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Abstract. While large datasets have proven to be a key enabler for
progress in computer vision, they can have biases that lead to erroneous
conclusions. The notion of the representation bias of a dataset is proposed
to combat this problem. It captures the fact that representations other
than the ground-truth representation can achieve good performance on
any given dataset. When this is the case, the dataset is said not to be
well calibrated. Dataset calibration is shown to be a necessary condition
for the standard state-of-the-art evaluation practice to converge to the
ground-truth representation. A procedure, RESOUND, is proposed to
quantify and minimize representation bias. Its application to the prob-
lem of action recognition shows that current datasets are biased towards
static representations (objects, scenes and people). Two versions of RE-
SOUND are studied. An Explicit RESOUND procedure is proposed to
assemble new datasets by sampling existing datasets. An implicit RE-
SOUND procedure is used to guide the creation of a new dataset, Div-
ing48, of over 18,000 video clips of competitive diving actions, spanning
48 fine-grained dive classes. Experimental evaluation confirms the effec-
tiveness of RESOUND to reduce the static biases of current datasets.

1 Introduction

In recent years, convolutional neural networks (CNNs) have achieved great suc-
cess in image understanding problems, such as object recognition or semantic
segmentation. A key enabling factor was the introduction of large scale image
datasets such as ImageNet, MS COCO, and others. These have two main proper-
ties. First, they contain enough samples to constrain the millions of parameters
of modern CNNs. Second, they cover a large enough variety of visual concepts to
enable the learning of visual representations that generalize across many tasks.
While similar efforts have been pursued for video, progress has been slower. One
difficulty is that video classes can be discriminated over different time spans.
This results on a hierarchy of representations for temporal discrimination.
Static representations, which span single video frames, lie at the bottom of
this hierarchy. They suffice for video classification when static cues, such as ob-
jects, are discriminant for different video classes. For example, the classes in the
“playing musical instrument” branch of ActivityNet [3] differ in the instrument
being played. The next hierarchy level is that of short-term motion represen-
tations, typically based on optical flow, spanning a pair of frames. They suffice
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when classes have identical static cues, but different short-term motion patterns.
Finally, the top level of the hierarchy includes representations of video dynam-
ics. These address video classes with identical static elements and short-term
motion, but different in the temporal arrangement of these elements. They are
needed for discrimination between classes such as “triple jump” and “long jump,”
in an Olympic sportscast, with identical backgrounds and short-term motions
(running and jumping), only differing in the composition of the latter.

Clearly, more sophisticated temporal reasoning requires representations at
higher levels of the hierarchy. What is less clear is how to evaluate the relative
importance of the different levels for action recognition. Current video CNNs
tend to use very simple temporal representations. For example, the prevalent
two-stream CNN model [17] augments a static CNN with a stream that pro-
cesses optical flow. There have been attempts to deploy networks with more
sophisticated temporal representations, e.g. RNN [24, 5] and 3D CNN [7, 20], yet
existing benchmarks have not produced strong evidence in favor of these mod-
els. It is unclear, at this point, if this is a limitation of the models or of the
benchmarks.

One suspicious observation is that, on many of the existing datasets, static
representations achieve reasonably good performance. This is because the datasets
exhibit at least three types of static biases. The first is object bias. For exam-
ple, “playing piano” is the only class depicting pianos, in both ActivitNet and
UCF101. A piano detector is enough to pick out this class. The second is scene
bias. For example, while the “basketball dunk” and “soccer juggling” classes have
distinct temporal patterns, they can be discriminated by classifying the back-
ground into basketball court or soccer field. Finally, there is frequently a person
bias. While classes like “brushing hair” contain mostly face close-ups, “military
marching” videos usually contain long shots of groups in military uniforms.

It should be noted that there is nothing intrinsically wrong about biases. If a
person detector is useful to recognize certain actions, action recognition systems
should use person detectors. The problem is that, if care is not exercised during
dataset assembly, these biases could undermine the evaluation of action recog-
nition systems. For example, an action recognition dataset could be solvable
by cobbling together enough object detectors. This would elicit the inference
that “action recognition is simply object recognition.” Such an inference would
likely be met with skepticism by most vision researchers. The problem is com-
pounded by the fact that biases do not even need to be obvious, since modern
deep networks can easily identify and “overfit to” any biases due to a skewed
data collection. Finally, to make matters worse, biases are cumulative, i.e. static
biases combine with motion biases and dynamics biases to enable artificial dis-
crimination. Hence, investigating the importance of representations at a certain
level of hierarchy requires eliminating the biases of all levels below it.

