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Abstract

Low-rank adaptation (LoRA) is a widely used parameter-efficient fine-tuning
(PEFT) method to adapt large foundation models on downstream tasks. However,
the weight updates are constrained to be low-rank structures, limiting their expres-
siveness. Alternatively, low-displacement rank (LDR)-based structured matrices
are rank unrestricted, while requiring few parameters and supporting fast matrix-
vector multiplication. We propose a new PEFT strategy to construct the weight
updates with block-wise LDR matrices by sampling parameters from a hyper net-
work framework. Our method, hyper low-displacement rank adaptation (HyDRA),
offers high flexibility for choosing the size of a pool of trainable parameters, while
not being restricted by the displacement rank. Our experiments demonstrate that
the HyDRA can boost the classification accuracy by up to 3.4% and achieve two-
fold improvement in parameter efficiency on an image classification benchmark
compared with other PEFT variants.

1 Introduction

Through the combination of immense computational power and data, large foundation models have
achieved excellent performance in a wide range of general tasks, such as computer vision [10} 16} [17]]
and natural language processing [[L1} [1} |2, 3]. Leveraging the capabilities of large foundation
models has become a popular approach for downstream tasks [27, |38} 41]], where data, computation,
and/or memory resources may be limited. Among various methods, parameter-efficient fine-tuning
(PEFT) [30]], where only a small number of parameters are adapted, is attractive for yielding good
performance, while not requiring excessive computational cost. An outstanding approach is low-rank
adaptation (LoRA) [19] and its variants [40 |5} 143} 123} |4], which restrict the weight updates to be
low-rank matrices.

The work of [34] notes low-rank adaptation has limited expressiveness, and proposes structured
unrestricted-rank matrices (SURM), i.e., low-displacement rank (LDR) matrices [22], to replace
LoRA. LDR matrices have two major benefits: i) the number of parameters is much smaller than
the matrix size; and ii) capability of efficient matrix-vector multiplications based on fast-Fourier
transform (FFT). Specifically, SURM tested the expressiveness of two classic LDR matrices, Circulant
and Toeplitz, and introduced more complex matrices with simple combinations. [35] proposed to
construct more complex matrices with higher ranks, whose parameters also increased linearly.

We further extend the existing PEFT by integrating hyper-networks [[14] with block-wise LDR
matrices to enable highly flexible PEFT, by taking parameters from a parameter pool. In this case,
the number of trainable parameters is flexibly determined by the parameter pool size, while different
sub-matrices can be constructed by a hyper network that samples parameters from it. Moreover, like
the reservoir computing framework [[13]], the parameter pool can contain both trainable and fixed
random parameters generated on the fly, to further improve the expressiveness in some cases.

Our contributions are summarized as follows:
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Table 1: Variants of LDR matrices and displacement operator matrices

Structure Matrix W A B Memory Complexity
Low-Rank I 0 (n+m)r O[(n+ m)r]
Circulant Z, I (n+m)r O[r(mlog(m) + nlog(n))]
Toeplitz-like Z, Z_, (n+m)r O[r(mlog(m) + nlog(n))]
Hankel-like Z, YA (n+m)r O[r(mlog(m) + nlog(n))]
Vandermonde-like  diag(v) Zy (n+m)r+m  O[r(mlog®(m) + nlog?(n))]
Cauchy-like diag(v) diag(u) (n+m)(r+1) O[r(mlog®(m)+ nlog?(n))]

* A new PEFT method called HyDRA, an integration of hyper networks and LDR adaptation,
is introduced to construct large weight updates with small block-wise LDR matrices by
sampling parameters from a trainable parameter pool.

* We introduce a new mechanism which adjusts the size of parameter pool, providing more
flexibility to balance between model size and expressiveness, and consider both fully and
partially trainable parameter pool.

* We demonstrate that our HyDRA framework offers a significant improvement in parameter
efficiency and flexibility in some benchmark experiments.

