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Abstract

In this paper, we analyze the variance of stochastic policy gradient with many
action samples per state (all-action SPG). We decompose the variance of SPG
and derive an optimality condition for all-action SPG. The optimality condition
shows when all-action SPG should be preferred over single-action counterpart and
allows to determine a variance-minimizing sampling scheme in SPG estimation.
Furthermore, we propose dynamics-all-action (DAA) module, an augmentation
that allows for all-action sampling without manipulation of the environment. DAA
addresses the problems associated with using a Q-network for all-action sampling
and can be readily applied to any on-policy SPG algorithm. We find that using
DAA with a canonical on-policy algorithm (PPO) yields better sample efficiency
and higher policy returns on a variety of continuous action environments.

1 Introduction

Stochastic policy gradient (SPG) is a method of optimizing stochastic policy through gradient ascent
in the context of reinforcement learning (RL) [43, 39, 28, 37]. When paired with powerful function
approximators, SPG-based algorithms have proven to be one of the most effective methods for
achieving optimal performance in Markov Decision Processes (MDPs) with unknown transition
dynamics [35, 32]. Unfortunately, exact calculation of the gradient is unfeasible and thus the
objective has to be estimated [39]. Resulting variance is known to impact the learning speed, as well
as performance of the trained agent [19, 41].

On-policy sample efficiency (ie. the amount of required interactions with the environment to achieve
certain performance) is particularly affected by variance, as the gradient has to be evaluated over
long trajectories to achieve sufficient quality of the SPG estimate [25]. As such, a variety of methods
for on-policy SPG variance reduction have been proposed. Method of most prominence, baseline
variance reduction, has been shown to improve algorithms stability and became indispensable to
contemporary SPG implementations [28, 34]. Alternative approaches include Q-value bootstrapping
[10], reducing the effect of long-horizon stochasticity via small discount [3], increasing number of
samples via parallel agents [25] or using all-action estimators [1, 21, 29, 6].

In all-action SPG (AA-SPG), the gradient is estimated using more than one action sample per state,
without including the follow-up states of those additional actions in the gradient calculation. The
method builds upon conditional Monte-Carlo and yields variance that is smaller or equal to that of
single-action SPG given fixed trajectory length [4]. Such additional action samples can be drawn with
replacement [6] or without [21]. Furthermore, they can be generated by rewinding the environment
[33] or by using a parametrized Q-value approximator [1]. Whereas using Q-value approximator
does not incur environment interaction cost, it biases the gradient estimate [29]. In contrast to that,
drawing additional action samples from the environment does not bias the gradient, but creates an
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interaction cost which is unacceptable in a lot of settings. This leads to a question: given a trajectory
of length T and some fixed cost of sampling actions, is SPG variance more favourable when spending
the resources on sampling additional actions or extending the trajectory?

The contributions of this paper are twofold. Firstly, we analyze SPG variance theoretically. We
quantify the variance reduction stemming from adopting AA estimation strategy as compared to
extending the trajectory of a single-action agent. We prove that AA-SPG is a viable scheme for
estimating gradients in RL problems. Secondly, we propose an implementation of AA, which we
refer to as dynamics-all-action module (DAA). DAA leverages a learned dynamics model to sample
state-action gradients and can be used in conjunction with any on-policy SPG algorithm. We show
that augmenting SPG algorithm with DAA yields better sample efficiency and higher reward sums
than Q-network all-action SPG, as well as single-action SPG baseline. We validate empirically our
approach by augmenting state of the art on-policy SPG algorithm [35] with DAA and testing its
performance on a variety of continuous control tasks.

2 Background

A Markov Decision Process (MDP) [30] is a tuple (S,A,R, p, γ), where S is a countable set of
states, A is a countable set of actions, R(s, a) is the state-action reward, p(s′|s, a) is a transition
kernel (with the initial state distribution denoted as p0) and γ ∈ (0, 1] is a discount factor. A
policy π(a|s) is a state-conditioned action distribution. Given a policy π, MDP becomes a Markov
reward process with a transition kernel pπ(s′|s) =

∫
a
π(a|s) p(s′|s, a) da, which we refer to as the

underlying Markov chain. The underlying Markov chain is assumed to have finite variance, an unique
stationary distribution denoted as pπ0 [31, 19] and an unique discounted stationary distribution
denoted as pπ∗ . Interactions with the MDP according to some policy π are called trajectories
and are denoted as τπT (st) = ((st, at, rt), (st+1, at+1, rt+1), ..., (st+T , at+T , rt+T )), where at ∼
π(at|st), rt ∼ R(s, a) and st+1 ∼ p(st+1|st, at). If T < ∞, then the trajectory is referred to as
finite. The value function V π(s) = Eτπ

∞(s)[
∑∞

t=0 γ
tR(st, at)] and Q-value function Qπ(s, a) =

Eτπ
∞(s|a)[

∑∞
t=0 γ

tR(st, at)] = R(s, a) + γEs′∼p(s′|s,a)[V
π(s′)] sample at according to some fixed

policy π. State-action advantage is defined as Aπ(s, a) = Qπ(s, a)− V π(s). An optimal policy is a
policy that maximizes discounted total return J =

∫
s0
V π(s0) ds0. Given a policy parametrized by

θ, the values of θ can be updated via SPG [39] θ ← θ +∇θJ
∗ which is is given by [38]:

∇θJ
∗ ∝

∫
s

pπ∗ (s)

∫
a

π(a|s) Qπ(s, a)∇θ log π(a|s) da ds

= E
s∼pπ

∗
E

a∼π
Qπ(s, a)∇θ log π(a|s)

(1)