These problems are frequently faced by social scientists, who spend sub-
stantial time introducing “controls” in their data: A study of whether exercise
prevents heart attacks has to “control” factors such as age, wealth, or family
history, so that subjects are chosen to avoid biases towards any of these factors.
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Similarly, vision researchers can only draw conclusions from their datasets if they
are not biased towards certain representations.

In this work, we investigate the question of assembling datasets without such
biases. Despite extensive recent efforts in dataset collection, this question has
received surprisingly little attention. One reason is that, until recently, vision re-
searchers were concerned about more fundamental forms of bias, such as dataset
bias [19], which captures how algorithms trained on one dataset generalize to
other datasets of the same task. Dataset bias can be analyzed with the classical
statistical tools of bias and variance. It occurs because 1) learning algorithms
are statistical estimators, and 2) estimates from too little data have high vari-
ance and generalize poorly. With the introduction of large datasets, such as
ImageNet [4], dataset bias has been drastically reduced in the past few years.
However, simply collecting larger datasets will not eliminate representation bias.

While dataset bias is a property of the algorithm (ameliorated by large
datasets), representation bias is a property of the dataset. As in social science
research, it can only be avoided by controlling biases during dataset collection.
We formalize this concept with the notion of a well calibrated dataset, which
only favors the ground-truth representation for the vision task at hand, i.e. has
no significant biases for other representations. We then show that the standard
vision practice of identifying the “state of the art” representation only converges
to the ground-truth representation if datasets are well calibrated. This moti-
vates a new measure of the representation bias of a dataset, which guides a new
RepreSentatiOn UNbiased Dataset (RESOUND) collection framework.

RESOUND is a generic procedure, applicable to the assembly of datasets
for many tasks. Its distinguishing features are that it 1) explicitly defines a
set of representation classes, 2) quantifies the biases of a dataset with respect
to them, and 3) enables the formulation of explicit optimization methods for
assembling unbiased datasets. In this work, this is in two ways. First, by using
RESOUND to guide the assembly of a new video dataset, Diving48, aimed for
studies on the importance of different levels of the representation hierarchy for
action recognition. This is a dataset of competitive diving, with few noticeable
biases for static representations. RESOUND is used to quantify these biases,
showing that they are much smaller than in previous action recognition datasets.
Second, by formulating an optimization problem to sample new datasets, with
minimal representation bias, from the existing ones.

Overall, the paper makes four main contributions. First, it formalizes the no-
tion of representation bias and provides some theoretical justification for how to
measure it. Second, it introduces a new dataset collection procedure, RESOUND,
that 1) forces vision researchers to establish controls for vision tasks (the repre-
sentation families against which bias is computed), and 2) objectively quantifies
representation biases. Third, it demonstrates the effectiveness of RESOUND,
by introducing a new action recognition dataset, Diving48, that is shown to
drastically reduce several biases of previous datasets. Fourth, the RESOUND
procedure is also used to sample existing datasets to reduce bias.



4 Yingwei Li, Yi Li, and Nuno Vasconcelos

2 Related Work

Action recognition has many possible sources of bias. Early datasets (Weiz-
mann [2], KTH [14]) were collected in controlled environments, minimizing static
biases. Nevertheless, most classes were distinguishable at the short-term mo-
tion level. These datasets were also too small for training deep CNNs. Modern
datasets, such as UCF101 [18], HMDB51 [10], ActivityNet [3] and Kinetics [8]
are much larger in size and numbers of classes. However, they have strong static
biases that enable static representations to perform surprisingly well. For exam-
ple, the RGB stream of Temporal Segment Network [22] with 3 frames of input
achieves 85.1% accuracy on UCF101.

