
Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

Yi Hu * 1 Shijia Kang * 1 Haotong Yang 1 Haotian Xu 2 Muhan Zhang 1

Abstract

Length generalization—the ability to solve prob-
lems longer than those seen during training—
remains a critical challenge for large language
models (LLMs). Previous work modifies posi-
tional encodings (PEs) and data formats to im-
prove length generalization on specific symbolic
tasks such as addition and sorting. However, these
approaches are fundamentally limited to special
tasks, often degrading general language perfor-
mance. Furthermore, they are typically evaluated
on small transformers trained from scratch on sin-
gle tasks and can cause performance drop when
applied during post-training stage of practical
LLMs with general capabilities. Hu et al. (2024)
proposed Rule-Following Fine-Tuning (RFFT) to
improve length generalization in the post-training
stage of LLMs. Despite its compatibility with
practical models and strong performance, RFFT
is proposed for single tasks too, requiring re-
training for each individual task with extensive
examples. In this paper, we study length gener-
alization in multi-task settings and propose Meta
Rule-Following Fine-Tuning (Meta-RFFT), the
first framework enabling robust cross-task length
generalization. As our first contribution, we con-
struct a large length generalization dataset con-
taining 86 tasks spanning code execution, num-
ber processing, symbolic and logical reasoning,
beyond the common addition or multiplication
tasks. Secondly, we show that cross-task length
generalization is possible with Meta-RFFT—after
training on a large number of tasks and instances,
the models achieve remarkable length generaliza-
tion ability on unseen tasks with minimal fine-
tuning or one-shot prompting. For example, af-
ter fine-tuning on 1 to 5 digit addition, our 32B
model achieves 95% accuracy on 30 digit addi-

*Equal contribution 1Institute for Artificial Intelligence, Peking
University 2Xiaohongshu Inc. Correspondence to: Muhan Zhang
<muhan@pku.edu.cn>.

The second AI for MATH Workshop at the 42nd International
Conference on Machine Learning, Vancouver, Canada. , Copyright
2025 by the author(s).

tion, significantly outperforming the state-of-the-
art reasoning models (DeepSeek-R1-671B: 72%;
QwQ-32B: 32%), despite never seeing this task
during RF-pretraining.

1. Introduction
Large language models (LLMs) have achieved revolution-
ary performance in a wide range of tasks, from natural
language understanding and generation to complex reason-
ing (OpenAI, 2022; 2023; Grattafiori et al., 2024; Qwen
Team, 2025a; DeepSeek-AI, 2024b;a). However, they still
face challenges when processing some basic tasks seem-
ingly intuitive to humans. One of the challenging problems
is the length generalization, where Nogueira et al. (2021);
Zhou et al. (2023; 2024); Anil et al. (2022) reveal that trans-
formers suffer from a significant performance drop when
solution steps exceed the training range, suggesting that
models fail to capture the inner mechanism in these reason-
ing problems. A classic example is long-integer addition:
models trained on addition problems with fewer digits often
fail to generalize to higher-digit cases.

Although long chain-of-thought (CoT) models seem to learn
a plausible reasoning process for some complex tasks such
as math / code (OpenAI, 2024; DeepSeek-AI, 2025; Team,
2025; Wang et al., 2024a; Zhao et al., 2024; Xu et al., 2025),
length generalization is still a challenge for them. Even
advanced long-CoT models like DeepSeek-R1-671B and
QwQ-32B exhibit unsatisfactory performance in long inte-
ger addition, achieving only 72% and 32% accuracy, respec-
tively, on 30-digit problems.

Some prior work improves length generalization by de-
signing specialized positional encodings (PEs) or data for-
mats. (Zhou et al., 2023; Shen et al., 2023; Kazemnejad
et al., 2023; Lee et al., 2024; Zhou et al., 2024; Cho et al.,
2024a; McLeish et al., 2024; Cho et al., 2024b; Awasthi and
Gupta, 2023). However, these approaches are heavily depen-
dent on specific properties of the objects (like numbers) and
thus limited to specialized domains. Besides, these methods
are shown to be effective through training small transform-
ers from scratch on a single task, yet proven ineffective for
fine-tuning on top of pretrained LLMs (Yang et al., 2024a),
fundamentally due to their incompatibility with the PEs /

1

Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

Follow the given rule to solve the question.

Q: Given an integer num, repeatedly add up
all its digits until the result has only one
digit, and return it.
The given integer 'num' is 248.

def add_digits(self, num: int) -> int:
while num > 9:

sum = 0
while num:

sum += num % 10
num //= 10

num = sum
return num

1. Initialize
num = 248

2. Outer loop

```while num > 9:```

num = 248
enter the loop

2.1 One iteration
sum = 0

3. Inner loop

```while num: ```

num = 248
enter the loop

3.1 One iteration

```
sum += num % 10
num //= 10
```

num = 248
num % 10 = 8
sum = 0
now,
sum = 0 + 8 = 8
num = 248 // 10 = 24

```while num: ```

num = 24
enter the loop

3.1 One iteration
···

