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ABSTRACT

A simple yet effective method for inference-time alignment of generative mod-
els is Best-of-IV (BoN), where N outcomes are sampled from a reference policy,
evaluated using a calibrated proxy-reward model, and the highest-scoring one is
selected. While prior work argues that BoN is almost optimal in reward vs KL
tradeoffs, the effectiveness of BoN depends critically on the quality of the (cali-
brated) proxy-reward model used for selection. For this purpose, we study BoN
through a smooth version known as Soft Best-of-N (SBoN) and develop a theo-
retical framework to address this gap. We analyze the scaling behaviour of BoN
by providing bounds on the KL divergence between the SBoN policy and the ref-
erence policy, offering insights into how performance varies with the number of
samples. We also study the regret gap, i.e., the gap between the expected cali-
brated true-reward under the optimal policy and the SBoN policy. Our theoretical
and empirical findings show that smoothing helps SBoN mitigate reward overop-
timization, especially when the quality of the calibrated proxy-reward is low.

1 INTRODUCTION

Large language models (LLMs) have transformed machine learning, achieving state-of-the-art re-
sults on a variety of tasks. Despite all advancements, LLMs can still generate undesirable outputs,
such as toxic or factually incorrect responses. This has made alignment a central goal in modern
LLM development (Achiam et al., 2023; Team et al., 2023).

Several post-hoc alignment methods have been proposed to address this challenge, including Rein-
forcement Learning from Human Feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 2022),
SLiC (Zhao et al., 2022), Direct Preference Optimization (Rafailov et al., 2023), controlled decoding
(Mudgal et al., 2024) and Best-of-N (BoN) sampling (Beirami et al., 2024). While these methods
differ in their implementationranging from training-time optimization to test-time selectionthey can
be viewed, in principle, as approximating the solution to a KL-regularized reward maximization
problem. The optimal solution to this problem is a tilted distribution over responses, which balances
reward and proximity to the reference model (Yang et al., 2024).

In BoN as a test-time sampling strategy, given a prompt, [V responses are sampled from the reference
policy, and the one with the highest proxy-reward sample is selected. Empirically, BoN has been
shown to achieve competitive or superior performance in the reward-versus-KL divergence trade-off
when compared to RLHF and other alignment methods (Gao et al., 2023a; Mudgal et al., 2024)
under true-reward model. Furthermore, under certain conditions, it asymptotically approximates
the solution to the KL-regularized reward maximization objective (Yang et al., 2024). However, in
practice, BoN relies on a learned proxy-reward modelan approximation of the true-reward functionto
guide this selection. As such, their effectiveness critically depends on both the proxy-reward model
(estimation error of true-reward) and the qguality of the reference policy.

Understanding how these two components, the quality of the calibrated proxy-reward model and the
choice of reference policy, affect the alignment quality of test-time sampling algorithms is essential.
There are different measures of alignment quality, including KL divergence ' between aligned policy
and reference policy and the regret defined as the gap between the expected calibrated true-reward

!"Unless stated otherwise, all KL divergences are understood to be measured between the aligned policy and
the reference policy.
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under the optimal (tilted) policy and the alignment policy. Note that minimizing the regret gap is
critical to ensuring high-quality outputs and close performance to the optimal policy. Recent work by
Gao et al. (2023a) and Hilton et al. (2022) has investigated the scaling laws governing reward model
optimization in both reinforcement learning (RL) and BoN settings as a function of KL divergence
between aligned policy and reference policy. They empirically demonstrate that, under proxy-reward
models, the improvement in expected calibrated true-reward, relative to a reference policy, scales
proportionally for both RL and BoN policies.