The idea that biases of datasets can lead to erroneous conclusions on the
merit of different representations is not new. It has motivated efforts in fine
grained classification, where classes are defined within a narrow domain, e.g.
birds [21], dogs [9], or shoes [23]. This eliminates many of the biases present in
more general problems. Large scale generic object recognition datasets, such as
ImageNet, account for this through a mix of breadth and depth, i.e. by including
large numbers of classes but making subsets of them fine-grained. For action
recognition, the effect of biases on the evaluation of different representations
is more subtle. A general rule is that representations in the higher levels of the
temporal discrimination hierarchy are needed for finer grained video recognition.
However, it does not suffice to consider fine grained recognition problems. As
illustrated by Weizmann and KTH, short-term motion biases could suffice for
class discrimination, even when static biases are eliminated.

A popular fine-grained action recognition dataset is the MPII-Cooking Ac-
tivities Dataset [13]. It has some controls for static and motion bias, by capturing
all videos in the same kitchen, using a static camera, and focusing on the hands
of food preparers. However, because it focuses on short-term activities, such as
“putting on” vs “removing” a lid, or various forms of cutting food, it has strong
short-term motion biases. Hence, it cannot be used to investigate the importance
of representations at higher levels of the temporal discrimination hierarchy. Fur-
thermore, because different actions classes (e.g. “cutting” vs. “opening/closing”)
are by definition associated with different objects it has a non-trivial amount of
object bias. This is unlike the now proposed Diving48 dataset, where all classes
have identical objects (divers) and similar forms of short-term motion.

Recently, [15] analyzed action recognition by considering multiple datasets
and algorithms and pointed out future directions for algorithm design. In this
work, we are more focused on the process of dataset assembly. This is a new
idea, we are not aware of any dataset with explicit controls for representation
bias. While it is expected that dataset authors would consider the issue and
try to control for some biases, it is not known what these are, and the biases
have not been quantified. In fact, we are not aware of any previous attempt to
develop an objective and replicable procedure to quantify and minimize dataset
bias, such as RESOUND, or a dataset that with objectively quantified biases,
such as Diving48.
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3 Representation Bias

In this section, we introduce the notion of representation bias and discuss how
it can be avoided.

3.1 Dataset Bias

While many datasets have been assembled for computer vision, there has been
limited progress in establishing an objective and quantitative characterization
of them. Over the years, vision researchers have grown a healthy skepticism of
“good dataset performance”. It has long been known that an algorithm that
performs well in a given dataset, does not necessarily perform well on others.
This is denoted dataset bias [19]. In recent years, significant effort has been
devoted to combating such bias, with significant success.

These advances have been guided by well known principles in statistics. This
is because a CNN learned with cross-entropy loss is a maximum likelihood (ML)
estimator 6 of ground-truth parameters 6. Consider in this discussion a simpler
problem of estimating the head probability p in a coin toss. Given a dataset
D ={x1,...,x,} of samples from n independent Bernoulli random variables X;
of probability p, the ML estimator is well known to be the sample mean

1
D :—E i 1
pPML nix ()

Over the years, statisticians have developed many measures of goodness of
such algorithms. The most commonly used are bias and variance

Bias(pmr,) = E[pmi] — p (2)
Var(pur) = E[(pur — E[pue])?]- 3)

The algorithm of (1) is known to be unbiased and have variance that decreases
as the dataset size n grows, according to Var(puy,) = %p(l — p). Similar but
more complex formulas can be derived for many ML algorithms, including CNN
learning. These results justify the common practice of evaluation on multiple
datasets. If the algorithm is an unbiased estimate of the optimal algorithm it
will, on average, produce optimal results. If is also has low variance, it produces
close to optimal results when applied to any dataset. Hence, when evaluated over
a few datasets, the algorithm is likely to beat other algorithms and become the
state of the art.

Note that the common definition of “dataset bias” [19], i.e. that an algo-
rithm performs well on dataset A but not on dataset B, simply means that the
algorithm has large variance. Since variance decreases with dataset size n, it has
always been known that, to avoid it, datasets should be “large enough”. The
extensive data collection efforts of the recent past have produced some more
objective rules of thumb, e.g. “1,000 examples per class,” that appear to suffice
to control the variance of current CNN models.
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3.2 Representation Bias

Unfortunately, dataset bias is not the only bias that affects vision. A second,
and more subtle, type of bias is representation bias. To understand this, we
return to the coin toss example. For most coins in the world, the probability of
heads is p = 0.5. However, it is possible that a dataset researcher would only
have access to biased coins, say with p = 0.3. By using the algorithm of (1) to
estimate p, with a large enough n, the researcher would eventually conclude that
p = 0.3. Furthermore, using (2)-(3), he would conclude that there is no dataset
bias and announce to the world that p = 0.3. Note that there is nothing wrong
with this practice, except the final conclusion that there is something universal
about p = 0.3. On the contrary, because the scientist used a biased dataset, he
obtained a biased response.