As such, SPG is proportional to a double expectation of Qπ(s, a)∇θ log π(a|s), with the outer
expectation taken wrt. the discounted stationary distribution pπ∗ and the inner expectation taken wrt.
policy π. By assuming ergodicity of the underlying Markov chain, policy gradient can be estimated
via a trajectory generated according to the policy [28, 33, 27, 44]:

∇J =
1

T

T−1∑
t=0

γt Qπ(st, at)∇ log π(at|st)

=
1

T

T−1∑
t=0

∇J(st, at)

(2)

Where ∇J denotes the SPG estimator, ∇J(st, at) = γtQπ(st, at)∇ log π(at|st) and st, at ∼ τπT .
In the setup above, the outer expectation of Equation 1 is estimated via Monte-Carlo [23] with T
state samples drawn from the non-discounted stationary distribution pπ0 ; and the inner expectation
is estimated with a single action per state drawn from the policy π(a|s). The resulting variance can
be reduced to a certain degree by a control variate, with state value being a popular choice for such
baseline [34]. Then, the Q-value from Equation 1 is replaced by Aπ(st, at). If state value is learned
by a parametrized approximator, it is referred to as the critic. Critic bootstrapping [10] is defined
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as Qπ(s, a) = R(s, a) + V π(s′) with s′ ∼ p(s′|s, a) and can be used to balance the bias-variance
tradeoff of Q-value approximations. Given a control variate, the variance of policy gradient can be
further reduced by approximating the inner integral of Equation 2 with a quadrature of N > 1 action
samples. Then∇J is equal to:

∇J =
1

T

T−1∑
t=0

1

N

N−1∑
n=0

∇J(st, ant )︸ ︷︷ ︸
N action samples per state︸ ︷︷ ︸

T state samples per trajectory

(3)

Where ant denotes the nth action sampled at state st. Furthermore, MDP transitions are conditioned
only on the first action performed (ie. pπ(st+1|st, ant ) ̸= pπ(st+1|st) ⇐⇒ n = 0). Such approach
is referred to as all-action policy gradient or expected policy gradient [1, 29, 6]. As follows from law
of iterated expectations, all-action (AA) estimator is unbiased and yields lower or equal variance as
compared to single-action SPG with equal trajectory length [29]. Since the policy log-probabilities
are known, using AA estimation requires approximating the Q-values of additional action samples.
As such, AA is often implemented by performing rollouts in a rewinded environment [33, 20, 21] or
by leveraging a Q-network at the cost of bias [1, 29, 6]. The variance reduction stemming from using
AA-SPG has been shown to increase both performance and sample efficiency of SPG algorithms [6].

3 Variance of Stochastic Policy Gradient

Throughout the section, we assume no stochasticity induced by learning Q-values and we treat
Q-values as known. Furthermore, when referring to SPG variance, we refer to the diagonal of
policy parameter variance-covariance matrix. As shown by [29, 6], given fixed trajectory length T ,
AA-SPG variance is smaller or equal to the variance of regular SPG. However, approximating the
inner expectation of SPG always uses some resources (ie. compute or environment interactions). Such
resources could be used to reduce the SPG variance through other means, for example by extending
the trajectory length. To this end, we build upon the result of [29, 6] by comparing the variance
reduction effect stemming from employing AA-SPG as opposed to using regular single-action SPG
with an extended trajectory length. The variance of SPG, denoted as V, is given by the variance of
empirical mean of T dependent random variables sampled from the MDP [17, 5]:

V =
1

T
Var

s,a∼pπ
0 ,π

[∇J(s, a)] + 2

T−1∑
t=1

T − t

T 2
Cov

st,at∼τπ
T

[
∇J(s0, a0),∇θJ(st, at)

]
(4)

As follows from the ergodic theorem [26], conditional probability of visiting state st given starting in
state s0 with action a10 approaches the non-discounted stationary distribution pπ0 exponentially fast as
t grows limt→∞ p(st|s0, a10) = pπ0 (st). Therefore, Covt ≥ Covt+1, as well as limt→∞ Covt = 0.
Equation 4 shows the well known result that increasing the trajectory length T decreases V. This
result is key to the success of parallel actor-critic implementations [25, 45]. Unfortunately, the form
above does not allow us to inspect the effect of using all-action SPG (ie. sampling many actions per
state in the trajectory). To quantify such effect, we decompose V into sub-components.

Lemma 1 - SPG variance decomposition Given a finite trajectory τπT and SPG estimation using
T state samples and N action samples per state, V can be decomposed into:

Var
s,a∼pπ

0 ,π
[∇J(s, a)] = Var

s∼pπ
0

[ E
a∼π
∇J(s, a)]︸ ︷︷ ︸

Variance with marginalized policy

+
1

N
E

s∼pπ
0

Var
a∼π

[∇J(s, a)]︸ ︷︷ ︸
State-conditioned variance of policy

(5)

Covt = Cov
st∼τπ

T

[
E

a∼π
∇J(s0, a0), E

a∼π
∇J(st, at)

]
︸ ︷︷ ︸

Covariance of states with marginalized policy

+
1

N
E

s0∼pπ
0

Cov
st,at∼τπ

T

[
∇J(s0, a0),∇J(st, at)

]
︸ ︷︷ ︸

Starting state-conditioned policy covariance

(6)
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The components can be grouped according to dependency on N :

T V = Var
s∼pπ

0

[ E
a∼π
∇J(s, a)] + 2

T−1∑
t=1

T − t

T
Cov
st∼τπ

T

[
E

a∼π
∇J(s0, a0), E

a∼π
∇J(st, at)

]
︸ ︷︷ ︸

Variance of the underlying Markov chain (ie. with marginalized policy stochasticity)

+
1

N
E

s0∼pπ
0

(
Var
a∼π

[∇J(s, a)] + 2

T−1∑
t=1

T − t

T
Cov

st,at∼τπ
T

[
∇J(s0, a0),∇J(st, at)

])
︸ ︷︷ ︸

Starting state-conditioned variance of the Markov Decision Process

(7)

For derivation see Appendix A. Given N = 1, the variance simplifies to a single-action SPG case.
The statement shows that SPG variance can be decomposed into: variance of the underlying Markov
chain, which marginalizes policy stochasticity and is decreased only by increasing the trajectory
length (T ); and starting state-conditioned variance of the policy and covariance correction due to
policy stochasticity, which indeed is reduced by both state and action samples (T and N respectively).