```while num > 9:```

num = 5
do not enter

4. Return

```return num```

num = 5
So the answer is 5

Q: Given an integer num, repeatedly add up all its 
digits until the result has only one digit, and 
return it. 
The given integer 'num' is 248.

num = 248

Calculate the sum of digits of 248: 2 + 4 + 8 = 14

Calculate the sum of digits of 14: 1 + 4 = 5

So the answer is 5.

Rule-Following Fine-Tuning

RFFT Input

RFFT Output

Scratchpad & Direct Answer Input

Scratchpad Output

5
Direct Answer Output

Vanilla RFFT Results (from Hu et al., 2024)

Length generalization performance of models fine-tuned on 1- to 
5- digit addition tested on addition of operands with more digits.

Llama-2-7B GPT-3.5-Turbo

Figure 1. Comparison of input-output sequences across three methods: direct answer, scratchpad (top left), and RFFT (right), with
single-task performance results shown at the bottom left.

number formats used for the general corpus. This greatly
limits their practical applicability.

Regarding enhancing length generalization in the post-
training stage of LLMs, Anil et al. (2022) states that direct
answer and scratchpad fine-tuning (Nye et al., 2021) (exam-
ples are shown in Figure 1) are not enough to enable robust
length generalization. Recently, Hu et al. (2024) found that
the issue stems from the case-based mechanism of LLM rea-
soning and proposed Rule-Following Fine-Tuning (RFFT)
to teach models to follow rules step by step. RFFT rep-
resents the first successful effort to solve diverse length
generalization tasks using a unified approach. As illus-
trated in Figure 1, RFFT explicitly incorporates rules into
the input, guiding the model to follow them strictly. In
contrast, the baseline scratchpad fine-tuning method only
provides intermediate computations without conveying the
underlying rules, similar to teaching children addition solely
through examples, without explaining the principles. By
explicitly instructing the model in both the rules and their
execution traces, RFFT significantly improves length gener-
alization: GPT-3.5-Turbo fine-tuned on 1-5 digit addition
achieves over 95% accuracy on 12-digit addition, surpass-
ing scratchpad fine-tuning by 40%.

Despite the compatibility with general tasks and pretrained
LLMs, RFFT (Hu et al., 2024) is proposed for single-task
settings, where they prepare data and fine-tune the models
on three tasks separately: addition, base-9 addition and
last letter concatenation. This setting is impractical for
users and limits model generalizability. Users must prepare
task-specific rule-following datasets and perform extensive
fine-tuning, which is a costly process that requires separate

models for each task. More critically, single-task RFFT
only models the relationship between one specific rule and
its instances, failing to leverage the shared structures and
generalization potential across different rules.

In this paper, we investigate the task transferability and gen-
eralization of the rule following capacity of models, and pro-
pose Meta Rule-Following Fine-Tuning (Meta-RFFT). We
find that through fine-tuning on a large-scale rule-following
dataset with diverse tasks, a model shows positive transfer-
ability on unseen tasks with minimal adaptation.

As our first contribution, we collect 86 different length gen-
eralization tasks with 310k training samples from four
task domains including code execution, number processing,
logic and symbolic reasoning, which significantly broadens
the previous length generalization tasks which mainly focus
on addition, sorting or other basic operations. For each task,
we manually annotate the code (or pseudo-code) for each
task as its rule, as well as a template script that can gener-
ate a detailed trajectory process for rule-following for each
question. Based on these template scripts, by simply provid-
ing the problem variables, the corresponding rule-following
trajectory at any desired length can be automatically gener-
ated, which can then be used to train models. Finally, we
collect 310k training samples on 74 tasks while the other 12
tasks are reserved as test sets.

In the experiments, the models are first fine-tuned on 74
RFFT tasks (we call it as rule-following “pretraining”),
leading to a rule-following foundation model. Then, the
models are further adapted to the downstream task with
minimal fine-tuning. These two-stage models show signifi-

2



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

cantly better performance than both baseline models (like
direct answer or CoT of reasoning models) and the single-
task RFFT models. Specifically, a 32B model fine-tuned
on 1-5-digit addition achieves 95% accuracy on 30-digit
addition, vastly outperforming reasoning models of compa-
rable or much larger parameter size (DeepSeek-R1-671B:
72%; QwQ-32B: 32%) and vanilla RFFT (40%).

Notably, these models with rule-following pretraining can
solve unseen tasks with high accuracy with the help of
only one example, suggesting these models learn a task-
generalized in-context rule-following ability. This capac-
ity means these models can be directly used by users who
cannot modify model parameters, as long as one example
to exemplify the rules is provided in the context. At the
same time, the model can also generalize to rules written in
natural language style.

We further demonstrate that the foundation model robustly
acquires shared computational primitives (e.g., loop
maintenance), which are critical for cross-task generaliza-
tion. Our experiments reveal that in vanilla RFFT, where
models are trained separately for each task, loop mainte-
nance is a primary error source. In contrast, Meta-RFFT,
where models are enhanced by rule-following pretraining on
tasks with shared computational structures, exhibits signifi-
cantly more precise loop maintenance in downstream tasks.
These findings confirm that meta-rule-following capability
stems from mastering transferable computational patterns
rather than task-specific ones.

In summary, we construct a large-scale length generalization
dataset comprising 86 diverse tasks spanning diverse do-
mains, enabling systematic study of rule-following transfer-
ability (§3.2). Our proposed Meta-RFFT framework demon-
strates that multi-task post-training on 74 tasks facilitates
strong length generalization on unseen tasks with minimal
downstream fine-tuning (§4.2) or even 1-shot prompting
(§4.3). Crucially, we identify that this transferability stems
from models learning shared computational primitives that
underlie diverse tasks (§4.2), while maintaining robust per-
formance when rule formats transition from formal code to
natural language (§5).

2. Related Work
Length generalization. A series of studies have attempted
to tackle this issue by modifying positional encodings (PEs)
and data formats (Zhou et al., 2023; Shen et al., 2023;
Kazemnejad et al., 2023; Lee et al., 2024; Zhou et al., 2024;
Cho et al., 2024a; McLeish et al., 2024; Cho et al., 2024b).
However, these efforts face several limitations. First, the
proposed PEs and data formats are often tailored to sym-
bolic tasks, making them difficult to generalize to broader
tasks. Second, the methods are typically tested on small-

scale models trained from scratch and do not scale well
to practical LLMs. Another research direction, including
single-task RFFT (Hu et al., 2024; Hou et al., 2024; Yang
et al., 2024a), addresses length generalization by training
models on explicit rules and elaborate reasoning processes.

Case-based reasoning or rule-based reasoning. A cen-
tral question in understanding LLM reasoning is whether
their strong performance stems from pattern matching or
mere memorization (or “case-based reasoning” in Hu et al.
(2024)), or genuine rule acquisition. Recent studies reveal
that LLMs often rely on memorized examples and shortcuts
rather than systematic reasoning. Studies show they struggle
with counterfactual reasoning (Wu et al., 2024; Zhang et al.,
2023a), reason via subgraph matching (Dziri et al., 2023),
and depend on nearby examples for math tasks rather than
general rules (Hu et al., 2024). On the other hand, research
on “grokking” (Power et al., 2022; Liu et al., 2022; Nanda
et al., 2023; Zhong et al., 2023) suggests that models can
learn interpretable rules of arithmetic reasoning long after
overfitting the training set. Yet this phenomenon remains
limited to single-task settings. It is unclear whether rule-
based reasoning scales to multitask LLMs. To bridge this
gap, we propose Meta-RFFT, which trains models to follow
explicit rules across diverse tasks.

Instruction following. Following natural language in-
structions is a fundamental capability of LLMs. Prior
work has introduced numerous datasets to enhance this abil-
ity (Lambert et al., 2024; Taori et al., 2023; Xu et al., 2023;
Wang et al., 2022), enabling models to leverage their under-
lying knowledge, interact naturally with users (Ouyang et al.,
2022), and handle diverse tasks (Zhang et al., 2023b). How-
ever, existing models trained on these datasets still struggle
to accurately execute complex instructions, primarily due to
limited high-quality training data (Dong et al., 2024). Conse-
quently, ensuring strict adherence to complex instructions—
or in this paper, precisely following rules to achieve robust
length generalization—remains an open challenge. In our
experiments, we use instruction-tuned LLMs (e.g., Qwen-
2.5-7B-Instruct and Qwen-2.5-32B-Instruct (Qwen Team,
2025b)) as baselines. We further compare Meta-RFFT with
standard instruction-following fine-tuning on downstream
tasks, demonstrating Meta-RFFT’s superior performance.

LLMs with programs. Numerous efforts have been made
to integrate programs with LLMs to enhance the capabili-
ties of both. LLMs can help with code execution (Li et al.,
2024) and help developers write code and debug more ef-
ficiently (Jimenez et al., 2024; Yang et al., 2024b; Wang
et al., 2024b). Besides, the formal structure of code helps
with task decomposition and enhances LLM reasoning (Gao
et al., 2023; Hu et al., 2023; Li et al., 2024; Nye et al.,
2021).

3



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

3. Methods
3.1. Meta Rule-Following Fine-Tuning (Meta-RFFT)

In this section, we first review vanilla RFFT proposed by Hu
et al. (2024), and introduce Meta-RFFT.

Vanilla RFFT Hu et al. (2024) proposes RFFT, which, as
shown in Figure 1, includes the rules to solve the task in the
input and detailed rule-execution process in the output. We
refer to the method from Hu et al. (2024) as vanilla RFFT in
this paper and identify three key components as follows: (1)
the rules required to solve a task must be explicitly provided
in the input; (2) before executing an action, the model is
required to recite the corresponding rule to ensure precise
adherence; and (3) the model must describe the variables
modified by the action, detailing their states before and after
execution. While we primarily use programmatic represen-
tations of rules to ensure clarity and precision, the rules
discussed in this paper are not limited to code. In Section 5,
we also explore natural language rules and investigate the
model’s ability to transfer rule formats from code to natural
language.

RF Foundation Model

Task1: from LC

Task74

Base Model

Q: Given an integer 
array: [0, 16], 
move all zeros to 
the end while 
preserving the 
relative order of
the non-zero 
elements.

Task3: from SR
Q: A coin is heads up. 
Alice does not flip the 
coin. Bob flips the coin. 
Is the coin still heads up? 
In short, the situation of 
2 people flipping coins 
is as follows: 
[False, True].

Task2: from BBH
Q: If you follow these 
instructions, do you return to 
the starting point? Always 
face forward. Take 2 steps 
left. Take 2 steps forward. In 
short, the moves are as 
follows: 
[(‘left’, 2), (‘forward’, 2)].

Downstream Task: from NUPA
Q: Add two numbers: 123 + 4567.

Downstream Task: from LC
Q: Given an integer number 12345, 
repeatedly add up all its digits 
until the result has only one digit.

66 LC tasks 2 SR tasks6 BBH tasks

Meta-RFFT Process

... ......

RF-Pretraining: RFFT on 74 tasks of length 1-15

Downstream Adaptation: RFFT / 1-shot ICL on the target 
task of length 1-5

No task overlap with RF-Learning!

Target Model

Figure 2. The pipeline of Meta-RFFT. LC, BBH, SR and NUPA
stands for LeetCode, Big-Bench Hard (Suzgun et al., 2023),
Symbolic Reasoning (Wei et al., 2022) and the NUPA Bench-
mark (Yang et al., 2024a) respectively.

Meta-RFFT As illustrated in Figure 2, Meta-RFFT
adopts a two-stage pipeline:

1) RF-Pretraining: We first fine-tune the model on a diverse
set of rule-following tasks of lengths of 1-15. The tasks span
code execution, number processing, symbolic and logic
reasoning, which are detailed in Section 3.2. It should be
noted that RF-pretraining is a supervised fine-tuning process
on a large-scale dataset.

Table 1. The statistics of our dataset. We list the number of tasks
collected from each data source and their corresponding split in
the RF-pretraining stage or the downstream adaptation stage.

Data Source RF-Pretrain Adaptation Total

LeetCode 66 8 74
NUPA 0 4 4

Big-Bench Hard 6 0 6
Symbolic Reasoning 2 0 2

All Sources 74 12 86

2) Downstream Adaptation: The model is then adapted to
target tasks via either (i) minimal fine-tuning on 1-5-length
samples or (ii) 1-shot prompting using exemplars of fewer
than 5 steps. Crucially, evaluation is performed on tasks
unseen during RF-pretraining to assess cross-task and even
cross-domain transferability.

During RF-pretraining, the model is expected to grasp the
shared commonalities and fundamental rule concepts, such
as loop. By leveraging these shared structures, Meta-RFFT
enables models to adapt to new target tasks with minimal
fine-tuning or even solve them through few-shot prompts.
Additionally, training across multiple tasks relieves over-
fitting the task-specific patterns, encouraging the model to
transform from case-based reasoning to more robust rule-
based reasoning.

3.2. Data Construction

To extend the horizon of length generalization, and to facili-
tate large-scale multi-task training as well as comprehensive
evaluation, we find it essential to construct a large-scale
length generalization dataset. When selecting these tasks,
we follow these guiding principles:

1) Tasks must inherently require length generalization.
Specifically, solving the tasks should depend on iterative
reasoning. For example, the coin flip task shown in Figure 2
necessitates enumerating each participant’s actions to deter-
mine the final state of the coin. Here, we use the number of
participants to denote “length”.

2) Tasks should avoid excessive complexity within a sin-
gle iteration. Each iteration should be manageable for
the LLM, as our goal is to isolate errors caused by length
generalization failures rather than by inherent task com-
plexity. Therefore, we exclude tasks with complex inputs
(e.g., graphs, multi-dimensional data) or advanced math
operations, which remain challenging for current LLMs.

Following these principles, we construct a dataset covering
diverse domains, including code execution, number process-
ing, logical and symbolic reasoning. Our data sources are
as follows:

4



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

• LeetCode Problems.1 Since most problems on LeetCode
can be scaled with varying input sizes—primarily in terms
of length—many of them are naturally suited for evaluat-
ing length generalization. For instance, in the task LC Add
Digits (“repeatedly sum all digits in an integer until the
result is a single digit”), we use the number of digits in the
input to denote the inherent “length” of the task. Based
on this criterion, we selected 74 tasks from the LeetCode
platform.

• NUPA. NUPA is a benchmark designed to assess the ba-
sic number processing capabilities of LLMs (Yang et al.,
2024a). While many tasks in NUPA are still overly chal-
lenging for current LLMs, we select four practical tasks
feasible within the context length in terms of RFFT.

• Big-Bench Hard. The benchmark includes reasoning
tasks considered challenging for LLMs (Suzgun et al.,
2023). We select 6 tasks that are suitable for length gener-
alization evaluation.

• Symbolic Reasoning. We select “coin flip” and “last
letter concatenation” from Wei et al. (2022).

For data annotation, we engaged skilled human annotators,
undergraduates majoring in Computer Science from top-tier
universities in the nation, to write Python scripts that gener-
ate input-output traces for each task as shown in Figure 1.
More detailed traces are shown in Appendix G.1. Each task
is implemented as a Python class to automatically generate
samples of any given length. All scripts underwent rigorous
code reviews and filtering.

As shown in Table 1, our dataset includes 86 tasks in total,
with examples of each domain presented in Appendix C.2,
and the detailed description and length definition of each
task in Appendix H.

4. Main Results
4.1. Experimental Setup

As introduced in Section 3.1, our Meta-RFFT involves RF-
pretraining and downstream adaptation.

As shown in Table 1, in the RF-pretraining stage, we fine-
tune the model on 74 tasks, aiming to develop a model that
can strictly follow rules across multiple tasks and potentially
transfer this capability to new tasks. For each task, 300 rule-
following samples are generated for each length from 1 to
15, resulting in approximately 310k samples in total. We
experiment on models of two different sizes: Qwen2.5-7B-
Instruct and Qwen2.5-32B-Instruct (Qwen Team, 2025b).
The 7B model is fine-tuned with full-parameter training,
while the 32B model is fine-tuned with PiSSA (Meng et al.,
2024).

1https://leetcode.com/problemset

Table 2. Overall metrics of performance of different methods
across all 12 test tasks. Here, ACC Len30 measures average ac-
curacy at length 30; Max Len 90% represents maximum length
sustaining ≥90% accuracy averaged across tasks.

ACC Len30 (↑) Max Len 90% (↑)

DeepSeek-R1-671B 0.84 19.17
QwQ-32B 0.79 19.33

Fine-Tuned Models 7B model 32B model 7B model 32B model
Direct Answer 0.16 0.30 6.00 12.67
Scratchpad 0.30 0.41 7.50 11.17
Vanilla RFFT 0.40 0.67 9.33 18.17
Meta-RFFT 0.77 0.98 21.17 30.00

In the downstream adaptation stage, we evaluate the models
on 4 NUPA tasks and 8 LeetCode tasks of appropriate diffi-
culty and practical significance respectively. The description
of each downstream task is provided in Appendix C.3. We
first train the models on data of lengths from 1 to 5 and then
test their performance on out-of-distribution (OOD) lengths
from 6 to 30 to evaluate the length generalization perfor-
mance. For each task, we generate 1,000 samples for each
length from 1 to 5, resulting in a total of 5k training sam-
ples. Both the 7B and 32B models are fine-tuned through
PiSSA in the downstream adaptation stage. We evaluate
models on 100 samples per length per task. Detailed training
hyperparameters are provided in Appendix D.

Baselines We use three baseline fine-tuning methods for
comparison: direct answer, scratchpad, and vanilla RFFT.
The input-output sequences are shown in Figure 1. The base
model is fine-tuned directly on the target task on lengths
from 1 to 5. To ensure fairness, all baseline methods use
the identical downstream adaptation settings of Meta-RFFT,
including training samples and steps. For long-CoT mod-
els, we evaluate using the same input prompts as the di-
rect answer and scratchpad baselines in Figure 1, with
temperature=0 and max token=24,000.

4.2. Meta-RFFT Enhances Task-Transferable Length
Generalization

The length generalization performance of Qwen-2.5-7B-
Instruct trained with direct answer, scratchpad, vanilla RFFT
and Meta-RFFT is shown in Figure 3; the results of Qwen-
2.5-32B-Instruct are shown in Figure 7 in Appendix E.1.
Besides, we provide two unified metrics to give an over-
all performance comparison across all tasks: ACC Len30,
which measures the average accuracy at length 30 across
tasks; and Max Len 90%, which represents the maximum
length (averaged across tasks) where the model maintains
≥ 90% accuracy. The overall performance is summarized
in Table 2.

Overall, Meta-RFFT consistently outperforms other meth-

5

https://leetcode.com/problemset


Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

LC Add Digits

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Move Zeroes

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Hamming Distance

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Crawler Log Folder

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Alternate Digit Sum

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Chunk Array

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC String Sequence

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Valid Palindrome

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

NUPA Get Digit Integer

Meta-RFFT
Vanilla RFFT
Direct Answer
Scratchpad

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Add Integer

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Digit Max Integer

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Length Integer

Figure 3. Length generalization performance of direct answer, scratchpad, vanilla RFFT and Meta-RFFT on LeetCode and NUPA tasks.
The shaded region represents the in-distribution test results (length ≤ 5), while the unshaded background corresponds to out-of-distribution
lengths (length ≥ 6). Here the base model is Qwen2.5-7B-Instruct.

ods in length generalization for both 7B and 32B models.
The 7B Meta-RFFT model exhibits a slower performance
decline as sequence length increases, whereas direct an-
swer, scratchpad, and vanilla RFFT suffer sharper drops
when extrapolating to longer sequences. Notably, the 32B
model with Meta-RFFT achieves a Max Len 90% of 30.00,
as shown in Table 2, demonstrating stable performance up
to 6× the training length. This suggests that the advantages
of Meta-RFFT can be further developed with stronger base
models.

Against cutting-edge long-CoT models, the 32B Meta-
RFFT model improves ACC Len30 by 14% over DeepSeek-
R1-671B (84%) and 19% over QwQ-32B (79%). In
Max Len 90%, it surpasses both by over 10 lengths, un-
derscoring superior robustness in length generalization. To
provide insights for why cutting-edge long-CoT models
fail in such seemingly intuitive tasks, such as long-integer
addition, we provide an example error case of DeepSeek-
R1-671B in Table 8 in Appendix F. More detailed results of
long-CoT models are shown in Figure 9 in Appendix E.2.

Error analysis: how does Meta-RFFT help length gen-
eralization? We analyze the errors of both vanilla RFFT
and Meta-RFFT models and identify a primary cause of
failure in length generalization: incorrect loop maintenance.
Specifically, models often either terminate loops too early
or fail to exit them, leading to repeated outputs until the
context window limit is reached. As shown in Figure 4(a),
errors due to incorrect loop counts form a substantial portion
of total errors.

Ad
d D

igit
s

Mov
e Z

ero
es

Ham
ming

 Dista
nce

Craw
ler

 Lo
g F

old
er

Alte
rna

te 
Digit

 Su
m

Chu
nk

 Arra
y

Str
ing

 Se
qu

en
ce

Va
lid 

Pal
ind

rom
e

0

10

20

30

40

50

60

Er
ro

r P
er

ce
nt

ag
e 

(%
)

Meta-RFFT (Loop Errors)
Meta-RFFT (Non-loop Errors)
Vanilla RFFT (Loop Errors)
Vanilla RFFT (Non-loop Errors)

(a) Error distribution in down-
stream tasks.

Ad
d D

igit
s

Mov
e Z

ero
es

Ham
ming

 Dista
nce

Craw
ler

 Lo
g F

old
er

Alte
rna

te 
Digit

 Su
m

Chu
nk

 Arra
y

Str
ing

 Se
qu

en
ce

Va
lid 

Pal
ind

rom
e

0.0

0.5

1.0

1.5

Re
la

tiv
e 

#I
te

ra
tio

n 
Er

ro
r

Meta-RFFT
Vanilla RFFT

(b) Relative error of the loop
count.

Figure 4. Error analysis of vanilla RFFT and Meta-RFFT models.

We hypothesize that RF-pretraining exposes the model to
numerous rule-following examples involving loop control,
enabling it to learn this sub-skill effectively. To test this,
we measure the relative error between predicted and true
iteration counts (Figure 4(b)). Meta-RFFT models exhibit
significantly lower loop count errors than vanilla RFFT
across tasks, confirming our hypothesis.

This reduction demonstrates that RF-pretraining improves
the model’s ability to manage iterative reasoning, which