The important observation is that standard dataset collection practices, such
as “make n larger,” will not solve the problem. These practices address dataset
bias, which is a property of the representation. On the other hand, representa-
tion bias is a property of the dataset. While evaluating the representation ¢ on
multiple (or larger) datasets D; is an effective way to detect dataset bias, repre-
sentation bias can only be detected by comparing the performance of multiple
representations ¢; on the dataset D. More importantly, the two are unrelated,
in the sense that a representation ¢ may be unbiased towards a dataset D, even
when D has a strong bias for ¢. It follows that standard evaluation practices,
which mostly measure dataset bias, fail to guarantee that their conclusions are
not tainted by representation bias.

This problem is difficult to avoid in computer vision, where biases can be
very subtle. For example, a single object in the background could give away the
class of a video. It is certainly possible to assemble datasets of video classes that
can be discriminated by the presence or absence of certain objects. This does not
mean that object recognition is sufficient for video classification. Only that the
datasets are biased towards object-based representations. To avoid this problem,
the datasets must be well calibrated.

3.3 Calibrated Datasets

Representation is a mathematical characterization of some property of the visual
world. For example, optical flow is a representation of motion. A representation
¢ can be used to design many algorithms ~4 to accomplish any task of interest,
e.g. different algorithms that use optical flow to classify video. A representation
family R is a set of representations that share some property. For example, the
family of static representations includes all representations for visual properties
of single images, i.e. representations that do not account for motion.

Let M(D,~) be a measure of performance, e.g. classification accuracy, of
algorithm - on dataset D. The performance of the representation ¢ is defined as

M(D’ ¢) = H;iXM(,D’ 7¢>) (4)
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where the max is taken over all algorithms based on the representation. Rep-
resentation bias reflects the fact that a dataset D has a preference for some
representation ¢, i.e. M(D, ¢) is high.

The fact that a dataset has a preference for ¢ is not necessarily good or bad.
In fact, all datasets are expected to be biased for the ground truth representation,
(GTR) ¢y, the representation that is truly needed to solve the vision problem.
A dataset D is said to be well calibrated if this representation has the best
performance

¢g = arg mgux/\/l(l)7 o) (5)
and the maximum is unique, i.e.

M(D,¢) < M(D,dg) Vo # ¢g. (6)

In general, the GTR is unknown. A commonly used proxy in vision is the state-
of-the-art (SoA) representation

(bsoa = arg I;)leag M(Da ¢) (7)

where S is a finite set of representations proposed in the literature. If the dataset
D is well calibrated, ¢5,, Will converge to ¢, as S expands, i.e. as more repre-
sentations are tested. This is not guaranteed when D is not well calibrated.
Unfortunately, it is usually impossible to know if this is the case. An alternative
is to measure of bias.

3.4 Measuring Representation Bias

While the best possible performance on a dataset, e.g. the Bayes error of a
classification task, is usually impossible to determine, the contrary holds for the
worst performance. For classification, this corresponds to the random assignment
of examples to classes, or “chance level performance”. This is denoted as

Moypad = m(gn/\/l(D, ?). (8)
The bias of a dataset D for a representation ¢ is defined as
M(D, ¢
B(D,0) = log {0 )
rnd

When bias is zero, the representation has chance level performance and the
dataset is said to be unbiased for the representation.

A dataset for which (5) holds but (6) does not, since there is a family of
representations R such that M(D,¢) = M(D,¢,) V¢ € R, can be made well
calibrated by addition of data D’ that reduces the bias towards the represen-
tations in R, i.e. B(DUD',¢) < B(D,$) Vo € R, while guaranteeing that (5)
still holds. Similarly, a dataset can be designed to be minimally biased towards
a representation family R. This consists of selecting the dataset

D* = i B(D, 10
arg  Inin max (D.¢) (10)
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Algorithm 1: Representation biases.