2 Related Work

PEFT: PEFT is widely used for fine-tuning large foundation models on downstream tasks with
restricted compute costs [2542]. One outstanding class of PEFT is adapter-based methods [18 33}
2111314 151 20, 29], which freeze all of the pretrained weights and insert adapters for task-specific
learning. Among these, LoRA [19] stands out by restricting the searching space of weight updates to
be low-rank matrices. Various variants of LoRA have emerged, including LoHA [40], LoKr [40],
KronA [12], SuperLoRA [6], and LoDA [28]]. SURM [35]] proposed to use structured unrestricted-
rank matrices like Toeplitz matrices as alternative adapters, which introduced low-displacement rank
(LDR) matrices for PEFT.

Structured Matrix: LDR matrices [32, 8| [7], constructed with a few number of parameters while
benefiting from superfast matrix-vector multiplication, have been explored to construct compressed
neural networks [35] 37]. For PEFT, SURM [34] tried to increase the expressiveness by simply
combining structured matrices, e.g., Hadamard product of two Circulant matrices. However, this com-
bination introduced more parameters and complexity for weight updates. Different from SURM [34],
we propose the concept of parameter pool and block partition, where we draw the parameters for
block-wise structured matrices. Hence, the number of parameters are controllable in more flexible
manner and decoupled from the complexity of the final matrix for weight update itself. Further,
SURM only investigated Circulant and Toeplitz matrices, while we consider various LDR matrices.

Hyper-Network: HyperLoRA [39] uses a hyper-network framework [14] to generate LoORA weights.
HyDRA uses a much simpler hyper-network by sampling parameters from the pool directly after
shuffling with a function of random number generation. VB-LoRA [26]] is another hyper-network
method which uses vector banks, while HyDRA constructs vectors by randomly sampling from the
parameter pool. Besides, HyDRA explored a class of LDR matrices beyond LoRA.

3 Method

3.1 Low-Displacement Rank (LDR) Matrices

Structured matrices W € R™*"™ can be parameterized with less than mn parameters. For instance,
low-rank matrices used for LoRA can be decomposed into W = GH, where G € R™*" H € R"*"
with a rank r < {m, n}, realizing high parameter efficiency from mn to (m + n)r. We focus on a
more general family of structured matrices — low-displacement rank (LDR) matrices — that can be
converted into low rank matrix F' € R™*"™ under the Sylvester displacement operator V 5 B:

Vas(W)=AW - WB =F = GH, (1)



(1) Circulant

Original (all trainable): [cq, ¢4, ¢5, €3, ¢4, C5]
r co L Co(n1) HyDRA (partial trainable): [cq, ¢1, ¢, €2, Cpe1]
C_(n-1) Co l
Parameter pool
L cee C_(n—1) Co Sample 5pdrams foreach T
(i1) Toeplitz
P Ty T,
r to cee t_(n_1) Co Cs | Cq
. 1 Co 1 Cy
t1 to ... : c _: 3
C = C3 Cy | Cy
R 21 to €4 C3 €2 C1 Co Cs
(iii) Vandermonde Cs €4 C31C2 C1 (g
!
1 Vi . v‘f71 T3 T4
y a1 Figure 2: HyDRA. An example of constructing a
L Va-1 ... Vy 3

matrix with 4 small Toeplitz matrices by randomly
Figure 1: Ilustration of different LDR matrices. sampling parameters from the parameter pool.

where A € R™*™ and B € R™*" are displacement operator matrices. Different pairs of (A, B)
will result in F that has different properties as in TableE Here, Zy is an f-unit-circulant matrix:

OT
Zy=1[e; ez --- e, fe1]_{1n_11 O,f_l}’ 2)

where e; is the ¢th unit basis vector. LDR matrices include Circulant, Toeplitz, Hankel, Vandermonde,
and Cauchy matrices as in Figure[T] Note that LoRA is a special case with A = I and B = 0. LDR
matrix has two noticeable advantages:

» Parameter efficient: to construct W of size m x n, it requires a much smaller number of
parameters of the order O[r(n 4+ m)].

» Computationally efficient: it enables superfast matrix-vector multiplication in sub-quadratic
order of O[r(m polylog(m) + n polylog(n))] [32].