directly contributes to enhanced length generalization. Over-
all, the results indicate that length generalization transfer-
ability arises from mastering transferable computational
patterns rather than task-specific ones.

Analysis of Meta-RFFT’s performance advantage over
vanilla RFFT To understand why Meta-RFFT outper-
forms vanilla RFFT, we analyze their performance and

6



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

LC Add Digits

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Move Zeroes

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Hamming Distance

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Crawler Log Folder

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Alternate Digit Sum

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Chunk Array

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC String Sequence

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Valid Palindrome

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

NUPA Get Digit Integer

RF-Pretrained 1-shot
Base 1-shot

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Add Integer

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Digit Max Integer

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Length Integer

Figure 5. The 1-shot performance of the base model (Qwen-2.5-7B-Instruct), and the RF-pretrained model (RF-pretrained Qwen-2.5-7B-
Instruct).

training dynamics. Training curves during the downstream
adaptation stage for both 7B and 32B models are shown
in Figures 11 and 12 (Appendix E.4). Meta-RFFT models
start with lower initial training loss, as their first-stage pre-
training familiarizes them with the rule-following paradigm,
which aids faster adaptation. Notably, while both meth-
ods eventually reach similar training loss levels in most
tasks, Meta-RFFT consistently achieves better length gen-
eralization. This suggests that vanilla RFFT’s limitations
are not due to insufficient training. We further validate
this by evaluating an intermediate Meta-RFFT checkpoint
(Meta-RFFT-ckpt60), which has higher training loss than
the converged vanilla RFFT. Even so, Meta-RFFT-ckpt60
outperforms vanilla RFFT (Figures 11, 15), confirming that
Meta-RFFT’s advantage arises from improved systematic
generalization, rather than simply better fitting to training
data.

4.3. In-Context Learning

To enhance Meta-RFFT to be more user-friendly, we explore
ICL settings in the downstream adaptation stage, as shown
in Figure 2.

Experimental Settings To enable the model to adapt to
the in-context learning (ICL) paradigm, where few-shot
exemplars are provided within the input, we include a 1-
shot exemplar in each training sample. In-context learning
requires the model to establish stronger correspondences be-
tween rules and execution traces, as it must learn to robustly
follow a new rule from just a single exemplar. To improve
this, we augment the training data with synthetic tasks, each

assigned a unique rule. This approach increases task di-
versity and encourages the model to rely on the provided
rules during training. Specifically, we manually design 22
code snippets and their corresponding rule-following out-
puts (details in Appendix G.2). For each sample, rules
are dynamically composed by randomly selecting snippets,
which enables arbitrary task generation with varied rules
and outputs. Using this method, we create 100k synthetic
samples and combine them with 310k samples from 74
tasks in Figure 2 to form the final ICL training dataset in the
RF-pretraining stage.

Results The ICL performance of 7B models is shown in
Figure 5, with results of 32B models in Figure 8 in Ap-
pendix E.1. For both model sizes, the RF-pretrained model
significantly outperforms the base model on downstream
tasks in the 1-shot setting. Notably, the 32B model achieves
a Max Len 90% of 28.5, an improvement of 14.5 over the
base model and even 10.3 over the vanilla RFFT model
which is fine-tuned on downstream tasks. Crucially, this
means an RF-pretrained model can achieve robust length
generalization on unseen tasks with only one exemplar,
which is a particularly valuable property for real-world de-
ployment where task-specific fine-tuning is too costly.

5. Analysis
What about following natural language rules? We
use rules represented by Python programs in the previous
sections due to their clarity, conciseness, and low ambiguity.
However, rules can be expressed in various forms, and in
everyday life, natural language is another primary medium

7



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

0 10 20 30
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

LC Add Digits (NL Rules)

Meta-RFFT
Vanilla RFFT

(a) Performance of Meta-RFFT
and Vanilla RFFT using natural
language rules.

0 10 20 30
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

NUPA Add Integer

Meta-RFFT
RL

(b) Comparison of Meta-RFFT
and RL on integer addition.

Figure 6. Comparison of Meta-RFFT with Vanilla RFFT and RL.

for representing rules. We further investigate whether mod-
els trained on code-based rules during RF-pretraining can
adapt to downstream tasks involving natural language-based
rules. More specifically, to investigate whether the superior
performance of Meta-RFFT on target tasks truly stems from
a genuine understanding of general rules rather than overfit-
ting to specific code statements like pop() and insert()
during the RF-pretraining stage, we evaluate its adaptation
to natural language rules in downstream tasks. Crucially,
while Meta-RFFT is pretrained on code-based rules, we use
natural language rules for fine-tuning in the downstream
adaptation stage, ensuring no overlap in specific statements.
An example of natural language rule is provided in Ap-
pendix G.3.

As shown in Figure 6(a), Meta-RFFT still significantly out-
performs vanilla RFFT on LC Add Digits across lengths
12-30. This confirms that Meta-RFFT’s advantage arises
not from memorizing code syntax but from acquiring a meta
rule-following capability.

What about reinforcement learning for rule following?
While reinforcement learning (RL) has shown success in
general reasoning, we argue that SFT is better suited for
enforcing strict rule-following behavior. Unlike RL with
outcome reward, which only optimizes for final-answer
correctness, SFT directly maximizes the likelihood of the
model generating rule-compliant intermediate reasoning
steps, which is crucial for strict rule adherence. To validate
this, we optimize the base model using Proximal Policy
Optimization (PPO) (Schulman et al., 2017). We provide
training details in Appendix D.3. The RL variant achieves
lower accuracy, confirming that pure outcome supervision
fails to ensure rule compliance, as shown in Figure 6(b).
Instead of learning rule-following behavior, the model tends
to shortcut to direct answers, impairing generalization to
longer reasoning chains (see Table 9 in Appendix F for ex-
ample error traces). Moreover, while RL training requires 64
H800 GPU hours per task, our Meta-RFFT method achieves
better performance in just 2.4-4.4 GPU hours, demonstrat-
ing significantly higher efficiency. The detailed training
compute are listed in Table 6 in Appendix D.2.

Table 3. Overall comparison between Meta-RFFT and Tulu3. The
base model is Llama3.1-8B.

ACC Len30 (↑) Max Len 90% (↑)

Tulu3 0.16 0.67
Meta-RFFT 0.38 11.67

Comparison to instruction following Previous studies
have focused on enhancing the instruction-following ca-
pabilities of LLMs (Lambert et al., 2024; Taori et al.,
2023; Xu et al., 2023; Wang et al., 2022), a fundamen-
tal ability for their practical application. However, existing
instruction-following models still struggle to adhere to com-
plex rules. In the length generalization scenarios, as the
inherent “length” of a problem increases, the correspond-
ing rules grow more complex, and current instruction-tuned
models often fail to strictly follow these rules strictly. We
compare current instruction-following methods and Meta-
RFFT from two perspectives.

First, in our previous experiments, including fine-tuning (7B:
Figure 3, 32B: Figure 7) and ICL (7B: Figure 5, 32B: Fig-
ure 8), our baselines are advanced instruction-tuned models
(Qwen2.5-7B-Instruct and Qwen2.5-32B-Instruct). How-
ever, they exhibit poor length generalization performance,
especially when provided with 1-shot rule-following exem-
plar, they fail to strictly adhere to the given rules. In contrast,
after Meta-RFFT, these models demonstrate significant im-
provements.

Second, we compare Meta-RFFT and instruction tuning
with Llama-3.1-8B (Grattafiori et al., 2024) as the base
model. For instruction tuning, we evaluate Llama-3.1-Tulu-
3.1-8B (Lambert et al., 2024), a version fine-tuned on the
Tulu3 dataset to enhance instruction following, with 1-shot
prompting to provide a rule-following exemplar. As Table 3
shows, the instruction-tuned model fails to consistently fol-
low rules during reasoning, while Meta-RFFT achieves sig-
nificantly better performance. Full results are in Figure 10
(Appendix E.3).

6. Conclusion
We make an initial attempt to enhance cross-task length gen-
eralization in the post-training stage of LLMs. To this end,
we construct a large-scale length generalization dataset com-
prising 86 diverse tasks spanning diverse domains, which
significantly expands length generalization research beyond
traditional tasks like addition and sorting. Our experiments
show that Meta-RFFT on 74 of these tasks facilitates strong
length generalization on unseen tasks with minimal down-
stream fine-tuning or 1-shot prompting, even surpassing
advanced long-CoT models. Through extensive analysis,
we show that this transferability arises from the model’s
ability to learn shared computational primitives rather than

8



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

relying on task-specific patterns. Additionally, we verify
that models pretrained on code-based rules can successfully
adapt to natural language rules in downstream tasks.

References
Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor

Lewkowycz, Vedant Misra, Vinay Ramasesh, Ambrose
Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur.
Exploring length generalization in large language models.
Advances in Neural Information Processing Systems, 35:
38546–38556, 2022.

Pranjal Awasthi and Anupam Gupta. Improving length-
generalization in transformers via task hinting, 2023.
URL https://arxiv.org/abs/2310.00726.

Hanseul Cho, Jaeyoung Cha, Pranjal Awasthi, Srinadh Bho-
janapalli, Anupam Gupta, and Chulhee Yun. Position
coupling: Improving length generalization of arithmetic
transformers using task structure. In The Thirty-eighth
Annual Conference on Neural Information Processing
Systems, 2024a.

Hanseul Cho, Jaeyoung Cha, Srinadh Bhojanapalli, and
Chulhee Yun. Arithmetic transformers can length-
generalize in both operand length and count. In The
Thirteenth International Conference on Learning Repre-
sentations, 2024b.

DeepSeek-AI. Deepseek llm: Scaling open-source language
models with longtermism, 2024a. URL https://ar
xiv.org/abs/2401.02954.

DeepSeek-AI. Deepseek-v3 technical report, 2024b. URL
https://arxiv.org/abs/2412.19437.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning ca-
pability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Guanting Dong, Keming Lu, Chengpeng Li, Tingyu Xia,
Bowen Yu, Chang Zhou, and Jingren Zhou. Self-
play with execution feedback: Improving instruction-
following capabilities of large language models. arXiv
preprint arXiv:2406.13542, 2024.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine
Li, Liwei Jiang, Bill Yuchen Lin, Sean Welleck, Peter
West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith
and fate: Limits of transformers on compositionality. Ad-
vances in Neural Information Processing Systems, 36:
70293–70332, 2023.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei
Liu, Yiming Yang, Jamie Callan, and Graham Neubig.
Pal: Program-aided language models. In International

Conference on Machine Learning, pages 10764–10799.
PMLR, 2023.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhi-
nav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Alex Vaughan,
et al. The llama 3 herd of models, 2024. URL https:
//arxiv.org/abs/2407.21783.

Kaiying Hou, David Brandfonbrener, Sham Kakade, Samy
Jelassi, and Eran Malach. Universal length generalization
with turing programs, 2024. URL https://arxiv.
org/abs/2407.03310.

Yi Hu, Haotong Yang, Zhouchen Lin, and Muhan Zhang.
Code prompting: a neural symbolic method for complex
reasoning in large language models, 2023. URL https:
//arxiv.org/abs/2305.18507.

Yi Hu, Xiaojuan Tang, Haotong Yang, and Muhan Zhang.
Case-based or rule-based: How do transformers do the
math? In Forty-first International Conference on Machine
Learning, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu
Yao, Kexin Pei, Ofir Press, and Karthik Narasimhan. Swe-
bench: Can language models resolve real-world github
issues? In 12th International Conference on Learning
Representations, ICLR 2024, 2024.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Nate-
san Ramamurthy, Payel Das, and Siva Reddy. The impact
of positional encoding on length generalization in trans-
formers. Advances in Neural Information Processing
Systems, 36:24892–24928, 2023.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,
Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester
James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu,
et al. Tulu 3: Pushing frontiers in open language model
post-training. arXiv preprint arXiv:2411.15124, 2024.

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook
Lee, and DImitris Papailiopoulos. Teaching arithmetic
to small transformers. In International Conference on
Learning Representations. ICLR 2024, 2024.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol
Hausman, Dorsa Sadigh, Sergey Levine, Li Fei-Fei, Fei
Xia, and Brian Ichter. Chain of code: Reasoning with a
language model-augmented code emulator. In Interna-
tional Conference on Machine Learning, pages 28259–
28277. PMLR, 2024.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud,
Max Tegmark, and Mike Williams. Towards understand-
ing grokking: An effective theory of representation learn-
ing. Advances in Neural Information Processing Systems,
35:34651–34663, 2022.

9

https://arxiv.org/abs/2310.00726
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.03310
https://arxiv.org/abs/2407.03310
https://arxiv.org/abs/2305.18507
https://arxiv.org/abs/2305.18507


Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John
Kirchenbauer, Brian Bartoldson, Bhavya Kailkhura, Ab-
hinav Bhatele, Jonas Geiping, Avi Schwarzschild, et al.
Transformers can do arithmetic with the right embeddings.
Advances in Neural Information Processing Systems, 37:
108012–108041, 2024.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Prin-
cipal singular values and singular vectors adaptation of
large language models. Advances in Neural Information
Processing Systems, 37:121038–121072, 2024.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith,
and Jacob Steinhardt. Progress measures for grokking
via mechanistic interpretability. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investi-
gating the limitations of transformers with simple arith-
metic tasks, 2021. URL https://arxiv.org/ab
s/2102.13019.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber, David
Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan,
et al. Show your work: Scratchpads for intermediate
computation with language models. In Deep Learning
for Code Workshop, 2021.

OpenAI. Introducing chatgpt, 2022. https://openai
.com/blog/chatgpt.

OpenAI. Gpt-4 technical report, 2023.

OpenAI. Learning to reason with llms, 2024. URL https:
//openai.com/index/learning-to-reaso
n-with-llms/.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Car-
roll Wainwright, Pamela Mishkin, Chong Zhang, Sand-
hini Agarwal, Katarina Slama, Alex Ray, et al. Training
language models to follow instructions with human feed-
back. Advances in neural information processing systems,
35:27730–27744, 2022.

Alethea Power, Yuri Burda, Harri Edwards, Igor
Babuschkin, and Vedant Misra. Grokking: Generalization
beyond overfitting on small algorithmic datasets. arXiv
preprint arXiv:2201.02177, 2022.

Qwen Team. Qwen2.5 technical report, 2025a. URL http
s://arxiv.org/abs/2412.15115.

Qwen Team. Qwen2.5 technical report, January 2025b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ruoqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat Lee,
Yuanzhi Li, and Yi Zhang. Positional description matters
for transformers arithmetic, 2023.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebas-
tian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha
Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou,
et al. Challenging big-bench tasks and whether chain-of-
thought can solve them. In ACL (Findings), 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois,
Xuechen Li, Carlos Guestrin, Percy Liang, and Tat-
sunori B. Hashimoto. Alpaca: A strong, replicable
instruction-following model, 2023. URL https://
crfm.stanford.edu/2023/03/13/alpaca.
html.

Kimi Team. Kimi k1.5: Scaling reinforcement learning with
llms, 2025. URL https://arxiv.org/abs/2501
.12599.

Jun Wang, Meng Fang, Ziyu Wan, Muning Wen, Jiachen
Zhu, Anjie Liu, Ziqin Gong, Yan Song, Lei Chen, Li-
onel M. Ni, Linyi Yang, Ying Wen, and Weinan Zhang.
Openr: An open source framework for advanced reason-
ing with large language models, 2024a. URL https:
//arxiv.org/abs/2410.09671.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xi-
angru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi Song,
Bowen Li, Jaskirat Singh, et al. Openhands: An open
platform for ai software developers as generalist agents.
In The Thirteenth International Conference on Learning
Representations, 2024b.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi,
Yeganeh Kordi, Amirreza Mirzaei, Atharva Naik, Arjun
Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar,
David Stap, et al. Super-naturalinstructions: Generaliza-
tion via declarative instructions on 1600+ nlp tasks. In
Proceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 5085–5109,
2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large
language models. Advances in neural information pro-
cessing systems, 35:24824–24837, 2022.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek,
Boyuan Chen, Bailin Wang, Najoung Kim, Jacob An-
dreas, and Yoon Kim. Reasoning or reciting? explor-
ing the capabilities and limitations of language models
through counterfactual tasks. In Proceedings of the 2024
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language

10

https://arxiv.org/abs/2102.13019
https://arxiv.org/abs/2102.13019
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2410.09671
https://arxiv.org/abs/2410.09671


Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

Technologies (Volume 1: Long Papers), pages 1819–1862,
2024.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao,
Jiazhan Feng, Chongyang Tao, and Daxin Jiang. Wiz-
ardlm: Empowering large language models to follow
complex instructions. arXiv preprint arXiv:2304.12244,
2023.

Haotian Xu, Xing Wu, Weinong Wang, Zhongzhi Li,
Da Zheng, Boyuan Chen, Yi Hu, Shijia Kang, Jiaming
Ji, Yingying Zhang, et al. Redstar: Does scaling long-cot
data unlock better slow-reasoning systems?, 2025. URL
https://arxiv.org/abs/2501.11284.

Haotong Yang, Yi Hu, Shijia Kang, Zhouchen Lin, and
Muhan Zhang. Number cookbook: Number understand-
ing of language models and how to improve it. ArXiv,
abs/2411.03766, 2024a. URL https://api.sema
nticscholar.org/CorpusID:273850412.

John Yang, Carlos E Jimenez, Alex L Zhang, Kilian Lieret,
Joyce Yang, Xindi Wu, Ori Press, Niklas Muennighoff,
Gabriel Synnaeve, Karthik R Narasimhan, et al. Swe-
bench multimodal: Do ai systems generalize to visual
software domains? In The Thirteenth International Con-
ference on Learning Representations, 2024b.

Chiyuan Zhang, Daphne Ippolito, Katherine Lee, Matthew
Jagielski, Florian Tramèr, and Nicholas Carlini. Coun-
terfactual memorization in neural language models. Ad-
vances in Neural Information Processing Systems, 36:
39321–39362, 2023a.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xi-
aofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tianwei
Zhang, Fei Wu, et al. Instruction tuning for large language
models: A survey. arXiv preprint arXiv:2308.10792,
2023b.

Yu Zhao, Huifeng Yin, Bo Zeng, Hao Wang, Tianqi Shi,
Chenyang Lyu, Longyue Wang, Weihua Luo, and Kaifu
Zhang. Marco-o1: Towards open reasoning models for
open-ended solutions, 2024. URL https://arxiv.
org/abs/2411.14405.

Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob An-
dreas. The clock and the pizza: Two stories in mechanis-
tic explanation of neural networks. Advances in neural
information processing systems, 36:27223–27250, 2023.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin,
Omid Saremi, Joshua M Susskind, Samy Bengio, and
Preetum Nakkiran. What algorithms can transformers
learn? a study in length generalization. In The Twelfth
International Conference on Learning Representations,
2023.

Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang,
Rishabh Agarwal, and Denny Zhou. Transformers can
achieve length generalization but not robustly. In ICLR
2024 Workshop on Mathematical and Empirical Under-
standing of Foundation Models, 2024.

11

https://arxiv.org/abs/2501.11284
https://api.semanticscholar.org/CorpusID:273850412
https://api.semanticscholar.org/CorpusID:273850412
https://arxiv.org/abs/2411.14405
https://arxiv.org/abs/2411.14405


Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

Appendices
A. Limitations
In this work, we construct a large-scale length generalization dataset spanning diverse tasks and propose Meta-RFFT to
enhance cross-task length generalization in LLMs. While this serves as an initial step toward understanding multi-task length
generalization in LLMs, our current study has several limitations. First, to isolate errors attributable to length generalization
failures (rather than inherent task complexity), we restrict our experiments to controlled settings involving code execution,
numerical processing, and symbolic / logical reasoning tasks. Consequently, our framework does not yet address more
complex, real-world long-horizon reasoning domains, such as legal judgment generation or multi-step workflow execution.
Furthermore, defining “length” as a metric for problem complexity in such practical scenarios remains an open challenge.
Extending length generalization to these domains, where models trained on simpler instances must generalize to harder
problems, presents a promising direction for future research.

B. Impact Statements
Our work focuses on establishing a relationship between rules and their corresponding instances within LLMs. We aim
to enhance model performance on downstream tasks by training the base model on a wide range of rule-following tasks.
Current training strategies fall short in enabling models to fully grasp the rules that humans have summarized or proposed
that exist in the pre-training corpus. As a result, while LLMs can easily recall rules, they often struggle to apply these
rules strictly to specific instances. Our proposed Meta-RFFT takes an initial step towards strengthening models into meta
rule followers, a development that is crucial for improving both the reasoning capabilities and learning efficiency of these
models.

Teaching LLMs to follow rules also aligns with societal demands. By ensuring that LLMs can reliably adhere to rules,
we contribute to the development of AI systems that are more aligned with human values, ethical standards, and practical
applications, ultimately fostering trust and safety in their deployment.

C. Dataset Overview
C.1. Data Annotations

We engaged skilled human annotators (undergraduate students majoring in Computer Science from top-tier universities) to
write Python scripts generating input-output traces for each task. Each task was implemented as a Python class to enable
automated sample generation at specified lengths.

Prior to annotation, we conducted a detailed training session using 12 exemplar tasks to ensure consistency and quality.