Input : Dataset D; representation families {R1,..., Rk}
Output: Representation biases {b1,...,bx}.
1 fork=1,...,K do

2 R = number of representations in Ry;
3 forr=1,..., Ry do
4 My, » = number of algorithms based on representation ¢y ,;
5 form=1,..., My, do
6 fygjm: m*" algorithm based on Ok,r; Measure M (D, fyg;’r)
7 end
8 Measure M(D, ¢x,r) with (4);
9 Measure bias B(D, ¢r, ) with (9);
10 end
11 Compute by = max, B(D, ¢k, );
12 end

where T (¢g4) is the set of datasets for which (5) holds.

Note that the constraint D € T(¢,) is somewhat redundant, since it has to
hold for any valid dataset collection effort. It simply means that the dataset
is an object recognition dataset or an action recognition dataset. Researchers
assembling such datasets already need to make sure that they assign the highest
score to the GTR for object recognition or action recognition, respectively. The
main novelty of (10) is the notion that the datasets should also be minimally
biased towards the family of representations R.

3.5 Measuring Bias at the Class Level

Definition (9) can be extended to measure class-level bias. Consider a dataset of
C classes. Rather than using a single classification problem to measure M(D, ¢),
C one-vs-all binary classifiers are defined. The bias for class c is then defined as

MC(D’ QS)

B.(D, ¢) = log Moy

(11)
where M., is the performance on the classification problem that opposes ¢ to
all other classes. To alleviate the effects of sample imbalance, performance is
measured with average precision instead of classification accuracy.

4 RESOUND Dataset Collection

In general, it is impossible to guarantee that a dataset is minimally biased to-
wards all representation families that do not contain ¢,. In fact, it is usually
impossible to even list all such families. What is possible is to define a set of
representation families R; towards which the dataset aims to be unbiased, mea-
sure the bias of the dataset for at least one representation in each R;, and
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show that the biases are smaller than previous datasets in the literature. This is
denoted REpreSentatiOn UNbiased Dataset (RESOUND) collection. The steps
taken to measure the biases of the dataset are summarized in Algorithm 1.

Two strategies are possible to implement RESOUND in practice. The first is
explicit optimization, where dataset D* is produced by an algorithm. This could,
for example, start from an existing dataset D and add or eliminate examples so as
to optimize (10). The second is an implicit optimization, which identifies classes
likely to be unbiased with respect to the representation family R. For example,
if R is the family of object representations, this requires defining classes without
distinguishable objects in either foreground or background. We next illustrate
this by applying RESOUND to the problem of action recognition.

4.1 Explicit RESOUND

One possible strategy to assemble a K-class dataset D* of minimal bias is to
select K classes from an existing dataset D. Let D have C > K classes, i.e. a
set of class labels D, = {di,...,dc}, where d; denoted the i'" class of D. The
goal is to find the label set of D* i.e. a set Dy = {ci,...,cx}, such that: 1) ¢;
are classes from D, i.e. ¢; € Dy; 2) ¢; are mutually exclusive, ¢; # ¢;, Vi # j; 3)
D* has minimal bias.

Using the class-level bias measurement of (11) then leads to the following
optimization problem.

K
D, = argmin Z B, (D", ¢) (12)
k=1

C1,..,cKk €Dy

subject to 1<¢; <Cic;#¢j, Vi#j (13)

Since this is a combinatorial problem, a global optimum can only be achieved by
exhaustive search. Furthermore, because the bias B, (D*, ¢) of class ¢ depends
on other classes in D*, the biases have to be computed for each class configu-
ration. For small values of K, the time complexity of this search is acceptable.
The problem of how to scale up this process is left for future research.