SPG variance component Cartpole Ball Reacher Finger Cheetah Walker

Vars [Ea∇J ] 0.026 0.011 0.24 0.019 0.001 0.033

Es Vara [∇J ] 5.003 0.803 5.877 0.435 1.606 11.948∑
T−t
T Cov [Ea∇J0,Ea∇Jt] -0.02 0.015 2.029 0.007 0.005 0.047∑
T−t
T EsCov [∇J0,∇Jt] 0.733 0.015 -2.313 -0.313 0.009 -0.163

Markov chain variance 0.006 0.026 2.269 0.026 0.006 0.081

Policy-dependent variance 5.736 0.819 3.565 0.122 1.615 11.786

Table 1: Mean parameter variance components of SPG estimator with known Q-values. Actor
network with single hidden layer and 128 nodes was initialized with orthogonal initialization for
the measurement. The components were estimated with Equations 3, 5 and 6, using 110 000 non-
baselined interactions, T = 100 and learning rate of 0.1 in the 20th policy update.

Table 1 shows sample variance components of SPG estimator. In particular, the table shows that
with Q-values marginalized, the policy is responsible for around 90% of SPG variance in tested
environments. We proceed with analytical analysis of the variance reduction stemming increasing N
and T . For derivation of the Lemma below, see Appendix A.

Lemma 2 - SPG variance reduction wrt. N and T Given a finite trajectory τπT and SPG estimation
using T state samples and N action samples per state, the SPG variance reduction stemming from
increasing N by 1 is (denoted as ∆N ) and the SPG variance reduction stemming from increasing the
length of trajectory to T + δT with δ ∈ (0,∞) (denoted as ∆T ) are equal to:

∆N =
−1

T (N2 +N)
E

s∼pπ
0

(
Var
a∼π

[∇J(s, a)] + 2

T−1∑
t=1

T − t

T
Cov

st,at∼τπ
T

[
∇J(s0, a0),∇J(st, at)

])
(8)

∆T =
−δ

T + δT

(
Var

s,a∼pπ
0 ,π

[∇J(s, a)] + 2

T−1∑
t=1

(
T − t

T
− t

T + δT

)
Covt

)
(9)

In Equations 9 and 10, Covt = Covst,at∼τπ
T
[∇θJ(s0, a0),∇θJ(st, at)]. Equations above show

the diminishing variance reduction stemming from increasing N by 1 or T by δT . Incorporating δ

4



captures the notion of relative costs of increasing N and T . If δ = 1, then the cost of increasing N by
1 (sampling one more action per state in trajectory) is equal to doubling the trajectory length. Now, it
follows that AA-SPG is an optimal strategy only if ∆N ≤ ∆T for given values of N , T and δ.

Theorem 1 - AA-SPG optimality condition for MDPs Given a finite trajectory τπT and SPG
estimation using T state samples and N action samples per state, the SPG variance reduction
stemming from increasing N by 1 is bigger than SPG variance reduction stemming from increasing
T by δT for δ = 1 and N = 1 when:

T−1∑
t=1

t

T
Covt ≥ Var

s∼pπ
0

[ E
a∼π
∇J(s, a)] + 2

T−1∑
t=1

T − t

T
Cov
st∼τπ

T

[
E

a∼π
∇J(s0, a0), E

a∼π
∇J(st, at)

]
(10)

For derivation with N ≥ 1 and δ ∈ (0,∞) see Appendix A. The theorem represents an optimality
condition under which it is optimal to switch from regular SPG (AA-SPG with N = 1) to AA-SPG
with N = 2. Surprisingly, the optimality condition for δ = 1 and N = 1 is dependent solely on the
covariance structure of the data. As follows from Theorem 1, AA-SPG is optimal when the weighted
sum of MDP covariances exceeds the variance of the Markov Chain underlying the MDP. As follows,
AA-SPG is most effective in problems where action-dependent covariance constitutes a sizeable
portion of the total SPG variance (ie. problems where future outcomes largely depend on actions
taken in the past and consequently,∇θJ(st+k, at+k) largely depends upon at). Figure below shows
the potential of AA-SPG estimators on complex continuous action environments.

(a) Cartpole, swingup (b) Cup, catch (c) Reacher, easy

(d) Finger, spin (e) Cheetah, run (f) Walker, walk

Figure 1: Comparison of regular PPO (T = 1024; N = 1), additional sampled states PPO (T = 2048;
N = 1) and AA-PPO (T = 1024; N = 2), with additional action sample recorded through
environment rollout. The favourable performance of AA-SPG points towards big impact of policy-
dependent covariance in selected environments. Results were generated with 20 random seeds.