Annotators received step-by-step tutoring and were required to pass a qualifying test on a sample task before proceeding.

Following annotation, all scripts underwent rigorous validation, including manual code review and automated filtering, to
eliminate errors. All annotators were compensated fairly for their work.

C.2. Rule-Following Input Examples

We present a question example for each reasoning domain in Table 4.

C.3. Downstream Tasks Description

The descriptions of 12 selected downstream tasks are listed as follows:

• LC Add Digits: Given an integer, repeatedly sum its digits until the result is a single digit.

• LC Move Zeroes: Given a list of integers, move all zeros to the end while preserving the relative order of the non-zero
elements.

• LC Hamming Distance: The Hamming distance between two integers is the number of positions at which the corre-
sponding bits are different. Given two integers in binary representation, return their Hamming distance.

12



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

Table 4. Input example in rule-following format for each category.

LeetCode NUPA
Follow the given rule to solve the question.
rule:

def moveZeros(nums):
num_zero = 0
result = []
while nums:

number = nums.pop(0)
if number != 0:

result.append(number)
else:

num_zero += 1
i = 0
while i < num_zero:

result.append(0)
i += 1

return result

Q: Given an integer array [0, 16], move all zeros to the end
while preserving the relative order of the non-zero elements.

Follow the given rule to solve the question.
rule:

def add(num1, num2):
result = ''
carry = 0
# Main Loop
while num1 or num2:

digit1 = int(num1[-1]) if num1 else 0
digit2 = int(num2[-1]) if num2 else 0
total = digit1 + digit2 + carry
result = str(total%10) + result
carry = total//10
num1 = num1[:-1] if num1 else num1
num2 = num2[:-1] if num2 else num2

if carry:
result = str(carry) + result

result = result.lstrip('0') or '0'
return result

Q: Add two numbers: 123 + 4567.

Big-Bench Hard Symbolic Reasoning
Follow the given rule to solve the question.
rule:

def navigate(moves):
# Initialize Location
loc = [0, 0]
# Main Loop
while moves:

move = moves.pop(0)
if move[0] == "left":

loc[0] -= move[1]
elif move[0] == "right":

loc[0] += move[1]
elif move[0] == "forward":

loc[1] += move[1]
elif move[0] == "backward":

loc[1] -= move[1]
return loc == [0, 0]

Q: If you follow these instructions, do you return to the
starting point? Always face forward. Take 2 steps left. Take 2
steps forward. In short, the moves are as follows: [(‘left’, 2),
(‘forward’, 2)].

Follow the given rule to solve the question.
rule:

def coin_flip(flips):
# Initialize Coin State
heads_up = True
# Main Loop
while flips:

flip = flips.pop(0)
if flip:

heads_up = not heads_up
else:

pass
return heads_up

Q: A coin is heads up. Carrillo does not flip the coin.
Cunningham flips the coin. Is the coin still heads up? In short,
the situation of 2 people flipping coins is as follows: [False,
True].

13



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

• LC Crawler Log Folder: Determine the final folder after performing the operations in the given list, where ../ moves
up one level, ./ stays in the current folder, and x/ moves into folder x.

• LC Alternate Digit Sum: Given a positive integer where the most significant digit has a positive sign, and each subsequent
digit has the opposite sign of its adjacent digit, return the sum of these signed digits.

• LC Chunk Array: Given array and chunk size, split the array into subarrays of a given size.

• LC String Sequence: Given a target string, return a list of all strings that appear on the screen in order, using the minimum
key presses. Key 1 appends ”a” to the string, and Key 2 changes the last character to its next letter in the alphabet.

• LC Valid Palindrome: Given a string s, return true if it is a palindrome after removing all non-alphanumeric characters
and converting it to lowercase; otherwise, return false.

• NUPA Get Digit Integer: Get the digit at the given position (from left to right, starting from 0).

• NUPA Add Integer: Add two integers.

• NUPA Digit Max Integer: Compare two numbers digit by digit and return the larger digit at each position, treating any
missing digits as 0.

• NUPA Length Integer: Find total number of digits of the given integer.

D. Training Details
D.1. Training Hyperparameters

Table 5 shows the training parameters for the RF-pretraining stage and the adaptation stage of the Qwen-7B and Qwen-32B
models. In the RF-pretraining stage, we use data samples with a length of 31 from the training set as the validation set and
the early stop strategy is applied based on the validation loss, which results in different training steps. Considering early
stopping, the number of training data samples for the 7B and 32B models in the RF-pretraining stage is 179k and 205k,
respectively.

Since the RF-pretraining stage involves fine-tuning across numerous tasks, we train more model parameters during this stage.
The 7B model uses full parameter fine-tuning, while due to computational resource constraints, the 32B model employs
PiSSA with a large rank of 32. In the adaptation stage, where fine-tuning is performed on different target tasks, we use
PiSSA with a relatively small rank 8.

Table 5. The training hyperparameters for the RF-pretraining stage and the adaptation stage.

Hyperparameters RF-Pretrain Adaptation

Qwen-7B Qwen-32B Qwen-7B Qwen-32B

Training Steps 800 700 156 156

Num of Epoch 1

Learning Rate 1e-5

Batch Size 256 32

Fine-Tuning Method full fine-tune PiSSA

PiSSA Rank / 32 8

D.2. Compute Resources

We list the training compute of RF-pretraining and downstream fine-tuning in Table 6. We conduct all the experiments on
NVIDIA H800 Tensor Core GPUs.

While Meta-RFFT does require initial pretraining, our analysis shows it becomes significantly more efficient than vanilla
RFFT when deployed across multiple tasks.

14



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

• Computation Efficiency: For the 7B model, the pretraining cost becomes justified after just 42 downstream tasks—a
threshold quickly exceeded in practice. For 32B model, the number is 72.

• Data Efficiency: Meta-RFFT eliminates the need for task-specific fine-tuning data. Meta-RFFT works in the context of
in-context learning with just the rule and one demonstration.

Table 6. Training compute of RF-pretraining and downstream fine-tuning of both 7B and 32B models.

Model Training Stage Training hours GPU Num GPU Memory GPU hours

7B RF-pretrain 18 8 80G 144.0
7B downstream 0.6∼1.1 4 80G 2.4∼4.4

32B RF-pretrain 22.3 32 80G 713.6
32B downstream 2.0∼3.0 4 80G 8.0∼12.0

D.3. Reinforcement Learning Settings

We utilize Proximal Policy Optimization (PPO) without KL-regularization as our reinforcement learning algorithm. PPO
updates the policy parameters θ to maximize the expected cumulative reward, while simultaneously updating the value
function parameters ϕ by minimizing the value loss. This is achieved by optimizing the following objective functions:

JPPO(θ) = Et,st,at∼πθold

[
min

(
πθ(at|st)
πθold(at|st)

Ât, clip

(
πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ

)
Ât

)]
, (1)

Jvalue(ϕ) =
1

2
Et,st,at∼πθold

[
(Vϕ(st)−Rt)

2
]
, (2)

We provide an outcome reward, where the model receives a reward of 1 only when its output answer is completely correct,
and 0 otherwise. Key hyperparameters used in our implementation are listed in Table 7.

Table 7. Training Hyperparameters for PPO.

Hyperparameter Value

Actor Learning Rate 1e-6
Critic Learning Rate 9e-6
Train Batch Size 1024
Rollout Batch Size 256
GAE parameter λ 1.0
Discount Factor γ 1.0
Clipping Parameter ϵ 0.2
KL Coefficient 0.0

E. Additional Results
E.1. Results of 32B Models

Fine-tuning results. In Figure 7, we list the length generalization performance of Qwen-2.5-32B-Instruct fine-tuned
through the following methods: direct answer, scratchpad, vanilla RFFT and Meta-RFFT. Meta-RFFT significantly
outperforms the rest of the methods, showing that rule-following is a meta ability that can be mastered by large-scale
RF-pretrain and can benefit length generalization greatly.

In-context learning results. In Figure 8, we show the in-context learning performance of both the base model and the
RF-pretrained model. Here, the base model we use is Qwen-2.5-32B-Instruct. The RF-pretrained model outperforms the

15



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
LC Add Digits

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Move Zeroes

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Hamming Distance

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Crawler Log Folder

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Alternate Digit Sum

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Chunk Array

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC String Sequence

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Valid Palindrome

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

NUPA Get Digit Integer

Meta-RFFT
Vanilla RFFT
Direct Answer
Scratchpad

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Add Integer

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Digit Max Integer

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Length Integer

Figure 7. Length generalization performance of direct answer, scratchpad, vanilla RFFT and Meta-RFFT on LeetCode and NUPA tasks.
Here the experiments are all conducted on Qwen-2.5-32B-Instruct.

base model by a large margin in the context of 1-shot learning on downstream tasks. RF-pretraining shows a positive transfer
to the in-context rule-following capabilities in downstream tasks.

E.2. Length Generalization of Long-CoT Models

In Figure 9, we show the length generalization performance of long-CoT models, including DeepSeek-R1-671B, DeepSeek-
R1-Distill-7B and QwQ-32B. Meta-RFFT-enhanced Qwen-32B shows superior performance regarding length generalization
with comparable or even much smaller parameter size.

E.3. Comparison between Meta-RFFT and Instruction Following

We show the performance of Meta-RFFT-enhanced Llama-3.1-8B and the same model after instruction-tuning on Tulu3 in
Figure 10. For Meta-RFFT, we fine-tune the model on samples of lengths from 1 to 5.

E.4. Training Curves

We show the training loss curves of the downstream adaptation stage of the 7B base model and the 32B base model
respectively in Figure 11, Figure 12. The figures show that models trained with Meta-RFFT exhibit lower initial training
loss compared to vanilla RFFT, as the former is already familiar with the rule-following paradigm due to the first-stage
pretraining. This allows Meta-RFFT models to fit the training samples more quickly during the adaptation stage. As training
progresses, the training loss of vanilla RFFT and Meta-RFFT models converges to similar levels in most tasks. This indicates
that the gap in length generalization performance between Meta-RFFT and vanilla RFFT is not due to the latter’s in- ability
to fit the training data. More detailed discussions are put in Section 4.2.

16



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Add Digits

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Move Zeroes

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Hamming Distance

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Crawler Log Folder

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Alternate Digit Sum

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Chunk Array

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC String Sequence

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Valid Palindrome

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

NUPA Get Digit Integer

RF-Pretrained 1-shot
Base 1-shot

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Add Integer

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Digit Max Integer

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Length Integer

Figure 8. The figure shows the 1-shot performance of the base model (Qwen-2.5-32B-Instruct), and the RF-pretrained model (RF-
pretrained Qwen-2.5-32B-Instruct).

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Add Digits

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Move Zeroes

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Hamming Distance

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Crawler Log Folder

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Alternate Digit Sum

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Chunk Array

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC String Sequence

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Valid Palindrome

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

NUPA Get Digit Integer

Meta-RFFT-32B
QwQ-32B
R1-671B
R1-7B-Distill

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Add Integer

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Digit Max Integer

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Length Integer

Figure 9. Length generalization performance of long-CoT models, including DeepSeek-R1-671B, DeepSeek-R1-Distill-7B and QwQ-32B.

17



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

LC Add Digits

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Move Zeroes

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Hamming Distance

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Crawler Log Folder

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Alternate Digit Sum

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Chunk Array

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC String Sequence

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Valid Palindrome

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

NUPA Get Digit Integer

Meta-RFFT
Tulu3

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Add Integer

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Digit Max Integer

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Length Integer

Figure 10. Comparison between Meta-RFFT and instruction following method Tulu3, using Llama-3.1-8B as the base model.

0 25 50 75 100 125 150

1

2

3

Tr
ai

ni
ng

 L
os

s

LC Add Digits

0 25 50 75 100 125 150

1

2

3

LC Move Zeroes

0 25 50 75 100 125 150

1

2

LC Hamming Distance

0 25 50 75 100 125 150

1

2

3

4
LC Crawler Log Folder

Vanilla-RFFT
Meta-RFFT

0 25 50 75 100 125 150

1

2

3

Tr
ai

ni
ng

 L
os

s

LC Alternate Digit Sum

0 25 50 75 100 125 150

1

2

LC Chunk Array

0 25 50 75 100 125 150

1

2

3
LC String Sequence

0 25 50 75 100 125 150
0

1

2

3

LC Valid Palindrome

0 25 50 75 100 125 150
Num of Steps

1

2

3

4

Tr
ai

ni
ng

 L
os

s

NUPA Get Digit Integer

0 25 50 75 100 125 150
Num of Steps

0.5

1.0

1.5

2.0

2.5
NUPA Add Integer

0 25 50 75 100 125 150
Num of Steps

0

1

2

3
NUPA Digit Max Integer

0 25 50 75 100 125 150
Num of Steps

1

2

3

4
NUPA Length Integer

Figure 11. Training curves of Qwen2.5-7B-Instruct in the downstream adaptation stage on LeetCode tasks and NUPA tasks. The figure
shows both the training curves of vanilla RFFT and the second training stage of Meta-RFFT.

18



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

0 50 100 150
0.0

0.5

1.0
Tr

ai
ni

ng
 L

os
s

LC Add Digits

0 50 100 150
0.00

0.25

0.50

0.75

1.00
LC Move Zeroes

0 50 100 150
0.0

0.2

0.4

0.6

0.8
LC Hamming Distance

0 50 100 150
0.0

0.2

0.4

0.6

0.8

LC Crawler Log Folder
Vanilla-RFFT
Meta-RFFT

0 50 100 150
0.00

0.25

0.50

0.75

1.00

Tr
ai

ni
ng

 L
os

s

LC Alternate Digit Sum

0 50 100 150
0.0

0.2

0.4

0.6

LC Chunk Array

0 50 100 150
0.0

0.2

0.4

0.6

LC String Sequence

0 50 100 150
0.0

0.2

0.4

0.6

0.8

LC Valid Palindrome

0 50 100 150
Num of Steps

0.0

0.5

1.0

1.5

Tr
ai

ni
ng

 L
os

s

NUPA Get Digit Integer

0 50 100 150
Num of Steps

0.0

0.2

0.4

NUPA Add Integer

0 50 100 150
Num of Steps

0.0

0.2

0.4

0.6
NUPA Digit Max Integer

0 50 100 150
Num of Steps

0.0

0.5

1.0

NUPA Length Integer

Figure 12. Training curves of Qwen2.5-32B-Instruct in the downstream adaptation stage on LeetCode tasks and NUPA tasks. The figure
shows both the training curves of vanilla RFFT and the second training stage of Meta-RFFT.

Besides, we conduct repeated experiments in the stage of downstream fine-tuning. We show the training curves of different
random seeds of 7B RF-pretrained models in the adaptation stage training in Figure 13, indicating that the adaptation stage
training is stable across different seeds.

0 25 50 75 100 125 150
0

1

2

Tr
ai

ni
ng

 L
os

s

LC Add Digits

0 25 50 75 100 125 150

1

2

3

LC Move Zeroes

0 25 50 75 100 125 150

0.5

1.0

1.5

2.0

LC Hamming Distance

0 25 50 75 100 125 150
0

1

2

3

LC Crawler Log Folder
seed=42
seed=250119
seed=250120

0 25 50 75 100 125 150

1

2

Tr
ai

ni
ng

 L
os

s

LC Alternate Digit Sum

0 25 50 75 100 125 150
0

1

2

3
LC Chunk Array

0 25 50 75 100 125 150
0

1

2

LC String Sequence

0 25 50 75 100 125 150

1

2

3
LC Valid Palindrome

0 25 50 75 100 125 150
Num of Steps

1

2

3

Tr
ai

ni
ng

 L
os

s

NUPA Get Digit Integer

0 25 50 75 100 125 150
Num of Steps

0.0

0.5

1.0

1.5

2.0

NUPA Add Integer

0 25 50 75 100 125 150
Num of Steps

0

1

2

3
NUPA Digit Max Integer

0 25 50 75 100 125 150
Num of Steps

1

2

3

NUPA Length Integer

Figure 13. Training curves of the adaptation stage of Meta-RFFT using different random seeds. Here we show the results of Qwen2.5-7B-
Instruct.

E.5. Effects of Data Dize on RF-pretraining and Downstream Adaptation

The effect of the data size in RF-pretraining. We select several checkpoints from the RF-pretraining stage after the
training loss has converged and perform downstream adaptation on these checkpoints. The performance of these checkpoints
on the corresponding tasks after fine-tuning is presented in Figure 14. In the early stages, as training progresses, the model’s
final performance gradually improves. However, after reaching a certain number of steps, the model’s performance stabilizes

19



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

and no longer shows significant improvement. The models do not show signs of “grokking” during the RF-pretraining stage.

The effect of the data size in downstream adaptation For the downstream adaptation stage, we also analyze the effects
of data size on performance. We select several checkpoints after the training loss has converged. The results of these
checkpoints are presented in Figure 14. Similar to the RF-pretraining stage, in the early phases, the model’s performance
improves as the data size increases. However, after reaching a certain number of steps, the model’s performance stabilizes
and no longer shows significant improvement, with no evidence of grokking observed.

For RF-pretraining stage, we select several checkpoints after the training loss has converged and perform downstream
adaptation on these checkpoints. The length generalization performance of these checkpoints on

0 5 10 15 20 25 30
0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

LC Add Digits

0 5 10 15 20 25 30
0.00

0.25

0.50

0.75

1.00
LC Move Zeroes

0 5 10 15 20 25 30
0.00

0.25

0.50

0.75

1.00
LC Hamming Distance

0 5 10 15 20 25 30
0.00

0.25

0.50

0.75

1.00
LC Crawler Log Folder

0 5 10 15 20 25 30
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

LC Alternate Digit Sum

# Steps = 200
# Steps = 400
# Steps = 600
# Steps = 800

0 5 10 15 20 25 30
Length

0.00

0.25

0.50

0.75

1.00
LC Chunk Array

0 5 10 15 20 25 30
Length

0.00

0.25

0.50

0.75

1.00
LC String Sequence

0 5 10 15 20 25 30
Length

0.00

0.25

0.50

0.75

1.00
LC Valid Palindrome

Figure 14. Effects of training steps in the RF-pretraining stage.

0 5 10 15 20 25 30
0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

LC Add Digits

0 5 10 15 20 25 30
0.00

0.25

0.50

0.75

1.00
LC Move Zeroes

0 5 10 15 20 25 30
0.00

0.25

0.50

0.75

1.00
LC Hamming Distance

0 5 10 15 20 25 30
0.00

0.25

0.50

0.75

1.00
LC Crawler Log Folder

0 5 10 15 20 25 30
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

LC Alternate Digit Sum

# Steps = 60
# Steps = 100
# Steps = 140
# Steps = 156

0 5 10 15 20 25 30
Length

0.00

0.25

0.50

0.75

1.00
LC Chunk Array

0 5 10 15 20 25 30
Length

0.00

0.25

0.50

0.75

1.00
LC String Sequence

0 5 10 15 20 25 30
Length

0.00

0.25

0.50

0.75

1.00
LC Valid Palindrome

Figure 15. Effects of training steps in the downstream adaptation stage of Meta-RFFT.

E.6. Effects of Number of Tasks in RF-Pretraining Stage

We show in Figure 16 that when fine-tuned with only 1 task in RF-pretraining stage, the model does not perform as well as
Meta-RFFT-ed on 74 diverse tasks. This demonstrates that to enable robust multi-task length generalization, a large-scale
length generalization dataset is necessary.

20



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
LC Add Digits

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Move Zeroes

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Hamming Distance

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Crawler Log Folder

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Alternate Digit Sum

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Chunk Array

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC String Sequence

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Valid Palindrome

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

NUPA Get Digit Integer

Meta-RFFT
Single-task RF-pretrain

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Add Integer

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Digit Max Integer

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Length Integer

Figure 16. Performance when RF-pretrained on a single task versus 74 diverse tasks, showing the benefit of large-scale multi-task
pretraining for length generalization.

F. Error Cases
F.1. Error Case of DeepSeek-R1 on Addition

In Table 8, we present an error case where DeepSeek-R1 fails to correctly solve a 30-digit integer addition problem. In this
case, R1 makes two mistakes: (1) incorrect splitting: R1 attempts to split the 30-digit integer into two parts, including a
17-digit segment and a 13-digit segment. However, the first segment actually contains 18 digits, and the two parts overlap by
one digit. Despite this mistake in the reasoning trace, R1 miraculously corrects the error in the final answer; (2) copying
error: R1 makes an copy error in the final answer, copying “7711” to “7771”.

F.2. Error Case of Models Trained with RL

While RL has shown success in general reasoning, we argue that SFT is better suited for enforcing strict rule-following
behavior. Unlike RL with outcome reward, which only optimizes for final-answer correctness, SFT directly maximizes
the likelihood of the model generating rule-compliant intermediate reasoning steps, which is crucial for strict adherence to
structured rules.

We use RL (PPO) to optimize rule-following. The model does not learn rule-following behavior and instead exhibit
tendencies to answer directly, thus fails to generalize to longer answers, as shown in Table 9.

21



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

Table 8. An error example of DeepSeek-R1 on long integer addition. We only show the summarization part as the thinking part is too long.
R1 tricks itself during splitting the 30-digit number.

Input Output
Q: Add two numbers:
8898509165985 +
897653763194685878813426157006 To add the numbers 8898509165985 and

897653763194685878813426157006, we need to align them properly and
perform the addition step by step, considering carryovers.

1. Identify the digits of each number:
- The first number is 13 digits: 8,898,509,165,985
- The second number is 30 digits:

↪→ 897,653,763,194,685,878,813,426,157,006

2. Split the second number into two parts:
- The first 17 digits:

897,653,763,194,685,878 (here R1 list 18 digits)
- The last 13 digits: 8,813,426,157,006

3. Add the first number to the last 13 digits of the
↪→ second number:
- Last 13 digits of the second number:

↪→ 8,813,426,157,006
- First number: 8,898,509,165,985

4. Perform the addition of the last 13 digits:
- Align and add the digits from right to left,

↪→ considering carryovers:
```

