entity coverage for different retriever methods (FB15K-237 dev. set).
MINERVA has much better coverage than BFS.

For the reader, we experiment with omitting the cross-attention layers, omitting the subgraph rep-
resentation in the aggregate representation for link prediction, omitting the query representation
and using fully-connected attention in Transformer instead of the graph-induced attention structure.
The results are shown in Table 6. The most signficant drop in performance is caused by dropping
the graph-induced attention structure, which shows that our novel attention design plays a key role
in overall performance. The use of cross-attention brings notable improvement in metrics such as
Hits@1. Among the query and subgraph feature representation, the former has a greater contribution
to the the performance.
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Model MRR Hits@1 Hits@3 Hits@10

Ours .390 .317 .411 .541
− Cross Attention .387 .309 .414 .544
− Graph Attention structure .326 .240 .353 .497
− Subgraph embed .370 .277 .406 .556
− Query embed .359 .277 .384 .527

Table 6: Ablations for Reader module (FB15K-237 dev. set). Graph Attention structure contributes
the most towards final performance.

4.7 EFFICIENCY ANALYSIS

Table 7 shows the comparison of training and inference complexity (per triplet) of our method to two
prominent GNN baselines - R-GCN and NBFNet. Note: The calculation includes the complexity of
MINERVA retriever O(d2 + d |E|

|V| ).

Model Training complexity Inference complexity (per triplet)

R-GCN (Schlichtkrull et al., 2018) O(T (|E|d2)) O(|E|d2)
NBFNet (Zhu et al., 2021b) O(T (|E|d+ |V|d2)) O(|E|d+ |V|d2)

Ours
O(T ((n+ e)2d+ (n+ e)d2+

d2 + d |E|
V ))

O((n+ e)2d+ (n+ e)d2+

d2 + d |E|
|V| )

Table 7: Comparison of complexity of our approach to baseline methods. Here, n and e denote the
average number of nodes and edges in a subgraph respectively. |E| and |V| denote the number of
edges and nodes in the KG respectively. T is the no. of iterations needed for convergence and d is
hidden dimension.

Since (n + e) << |E|, our approach is clearly more efficient than R-GCN both for training and
inference. For comparison with NBFNet, the size of subgraph (n+ e) is much smaller than the total
number of nodes |V| in the KG and (n+ e)2 < |E|, so our method is potentially more efficient than
NBFNet for large-scale KGs.

5 DISCUSSION AND CONCLUSION

In this work, we propose a retrieve-and-read framework for knowledge graph reasoning. We develop
a novel instantiation, KG-R3, of the framework, which consists of the first Transformer-based graph
neural network for KG reasoning. While being an initial exploration of our proposal, empirical
experiments on standard benchmarks show that KG-R3 achieves competitive results with state-of-
the-art methods, which indicates great potential of the proposed framework.

One of the drawbacks of our proposed framework is, the two-stage pipeline design may lead to
cascading errors in cases when the subgraph is sub-optimal. One promising direction to improve
this aspect is to model the subgraph as a latent variable, where the retriever and reader can func-
tion in synergy to mutually enhance each other. Standard latent variable-based approaches such as
expectation-maximization (EM) can be used to give feedback from the reader module to the retriever
s.t. it can learn to retrieve subgraphs which better help the reader to infer the target, and vice versa.
We leave these investigations as future work. As another future research direction, we would like to
make the reader more robust to noisy subgraphs and explore other baselines for the retriever.

We believe this new framework will be a useful resource for the research community to accelerate
the development of high-performance and scalable graph-based models for KG reasoning. Future
work will involve deploying this framework for link prediction on large KGs. We would also like to
explore its applications in other KG tasks.
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