Corollary 1 - AA-SPG optimality condition for contextual bandits Given a finite trajectory
τπT and SPG estimation using T state samples and N action samples per state, the SPG variance
reduction from increasing ∆N = 1 is bigger than SPG variance reduction from ∆T = δT when:

Var
s∼pπ

0

[ E
a∼π
∇J(s, a)]

E
s∼pπ

0

Var
a∼π

[∇J(s, a)]
≤ 1− δN

δ(N2 +N)
(11)
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Corollary above is a specific case of Theorem 1. By assuming a contextual bandit problem, the
covariances are equal to zero and the optimality condition is vastly simplified. As follows from the
definition of variance, the LHS of Equation 11 is greater or equal to 0. However, the RHS becomes
negative when δN > 1. Since N ≥ 1, it follows that AA-SPG is never optimal for bandits if δ ≥ 1
(ie. the cost of acquiring an additional action sample is equal or greater than to the cost of acquiring
an additional state sample). Whereas the efficiency of AA-SPG for contextual bandits is restricted,
Theorem 1 shows that AA-SPG can be a preferable strategy for gradient estimation in MDPs. We
leave determining the optimality condition with sampled Q-values for future work.

4 Dynamics-all-action SPG

One of the conclusions of our analysis is that AA-SPG estimators are guaranteed to be useful when
δ ≈ 0. This is reflected in the existing AA-SPG methods, which utilize a Q-network (QAA-SPG) to
approximate additional samples [1, 29, 6]. By using the interactions with environment as the point of
reference, QAA-SPG methods assume δ = 0. However, using a Q-network to approximate additional
action samples yields bias. Whereas the bias can theoretically be reduced to zero, the conditions
required for such bias annihilation are unrealistic [29]. Being fully dependent on policy, Q-network
has to learn a constantly changing target [42]. Furthermore, single-action supervision challenges
generating informative samples for multiple actions from Q-network. This results in unstable training
when Q-network is used to bootstrap the policy gradient [24, 42, 10, 12].

Inspired by the success of model-based RL, we propose dynamics-all-action SPG (DAA-SPG)
- an AA module that, contrary to existing all-action methods, does not require a Q-network for
SPG approximation. Instead, DAA leverages a learned dynamics model for evaluation of the inner
expectation from SPG. In DAA, the Q-value of the additional actions are approximated with a
critic-bootstrapped finite trajectory generated by a latent dynamics model, consisting of transition
and reward networks [11, 13, 18, 9, 32]. The main advantage of such approach when compared to
QAA-SPG is that both reward and transition networks learn stationary targets throughout training,
thus offering better convergence properties and lower bias. DAA does not assume an exact form of
gradient calculation. As such, it can be used in conjunction with any on-policy SPG algorithm (eg.
A2C, TRPO or PPO).

(a) AA-SPG (b) QAA-SPG (c) DAA-SPG

Figure 2: In AA-SPG (Subfigure 2a) policy gradient is estimated using a trajectory of states, with
the gradient at each state evaluated using many action samples. The MDP is advanced using only
the first sampled action (without including the follow-up states of the additional actions). Since
log π(a|s) is known, performing AA-SPG calculation requires Q-values for sampled actions. In
QAA-SPG (Subfigure 2b), the Q-values of additional action samples are given by a Q-network. As
such, QAA-SPG is prone to all problems stemming from policy learning via Q-network. DAA-SPG
(Subfigure 2c), approximates the Q-values using critic-bootstrapped trajectories given by a latent
dynamics model. Such procedure yields the benefits of TD(λ) and allows to build the AA-SPG
gradient upon approximations of models with static supervision, which have better convergence
properties than Q-networks.

The proposed method builds upon two bodies of work: all-action SPG and model-based RL. Previous
work on all-action SPG used either a Q-network [1, 29, 6] or rollouts achieved by environment
rewinding [33, 21]. In comparison, DAA-SPG leverages a learned dynamics model for sample
simulation. In contrast to model-based RL methods, we do not learn the policy inside the dynamics
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model [11, 18, 32, 14]. Instead, similarly to actor-critic methods, the policy gradient approximation
is anchored on the trajectory stemming from the real environment, with the dynamics model used
only to refine the estimator (ie. reduce its variance through Monte-Carlo conditioning).

5 Experiments

Our implementations are slight modifications of the PPO implementation provided in [15]. Further-
more, in all experiments and across all algorithms, we use the optimized hyperparameters provided in
[15]. There are only two differences between our implementation and the baseline implementation.
Firstly, we do not perform advantage normalization. Although it is known to sometimes increase the
performance of SPG agents, it has no grounding in SPG theory and impacts the variance structure of
the SPG estimate. We point the reader to Appendix B for results that use advantage normalization. Fi-
nally, we slightly increase the hidden layer sizes and switch activation functions from Tanh to ReLUs.
All architecture details are provided in Appendix C. To simplify our DAA-PPO implementation, we
do not use the state of the art transition/reward network learning schemes proposed in Dreamer [13]
or SimPLe [18]. Instead, we use a simple action-conditioned two-layer MLP architecture trained
using L2 loss on off-policy data sampled from an experience buffer. While using more advanced
dynamics models would likely further refine the performance of DAA-SPG, we fill that it would give
an unnecessary advantage over the baseline QAA-PPO. In QAA-PPO implementation, the Q-network
is a two-layer MLP trained using L2 loss with TD(λ) advantages as targets.

5.1 Performance of DAA-PPO as compared to QAA-PPO and PPO

We investigate the performance of DAA-SPG on continuous action tasks from DeepMind Control
Suite [40]. Whereas learning a latent dynamics model from images was shown to work [11, 13, 32], it
is known to offer performance benefits over model-free counterparts stemming from backpropagation
of additional non-sparse loss functions [16, 36, 47]. To mitigate such performance benefits for
DAA-SPG, we use proprioceptive state representations given by the environment, with transition and
reward network working directly on such state representations.

(a) Cartpole, swingup (b) Cup, catch (c) Reacher, easy

(d) Finger, spin (e) Cheetah, run (f) Walker, walk

Figure 3: Comparison of PPO (T = 1024; N = 1) to QAA-PPO (T = 1024; N = 4) and DAA-PPO
(T = 1024; N = 4). DAA-PPO yields better performance than the baselines on majority of the tasks,
pointing towards favourable bias-variance mix offered by DAA-SPG. Results were generated with 25
random seeds.