8,898,509,165,985
+ 8,813,426,157,006

17,711,935,322,991

```
- The result of adding these 13-digit numbers is

↪→ 17,711,935,322,991, which is a 14-digit
↪→ number. This results in a carryover of 1 to
↪→ the higher digits.

5. Adjust the first part of the second number:
- The first 17 digits of the second number:

↪→ 897,653,763,194,685,878 (still 18 digits)
- Add the carryover 1: 897,653,763,194,685,878 + 1

↪→ = 897,653,763,194,685,879

6. Combine the adjusted first part with the result of
↪→ the addition:
- The adjusted first part: 897,653,763,194,685,879
- The last 13 digits of the sum (after removing the

↪→ carryover): 7,711,935,322,991

7. Concatenate the results:
- The final result is 897,653,763,194,685,879

↪→ followed by 7,711,935,322,991, which gives
↪→ the 30-digit number.

The result of the addition is: 897653763194685887771935322991

Correct answer should be: 897653763194685887711935322991

22



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

Table 9. An error example of Qwen2.5-7B-RL, which is Qwen2.5-7B trained by RL on rule-following samples.

Input Output
Follow the given rule to solve the question.
rule:

def add(num1, num2):
result = ''
carry = 0
# Main Loop
while num1 or num2:

digit1 = int(num1[-1]) if num1 else 0
digit2 = int(num2[-1]) if num2 else 0
total = digit1 + digit2 + carry
result = str(total%10) + result
carry = total//10
num1 = num1[:-1] if num1 else num1
num2 = num2[:-1] if num2 else num2

if carry:
result = str(carry) + result

result = result.lstrip('0') or '0'
return result

Q: Add two numbers:
959247367543417212187562571510 + 440884190197.

The given rule defines a function add(num1, num2) that
adds two numbers represented as strings. I will use this
function to add the two given numbers:
959247367543417212187562571510 and 440884190197.
959247367543417212187562615607

Correct answer should be:
959247367543417212628446761707

G. Dataset Construction
G.1. Rule-following Dataset Annotation

To generate the rule-following output for each task, the rules necessary to accomplish the task first need to be provided
in the input (examples are shown in Table 4), which can be generated by an LLM. Subsequently, a data generation script
is manually written for each task to produce the intermediate execution steps of the rule for any given input. With the
rule-following output generation script and the input data generator, an arbitrary number of data samples can be generated.
Here is an example of one data sample in the rule-following format.

Prompt:

Follow the given rule to solve the question.
Rule:

def add_digits(self, num: int) -> int:
while num > 9:

sum = 0
while num:

sum += num % 10
num //= 10

num = sum
return num

Q: Given an integer number 15, repeatedly add up all its digits until the result has only one digit.

Response:

23



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

1. Initialize
num = 15
2. Outer loop

while num > 9:

num = 15
enter the loop
2.1 One iteration
sum = 0
3. Inner loop

while num:

num = 15
enter the loop
3.1 One iteration

sum += num % 10
num //= 10

num = 15
num % 10 = 5
sum = 0
now,
sum = 0 + 5 = 5
num = 15 // 10 = 1

while num:

num = 1
enter the loop
3.1 One iteration

sum += num % 10
num //= 10

num = 1
num % 10 = 1
sum = 5
now,
sum = 5 + 1 = 6
num = 1 // 10 = 0

while num:

num = 0
do not enter

num = sum

sum = 6
now,
num = 6

while num > 9:

24



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

num = 6
do not enter
4. Return

return num

num = 6
So the answer is 6

G.2. Synthetic Data Generation

22 manually-written code snippets are as below:

0: "if list1:\n list1[-1] += {}",
1: "if list1:\n list1[0] += {}",
2: "if list1:\n var = list1.pop(0)\n list2.append(var)",
3: "if list1:\n var = list1.pop()\n list2.append(var)",
4: "list1.insert(0, {})",
5: "list1.sort()",
6: "list1.reverse()",
7: "list1 = list1[1:] if list1 else list1",
8: "if list2:\n list1.insert(0, list2[0])\nelse:\n list1.insert(0, {})",
9: "val = list2[-1] if list2 else {}\nlist1.append(val)",
10: "if list1 and list2 and list1[0] > list2[0]:\n list1.pop(0)",
11: "if list1 and list2 and list1[-1] < list2[-1]:\n list1.pop()",
12: "if list1:\n list1.pop(0)",
13: "if list1 and list2:\n list1.append(list2.pop())",
14: "if list1 and list1[0] % 2 == 0:\n list1.pop(0)",
15: "if list1 and list1[0] % 2 == 1:\n list1.pop(0)",
16: "if len(list1) > len(list2):\n list2.insert(0, list1.pop())",
17: "if list1 and list1[0] > {}:\n list1.pop(0)",
18: "if list1 and list1[0] < {}:\n list1.pop(0)",
19: "if list2:\n list1.append(list2.pop(0))",
20: "if list1:\n list1.pop()",
21: "if list2:\n list2.pop()"

To further enhance rule diversity, we replace list1 and list2 with meaningless random strings in each sampled snippet.
Here is a prompt of synthetic data sample with one-shot example:

Here is 1 example:
Follow the given rule to solve the question.
rule:

def process_list(ywhm, erep):
while ywhm and erep:

if ywhm:
ywhm.pop()

erep = erep[1:] if erep else erep
if erep and erep[0] % 2 == 0:

erep.pop(0)
if erep and erep[0] % 2 == 1:

erep.pop(0)
if erep:

erep.pop(0)

25



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

if ywhm:
ywhm.pop()

val = erep[-1] if erep else 53
ywhm.append(val)
if erep:

var = erep.pop(0)
ywhm.append(var)

return ywhm

Q: Given two lists, ywhm = [3] and erep = [50, 31], what is the final value of ywhm?

1 Initialize
ywhm = [3]
erep = [50, 31]
2 Main loop

while ywhm and erep:

ywhm = [3]
erep = [50, 31]
enter the loop
2.1 One iteration:

if ywhm:
ywhm.pop()

ywhm = [3]
enter if
now,
ywhm = []

erep = erep[1:] if erep else erep

erep = [50, 31]
now,
erep = [31]

if erep and erep[0] % 2 == 0:
erep.pop(0)

erep = [31]
erep[0] % 2 = 31 % 2 != 0
do not enter if

if erep and erep[0] % 2 == 1:
erep.pop(0)

erep = [31]
erep[0] % 2 = 31 % 2 == 1
enter if
now,
erep = []

if erep:
erep.pop(0)

26



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

erep = []
do not enter if

if ywhm:
ywhm.pop()

ywhm = []
do not enter if

val = erep[-1] if erep else 53
ywhm.append(val)

erep = []
val = 53
ywhm = []
now,
ywhm = [53]

if erep:
var = erep.pop(0)
ywhm.append(var)

erep = []
do not enter if

while ywhm and erep:

ywhm = [53]
erep = []
do not enter

return ywhm

So the answer is [53]

Follow the above examples to answer the following question:
rule:

def process_list(cybez, eonx):
while cybez and eonx:

eonx.reverse()
if eonx:

cybez.insert(0, eonx[0])
else:

cybez.insert(0, 63)
if cybez and cybez[0] < 9:

cybez.pop(0)
if eonx:

eonx[-1] += 9
if cybez and cybez[0] % 2 == 1:

cybez.pop(0)
if eonx:

eonx[0] += 96
if cybez and cybez[0] % 2 == 0:

cybez.pop(0)
if cybez:

cybez.pop()
return cybez

27



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

Q: Given two lists, cybez = [31, 22, 95, 74, 70, 55, 39, 22, 77] and eonx = [53, 70, 50, 28, 15, 81, 92, 6], what is the
final value of cybez?

G.3. Natural Language Rules

To generate rule-following output in natural language, we first convert code-formatted rules into natural language descriptions.
The remaining process is the same as generating the output for the code rule. To ensure clarity and avoid ambiguity, each
line is prefixed with a number. An example of a rule-following output in natural language is provided below.

Prompt:

Follow the given rule to solve the question.
Rule:

1. Begin outer loop:
1.1 Check whether the number is a single-digit number. If it is not,

enter the outer loop; otherwise, the loop is over, go to step (2).↪→

1.2 One iteration:
1.2.1 Initialize the sum of the digits of the number in this

iteration as sum equals 0.↪→

1.2.2 Begin inner loop to calculate the digit sum:
1.2.2.1 Check whether the number is 0. If the number is not 0,

enter the inner loop; otherwise, the loop is over, go to
step (1.2.3).

↪→

↪→

1.2.2.2 One iteration:
1.2.2.2.1 Find the last digit of the number and add it to

sum.↪→

1.2.2.2.2 Remove the last digit from the number.
1.2.2.3 Return to the start of the inner loop.

1.2.3 After calculating the sum of all digits, update the number
with the value of sum.↪→

1.3 Return to the start of the outer loop.
2. Return the remaining single-digit number.

Q: Given an integer number 32, repeatedly add up all its digits until the result has only one digit.

Response:

The number is 32. Begin the process.

1. Begin outer loop:
1.1 Check whether the number is a single-digit number. If it is not, enter

the outer loop; otherwise, the loop is over, go to step (2).↪→

The number is 32, which is not a single-digit number. Enter the outer loop.

1.2 One iteration:
1.2.1 Initialize the sum of the digits of the number in this iteration as

sum equals 0.↪→

Initialize sum = 0.

28



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

1.2.2 Begin inner loop to calculate the digit sum:
1.2.2.1 Check whether the number is 0. If the number is not 0, enter the

inner loop; otherwise, the loop is over, go to step (1.2.3).↪→

The number is 32, which is not 0. Enter the inner loop.

1.2.2.2 One iteration:
1.2.2.2.1 Find the last digit of the number and add it to sum.

number = 32, the last digit of the number is 2. Add it to sum, sum = 0 + 2 = 2.

1.2.2.2.2 Remove the last digit from the number.

Remove the last digit from the number, number = 32 // 10 = 3.

1.2.2.3 Return to the start of the inner loop.

Back to the start of the inner loop.

1.2.2 Begin inner loop to calculate the digit sum:
1.2.2.1 Check whether the number is 0. If the number is not 0, enter the

inner loop; otherwise, the loop is over, go to step (1.2.3).↪→

The number is 3, which is not 0. Enter the inner loop.

1.2.2.2 One iteration:
1.2.2.2.1 Find the last digit of the number and add it to sum.

number = 3, the last digit of the number is 3. Add it to sum, sum = 2 + 3 = 5.

1.2.2.2.2 Remove the last digit from the number.

Remove the last digit from the number, number = 3 // 10 = 0.

1.2.2.3 Return to the start of the inner loop.

Back to the start of the inner loop.

1.2.2 Begin inner loop to calculate the digit sum:
1.2.2.1 Check whether the number is 0. If the number is not 0, enter the

inner loop; otherwise, the loop is over, go to step (1.2.3).↪→

The number is 0. The loop is over. Go to step (1.2.3).

1.2.3 After calculating the sum of all digits, update the number with the
value of sum.↪→

sum = 5. Update the number with the value of sum, so number is 5 now.

1.3 Return to the start of the outer loop.

Back to the start of the outer loop.

1. Begin outer loop:
1.1 Check whether the number is a single-digit number. If it is not, enter

the outer loop; otherwise, the loop is over, go to step (2).↪→

The number is 5, which is a single-digit number. The loop is over. Go to step (2).

2. Return the remaining single-digit number.

The number is 5. So the answer is 5.

29



Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

H. Details of All 86 Tasks

Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

LeetCode lc 2582 We are passing a pillow back and forth
along a line of n people for certain time,
returning the final holder’s position
after directional changes at each end.

the number of
people

https://le
etcode.com
/problems/
pass-the-p
illow/desc
ription/

RF-
pretrain

LeetCode lc 2129 If the length of the word is 1 or 2
letters, change all letters to lowercase.
If the length of the word is 3 or more
letters, change the first letter to
uppercase and the rest to lowercase.

the number of
characters in
the word

https://le
etcode.com
/problems/
capitalize
-the-title/d
escription/

RF-
pretrain

LeetCode lc 2210 Given a 0-indexed integer array
`nums`, find out the number of hills
and valleys in the array. An index i is
part of a hill in nums if the closest
non-equal neighbors of i are smaller
than nums[i]. Similarly, an index i is
part of a valley in nums if the closest
non-equal neighbors of i are larger than
nums[i]

the length of
the array

https:
//leetcode
.com/probl
ems/count-h
ills-and-v
alleys-in-a
n-array/des
cription/

RF-
pretrain

LeetCode lc 824 If a word begins with a vowel, append
”ma” to the end of the word.If a word
begins with a consonant (i.e., not a
vowel), remove the first letter and
append it to the end, then add ”ma”.
Add one letter ”a” to the end of each
word per its word index in the sentence,
starting with 1. What’s the final
sentence representing the conversion
from sentence to Goat Latin?

the number of
words

https:
//leetcode
.com/probl
ems/goat-l
atin/descr
iption/

RF-
pretrain

LeetCode lc 2103 Given a string rings of length 2n that
describes the n rings that are placed
onto the rods. Every two characters in
rings forms a color-position pair that is
used to describe each ring. How many
are the number of rods that have all
three colors of rings on them?

the number of
rings

https:
//leetcode
.com/probl
ems/rings-a
nd-rods/de
scription/

Continue on next page...

30

https://leetcode.com/problems/pass-the-pillow/description/
https://leetcode.com/problems/pass-the-pillow/description/
https://leetcode.com/problems/pass-the-pillow/description/
https://leetcode.com/problems/pass-the-pillow/description/
https://leetcode.com/problems/pass-the-pillow/description/
https://leetcode.com/problems/pass-the-pillow/description/
https://leetcode.com/problems/capitalize-the-title/description/
https://leetcode.com/problems/capitalize-the-title/description/
https://leetcode.com/problems/capitalize-the-title/description/
https://leetcode.com/problems/capitalize-the-title/description/
https://leetcode.com/problems/capitalize-the-title/description/
https://leetcode.com/problems/capitalize-the-title/description/
https://leetcode.com/problems/count-hills-and-valleys-in-an-array/description/
https://leetcode.com/problems/count-hills-and-valleys-in-an-array/description/
https://leetcode.com/problems/count-hills-and-valleys-in-an-array/description/
https://leetcode.com/problems/count-hills-and-valleys-in-an-array/description/
https://leetcode.com/problems/count-hills-and-valleys-in-an-array/description/
https://leetcode.com/problems/count-hills-and-valleys-in-an-array/description/
https://leetcode.com/problems/count-hills-and-valleys-in-an-array/description/
https://leetcode.com/problems/count-hills-and-valleys-in-an-array/description/
https://leetcode.com/problems/goat-latin/description/
https://leetcode.com/problems/goat-latin/description/
https://leetcode.com/problems/goat-latin/description/
https://leetcode.com/problems/goat-latin/description/
https://leetcode.com/problems/goat-latin/description/
https://leetcode.com/problems/goat-latin/description/
https://leetcode.com/problems/rings-and-rods/description/
https://leetcode.com/problems/rings-and-rods/description/
https://leetcode.com/problems/rings-and-rods/description/
https://leetcode.com/problems/rings-and-rods/description/
https://leetcode.com/problems/rings-and-rods/description/
https://leetcode.com/problems/rings-and-rods/description/


Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

LeetCode lc 2899 Given an integer array nums where
nums[i] is either a positive integer or
-1. We need to find for each -1 the
respective positive integer, which we
call the last visited integer. To achieve
this goal, let’s define two empty arrays:
seen and ans. Start iterating from the
beginning of the array nums.
• If a positive integer is encountered,

prepend it to the front of seen.
• If -1 is encountered, let k be the

number of consecutive -1s seen so far
(including the current -1),
– If k ≤ length of seen, append the
k-th element of seen to ans.

– If k > length of seen, append -1
to ans.

Return the array ans.

the length of
the array

https:
//leetcode
.com/probl
ems/last-v
isited-int
egers/desc
ription/

RF-
pretrain

LeetCode lc 2833 Find the furthest point from origin after
given moves.

the number of
moves

https://le
etcode.com
/problems/
furthest-p
oint-from-o
rigin/desc
ription/

RF-
pretrain

LeetCode lc 2057 Given a 0-indexed integer array nums,
What’s the smallest index i of nums
such that i mod 10 == nums[i]?

the length of
the array

https://le
etcode.com
/problems/
smallest-i
ndex-with-e
qual-value/

RF-
pretrain

LeetCode lc 953 Given a sequence of words written in
the alien language, and the order of the
alphabet, return true if and only if the
given words are sorted
lexicographically in this alien language.

the number of
words

https://le
etcode.com
/problems/
verifying-a
n-alien-dic
tionary/de
scription/

RF-
pretrain

LeetCode lc 2785 Given a 0-indexed string s, permute s to
get a new string t such that: All
consonants remain in their original
places. The vowels must be sorted in
the nondecreasing order of their ASCII
values.

the length of
the string

https:
//leetcode
.com/probl
ems/sort-v
owels-in-a
-string/

Continue on next page...

31

https://leetcode.com/problems/last-visited-integers/description/
https://leetcode.com/problems/last-visited-integers/description/
https://leetcode.com/problems/last-visited-integers/description/
https://leetcode.com/problems/last-visited-integers/description/
https://leetcode.com/problems/last-visited-integers/description/
https://leetcode.com/problems/last-visited-integers/description/
https://leetcode.com/problems/last-visited-integers/description/
https://leetcode.com/problems/furthest-point-from-origin/description/
https://leetcode.com/problems/furthest-point-from-origin/description/
https://leetcode.com/problems/furthest-point-from-origin/description/
https://leetcode.com/problems/furthest-point-from-origin/description/
https://leetcode.com/problems/furthest-point-from-origin/description/
https://leetcode.com/problems/furthest-point-from-origin/description/
https://leetcode.com/problems/furthest-point-from-origin/description/
https://leetcode.com/problems/smallest-index-with-equal-value/
https://leetcode.com/problems/smallest-index-with-equal-value/
https://leetcode.com/problems/smallest-index-with-equal-value/
https://leetcode.com/problems/smallest-index-with-equal-value/
https://leetcode.com/problems/smallest-index-with-equal-value/
https://leetcode.com/problems/smallest-index-with-equal-value/
https://leetcode.com/problems/verifying-an-alien-dictionary/description/
https://leetcode.com/problems/verifying-an-alien-dictionary/description/
https://leetcode.com/problems/verifying-an-alien-dictionary/description/
https://leetcode.com/problems/verifying-an-alien-dictionary/description/
https://leetcode.com/problems/verifying-an-alien-dictionary/description/
https://leetcode.com/problems/verifying-an-alien-dictionary/description/
https://leetcode.com/problems/verifying-an-alien-dictionary/description/
https://leetcode.com/problems/sort-vowels-in-a-string/
https://leetcode.com/problems/sort-vowels-in-a-string/
https://leetcode.com/problems/sort-vowels-in-a-string/
https://leetcode.com/problems/sort-vowels-in-a-string/
https://leetcode.com/problems/sort-vowels-in-a-string/
https://leetcode.com/problems/sort-vowels-in-a-string/


Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

LeetCode lc 2460 Conduct specific operations to an array:
perform sequential operations on the
array to merge adjacent equal elements
by doubling one and zeroing the other,
then moving all zeros to the end.

the length of
the array

https://le
etcode.com
/problems/
apply-opera
tions-to-a
n-array/des
cription/

RF-
pretrain

LeetCode lc 2682 There are n friends, sitting in a circle
and numbered from 1 to n in clockwise
order, playing the sircular game. Start
at 1st friend and end at 1st friend
receive the ball again. What is the
serial number of the friend who hasn’t
caught the ball?

the number of
people is
given by:
```
n = ran-
dom.choice(
range(1,length))
```

https:
//leetcode
.com/probl
ems/find-t
he-losers-o
f-the-circu
lar-game/de
scription/

RF-
pretrain

LeetCode lc 1694 Reformat the given phone number into
right format.

the number of
characters of
the phone
number string

https:
//leetcode
.com/probl
ems/reform
at-phone-n
umber/desc
ription/

RF-
pretrain

LeetCode lc 890 Given a list of strings words and a
string pattern, return a list of words[i]
that match pattern. You may return the
answer in any order.

the number of
words

https:
//leetcode
.com/probl
ems/find-a
nd-replace
-pattern/des
cription/

RF-
pretrain

LeetCode lc 2390 Given a string s containing lowercase
English letters and ”*”, return the string
obtained by removing all ”*” and the
character that comes before ”*”.

the length of
the string

https://le
etcode.com
/problems/
removing-s
tars-from-a
-string/

RF-
pretrain

LeetCode lc 2418 A list of names and heights are
given.Figure out the order of names by
their heights.

the number of
people

https://le
etcode.com
/problems/
sort-the-p
eople/desc
ription/

Continue on next page...

32

https://leetcode.com/problems/apply-operations-to-an-array/description/
https://leetcode.com/problems/apply-operations-to-an-array/description/
https://leetcode.com/problems/apply-operations-to-an-array/description/
https://leetcode.com/problems/apply-operations-to-an-array/description/
https://leetcode.com/problems/apply-operations-to-an-array/description/
https://leetcode.com/problems/apply-operations-to-an-array/description/