4.2 Implicit RESOUND: the Diving48 Dataset

In this section, we describe the application of RESOUND in creating an action
recognition dataset, Diving48. The goal of this data collection effort was to enable
further study of the question “what is the right level of representation for action
recognition?” The current evidence is that optical flow representations, such as
the two-stream network of [17], are sufficient. However, current datasets exhibit
biases that could lead to this conclusion, even if it is incorrect. By producing
a dataset with no (or small) such biases, we expect to use it to investigate the
importance of short-time motion vs long-term dynamics representations. Since
we were not interested in the role of static cues, the dataset should be unbiased
towards static representations. However, it would be too difficult to consider all
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static cues. To keep the problem manageable, it was decided to emphasize the
most prevalent static biases of existing datasets: objects, scenes, and people. For
this, we considered the domain of competitive diving.

Diving is an interesting domain for the study of action recognition, for various
reasons. First, there is a finite set of action (dive) classes, which are unambigu-
ously defined and standardized by FINA [1]. Second, the dives differ in subtle
sub-components, known as elements, that the divers perform and are graded on.
This generates a very rich set of fine-grained action classes. Since some of the
dives defined in [1] are rarely performed by athletes (due to their difficulty), a
subset of 48 dives were selected as classes of the Diving48 Dataset. Third, and
perhaps most important, diving scenes give rise to much fewer biases than other
scenes commonly used for action recognition. This is because there are many
different divers per competition, there are no background objects that give away
the dive class, the scenes tend to be quite similar (a board, a pool, and spectators
in the background) in all dives, and the divers have more or less the same static
visual attributes. In this way, the diving domain addressed all biases that we
had set out to eliminate. This was verified by comparing the biases of Diving48
to those of previous datasets.

Because there are many diving videos on the web, it was relatively easy to find
and download a sufficient number of videos of diving platform and springboard,
shot in major diving competitions. However, these event videos are usually not
segmented. They are usually long videos, including hundreds of diving instances,
performed by different divers, and replayed from different camera views and at
different playback speeds. To ease the labeling process, the videos were auto-
matically segmented into clips approximately one-minute-long, which were then
annotated on Amazon Mechanical Turk with two major tasks. The first was to
transcribe the information board that appears in each clip before the start of
the dive. This contains meta information such as the diving type and difficulty
score, which is used to produce ground truth for the dataset. The second was to
precisely segment each diving instance, by determining the start and end video
frames of the dive, and labeling the playback view and speed. Each segmentation
task was assigned to 3 Turkers and a majority vote based on IOU of temporal
intervals was used to reduce labeling noise. This produced 18,404 segmented dive
video clips, which were used to create Diving48. A random set of 16,067 clips
was selected as train set and the remaining 2,337 as test set. To avoid biases for
certain competitions, the train/test split guaranteed that not all clips from the
same competition were assigned into the same split.

Figure 1 shows a prefix tree that summarizes the 48 dive classes in the dataset.
Each class is defined by the path from the root node to a leaf node. For example,
dive 32 is defined by the sequence “Backwards take-off — 1.5 Somersault — Half
Twist, with a Free body position”. Note that discrimination between many of
the classes requires a fine-grained representation of dynamics. For example, dive
16 and dive 18 only differ in the number of somersaults; while dive 33 and dive
34 differ only in the flight position.



RESOUND 11

W Take off ¢
Somersault a7
wist
Flight position
dive class id

Fig. 1. Definitions of dive class in Diving48 as a prefix tree.

5 Experiments

Three sets of experiments were performed. The first was a RESOUND experi-
ment, aimed to measure biases on existing and the proposed Diving48 dataset.
The second was meant to confirm that RESOUND sampling of existing datasets
can effectively produce datasets with minimal biases. The third aimed to inves-
tigate the original question of the importance of dynamic modeling for action
recognition.

5.1 Datasets

The biases of Diving48 were compared to those of seven popular datasets, whose
statistics are shown in Table 1. KTH [14], Hollywood2 [11] are small datasets
introduced in the early history of video action recognition. They were collected
in a more controlled fashion, with e.g. fixed background. HMDB51 [10] and
UCF101 [18] are modern datasets with larger scale and less constrained videos.
ActivityNet [3], Kinetics [8] and Charades [16] are three recent datasets, collected
by crowd-sourcing. All experiments were used on the official train/test splits
for each dataset. Dataset level bias is measured with (9), using accuracy as
performance metric. For class level bias, average precision is used in (11).