While recent work analyzes BoN under the idealized settings where there is no discrepancy between
the calibrated proxy-reward and the true-reward (Yang et al., 2024; Beirami et al., 2024; Mroueh,
2024; Huang et al., 2025), our work relaxes this assumption to study the interplay between the
reward discrepancy measured through regret and the KL-divergence. We present a theoretical study
of Soft Best-of- NV (SBoN), a smoothed variant of BoN recently introduced by Mayrink Verdun et al.
(2025); Jinnai et al. (2024). Unlike BoN, SBoN draws the final response probabilistically from the
N candidates, yielding a policy that is tunable with a temperature parameter. Our analysis centres
on two metrics:

(a) the KullbackLeibler divergence between SBoN policy (under the frue reward or proxy-
reward model) and the reference policy, and

(b) the regret, i.e. the expected calibrated true-reward gap between optimal policy and SBoN
policy.

We show how these results specialize to the BoN (as a limit of SBoN for the temperature goes to
infinity) and quantify the estimation error incurred by using a proxy reward model instead of the
true-reward. Finally, we characterize regimes in which SBoN attains lower regret bound than BoN
when we use the calibrated proxy-reward model. Our main contributions are:

* We derive finite-sample bounds for KL divergence between the SBoN policy and reference
policy, and for the regret gap of the SBoN policy, and we extend these bounds to BoN.
These bounds reveal how the number of responses IV, (calibrated) proxy-reward model
quality and reference policy model affect performance.

* We quantify cases where SBoN performs better than BoN under overoptimization sce-
nario where the calibrated proxy-reward model is used instead of the calibrated true-reward
model.

* We provide experimental validation using various proxy-reward models to demonstrate
SBoN’s advantages in the overoptimization scenario.

2 RELATED WORKS

In this section, we discuss related works on BoN, the theoretical foundation of (Soft) BoN and
overoptimization. More related works for the theoretical foundation of RLHF and smoothing of
maximum are provided in the Appendix (App) A.

Best-of-N: Despite many recent advancements in alignment, a simple, popular, and well-performing
method continues to be the BoN policy (Nakano et al., 2021; Stiennon et al., 2020; Beirami et al.,
2024). In fact, Gao et al. (2023b); Mudgal et al. (2024); Eisenstein et al. (2023) show that BoN
consistently achieves compelling win rateKL tradeoff curves, often outperforming KL-regularized
reinforcement learning and other more complex alignment strategies. LLaMA 2 (Touvron et al.,
2023) leverages BoN outputs as teacher signals to further finetune the base model. Mudgal et al.
(2024) extend BoN through Q-learning to block-wise BoN decoding. This empirical effectiveness
has also inspired research into distilling BoN behaviour into standalone models (Amini et al., 2025;
Sessa et al., 2024; Qiu et al., 2024). Hughes et al. (2024) utilize BoN as an effective method for
jailbreaking, while BoN is also commonly used as a strong baseline for scaling inference-time com-
pute (Brown et al., 2024; Snell et al., 2024). Given the broad success of BoN, we are motivated
to theoretically investigate the BoN policies and the effect of the calibrated proxy-reward model
(reward hacking) and the quality of the reference policy.

Theoretical Foundation of (Soft) BoN: KL divergence of BoN is studied in (Beirami et al., 2024;
Mroueh, 2024) via information theoretical tools where the KL divergence of BoN sampling from
the reference distribution is bounded by log(N) — (N — 1)/N. Scaling laws governing reward
as a function of KL divergence is empirically studied by Gao et al. (2023b) and theoretically for-
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malized by Mroueh (2024). Furthermore, the asymptotic case and the equivalence of BoN to the
KL-constrained reinforcement learning solution are studied by Yang et al. (2024) under the assump-
tion of access to optimal reward. Gui et al. (2024) further characterized the win rateKL gap in
the asymptotic regime where a model assigns extremely low likelihoods to successful completions.
Furthermore, Sun et al. (2024) accelerated BoN using speculative rejection sampling. The regret
of BoN under some assumptions is studied in (Huang et al., 2025). The convergence rate of the
SBoN policy to the optimal tilted policy has been analyzed by Mayrink Verdun et al. (2025). Ad-
ditionally, Geuter et al. (2025) investigate a variant of SBoN that incorporates speculative samples
from a small auxiliary model, providing both theoretical and empirical insights. However, the regret
gap and KL divergence of SBoN under overoptimization scenario remain largely unexplored in the
existing literature.