https://leetcode.com/problems/apply-operations-to-an-array/description/
https://leetcode.com/problems/find-the-losers-of-the-circular-game/description/
https://leetcode.com/problems/find-the-losers-of-the-circular-game/description/
https://leetcode.com/problems/find-the-losers-of-the-circular-game/description/
https://leetcode.com/problems/find-the-losers-of-the-circular-game/description/
https://leetcode.com/problems/find-the-losers-of-the-circular-game/description/
https://leetcode.com/problems/find-the-losers-of-the-circular-game/description/
https://leetcode.com/problems/find-the-losers-of-the-circular-game/description/
https://leetcode.com/problems/find-the-losers-of-the-circular-game/description/
https://leetcode.com/problems/reformat-phone-number/description/
https://leetcode.com/problems/reformat-phone-number/description/
https://leetcode.com/problems/reformat-phone-number/description/
https://leetcode.com/problems/reformat-phone-number/description/
https://leetcode.com/problems/reformat-phone-number/description/
https://leetcode.com/problems/reformat-phone-number/description/
https://leetcode.com/problems/reformat-phone-number/description/
https://leetcode.com/problems/find-and-replace-pattern/description/
https://leetcode.com/problems/find-and-replace-pattern/description/
https://leetcode.com/problems/find-and-replace-pattern/description/
https://leetcode.com/problems/find-and-replace-pattern/description/
https://leetcode.com/problems/find-and-replace-pattern/description/
https://leetcode.com/problems/find-and-replace-pattern/description/
https://leetcode.com/problems/find-and-replace-pattern/description/
https://leetcode.com/problems/removing-stars-from-a-string/
https://leetcode.com/problems/removing-stars-from-a-string/
https://leetcode.com/problems/removing-stars-from-a-string/
https://leetcode.com/problems/removing-stars-from-a-string/
https://leetcode.com/problems/removing-stars-from-a-string/
https://leetcode.com/problems/removing-stars-from-a-string/
https://leetcode.com/problems/sort-the-people/description/
https://leetcode.com/problems/sort-the-people/description/
https://leetcode.com/problems/sort-the-people/description/
https://leetcode.com/problems/sort-the-people/description/
https://leetcode.com/problems/sort-the-people/description/
https://leetcode.com/problems/sort-the-people/description/


Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

LeetCode lc 1909 Given an array nums. Can we remove
one element to make it increasing?

the length of
the array

https:
//leetcode
.com/probl
ems/remove
-one-element
-to-make-the
-array-stric
tly-increas
ing/descri
ption/

RF-
pretrain

LeetCode lc 1704 Decide whether the number of vowels
in the first half of the string is equal to
the number of vowels in the second half
of the string.

the length of
half of the
string

https://le
etcode.com
/problems/
determine-i
f-string-h
alves-are-a
like/descr
iption

RF-
pretrain

LeetCode lc 1823 Try to find the winner of the circular
game. Rule: the kth person next to the
start person will be kicked off the game.
Find the last person left in the game.

the number of
people

https:
//leetcode
.com/probl
ems/find-t
he-winner-o
f-the-circu
lar-game/

RF-
pretrain

LeetCode lc 2810 Your laptop keyboard is faulty, and
whenever you type a character ’i’ on it,
it reverses the string that you have
written. Typing other characters works
as expected. You are given a 0-indexed
string s, and you type each character of
s using your faulty keyboard. Return
the final string that will be present on
your laptop screen.

the number of
characters in
the string (we
assure there is
only one ”i”
in the string)

https:
//leetcode
.com/probl
ems/faulty
-keyboard/de
scription/

RF-
pretrain

LeetCode lc 2645 Given a string word to which you can
insert letters ”a”, ”b” or ”c” anywhere
and any number of times, return the
minimum number of letters that must
be inserted so that word becomes valid.
A string is called valid if it can be
formed by concatenating the string
”abc” several times.

the length of
the string

https:
//leetcode
.com/probl
ems/minimu
m-additions
-to-make-val
id-string/

Continue on next page...

33

https://leetcode.com/problems/remove-one-element-to-make-the-array-strictly-increasing/description/
https://leetcode.com/problems/remove-one-element-to-make-the-array-strictly-increasing/description/
https://leetcode.com/problems/remove-one-element-to-make-the-array-strictly-increasing/description/
https://leetcode.com/problems/remove-one-element-to-make-the-array-strictly-increasing/description/
https://leetcode.com/problems/remove-one-element-to-make-the-array-strictly-increasing/description/
https://leetcode.com/problems/remove-one-element-to-make-the-array-strictly-increasing/description/
https://leetcode.com/problems/remove-one-element-to-make-the-array-strictly-increasing/description/
https://leetcode.com/problems/remove-one-element-to-make-the-array-strictly-increasing/description/
https://leetcode.com/problems/remove-one-element-to-make-the-array-strictly-increasing/description/
https://leetcode.com/problems/remove-one-element-to-make-the-array-strictly-increasing/description/
https://leetcode.com/problems/determine-if-string-halves-are-alike/description
https://leetcode.com/problems/determine-if-string-halves-are-alike/description
https://leetcode.com/problems/determine-if-string-halves-are-alike/description
https://leetcode.com/problems/determine-if-string-halves-are-alike/description
https://leetcode.com/problems/determine-if-string-halves-are-alike/description
https://leetcode.com/problems/determine-if-string-halves-are-alike/description
https://leetcode.com/problems/determine-if-string-halves-are-alike/description
https://leetcode.com/problems/determine-if-string-halves-are-alike/description
https://leetcode.com/problems/find-the-winner-of-the-circular-game/
https://leetcode.com/problems/find-the-winner-of-the-circular-game/
https://leetcode.com/problems/find-the-winner-of-the-circular-game/
https://leetcode.com/problems/find-the-winner-of-the-circular-game/
https://leetcode.com/problems/find-the-winner-of-the-circular-game/
https://leetcode.com/problems/find-the-winner-of-the-circular-game/
https://leetcode.com/problems/find-the-winner-of-the-circular-game/
https://leetcode.com/problems/faulty-keyboard/description/
https://leetcode.com/problems/faulty-keyboard/description/
https://leetcode.com/problems/faulty-keyboard/description/
https://leetcode.com/problems/faulty-keyboard/description/
https://leetcode.com/problems/faulty-keyboard/description/
https://leetcode.com/problems/faulty-keyboard/description/
https://leetcode.com/problems/minimum-additions-to-make-valid-string/
https://leetcode.com/problems/minimum-additions-to-make-valid-string/
https://leetcode.com/problems/minimum-additions-to-make-valid-string/
https://leetcode.com/problems/minimum-additions-to-make-valid-string/
https://leetcode.com/problems/minimum-additions-to-make-valid-string/
https://leetcode.com/problems/minimum-additions-to-make-valid-string/
https://leetcode.com/problems/minimum-additions-to-make-valid-string/


Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

LeetCode lc 2609 Find the longest balanced substring in a
given string. A substring of s is
considered balanced if all zeroes are
before ones and the number of zeroes is
equal to the number of ones inside the
substring. Notice that the empty
substring is considered a balanced
substring.

the length of
the string

https:
//leetcode
.com/probl
ems/find-t
he-longest
-balanced-s
ubstring-o
f-a-binar
y-string/de
scription/

RF-
pretrain

LeetCode lc 2423 Return true if it is possible to remove
one letter so that the frequency of all
letters in word is equal, and false
otherwise.

the length of
the string

https:
//leetcode
.com/probl
ems/remove
-letter-to-e
qualize-fre
quency/des
cription/

RF-
pretrain

LeetCode lc 2185 Return the words that start with given
prefix.

the number of
words

https:
//leetcode
.com/probl
ems/counti
ng-words-w
ith-a-given
-prefix/desc
ription/

RF-
pretrain

LeetCode lc 2496 Given an array `strs` of
alphanumeric strings, return the
maximum value of any string in strs by
referring some specific rule.

the length of
the array

https://le
etcode.com
/problems/
maximum-val
ue-of-a-str
ing-in-an-a
rray/descr
iption/

RF-
pretrain

LeetCode lc 1275 A play Tic Tac Toe Game with B. A
started first. Given the moves, judge
who is the winner of the Tic Tac Toe
Game.

the number of
moves

https:
//leetcode
.com/probl
ems/find-w
inner-on-a
-tic-tac-toe
-game/descri
ption/

Continue on next page...

34

https://leetcode.com/problems/find-the-longest-balanced-substring-of-a-binary-string/description/
https://leetcode.com/problems/find-the-longest-balanced-substring-of-a-binary-string/description/
https://leetcode.com/problems/find-the-longest-balanced-substring-of-a-binary-string/description/
https://leetcode.com/problems/find-the-longest-balanced-substring-of-a-binary-string/description/
https://leetcode.com/problems/find-the-longest-balanced-substring-of-a-binary-string/description/
https://leetcode.com/problems/find-the-longest-balanced-substring-of-a-binary-string/description/
https://leetcode.com/problems/find-the-longest-balanced-substring-of-a-binary-string/description/
https://leetcode.com/problems/find-the-longest-balanced-substring-of-a-binary-string/description/
https://leetcode.com/problems/find-the-longest-balanced-substring-of-a-binary-string/description/
https://leetcode.com/problems/find-the-longest-balanced-substring-of-a-binary-string/description/
https://leetcode.com/problems/remove-letter-to-equalize-frequency/description/
https://leetcode.com/problems/remove-letter-to-equalize-frequency/description/
https://leetcode.com/problems/remove-letter-to-equalize-frequency/description/
https://leetcode.com/problems/remove-letter-to-equalize-frequency/description/
https://leetcode.com/problems/remove-letter-to-equalize-frequency/description/
https://leetcode.com/problems/remove-letter-to-equalize-frequency/description/
https://leetcode.com/problems/remove-letter-to-equalize-frequency/description/
https://leetcode.com/problems/remove-letter-to-equalize-frequency/description/
https://leetcode.com/problems/counting-words-with-a-given-prefix/description/
https://leetcode.com/problems/counting-words-with-a-given-prefix/description/
https://leetcode.com/problems/counting-words-with-a-given-prefix/description/
https://leetcode.com/problems/counting-words-with-a-given-prefix/description/
https://leetcode.com/problems/counting-words-with-a-given-prefix/description/
https://leetcode.com/problems/counting-words-with-a-given-prefix/description/
https://leetcode.com/problems/counting-words-with-a-given-prefix/description/
https://leetcode.com/problems/counting-words-with-a-given-prefix/description/
https://leetcode.com/problems/maximum-value-of-a-string-in-an-array/description/
https://leetcode.com/problems/maximum-value-of-a-string-in-an-array/description/
https://leetcode.com/problems/maximum-value-of-a-string-in-an-array/description/
https://leetcode.com/problems/maximum-value-of-a-string-in-an-array/description/
https://leetcode.com/problems/maximum-value-of-a-string-in-an-array/description/
https://leetcode.com/problems/maximum-value-of-a-string-in-an-array/description/
https://leetcode.com/problems/maximum-value-of-a-string-in-an-array/description/
https://leetcode.com/problems/maximum-value-of-a-string-in-an-array/description/
https://leetcode.com/problems/find-winner-on-a-tic-tac-toe-game/description/
https://leetcode.com/problems/find-winner-on-a-tic-tac-toe-game/description/
https://leetcode.com/problems/find-winner-on-a-tic-tac-toe-game/description/
https://leetcode.com/problems/find-winner-on-a-tic-tac-toe-game/description/
https://leetcode.com/problems/find-winner-on-a-tic-tac-toe-game/description/
https://leetcode.com/problems/find-winner-on-a-tic-tac-toe-game/description/
https://leetcode.com/problems/find-winner-on-a-tic-tac-toe-game/description/
https://leetcode.com/problems/find-winner-on-a-tic-tac-toe-game/description/


Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

LeetCode lc 1576 Given a string s containing only
English letters and the ”?” character.
Convert all the ”?” characters into
letters such that the final string does not
contain any consecutive repeating
characters.

the length of
the string

https://le
etcode.com
/problems/
replace-all
-s-to-avoid
-consecutive
-repeating-c
haracters/
descriptio
n/

RF-
pretrain

LeetCode lc 1041 On an infinite plane, a robot initially
stands at (0, 0) and faces north.”G”: go
straight 1 unit. ”L”: turn 90 degrees to
the left. ”R”: turn 90 degrees to the
right. The robot performs the
instructions given in order, and repeats
them forever. Return True if and only if
there exists a circle in the plane such
that the robot never leaves the circle.

the number of
instructions

https:
//leetcode
.com/probl
ems/robot-b
ounded-in-c
ircle/desc
ription/

RF-
pretrain

LeetCode lc 2078 There are n houses evenly lined up on
the street, and each house is beautifully
painted. You are given a 0-indexed
integer array colors of length n, where
colors[i] represents the color of the ith
house. Return the maximum distance
between two houses with different
colors. The distance between the ith
and jth houses is abs(i - j), where abs(x)
is the absolute value of x.

the number of
houses

https:
//leetcode
.com/probl
ems/two-fur
thest-house
s-with-dif
ferent-col
ors/descri
ption/

RF-
pretrain

LeetCode lc 2016 Given a 0-indexed integer array nums
of size n, find the maximum difference
between nums[i] and nums[j] (i.e.,
nums[j] - nums[i]), such that 0 ¡= i ¡ j ¡
n and nums[i] ¡ nums[j].

the length of
the array

https:
//leetcode
.com/probl
ems/maximu
m-differenc
e-between-i
ncreasing-e
lements/de
scription/

RF-
pretrain

LeetCode lc 3271 Conduct hash transformation on the
given string.

the length of
the string =
length * ran-
dom.randint(2,4)

https:
//leetcode
.com/probl
ems/hash-d
ivided-str
ing/descri
ption/

Continue on next page...

35

https://leetcode.com/problems/replace-all-s-to-avoid-consecutive-repeating-characters/description/
https://leetcode.com/problems/replace-all-s-to-avoid-consecutive-repeating-characters/description/
https://leetcode.com/problems/replace-all-s-to-avoid-consecutive-repeating-characters/description/
https://leetcode.com/problems/replace-all-s-to-avoid-consecutive-repeating-characters/description/
https://leetcode.com/problems/replace-all-s-to-avoid-consecutive-repeating-characters/description/
https://leetcode.com/problems/replace-all-s-to-avoid-consecutive-repeating-characters/description/
https://leetcode.com/problems/replace-all-s-to-avoid-consecutive-repeating-characters/description/
https://leetcode.com/problems/replace-all-s-to-avoid-consecutive-repeating-characters/description/
https://leetcode.com/problems/replace-all-s-to-avoid-consecutive-repeating-characters/description/
https://leetcode.com/problems/replace-all-s-to-avoid-consecutive-repeating-characters/description/
https://leetcode.com/problems/robot-bounded-in-circle/description/
https://leetcode.com/problems/robot-bounded-in-circle/description/
https://leetcode.com/problems/robot-bounded-in-circle/description/
https://leetcode.com/problems/robot-bounded-in-circle/description/
https://leetcode.com/problems/robot-bounded-in-circle/description/
https://leetcode.com/problems/robot-bounded-in-circle/description/
https://leetcode.com/problems/robot-bounded-in-circle/description/
https://leetcode.com/problems/two-furthest-houses-with-different-colors/description/
https://leetcode.com/problems/two-furthest-houses-with-different-colors/description/
https://leetcode.com/problems/two-furthest-houses-with-different-colors/description/
https://leetcode.com/problems/two-furthest-houses-with-different-colors/description/
https://leetcode.com/problems/two-furthest-houses-with-different-colors/description/
https://leetcode.com/problems/two-furthest-houses-with-different-colors/description/
https://leetcode.com/problems/two-furthest-houses-with-different-colors/description/
https://leetcode.com/problems/two-furthest-houses-with-different-colors/description/
https://leetcode.com/problems/two-furthest-houses-with-different-colors/description/
https://leetcode.com/problems/maximum-difference-between-increasing-elements/description/
https://leetcode.com/problems/maximum-difference-between-increasing-elements/description/
https://leetcode.com/problems/maximum-difference-between-increasing-elements/description/
https://leetcode.com/problems/maximum-difference-between-increasing-elements/description/
https://leetcode.com/problems/maximum-difference-between-increasing-elements/description/
https://leetcode.com/problems/maximum-difference-between-increasing-elements/description/
https://leetcode.com/problems/maximum-difference-between-increasing-elements/description/
https://leetcode.com/problems/maximum-difference-between-increasing-elements/description/
https://leetcode.com/problems/maximum-difference-between-increasing-elements/description/
https://leetcode.com/problems/hash-divided-string/description/
https://leetcode.com/problems/hash-divided-string/description/
https://leetcode.com/problems/hash-divided-string/description/
https://leetcode.com/problems/hash-divided-string/description/
https://leetcode.com/problems/hash-divided-string/description/
https://leetcode.com/problems/hash-divided-string/description/
https://leetcode.com/problems/hash-divided-string/description/


Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

LeetCode lc 2529 Given an array nums sorted in
non-decreasing order, find the
maximum between the number of
positive integers and the number of
negative integers.

the length of
the array

https://le
etcode.com
/problems/
maximum-cou
nt-of-posit
ive-integer
-and-negativ
e-integer/d
escription/

RF-
pretrain

LeetCode lc 2047 Given a string sentence. What is the
number of valid words?

the number of
words

https:
//leetcode
.com/probl
ems/number
-of-valid-w
ords-in-a-s
entence/de
scription/

RF-
pretrain

LeetCode lc 2828 Dtermine whether a string is an
acronym of given words

the number of
words

https://le
etcode.com
/problems/
check-if-a
-string-is-a
n-acronym-o
f-words/des
cription/

RF-
pretrain

LeetCode lc 2404 Find out the most frequent even
element in the given array.

the length of
the array

https:
//leetcode
.com/probl
ems/most-f
requent-eve
n-element/d
escription/

RF-
pretrain

LeetCode lc 2678 Given a 0-indexed array of strings
details. Each element of details
provides information about a given
passenger compressed into a string of
length 15. The eleventh and twelfth
digits represent the ages of the person.
What is the number of the olders?

the length of
the array

https:
//leetcode
.com/probl
ems/number
-of-senior-c
itizens/de
scription/

RF-
pretrain

LeetCode lc 674 Return the length of the longest
continuous increasing subsequence.

the length of
the array

https://le
etcode.com
/problems/
longest-con
tinuous-inc
reasing-sub
sequence/d
escription/

Continue on next page...

36

https://leetcode.com/problems/maximum-count-of-positive-integer-and-negative-integer/description/
https://leetcode.com/problems/maximum-count-of-positive-integer-and-negative-integer/description/
https://leetcode.com/problems/maximum-count-of-positive-integer-and-negative-integer/description/
https://leetcode.com/problems/maximum-count-of-positive-integer-and-negative-integer/description/
https://leetcode.com/problems/maximum-count-of-positive-integer-and-negative-integer/description/
https://leetcode.com/problems/maximum-count-of-positive-integer-and-negative-integer/description/
https://leetcode.com/problems/maximum-count-of-positive-integer-and-negative-integer/description/
https://leetcode.com/problems/maximum-count-of-positive-integer-and-negative-integer/description/
https://leetcode.com/problems/maximum-count-of-positive-integer-and-negative-integer/description/
https://leetcode.com/problems/number-of-valid-words-in-a-sentence/description/
https://leetcode.com/problems/number-of-valid-words-in-a-sentence/description/
https://leetcode.com/problems/number-of-valid-words-in-a-sentence/description/
https://leetcode.com/problems/number-of-valid-words-in-a-sentence/description/
https://leetcode.com/problems/number-of-valid-words-in-a-sentence/description/
https://leetcode.com/problems/number-of-valid-words-in-a-sentence/description/
https://leetcode.com/problems/number-of-valid-words-in-a-sentence/description/
https://leetcode.com/problems/number-of-valid-words-in-a-sentence/description/
https://leetcode.com/problems/check-if-a-string-is-an-acronym-of-words/description/
https://leetcode.com/problems/check-if-a-string-is-an-acronym-of-words/description/
https://leetcode.com/problems/check-if-a-string-is-an-acronym-of-words/description/
https://leetcode.com/problems/check-if-a-string-is-an-acronym-of-words/description/
https://leetcode.com/problems/check-if-a-string-is-an-acronym-of-words/description/