Table [T] shows the parameter requirement for memory and computatinal complexity.

3.2 HyDRA: Hyper-Network Low-Displacement Rank Adaptation

Block Partition: As shown in Figure 2] a Circulant matrix parameterized by its first row vector
can be partitioned into multiple Toeplitz sub-matrices which are parameterized by its first row and
first column. As Toeplitz matrices have more degrees of freedom, it may potentially offer more
expressiveness. We introduce this block LDR partitioning to generalize a simple LDR matrix. The
block-wise LDR structure still enjoys the superfast operation as discussed in Appendix [A]

Hyper-Network: Can we build more complex structure like Toeplitz while keeping fewer number of
parameters like Circulant? From Figure 2] a large Circulant matrix is built with small Toeplitz sub-
matrices whose parameters are sampled and arranged in a unique way. Thus, to make the Circulant
matrix more complex, we can simply relax the restrictions, by sampling parameters randomly from a
parameter pool and arrange them to a more random LDR sub-matrices. Figure[2]shows the schematic
of the parameter pool and shuffling function as a hyper-network framework used in our HyDRA.

Adjustable Parameter Pool: Noticing each LDR sub-matrices randomly sample a portion of
parameters from the parameter pool, the size of parameter pool is not necessarily to be same as the
degrees of freedom of LDR matrices. Instead, it can be any size so that the number of trainable
parameters is flexibly adjustable and not subjected by the displacement rank and matrix size.

Partially Fixed Parameter Pool: To further decrease the number of trainable parameters, we propose
that some values in the parameter pool can be random but fixed, while the rest are learnable. Note
that the random values do not require additional memory when random number generators create
them on the fly with a pre-specified seed.
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4 Experiments

We conduct experiments of transfer learning on image classification tasks from ImageNet1K [9]
to CIFAR100 [24] for the foundation model of ViT-Base [[10]. As in LoRA [19], weight updates
generated by the adapters (either LDR matrices directly or our HyDRA) are added to query and value
projection layers. For the classifier head, automatic label matching is used to search for the matching
labels, avoiding fine-tuning classifier head and reducing the trainable parameters, similar to [6].

Comparison betweeen LDR and HyDRA: The comparison between direct LDR matrices (including
LoRA) and HyDRA from different pool size can be found in Figure (3| We can see that all HyDRA
variants outperform LDR (Circulant) in low-parameter regimes, where conventional LDR variants
cannot reach as their flexibility is only adjustable by a rank. Specifically, HyDRA (Toeplitz) and
HyDRA (Hankel) work similarly and HyDRA (Vandermonde) is much better when the amount of
parameters is larger than 5k. Compared with LDR (Circulant), HyDRA (Vandermonde) improved
the accuracy from 83.57% to 87.25% at the comparable amount of parameters. More importantly,
HyDRA achieves roughly 2-fold parameter efficiency over conventional LDR methods.

Effect of Adjustable Parameter Pool Size: Then, we adjust the parameter pool, from 9.2k (when
the parameter pool is too small that both row and column vectors for each Toeplitz matrix have same
parameters) to 40k and beyond (when the pool size is large enough to make parameters for row and
column vectors completely different). Results can be found from the solid lines in Figure ] The
accuracy for HyDRA increases with the increase of parameter pool. When the parameter pool is
as large as when using one Toeplitz matrix as an adapter, the accuracy becomes comparable. This
indicates that the parameter pool size matters, instead of how many splits it is divided into.

Effect of Using Random Values: To evaluate the effect of adding random values into the parameter
pool, we select a few pool sizes, and then make the partial parameters fixed. The portion of fixed
parameters varies from 90% to 0%. As shown by the dashed lines in Figure E], accuracy decreased
when the fixed portion in the parameter pool gets larger. It is also confirmed that adding random
values does not degrade the performance compared to the fully trainable pool.