Figure 3 shows the performance of regular PPO, QAA-PPO and DAA-PPO, with all algorithms using
consistent trajectory length of T = 1024 and number of action samples N = 4 (except PPO for
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which N = 1). In the experimental setup, PPO gradient is unbiased, but has strictly greater variance
that QAA-PPO and DAA-PPO (as follows from Lemma 2). Furthermore, QAA-PPO and DAA-PPO
gradients have proportional variance, but differ only with bias (QAA-PPO bias stems from Q-network;
DAA-PPO bias stems from dynamics model). Figure 3 points towards more favourable bias-variance
mix of DAA-PPO as compared to QAA-PPO. Furthermore, the bias of DAA-PPO can be further
reduced by employing more advanced schemes for dynamics model learning. In Appendix B we
conduct variety of ablation studies, where we compare the performance of DAA-PPO for various
amounts of simulated action samples, as well as different simulation depth for Q-value estimation.

5.2 Simulating additional actions as compared to simulating additional states

When using a dynamics model to simulate actions, the bias of reward model, as well as compounded
errors of transitions translate only to the bias of Q-values associated with the simulated action samples.
Since the exact log-probabilities and underlying state representations are known, the resulting gradient
is still largely approximated using unbiased, exact values. In contrast, using a dynamics model to
simulate state samples requires not only the approximation of Q-values, but also prediction of the state
representations. The inevitable error of state prediction thus anchors the gradient upon log-probability
values which in fact should be associated with a different state. Such perspective is supported by
the Lipschitz continuity analysis of approximate MDP models [2, 9]. Note that using dynamics
model for simulating additional states in policy gradient approximation is the dominant approach
in leveraging dynamics models for policy learning [18, 13, 7]. We therefore hypothesize that using
dynamics model for AA estimation might yield more favourable bias-variance tradeoff as compared
to using dynamics model to sample additional states given a fixed simulation budget. To this end, we
compare performance of DAA-PPO with N = 4 to an agent that uses the dynamics model to simulate
additional states (as compared to DAA-PPO that uses the dynamics model to simulate additional
actions). As such, we compare DAA-PPO with T = 1024 and N = 4 to PPO with T = 1024 + T ′,
where T ′ is simulated by the dynamics model and T ′ = N ∗ 1024 = 4096.

(a) Cartpole, swingup (b) Cup, catch (c) Reacher, easy

(d) Finger, spin (e) Cheetah, run (f) Walker, walk

Figure 4: Comparison of DAA-SPG to vanilla dynamics SPG. Green is PPO with T = 5120 from
which 4096 state samples are generated using dynamics model; and blue is DAA-PPO with T = 1024
and N = 4. DAA-SPG yields comparable or better results on the tested environments. Whereas
vanilla dynamics SPG has potentially lower variance, the performance gains stemming from variance
reduction are consumed by compounding bias. Results were generated with 25 random seeds.
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6 Related work

All-action SPG The idea of AA-SPG was proposed in an unfinished preprint1 by Sutton et al.
(2001). Later, the topic was expanded upon by several authors. TRPO [33] ’vine procedure’ uses
multiple without-replacement action samples per state generated via environment ’rewinding’. The
without-replacement PG estimator was further refined by [21, 20], who also proposed to use the
without-replacement samples as a free baseline. MAC [1] calculates the inner integral of SPG exactly
(ie. sample the entire action space for given states) using Q-network, with the scheme applicable only
to discrete action spaces and tested on simple environments. Similarly, [29] propose to estimate the
inner integral with a quadrature of N samples given by a Q-network. The authors also derive basic
theoretical properties of AA-SPG. Besides expanding on the theoretical framework, [6] propose an
off-policy algorithm that, given a Gaussian actor and quadratic critic, can compute the inner integral
analytically.

Model-based RL ME-TRPO [22] leverages ensemble of environment models to increase the
sample efficiency of TRPO. WM [11] uses environment interactions to learn the dynamics model,
with the policy learning done via evolutionary strategies inside the dynamics model. Similarly,
SimPLe [18] learns the policy by simulating states via the dynamics model. Dreamer [13, 14]
refines the dynamics model learning by proposing a sophisticated joint learning scheme for recurrent
transition and discrete state representation models, but the policy learning is still done by simulating
states inside the dynamics model. Notably, Dreamer was shown to solve notoriously hard Humanoid
task [46]. MuZero [32] leverages the dynamics model to perform Monte-Carlo tree search inside the
latent model. Perhaps the closest to the proposed approach is MBVE [8]. There, an off-policy DPG
agent uses the dynamics model to estimate n-step Q-values and thus refine the approximation.

7 Conclusions

In this paper, we analyzed variance of the SPG estimator mathematically. We showed that it can be
disaggregated into sub-components dependent on policy stochasticity, as well as the components
which are dependent solely on the structure of the Markov process underlying the policy-embedded
MDP. By optimizing such components with respect to the number of state and action samples, we
derived an optimality condition which shows when AA-SPG is a preferable strategy as compared to
traditional, single-action SPG. We used the result to show the difficult conditions AA-SPG has to meet
to be an optimal choice for the case of contextual bandit problems. We hope that those theoretical
results will reinvigorate research into AA estimation. Furthermore, we proposed DAA-SPG module
- an approach that leverages dynamics models for AA estimation. We evaluated its performance
against QAA-SPG and SPG baselines. Our experiments showed that despite the proposed method
simplicity, it compares favourably in terms of both sample efficiency and final performance on most
of the tested environments and for a wide range of hyperparameter settings. Finally, we discussed the
bias-variance trade-off induced by using dynamics model to simulate action samples (DAA-SPG),
as compared to using dynamics model to simulate state samples, as is done in variety of the recent
model-based RL approaches. We release the code used for experiments under this url.
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A Appendix A - derivations