https://leetcode.com/problems/check-if-a-string-is-an-acronym-of-words/description/
https://leetcode.com/problems/check-if-a-string-is-an-acronym-of-words/description/
https://leetcode.com/problems/check-if-a-string-is-an-acronym-of-words/description/
https://leetcode.com/problems/most-frequent-even-element/description/
https://leetcode.com/problems/most-frequent-even-element/description/
https://leetcode.com/problems/most-frequent-even-element/description/
https://leetcode.com/problems/most-frequent-even-element/description/
https://leetcode.com/problems/most-frequent-even-element/description/
https://leetcode.com/problems/most-frequent-even-element/description/
https://leetcode.com/problems/most-frequent-even-element/description/
https://leetcode.com/problems/number-of-senior-citizens/description/
https://leetcode.com/problems/number-of-senior-citizens/description/
https://leetcode.com/problems/number-of-senior-citizens/description/
https://leetcode.com/problems/number-of-senior-citizens/description/
https://leetcode.com/problems/number-of-senior-citizens/description/
https://leetcode.com/problems/number-of-senior-citizens/description/
https://leetcode.com/problems/number-of-senior-citizens/description/
https://leetcode.com/problems/longest-continuous-increasing-subsequence/description/
https://leetcode.com/problems/longest-continuous-increasing-subsequence/description/
https://leetcode.com/problems/longest-continuous-increasing-subsequence/description/
https://leetcode.com/problems/longest-continuous-increasing-subsequence/description/
https://leetcode.com/problems/longest-continuous-increasing-subsequence/description/
https://leetcode.com/problems/longest-continuous-increasing-subsequence/description/
https://leetcode.com/problems/longest-continuous-increasing-subsequence/description/
https://leetcode.com/problems/longest-continuous-increasing-subsequence/description/


Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

LeetCode lc 605 Given an integer array flowerbed
containing 0’s and 1’s, where 0 means
empty and 1 means not empty, and an
integer n, return true if n new flowers
can be planted in the flowerbed without
violating the no-adjacent-flowers rule
and false otherwise.

the length of
the array

https://le
etcode.com
/problems/
can-place-f
lowers/des
cription/

RF-
pretrain

LeetCode lc 290 Given a pattern and a string s, find if s
follows the same pattern. (e.g., pattern
= ”abba”, s = ”dog cat cat dog” → true)

the number of
words in the
string

https:
//leetcode
.com/probl
ems/word-p
attern/des
cription/

RF-
pretrain

LeetCode lc 414 Given an integer array nums, return the
third distinct maximum number in this
array. If the third maximum does not
exist, return the maximum number.

the length of
the array

https:
//leetcode
.com/probl
ems/third-m
aximum-num
ber/descri
ption/

RF-
pretrain

LeetCode lc 388 What’s the length of the longest
absolute path to a file in the abstracted
file system? If there is no file in the
system, return 0.

the depth of
the file system

https://le
etcode.com
/problems/
longest-abs
olute-fil
e-path/

RF-
pretrain

LeetCode lc 434 Given a string s, What’s the number of
segments in the string? A segment is
defined to be a contiguous sequence of
non-space characters.

the number of
segments

https:
//leetcode
.com/probl
ems/number
-of-segment
s-in-a-str
ing/descri
ption/

RF-
pretrain

LeetCode lc 228 Give a sorted unique integer array,
return the smallest sorted list of ranges
that cover all the numbers in the array
exactly,and no extra integer being
covered. (e.g., nums = [0,1,2,4,5,7] →
[”0→2”,”4→5”,”7”]

first generate
an array of
given length,
then remove
the repeated
element

https:
//leetcode
.com/probl
ems/summar
y-ranges/de
scription/

Continue on next page...

37

https://leetcode.com/problems/can-place-flowers/description/
https://leetcode.com/problems/can-place-flowers/description/
https://leetcode.com/problems/can-place-flowers/description/
https://leetcode.com/problems/can-place-flowers/description/
https://leetcode.com/problems/can-place-flowers/description/
https://leetcode.com/problems/can-place-flowers/description/
https://leetcode.com/problems/word-pattern/description/
https://leetcode.com/problems/word-pattern/description/
https://leetcode.com/problems/word-pattern/description/
https://leetcode.com/problems/word-pattern/description/
https://leetcode.com/problems/word-pattern/description/
https://leetcode.com/problems/word-pattern/description/
https://leetcode.com/problems/third-maximum-number/description/
https://leetcode.com/problems/third-maximum-number/description/
https://leetcode.com/problems/third-maximum-number/description/
https://leetcode.com/problems/third-maximum-number/description/
https://leetcode.com/problems/third-maximum-number/description/
https://leetcode.com/problems/third-maximum-number/description/
https://leetcode.com/problems/third-maximum-number/description/
https://leetcode.com/problems/longest-absolute-file-path/
https://leetcode.com/problems/longest-absolute-file-path/
https://leetcode.com/problems/longest-absolute-file-path/
https://leetcode.com/problems/longest-absolute-file-path/
https://leetcode.com/problems/longest-absolute-file-path/
https://leetcode.com/problems/longest-absolute-file-path/
https://leetcode.com/problems/number-of-segments-in-a-string/description/
https://leetcode.com/problems/number-of-segments-in-a-string/description/
https://leetcode.com/problems/number-of-segments-in-a-string/description/
https://leetcode.com/problems/number-of-segments-in-a-string/description/
https://leetcode.com/problems/number-of-segments-in-a-string/description/
https://leetcode.com/problems/number-of-segments-in-a-string/description/
https://leetcode.com/problems/number-of-segments-in-a-string/description/
https://leetcode.com/problems/number-of-segments-in-a-string/description/
https://leetcode.com/problems/summary-ranges/description/
https://leetcode.com/problems/summary-ranges/description/
https://leetcode.com/problems/summary-ranges/description/
https://leetcode.com/problems/summary-ranges/description/
https://leetcode.com/problems/summary-ranges/description/
https://leetcode.com/problems/summary-ranges/description/


Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

LeetCode lc 448 Given an array nums of n integers
where nums is a permutation of the
numbers in the range [1, n], return an
array of all the integers in the range [1,
n] that do not appear in nums.

the length of
the array

https:
//leetcode
.com/probl
ems/find-a
ll-numbers
-disappeared
-in-an-array
/descripti
on/

RF-
pretrain

LeetCode lc 242 Determine whether the one word can be
converted into another word through
alphabetical order adjustment

the number of
letters of the
word

https:
//leetcode
.com/probl
ems/valid-a
nagram/des
cription/

RF-
pretrain

LeetCode lc 268 Given an array nums containing n
distinct numbers in the range [0, n],
return the only number in the range that
is missing from the array.

length = n + 1 https:
//leetcode
.com/probl
ems/missin
g-number/de
scription/

RF-
pretrain

LeetCode lc 383 Given two strings `ransomNote`
and `magazine`, return true if
`ransomNote` can be constructed
by using the letters from
`magazine` and false otherwise.
Each letter in magazine can only be
used once in ransomNote.

the length of
the string
`magazine`

https:
//leetcode
.com/probl
ems/ransom
-note/descri
ption/

RF-
pretrain

LeetCode lc 682 You are keeping the scores for a
baseball game with strange rules. At
the beginning of the game, you start
with an empty record. You are given a
list of strings operations, where
operations[i] is the ith operation you
must apply to the record.

the number of
operations

https:
//leetcode
.com/probl
ems/baseba
ll-game/de
scription/

RF-
pretrain

LeetCode lc 387 Given a string s, find the first
non-repeating character in it and return
its index. If it does not exist, return -1.

the length of
the string

https:
//leetcode
.com/probl
ems/first-u
nique-chara
cter-in-a-s
tring/desc
ription/

Continue on next page...

38

https://leetcode.com/problems/find-all-numbers-disappeared-in-an-array/description/
https://leetcode.com/problems/find-all-numbers-disappeared-in-an-array/description/
https://leetcode.com/problems/find-all-numbers-disappeared-in-an-array/description/
https://leetcode.com/problems/find-all-numbers-disappeared-in-an-array/description/
https://leetcode.com/problems/find-all-numbers-disappeared-in-an-array/description/
https://leetcode.com/problems/find-all-numbers-disappeared-in-an-array/description/
https://leetcode.com/problems/find-all-numbers-disappeared-in-an-array/description/
https://leetcode.com/problems/find-all-numbers-disappeared-in-an-array/description/
https://leetcode.com/problems/find-all-numbers-disappeared-in-an-array/description/
https://leetcode.com/problems/valid-anagram/description/
https://leetcode.com/problems/valid-anagram/description/
https://leetcode.com/problems/valid-anagram/description/
https://leetcode.com/problems/valid-anagram/description/
https://leetcode.com/problems/valid-anagram/description/
https://leetcode.com/problems/valid-anagram/description/
https://leetcode.com/problems/missing-number/description/
https://leetcode.com/problems/missing-number/description/
https://leetcode.com/problems/missing-number/description/
https://leetcode.com/problems/missing-number/description/
https://leetcode.com/problems/missing-number/description/
https://leetcode.com/problems/missing-number/description/
https://leetcode.com/problems/ransom-note/description/
https://leetcode.com/problems/ransom-note/description/
https://leetcode.com/problems/ransom-note/description/
https://leetcode.com/problems/ransom-note/description/
https://leetcode.com/problems/ransom-note/description/
https://leetcode.com/problems/ransom-note/description/
https://leetcode.com/problems/baseball-game/description/
https://leetcode.com/problems/baseball-game/description/
https://leetcode.com/problems/baseball-game/description/
https://leetcode.com/problems/baseball-game/description/
https://leetcode.com/problems/baseball-game/description/
https://leetcode.com/problems/baseball-game/description/
https://leetcode.com/problems/first-unique-character-in-a-string/description/
https://leetcode.com/problems/first-unique-character-in-a-string/description/
https://leetcode.com/problems/first-unique-character-in-a-string/description/
https://leetcode.com/problems/first-unique-character-in-a-string/description/
https://leetcode.com/problems/first-unique-character-in-a-string/description/
https://leetcode.com/problems/first-unique-character-in-a-string/description/
https://leetcode.com/problems/first-unique-character-in-a-string/description/
https://leetcode.com/problems/first-unique-character-in-a-string/description/


Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

LeetCode lc 345 Given a string s, reverse only all the
vowels in the string and return it. And
the vowels can appear in both lower
and upper cases, more than once.

the length of
the string

https://le
etcode.com
/problems/
reverse-vow
els-of-a-s
tring/desc
ription/

RF-
pretrain

LeetCode lc 392 Given two strings `s` and `t`, return
true if `s` is a subsequence of `t`, or
false otherwise.

the length of
string `t`

https:
//leetcode
.com/probl
ems/is-sub
sequence/d
escription/

RF-
pretrain

LeetCode lc 705 Design a HashSet without using any
built-in hash table libraries. Given
operations, return a list of result of each
step.

the number of
operations

https:
//leetcode
.com/probl
ems/design
-hashset/des
cription/

RF-
pretrain

LeetCode lc 796 Given two strings s and goal, return true
if and only if s can become goal after
some number of shifts on s. A shift on s
consists of moving the leftmost
character of s to the rightmost position.

the length of
the string s

https:
//leetcode
.com/probl
ems/rotate
-string/desc
ription/

RF-
pretrain

LeetCode lc 2562 Given an integer array, compute the
concatenation value by repeatedly
adding the concatenation of the first
and last elements (or the single
remaining element) until the array is
empty, then returning the total value.

the length of
the array

https:
//leetcode
.com/probl
ems/find-t
he-array-c
oncatenati
on-value/d
escription/

RF-
pretrain

LeetCode lc 1417 Given an alphanumeric string s
(containing lowercase letters and
digits), rearrange it such that no two
adjacent characters are of the same type
(no two letters or two digits in a row).
Return the reformatted string if
possible; otherwise, return an empty
string.

the length of
the string

https:
//leetcode
.com/probl
ems/reform
at-the-str
ing/descri
ption/

RF-
pretrain

LeetCode lc 520 Given a string word, return true if the
usage of capitals in it is right.

the length of
the string

https:
//leetcode
.com/probl
ems/detect
-capital/des
cription/

Continue on next page...

39

https://leetcode.com/problems/reverse-vowels-of-a-string/description/
https://leetcode.com/problems/reverse-vowels-of-a-string/description/
https://leetcode.com/problems/reverse-vowels-of-a-string/description/
https://leetcode.com/problems/reverse-vowels-of-a-string/description/
https://leetcode.com/problems/reverse-vowels-of-a-string/description/
https://leetcode.com/problems/reverse-vowels-of-a-string/description/
https://leetcode.com/problems/reverse-vowels-of-a-string/description/
https://leetcode.com/problems/is-subsequence/description/
https://leetcode.com/problems/is-subsequence/description/
https://leetcode.com/problems/is-subsequence/description/
https://leetcode.com/problems/is-subsequence/description/
https://leetcode.com/problems/is-subsequence/description/
https://leetcode.com/problems/is-subsequence/description/
https://leetcode.com/problems/design-hashset/description/
https://leetcode.com/problems/design-hashset/description/
https://leetcode.com/problems/design-hashset/description/
https://leetcode.com/problems/design-hashset/description/
https://leetcode.com/problems/design-hashset/description/
https://leetcode.com/problems/design-hashset/description/
https://leetcode.com/problems/rotate-string/description/
https://leetcode.com/problems/rotate-string/description/
https://leetcode.com/problems/rotate-string/description/
https://leetcode.com/problems/rotate-string/description/
https://leetcode.com/problems/rotate-string/description/
https://leetcode.com/problems/rotate-string/description/
https://leetcode.com/problems/find-the-array-concatenation-value/description/
https://leetcode.com/problems/find-the-array-concatenation-value/description/
https://leetcode.com/problems/find-the-array-concatenation-value/description/
https://leetcode.com/problems/find-the-array-concatenation-value/description/
https://leetcode.com/problems/find-the-array-concatenation-value/description/
https://leetcode.com/problems/find-the-array-concatenation-value/description/
https://leetcode.com/problems/find-the-array-concatenation-value/description/
https://leetcode.com/problems/find-the-array-concatenation-value/description/
https://leetcode.com/problems/reformat-the-string/description/
https://leetcode.com/problems/reformat-the-string/description/
https://leetcode.com/problems/reformat-the-string/description/
https://leetcode.com/problems/reformat-the-string/description/
https://leetcode.com/problems/reformat-the-string/description/
https://leetcode.com/problems/reformat-the-string/description/
https://leetcode.com/problems/reformat-the-string/description/
https://leetcode.com/problems/detect-capital/description/
https://leetcode.com/problems/detect-capital/description/
https://leetcode.com/problems/detect-capital/description/
https://leetcode.com/problems/detect-capital/description/
https://leetcode.com/problems/detect-capital/description/
https://leetcode.com/problems/detect-capital/description/


Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

LeetCode lc 557 Given a string s, reverse the order of
characters in each word within a
sentence while still preserving
whitespace and initial word order.

the length of
the string

https://le
etcode.com
/problems/
reverse-wor
ds-in-a-str
ing-iii/des
cription/

RF-
pretrain

LeetCode lc 541 Given a string s and an integer k,
reverse the first k characters for
every 2k characters counting from the
start of the string.

the length of
the string

https://le
etcode.com
/problems/
reverse-str
ing-ii/desc
ription/

RF-
pretrain

LeetCode lc 485 Given a binary array nums, return the
maximum number of consecutive 1’s in
the array.

the length of
the array

https:
//leetcode
.com/probl
ems/max-con
secutive-o
nes/descri
ption/

RF-
pretrain

LeetCode lc 344 Write a function that reverses a string.
The input string is given as an array of
characters s.

the length of
the string

https:
//leetcode
.com/probl
ems/revers
e-string/de
scription/

RF-
pretrain

LeetCode lc 500 Given an array of strings words,
return the words that can be typed
using letters of the alphabet on only
one row of American keyboard .

the number of
words

https:
//leetcode
.com/probl
ems/keyboa
rd-row/des
cription/

RF-
pretrain

LeetCode lc 482 Reformat the given license key
string s by removing all dashes,
converting letters to uppercase, and
grouping the characters into segments
of length k (except possibly the first
group), separated by dashes.

the length of
the string

https:
//leetcode
.com/probl
ems/licens
e-key-forma
tting/desc
ription/

RF-
pretrain

LeetCode lc 896 An array is monotonic if it is either
monotone increasing or monotone
decreasing.Given an integer array nums,
return true if the given array is
monotonic, or false otherwise.

the length of
the array

ttps:
//leetcode
.com/probl
ems/monoto
nic-array/d
escription/

Continue on next page...

40

https://leetcode.com/problems/reverse-words-in-a-string-iii/description/
https://leetcode.com/problems/reverse-words-in-a-string-iii/description/
https://leetcode.com/problems/reverse-words-in-a-string-iii/description/
https://leetcode.com/problems/reverse-words-in-a-string-iii/description/
https://leetcode.com/problems/reverse-words-in-a-string-iii/description/
https://leetcode.com/problems/reverse-words-in-a-string-iii/description/
https://leetcode.com/problems/reverse-words-in-a-string-iii/description/
https://leetcode.com/problems/reverse-string-ii/description/
https://leetcode.com/problems/reverse-string-ii/description/
https://leetcode.com/problems/reverse-string-ii/description/
https://leetcode.com/problems/reverse-string-ii/description/
https://leetcode.com/problems/reverse-string-ii/description/
https://leetcode.com/problems/reverse-string-ii/description/
https://leetcode.com/problems/max-consecutive-ones/description/
https://leetcode.com/problems/max-consecutive-ones/description/
https://leetcode.com/problems/max-consecutive-ones/description/
https://leetcode.com/problems/max-consecutive-ones/description/
https://leetcode.com/problems/max-consecutive-ones/description/
https://leetcode.com/problems/max-consecutive-ones/description/
https://leetcode.com/problems/max-consecutive-ones/description/
https://leetcode.com/problems/reverse-string/description/
https://leetcode.com/problems/reverse-string/description/
https://leetcode.com/problems/reverse-string/description/
https://leetcode.com/problems/reverse-string/description/
https://leetcode.com/problems/reverse-string/description/
https://leetcode.com/problems/reverse-string/description/
https://leetcode.com/problems/keyboard-row/description/
https://leetcode.com/problems/keyboard-row/description/
https://leetcode.com/problems/keyboard-row/description/
https://leetcode.com/problems/keyboard-row/description/
https://leetcode.com/problems/keyboard-row/description/
https://leetcode.com/problems/keyboard-row/description/
https://leetcode.com/problems/license-key-formatting/description/
https://leetcode.com/problems/license-key-formatting/description/
https://leetcode.com/problems/license-key-formatting/description/
https://leetcode.com/problems/license-key-formatting/description/
https://leetcode.com/problems/license-key-formatting/description/
https://leetcode.com/problems/license-key-formatting/description/
https://leetcode.com/problems/license-key-formatting/description/
ttps://leetcode.com/problems/monotonic-array/description/
ttps://leetcode.com/problems/monotonic-array/description/
ttps://leetcode.com/problems/monotonic-array/description/
ttps://leetcode.com/problems/monotonic-array/description/
ttps://leetcode.com/problems/monotonic-array/description/
ttps://leetcode.com/problems/monotonic-array/description/


Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

LeetCode lc 551 Given a string s representing an
attendance record for a student where
each character signifies whether the
student was absent, late, or present on
that day. Return true if the student is
eligible for an attendance award, or
false otherwise.

the length of
the string

https://le
etcode.com
/problems/
student-att
endance-rec
ord-i/descr
iption/

RF-
pretrain

LeetCode lc 1556 Given an integer n, add a dot (”.”) as
the thousands separator and return it in
string format.

the number is
given by ```
random.randint(
1000,
1000+
10**length)
```