5.2 RESOUND Experiments

A set of RESOUND experiments were performed to compare the representation
biases of Diving48 and existing datasets. Three static biases were considered in
Algorithm 1, using three representation families R = {Ropject, Rscene, Rpeopie } -
For each family, we considered a single representation—CNN features, and a
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Table 1. Statistics and biases of various video action recognition datasets.

Dataset |#samples|#classes|avg. #frames||B(D, dopjcct) | B(D, pscene)|B(D, Ppeopic)| Mrnd
KTH 599 6 482.7 1.47 1.39 1.47 0.17
Hollywood2 823 10 345.2 1.69 1.61 1.64 0.10
HMDB51 6766 51 96.6 3.16 2.92 2.98 0.020
UCF101 13320 101 187.3 4.33 4.09 4.23 0.010
ActivityNet| 28108 200 1365.5 3.69 3.37 3.49 0.0050
Kinetics 429256 400 279.1 4.51 3.96 4.31 0.0025
Charades 99618 157 310.0 2.12 2.01 2.04 0.0063
Diving48 18404 48 159.6 1.48 1.26 1.44 0.021

single algorithm—ResNet50 [6]. The networks varied on how they were trained:
Gobject Was trained on the 1,000 object classes of ImageNet [4], ¢scene on the 365
scene classes of the Places365 scene classification dataset [25], and @peopre On the
204 classes of people attributes of the COCO-attributes dataset [12].

These networks were used, without fine-tuning, to measure the representation
bias of each dataset. A 2,048 dimensional feature vector was extracted at the
penultimate layer, per video frame. A linear classifier was then trained with cross-
entropy loss to perform action recognition, using the feature vectors extracted
from each action class. It was then applied to 25 frames drawn uniformly from
each test clip, and the prediction scores were averaged to obtain a clip-level
score. Finally, the clips were assigned to the class of largest score. The resulting
classification rates were used to compute the bias B(D, ¢), according to (9).

The biases of all datasets are listed in table 1. Note that bias is a logarithmic
measure and small variations of bias can mean non-trivial differences in recogni-
tion accuracy. A few observations can be made from the table. First, all existing
datasets have much larger biases than Diving48. This suggests that the latter
is more suitable for studying the importance of dynamics in action recognition.
Second, all datasets have stronger bias for objects, then people, and then scenes.
Interestingly, the three biases are similar for each dataset. This suggests that
there is interdependency between the biases of any dataset. Third, all biases
vary significantly across datasets. Clearly, the amount of bias does not appear
to be mitigated by dataset size: the largest dataset (Kinetics) is also the most
biased. This shows that, while a good strategy to mitigate dataset bias, simply
increasing dataset size is not a solution for the problem of representation bias.
On the other hand, a small dataset does not guarantee low representation bias.
For example, UCF101 is relatively small but has the second largest average bias,
and is the dataset most strongly biased to scene representations. Fourth, bias
appears to be positively correlated with the number of classes. This makes in-
tuitive sense. Note, however, that this effect is dependent on how the dataset is
assembled. For example, HMDB51 has a number of classes similar to Diving48,
but much larger object bias. In fact, Diving48 has bias equivalent to that of
the 6 class KTH dataset. Nevertheless, the positive correlation with number of
classes suggests that representation bias will become a more important problem
as datasets grow. Certainly, some of the most recent datasets, e.g. ActivityNet
and Kinetics, have some of the largest amounts of representation bias.
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Fig. 2. Distribution of the dominant class bias ¢y .

5.3 Class-level Dominant Bias

We next evaluate biases at the class level, using (11). For each class ¢, a domi-
nant bias ¢¢. is identified with

r* = argmax B.(D, ¢,). (14)

Figure 2 summarizes the distribution of this dominant bias on each dataset of
Table 1. It is clear that most classes of all datasets are dominantly biased for
object representation. However, different datasets have different bias properties.
For example, KTH classes are more biased to people representation than scene
representation, while this is reverse for Hollywood2. Diving48 has the most uni-
form distribution. These plots can be used to derive guidelines on how to mitigate
the biases of the different datasets. For example, object bias can be decreased by
augmenting all the classes where it is dominant with videos where the objects
do not appear, have a larger diversity of appearance and/or motion, etc.