To simplify the notation, we define:

∇θJ(st, at) = Υt
s,a and E

a∼π
∇θJ(st, at) = Υt

s (12)

Furthermore, we write:

V1 = Var
s,a∼pπ0 ,π

[Υs,a] and V2 =

T−1∑
t=1

T − t

T 2
Cov

st,at∼τπ
T

[
Υ0

s,a,Υ
t
s,a

]
(13)

With:

V =
1

T
(V1 + 2 V2) (14)

For convenience, throughout the Appendix we will assume finite state and action spaces. However, same
reasoning works for continuous spaces. For the sake of completeness, we include derivation of expected value of
the AA-SPG estimator defined in Equation 3:

E ∇θJ =
∑
s

pπ0 (s)

N∏
n=1

∑
an

π(an|s)
(
Υs,a1

N
+ ...+

Υs,aN

N

)

=
1

N

N∑
n=1

∑
s

pπ0 (s)
∑
a

π(a|s)Υs,a

N−1∏
n=1

∑
an

π(an|s)

=
∑
s

pπ0 (s)
∑
a

π(a|s)Υs,a = E∇θJ
∗

(15)

A.1 Derivation of Lemma 1

Following the AA-SPG definition outlined in Equation 3, V1 is equal to:

V1 +

(
E∇θJ

)2

=
∑
s

pπ0 (s)

N∏
n=1

∑
an

π(an|s)
(
Υs,a1

N
+ ...+

Υs,aN

N

)2

=
N

N2

∑
s

pπ0 (s)
∑
a

π(a|s) (Υs,a)
2 +

2

N2

(
N

2

) ∑
s

pπ0 (s)

(∑
a

π(a|s) Υs,a

)2

=
1

N
E

s∼pπ0

E
a∼π

(Υs,a)
2 +

N − 1

N
E

s∼pπ0

(Υs)
2

(16)

Thus:

V1 =
1

N
E

s∼pπ0

E
a∼π

(Υs,a)
2 +

N − 1

N
E

s∼pπ0

(Υs)
2 −

(
E∇θJ

)2

=
1

N
E

s∼pπ0

E
a∼π

(Υs,a)
2 +

N − 1

N
E

s∼pπ0

(Υs)
2 −

(
E∇θJ

)2

=
1

N

(
E

s∼pπ0

E
a∼π

(Υs,a)
2 − E

s∼pπ0

(Υs)
2

)
+ E

s∼pπ0

(Υs)
2 −

(
E∇θJ

)2

= Var
s∼pπ0

[Υs] +
1

N
E

s∼pπ0

Var
a∼π

[Υs,a]

= Var
s∼pπ0

[ E
a∼π

∇θJ(s, a)] +
1

N
E

s∼pπ0

Var
a∼π

[∇θJ(s, a)]

(17)

The above result for N = 1 is reported in [29], noting it as stemming from law of total variance. However, we
could not find the proof in existing literature. We proceed with calculation of V2 for N ≥ 1:
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E
[
Υ0

s,aΥ
t
s,a

]
=
∑
s0

pπ0 (s0)

N∏
n=1

∑
an
0

π(an
0 |s0)

∑
st

pπt (st|s0, a1
0)

N∏
m=1

∑
am
t

π(am
t |st)

(
Υ0

s,a1

N
+ ...+

Υ0
s,aN

N

) (
Υt

s,a1

N
+ ...+

Υt
s,aN

N

)
=
∑
s0

pπ0 (s0)

N∏
n=1

∑
an
0

π(an
0 |s0)

∑
st

pπt (st|s0, a1
0)

N∏
m=1

∑
am
t

π(am
t |st)

( N∑
i=1

N∑
j=1

Υ0
s,ai

N

Υt
s,aj

N

)

=
1

N

∑
s0

pπ0 (s0)
∑
a1
0

π(a1
0) Υ

0
s,a1

0

N∏
n=2

∑
an
0

π(an
0 |s0)

∑
st

pπt (st|s0, a1
0)
∑
at

π(at|st) Υt
s,a

+
N − 1

N

∑
s0

pπ0 (s0)
∑
a2
0

π(a2
0) Υ

0
s,a2

0

∑
a1
0

π(a1
0|s0)

∑
st

pπt (st|s0, a1
0)
∑
at

π(at|st) Υt
s,a

=
1

N

∑
s0

pπ0 (s0)
∑
a1
0

π(a1
0) Υ

0
s,a1

0

∑
st

pπt (st|s0, a1
0) Υ

t
s

+
N − 1

N

∑
s0

pπ0 (s0) Υ
0
s

∑
a1
0

π(a1
0|s0)

∑
st

pπt (st|s0, a1
0) Υ

t
s

(18)

Where pπt (st|s0, a1
0) denotes the t step transition kernel conditioned on s0 and a1

0 (ie. the first sampled action in
s0). Thus, the tth covariance of AA-SPG is equal to:

Cov
st,at∼τπ

T

[
Υ0

s,a,Υ
t
s,a

]
=

=
1

N

∑
s0

pπ0 (s0)
∑
a0

π(a0) Υ
0
s,a

∑
st

pπt (st|s0, a0) Υ
t
s

+
N − 1

N

∑
s0

pπ0 (s0) Υ
0
s

∑
a0

π(a0|s0)
∑
st

pπt (st|s0, a0) Υ
t
s

−
(∑

s0

pπ0 (s0)
∑
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π(a0) Υ
0
s,a

)(∑
st

pπt (st)
∑
at

π(at) Υ
t
s,a

)
=

1

N

∑
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pπ0 (s0)
∑
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π(a0) Υ
0
s,a