5 Conclusion and Future Works

In this work, we proposed HyDRA, a replacement of LoRA in the track of rank-unrestricted weight
adaptation. Specifically, it constructs the AW for weight updates by drawing parameters from a
parameter pool which is partially learnable and the rest fixed for block-wise LDR sub-matrices.
Experiments on the CIFAR100 dataset show that HyDRA outperforms its baseline, LDR (Circulant),
by 3.4% accuracy and 2x efficiency. More experiments for diverse benchmark and foundation models
are to follow.
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A Block-Partition with LDR Sub-Matrices

HyDRA uses block-wise LDR matrix. Supposed that AW € R™*" is partitioned into k? LDR
sub-matrices (i.e., k-split per axis), a feature vector x should be split into k£ chunks to compute AWx.
For example, when the number of splits along each dimension is k£ = 2, then both AW and x are
divided as follows:

3

AW — |:AWO AW1:| 7 x — |:X0:| 7

AWQ AW3 X1
where AW,; € R% *% is the ith LDR matrix for i € {0,1,2,3}, and x; € R% <!, We then have

AW, AWl] [xo} _ [AWOXU +AW1X1]

AWx = |:AW2 AW3 X1 AWQXO + AW3X1

“

For arbitrary k, the above equations should be modified accordingly. Then each AW ;x; can be
computed with a superfast matrix-vector multiplication algorithm [32]]. Correspondingly, the overall
computational complexity is still superfast even for the partitioned LDR structure.

For instance, when AW, is a Toeplitz-like matrix having G; = [g;1,...,8;ir] and HlT =
[h;1,...,h; ], we can express as follows:
T
AWin = Z Krylov(Zl, gi,l) . Krylov(Z_l,hiJ)xj (5)

=1

where Kryolov operator is computed by FFT/IFFT as follows:

Krylov(Zy, v)u = ifft (fft(v) o fft(u)), (6)
Krylov(Z_1,v)u = 7j o ifft (fft (7 o v) o fft(7 o u)), ™
where 7 = [1,1,7%,...,7" " !]T,and n = exp(i7) which can be further simplified with diagonal-

ization as in [35)]. Refer to [37] for fast matrix-vector multiplication of other LDR matrices and
corresponding implementatiorﬂ

B Experimental Settings

In the transfer learning experiments from ImageNet1K to CIFAR100, we use AdamW optimizer with
OneCycle [36]] learning rate scheduler. Experiment is run for 5,000 iterations in total. The maximum
learning rate is 0.004 for LoRA, 0.002 for Circulant, Toeplitz and Hankel, and 0.01 for Vandermonde.
Note that dimension for query/value projection layers is 768 for ViT-B model. The pretrained ViT-B
model we used is from HuggingFaceg"| Other hyper-parameters settings are as below:

* Number of splits k: 1 for HyDRA (LoRA), 4 for all other HyDRA variants tested.
* Size of fully trainable parameter pool (denoted as the pool size for each AW:
— HyDRA (Circulant): 384, 400, 500, 600, 768, 800, 900, 1000, ... 1500, 1536 (768x2),
1700, 1900, 2100, 768 %3, 2600
— HyDRA (Vandermonde): HyDRA (Circulant) and 768 x4
— HyDRA (Toeplitz): HyDRA (Circulant) and 768 xp where p = 4,5,6,7,8
* Parameter pool size with fixed ratio (0, 0.1, 0.2, ...0.9):
— HyDRA (Circulant/Vandermonde/Hankel): 768
— HyDRA (Toeplitz): 768, 900, 1536
— HyDRA (LoRA): 1536 (rank 1), 3072 (rank 2), 6144 (rank 4)

"https://github.com/HazyResearch/structured-nets
https://huggingface.co/google/vit-base-patchl6-224


https://github.com/HazyResearch/structured-nets
https://huggingface.co/google/vit-base-patch16-224

	Introduction
	Related Work
	Method
	Low-Displacement Rank (LDR) Matrices
	HyDRA: Hyper-Network Low-Displacement Rank Adaptation

	Experiments
	Conclusion and Future Works
	Block-Partition with LDR Sub-Matrices
	Experimental Settings