https://le
etcode.com
/problems/
thousand-s
eparator/d
escription/

RF-
pretrain

LeetCode lc 2869 You are given an array nums of positive
integers and an integer k. In one
operation, you can remove the last
element of the array and add it to your
collection. Return the minimum
number of operations needed to collect
elements 1, 2, ..., k.

the array and
k is given by:
```
nums = ran-
dom.sample([i
for i in
range(1,
length+1)]*2,
k=int(length*1.9))
k = ran-
dom.randint(3,
length)
```

https://le
etcode.com
/problems/
minimum-ope
rations-t
o-collect-e
lements/de
scription/

downstream LeetCode lc 258
(Add
Digits)

Given an integer, repeatedly sum its
digits until the result is a single digit.

the number of
digits in the
integer

https:
//leetcode
.com/probl
ems/add-dig
its/descri
ption/

downstream LeetCode lc 283
(Move
Zeros)

Given a list of integers, move all zeros
to the end while preserving the relative
order of the non-zero elements.

the length of
the list

https:
//leetcode
.com/probl
ems/move-z
eroes/desc
ription/

downstream LeetCode lc 125
(Valid
Palin-
drome)

Given a string s, return true if it is a
palindrome after removing all
non-alphanumeric characters and
converting it to lowercase; otherwise,
return false.

half length of
the string

https://le
etcode.com
/problems/
valid-palin
drome/desc
ription/

Continue on next page...

41

https://leetcode.com/problems/student-attendance-record-i/description/
https://leetcode.com/problems/student-attendance-record-i/description/
https://leetcode.com/problems/student-attendance-record-i/description/
https://leetcode.com/problems/student-attendance-record-i/description/
https://leetcode.com/problems/student-attendance-record-i/description/
https://leetcode.com/problems/student-attendance-record-i/description/
https://leetcode.com/problems/student-attendance-record-i/description/
https://leetcode.com/problems/thousand-separator/description/
https://leetcode.com/problems/thousand-separator/description/
https://leetcode.com/problems/thousand-separator/description/
https://leetcode.com/problems/thousand-separator/description/
https://leetcode.com/problems/thousand-separator/description/
https://leetcode.com/problems/thousand-separator/description/
https://leetcode.com/problems/minimum-operations-to-collect-elements/description/
https://leetcode.com/problems/minimum-operations-to-collect-elements/description/
https://leetcode.com/problems/minimum-operations-to-collect-elements/description/
https://leetcode.com/problems/minimum-operations-to-collect-elements/description/
https://leetcode.com/problems/minimum-operations-to-collect-elements/description/
https://leetcode.com/problems/minimum-operations-to-collect-elements/description/
https://leetcode.com/problems/minimum-operations-to-collect-elements/description/
https://leetcode.com/problems/minimum-operations-to-collect-elements/description/
https://leetcode.com/problems/add-digits/description/
https://leetcode.com/problems/add-digits/description/
https://leetcode.com/problems/add-digits/description/
https://leetcode.com/problems/add-digits/description/
https://leetcode.com/problems/add-digits/description/
https://leetcode.com/problems/add-digits/description/
https://leetcode.com/problems/move-zeroes/description/
https://leetcode.com/problems/move-zeroes/description/
https://leetcode.com/problems/move-zeroes/description/
https://leetcode.com/problems/move-zeroes/description/
https://leetcode.com/problems/move-zeroes/description/
https://leetcode.com/problems/move-zeroes/description/
https://leetcode.com/problems/valid-palindrome/description/
https://leetcode.com/problems/valid-palindrome/description/
https://leetcode.com/problems/valid-palindrome/description/
https://leetcode.com/problems/valid-palindrome/description/
https://leetcode.com/problems/valid-palindrome/description/
https://leetcode.com/problems/valid-palindrome/description/

Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

Split Domain Task
Name

Description Length
Definition

Reference URL

downstream LeetCode lc 2544
(Alter-
nate
Digit
Sum)

Given a positive integer where the most
significant digit has a positive sign, and
each subsequent digit has the opposite
sign of its adjacent digit, return the sum
of these signed digits.

the number of
digits in the
integer

https:
//leetcode
.com/probl
ems/altern
ating-digit
-sum/descrip
tion/

downstream LeetCode lc 1598
(Crawler
Log
Folder)

Determine the final folder after
performing the operations in the given
list, where ../ moves up one level, ./
stays in the current folder, and x/ moves
into folder x.

the number of
operations

https://le
etcode.com
/problems/cr
awler-log-f
older/desc
ription/

downstream LeetCode lc 3324
(String
Se-
quence)

Given a target string, return a list of all
strings that appear on the screen in
order, using the minimum key presses.
Key 1 appends ”a” to the string, and
Key 2 changes the last character to its
next letter in the alphabet.

The sum of
each letter’s
ASCII code
minus 96 in
the target
string should
equal its
length. For
example:
given input
’abc’, the
length is
1+2+3=6.

https:
//leetcode
.com/probl
ems/find-t
he-sequenc
e-of-strin
gs-appeare
d-on-the-s
creen/

downstream LeetCode lc 2677
(Chunk
Array)

Given array and chunk size, split the
array into subarrays of a given size.

the length of
the array

https:
//leetcode
.com/probl
ems/chunk-a
rray/descr
iption/

downstream LeetCode lc 461
(Ham-
ming
Dis-
tance)

The Hamming distance between two
integers is the number of positions at
which the corresponding bits are
different. Given two integers in binary
representation, return their Hamming
distance.

The bit length
of the integers

https://le
etcode.com
/problems/
hamming-dis
tance/desc
ription/

downstream NUPA Get
Digit
Integer

Given a number and an integer i, return
the i-th digit.

the number of
digits in the
given number

https://ar
xiv.org/abs/
2411.03766

downstream NUPA Add
Integer

Add the two given integers together. the maximum
of the number
of digits of
the two given
numbers

https://ar
xiv.org/abs/
2411.03766

Continue on next page...

42

https://leetcode.com/problems/alternating-digit-sum/description/
https://leetcode.com/problems/alternating-digit-sum/description/
https://leetcode.com/problems/alternating-digit-sum/description/
https://leetcode.com/problems/alternating-digit-sum/description/
https://leetcode.com/problems/alternating-digit-sum/description/
https://leetcode.com/problems/alternating-digit-sum/description/
https://leetcode.com/problems/alternating-digit-sum/description/
https://leetcode.com/problems/crawler-log-folder/description/
https://leetcode.com/problems/crawler-log-folder/description/
https://leetcode.com/problems/crawler-log-folder/description/
https://leetcode.com/problems/crawler-log-folder/description/
https://leetcode.com/problems/crawler-log-folder/description/
https://leetcode.com/problems/crawler-log-folder/description/
https://leetcode.com/problems/find-the-sequence-of-strings-appeared-on-the-screen/
https://leetcode.com/problems/find-the-sequence-of-strings-appeared-on-the-screen/
https://leetcode.com/problems/find-the-sequence-of-strings-appeared-on-the-screen/
https://leetcode.com/problems/find-the-sequence-of-strings-appeared-on-the-screen/
https://leetcode.com/problems/find-the-sequence-of-strings-appeared-on-the-screen/
https://leetcode.com/problems/find-the-sequence-of-strings-appeared-on-the-screen/
https://leetcode.com/problems/find-the-sequence-of-strings-appeared-on-the-screen/
https://leetcode.com/problems/find-the-sequence-of-strings-appeared-on-the-screen/
https://leetcode.com/problems/find-the-sequence-of-strings-appeared-on-the-screen/
https://leetcode.com/problems/chunk-array/description/
https://leetcode.com/problems/chunk-array/description/
https://leetcode.com/problems/chunk-array/description/
https://leetcode.com/problems/chunk-array/description/
https://leetcode.com/problems/chunk-array/description/
https://leetcode.com/problems/chunk-array/description/
https://leetcode.com/problems/hamming-distance/description/
https://leetcode.com/problems/hamming-distance/description/
https://leetcode.com/problems/hamming-distance/description/
https://leetcode.com/problems/hamming-distance/description/
https://leetcode.com/problems/hamming-distance/description/
https://leetcode.com/problems/hamming-distance/description/
https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2411.03766

Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs

Split Domain Task
Name

Description Length
Definition

Reference URL

downstream NUPA Digit
Max
Integer

Compare two numbers digit by digit
and return the larger digit at each
position, treating any missing digits as
0.

the number of
digits in the
given number

https://ar
xiv.org/abs/
2411.03766

downstream NUPA Length
Integer

Return the total length (i.e., the number
of digits) of a number.

the number of
digits in the
given number

https://ar
xiv.org/abs/
2411.03766

RF-
pretrain

BBH Dyck
Lan-
guages

Determine whether a given sequence of
parentheses forms a valid, properly
nested structure according to Dyck
language rules.

the number of
bracket pairs

https://ar
xiv.org/abs/
2210.09261

RF-
pretrain

BBH HyperbatonGiven a sentence with scrambled
adjectives, determine whether their
current order follows grammatical
rules.

the number of
adjectives

https://ar
xiv.org/abs/
2210.09261

RF-
pretrain

BBH Navigate Follow a set of directional instructions
to determine the final position.

the number of
instructions

https://ar
xiv.org/abs/
2210.09261

RF-
pretrain

BBH Object
Count-
ing

Accurately count the number of
specified objects.

the number of
given objects

https://ar
xiv.org/abs/
2210.09261

RF-
pretrain

BBH Reverse
List

Given a python list, return it in the
exact opposite order.

the length of
the list

https://ar
xiv.org/abs/
2210.09261

RF-
pretrain

BBH Word
Sorting

Sort a given list of words in strict
dictionary order.

the number of
words

https://ar
xiv.org/abs/
2210.09261

RF-
pretrain

Symbolic
Reason-
ing

Coin
Flip

Given a series of operations, answer
whether a coin is still heads up after
people either flip or don’t flip the coin.
(e.g., ”A coin is heads up. Phoebe flips
the coin. Osvaldo does not flip the coin.
Is the coin still heads up?” → ”no”)

the number of
people who
flip the coin

https://ar
xiv.org/abs/
2201.11903

RF-
pretrain

Symbolic
Reason-
ing

Last
Letter
Con-
catena-
tion

Given a list of words, concatenate the
last letters of each word and return the
string. (e.g., ”Amy Brown” → ”yn”)

the number of
words

https://ar
xiv.org/abs/
2201.11903

43

https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