∑
st

pπt (st|s0, a0) Υ
t
s

+
N − 1

N

∑
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pπ0 (s0) Υ
0
s

∑
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∑
st

pπt (st|s0, a0) Υ
t
s −

(
E Υ0

s,a

)(
E Υt

s,a

)
=

1

N
E

s0∼pπ0

(∑
a0

π(a0) Υ
0
s,a

∑
st

pπt (st|s0, a0) Υ
t
s −Υ0

s

∑
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∑
st

pπt (st|s0, a0) Υ
t
s

)

+

(∑
s0

pπ0 (s0) Υ
0
s

∑
a0

π(a0|s0)
∑
st

pπt (st|s0, a0) Υ
t
s −

(
E Υ0

s,a

)(
E Υt

s,a
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=

1

N
E

s0∼pπ0

Cov
[
Υ0

s,a,Υ
t
s,a

]
+ Cov

st∼τπ
T

[
Υ0

s,Υ
t
s

]

(19)

Combining Equation 17 with Equation 19 and Equation 13 concludes the derivation of Lemma 1.

A.2 Derivation of Lemma 2

Since N is defined to be a natural number, we calculate the variance reduction effect stemming from increasing
N via the forward difference operator:

∆N = V(N + 1)−V(N) (20)

We also use the shorthand notation:
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Cov
st,at∼τπ

T

[
Υ0

s,Υ
t
s

]
= αt (21)

E
s∼pπ0

Cov
st,at∼τπ

T
(s)

[
Υ0

s,a,Υ
t
s,a

]
= αe

t (22)

Covt = αe
t + αt (23)

Thus:

V =
1

T

(
Var
s∼pπ0

[Υ0
s] + 2

T−1∑
t=1

T − t

T
αt +

1

N
E

s∼pπ0

(
Var
a∼π

[Υ0
s,a] + 2

T−1∑
t=1

T − t

T
αe
t

))
(24)

We proceed with calculation of the forward difference:

∆N =
1

T

(
Var
s∼pπ0

[Υs] + 2

T−1∑
t=1

T − t

T
αt +

1

N + 1
E

s∼pπ0

(
Var
a∼π

[Υs,a] + 2

T−1∑
t=1

T − t

T
αe
t

))

− 1

T

(
Var
s∼pπ0

[Υs] + 2

T−1∑
t=1

T − t

T
αt +

1

N
E

s∼pπ0

(
Var
a∼π

[Υs,a] + 2

T−1∑
t=1

T − t

T
αe
t

))

=
1

T (N + 1)
E

s∼pπ0

(
Var
a∼π

[Υs,a] + 2

T−1∑
t=1

T − t

T
αe
t

)

− 1

T N
E

s∼pπ0

(
Var
a∼π

[Υs,a] + 2

T−1∑
t=1

T − t

T
αe
t

)

=
−1

T (N2 +N)
E

s∼pπ0

(
Var
a∼π

[Υs,a] + 2

T−1∑
t=1

T − t

T
αe
t

)

(25)

Similarly, we calculate ∆TV:

∆T =

=
1

T + δT
Var

s,a∼pπ0 ,π
[Υs,a] + 2

T+δT−1∑
t=1

T + δT − t

(T + δT )2
Covt −

1

T
Var

s,a∼pπ0 ,π
[Υs,a]− 2

T−1∑
t=1

T − t

T 2
Covt

=
−δT

T + δT
Var

s,a∼pπ0 ,π
[Υs,a] + 2

T−1∑
t=1

(
T + δT − t

(T + δT )2
− T − t

T 2

)
Covt + 2

T+δT−1∑
k=T

T − t

(T + δT )2
Covt

=
−δ

T + δT

(
Var

s,a∼pπ0 ,π
[Υs,a] + 2

T−1∑
t=1

(T − t

T
− t

T + δT

)
Covt −

2

δ

T+δT−1∑
k=T

T + δT − k

T + δT
Covk

)
(26)

Now, we assume that the trajectory length guarantees reaching a regenerative state, and thus∑T+δT−1
k=T

T+δT−k
T+δT

Covk = 0 :

∆T =
−δ

T + δT

(
Var

s,a∼pπ0 ,π
[Υs,a] + 2

T−1∑
t=1

(T − t

T
− t

T + δT

)
Covt

)
(27)

Combining Equation 27 with Equation 17 concludes derivation of Lemma 2.

A.3 Derivation of Theorem 1

We start the derivation by stating that AA-SPG is advantageous in terms of variance reduction as compared to
increased trajectory length SPG when −∆N ≥ −∆T . As such:
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1 + δ

δ(N2 +N)

(
E

s∼pπ0

Var
a∼π

[Υs,a] + 2

T−1∑
t=1

T − t

T
αe
t

)
≥ Var

s,a∼pπ0 ,π
[Υs,a] + 2

T−1∑
t=1

(T − t

T
− t

T + δT

)
Covt

(28)

We use Equations 17 and 19 to expand the RHS:

Var
s,a∼pπ0 ,π

[Υs,a] + 2

T−1∑
t=1

(T − t

T
− t

T + δT

)
Covt =

= Var
s∼pπ0

[Υs] +
1

N
E

s∼pπ0

Var
a∼π

[Υs,a] + 2

T−1∑
t=1

(T − t

T
− t

T + δT

) (
αt +

1

N
αe
t

) (29)

Now, we use Equations 28 and 29. Furthermore, we move all terms dependent on the policy to the LHS:

1− δN

δ(N2 +N)
E

s∼pπ0

Var
a∼π

[Υs,a] + 2

T−1∑
t=1

( (1 + δ − δN − δ2N)T − (1− 2δN − δ2N)t

(δT + δ2T )(N2 +N)

)
αe
t ≥

Var
s∼pπ0

[Υs] + 2

T−1∑
t=1

(T − t

T
− t

T + δT

)
αt

(30)

Now, in order to recover the Corollary 1, we assume a contextual bandit setup (ie. pπ(s′|s) = pπ(s′)). Then:

1− δN

δ(N2 +N)
E

s∼pπ0

Var
a∼π

[Υs,a] ≥ Var
s∼pπ0

[Υs] (31)

Which is equivalent to:

Var
s∼pπ0

[Υs]

E
s∼pπ0

Var
a∼π

[Υs,a]
≤ 1− δN

δ(N2 +N)
(32)

We proceed with the derivation for the MDP setup, where pπ(s′|s) ̸= pπ(s′). We write N = 1, which implies
that we start in the regular single-action SPG setup. Furthermore, we assume δ = 1, which according to the
setup implies equal cost of sampling additional action and state samples. Thus, Equation 30 simplifies to:

T−1∑
t=1

t

T
αe
t ≥ Var

s∼pπ0

[Υs] +

T−1∑
t=1

2T − 3t

T
αt

≡
T−1∑
t=1

t

T
αe
t ≥ Var

s∼pπ0

[Υs] + 2

T−1∑
t=1

T − t

T
αt −

T−1∑
t=1

t

T
αt

≡
T−1∑
t=1

t

T

(
αe
t + αt

)
≥ Var

s∼pπ0

[Υs] + 2

T−1∑
t=1

T − t

T
αt

≡
T−1∑
t=1

t

T
Covt ≥ Var

s∼pπ0

[Υs] + 2

T−1∑
t=1

T − t

T
αt

(33)

Which concludes the derivation of Theorem 1.
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B Appendix B - Ablation studies

We start with analysis of the effect of increase of N . Since simulating action samples with a dynamics model
induces bias, we hypothesize that there exists some value of N after which further increase of N will deteriorate
the learning. Figure 5 shows DAA-PPO learning curves for different values of N . Interestingly, we see that
N = 4 chosen for the experiment is an extremely conservative value and further significant performance boost
is possible via the increase of N .

(a) Cartpole, swingup (b) Cup, catch (c) Reacher, easy

(d) Finger, spin (e) Cheetah, run (f) Walker, walk

Figure 5: Comparison of DAA-PPO with different values of N . Blue is N = 4; green is N = 8; red
is N = 16; violet is N = 32; and yellow is N = 64. Note, that in main experiments we use N = 4.

As follows from Figure 5, increasing N in DAA-PPO yields performance benefits due to further decrease in
variance. Such improvement is not monotonic, as at some point the bias of dynamics model might peturb the
learning process (ie. N = 64 in Reacher, easy). Furthermore, we analyse the effect of the simulation horizon
(depth of simulation for Q-value estimation) on DAA-PPO learning curves. The results are shown in Figure 6

(a) Cartpole, swingup (b) Cup, catch (c) Reacher, easy

(d) Finger, spin (e) Cheetah, run (f) Walker, walk

Figure 6: Comparison of DAA-PPO with different depths of simulation horizon for estimating
Q-values. Blue is N = 4; green is N = 8; red is N = 16; violet is N = 32; and yellow is N = 64.
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As can be seen in Figure 6, DAA-PPO performance degenerates for larger simulation horizons for Q-value
estimation. For larger simulation horizons, the Q-value estimations are largely dependent on the dynamics model,
which might result in extreme levels of bias early in the training. This effect might perhaps be alleviated by
using more advanced dynamics model architectures or some sort of annealing scheme, which would increase the
simulation horizon as the dynamics model becomes more stable. We leave testing those hypotheses for future
work. Results for the above ablations were generated with 20 random seeds.

Finally, we investigate the effect of using advantage normalization in conjunction with DAA. Figure below
shows the learning curves for PPO and DAA-PPO when using advantage normalization.

(a) Cartpole, swingup (b) Cup, catch (c) Reacher, easy

(d) Finger, spin (e) Cheetah, run (f) Walker, walk

Figure 7: Comparison of DAA-PPO and PPO when using advantage normalization. Results generated
using 15 random seeds.

As follows from Figure 7, using advantage normalization with DAA-PPO further boosts the performance of the
proposed algorithm.
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C Appendix C - implementation details

Table 2 lists all hyperparameters used in the experiments.

Parameter PPO QAA-PPO DAA-PPO
action repeat 4 4 4

actor optimizer Adam Adam Adam
critic optimizer Adam Adam Adam

dynamics optimizer NA NA Adam
Q-net optimizer NA Adam NA

actor learning rate 0.0003 0.0003 0.0003
critic learning rate 0.0003 0.0003 0.0003

dynamics learning rate NA NA 0.0007
Q-net learning rate NA 0.0003 NA

actor epsilon 1e-5 1e-5 1e-5
critic epsilon 1e-5 1e-5 1e-5

dynamics epsilon NA NA 1e-5
Q-net epsilon NA 1e-5 NA

hidden layer size 512 512 512
λ 0.95 0.95 0.95

discount 0.99 0.99 0.99
batch size 2048 2048 2048

minibatch size 64 64 64
PPO epochs 10 10 10

dynamics buffer size NA NA 50 000
dynamics batch size NA NA 256

number of simulated actions NA 4 4
simulation horizon NA NA 8

clip coefficient 0.2 0.2 0.2
maximum gradient norm 0.5 0.5 0.5

value coefficient 0.5 0.5 0.5
entropy coefficient 0 0 0

Table 2: Hyperparameter settings used in the main experiment
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