5.4 Explicit RESOUND

We have also investigated the possibility of creating unbiased datasets from exist-
ing biased datasets, using the explicit RESOUND procedure of (13). Due to the
large computational complexity, we have so far only used K = 3. This is geared
more to test the feasibility of the approach than a practical solution, which will
require the development of special purpose optimization algorithms. To test the
effectiveness of explicit RESOUND sampling, the biases of the resulting datasets
were compared to those obtained by random sampling. Table 2 shows that in all
cases, the datasets produced by explicit RESOUND have significantly smaller
biases than those produced by random sampling. And the optimization results
make intuitive sense, e.g. for ActivityNet, the selected classes are {“Hanging
wallpaper”, “Installing carpet”, “Painting” }, which are all household actions.

5.5 Classification with Dynamics

We finish by using Diving48 to investigate the importance of dynamics for ac-
tion recognition. The goal was not to introduce new algorithms but to rely on
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Table 2. Explicit RESOUND (D)) biases after sampling. Results of random sampling
(Drana) were evaluated on 10 runs and are reported as mean =+ std.

¢ = ¢object (;b = ¢scene ¢ = ¢people
Dataset ||B(Dy, ) B(Drand, 8)||BD;, §)B(Drand, )| BD;, ) B(Drand, d)
KTH 0.39 10.99 £ 0.09|| 0.29 |0.80 £ 0.17|| 0.44 [0.86 + 0.20

Hollywood2|| 0.44 |0.86 £ 0.07|| 0.28 [0.66 £ 0.13|| 0.33 |0.68 £+ 0.08
HMDBb51 0.00 |0.82 £ 0.54|| 0.00 [0.99 £ 0.05|| 0.00 |0.90 £ 0.13
UCF101 0.55 |1.08 £ 0.02]| 0.65 |1.02 £ 0.09|| 0.46 |1.08 & 0.02

ActivityNet|| 0.41 |0.89 £0.10|| 0.14 [0.79£ 0.09| 0.00 |0.84 £ 0.11
Kinetics 0.41 |1.00 £ 0.11|| 0.30 |1.01 £ 0.08| 0.33 [0.94 + 0.11
Charades 0.00 ]0.62 & 0.20|| 0.00 |0.67 £ 0.18| 0.00 |0.73 & 0.14

Table 3. Recognition accuracy on Diving48.

TSN(RGB)[TSN(Flow)| TSN(RGB+ Flow)[C3D(L=8)|C3D(L—=16)|C3D(L=32)|C3D(L—=64)
16.77 19.64 20.28 11.51 16.43 21.01 27.60

off-the-shelf models of dynamics. Existing models for this evaluation include
TSN [22] and the C3D [7]. For C3D, varying number of frames L is an objective
measure of the extent of dynamics modeling. We set L = 8,16,32 and 64. The
action recognition performance on Diving48 is shown in table 3. First, the best
performing C3D model with the largest extent of dynamics modeling achieves
the best result, verifying that Diving48 is more than flow modeling. Second,
the C3D results improve monotonically with L, showing that a moderate level
of dynamics modeling is required to achieve good performance on this dataset.
Nevertheless, the best overall performance (27.60%) is still fairly low. This shows
that research is needed on more sophisticated representations of dynamics.

6 Conclusion

In this paper, we have introduced the concepts of well calibrated datasets and
representation bias, and the RESOUND algorithm to objectively quantify the
representation biases of a dataset. An instantiation of RESOUND in its explicit
optimization form was used to sample existing datasets, so as to assemble new
datasets with smaller biases. Another instantiation of RESOUND was used to
compare the static representation bias of a new action recognition dataset, Div-
ing48, to those in the literature. This showed that existing datasets have too
much bias for static representations to meaningfully evaluate the role of dy-
namics in action recognition. Diving48, which was shown to have much smaller
biases, is a better candidate for such studies. Preliminary classification results,
with static representations and 3D CNNs, indicate that modeling of dynamics
can indeed be important for action recognition. We hope that this work, and
the proposed dataset, will inspire interest in action recognition tasks without
static bias, as well as research in models of video dynamics. We also hope that
procedures like RESOUND will become more prevalent in vision, enabling 1)
more scientific approaches to dataset collection, and 2) control over factors that
can undermine the conclusions derived from vision experiments.
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