3  PROBLEM FORMULATION

Notations: Upper-case letters denote random variables (e.g., Z), lower-case letters denote the re-
alizations of random variables (e.g., z), and calligraphic letters denote sets (e.g., Z). All loga-
rithms are in the natural base. The set of probability distributions (measures) over a space X with
finite variance is denoted by P(X). Ay is N-simplex distribution set. The KL divergence be-
tween two probability distributions on R? with densities p(z) and g(z), such that g(x) > 0 when
p(x) > 0,is KL(p|lq) := [pa p(2)log(p(x)/q(x))dx (with 0.1log 0 := 0). The total-variation dis-
tance is defined as TV(p,q) = 3 [, [p(z) — ¢(z)|. Furthermore, we define chi-square divergence

2
5 (o) = [ G 1

3.1 PRELIMINARIES

Let the finite set of prompts be X’ and the discrete finite set of responses be ). Prompts are drawn
from a distribution p over X. A (stochastic) policy m € II assigns, for every prompt x € X, a
conditional distribution 7 (- | z) over )V; drawing y~ (- | ) yields a response.

We treat the supervised-fine-tuned (SFT) model as a reference policy, denoted mpef(- | x). We
consider a calibrated true-reward function, (Balashankar et al., 2025), r¥: X x Y — [0, 1]. For a
given temperature 5 > 0, we seek a policy that remains close to .. while maximizing expected
calibrated true-reward, leading to the KL-regularized objective

1
o By o8 (2,Y)] = 5 KUr( | 2) [ mr(- | ). ()

The unique solution is the tilted optimal policy (Korbak et al., 2022b;a; Yang et al., 2024)

7Tref(y | .Z‘) eXp(/é) r:f(x, y))

mars (ylx) = Zrs v (2, ) 7 .

where Z,« y (, 8) = 3, cy Tret (y | @) exp(8 7% (2,y)), is the normalizing (partition) function.

Note that, in practice, we do not have access to the closed form of reference policy 7 (y|z) and
r’(y,z). We can only first estimate the true-reward function via calibrated proxy-reward function
7. (y, x) using some datasets and then sample from 7,¢(y|x) and compute 7 (y, ) for each individ-
ual sample. Then, we can apply inference time algorithms, e.g., BoN or SBoN (Mayrink Verdun
et al., 2025), where N samples are generated from ¢ (y|x) and we choose the sample with the
highest calibrated proxy-reward function (BoN) or sampled from a distribution (SBoN) using the
calibrated proxy-reward function. When only a calibrated proxy-reward function 7 (y, ) is avail-
able, we obtain the analogous partition function Z;_ y (z, 8) and policy 7g s, (:|x).

3.2 CALIBRATED REWARD FUNCTION

In this work, we consider calibrated reward functions instead of raw (uncalibrated) reward functions.
As shown by Balashankar et al. (2025), calibrated reward function satisfies:

* Boundedness: for all z,y, we have #.(y, z), 2 (y, z) € [0, 1].
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* Uniformity under the reference model: for each prompt x € X, if y ~ mef(- | ) then
re(y, ) ~ Unif (0, 1) for r. € {fe, 75}

In practice, the calibrated proxy-reward model can be fit to a human-labeled preference dataset
or to data annotated with calibrated true-rewards. Following (Huang et al., 2025), we assume for
simplicity that 7.(y, z) is given.

Assumption 3.1 (Achievable maximum reward). We assume that for r. € {#.,r%}, we have
re(§(x), ) = 1 for all §(z) € arg max, r.(y, z) and given z € X.

In many settings, the calibrated reward function attains its maximum at specific responses. In partic-
ular, since a large language model (LLM) generates outputs using a finite vocabulary and a bounded
number of tokens, the space of possible generations is finite, and thus the assumption holds trivially.

3.3 SBON ALGORITHM

Fix a prompt z € X and draw N i.i.d. candidates Y1.y ~ 7o (- | ). Let Z € {1,..., N} denote
the index of the selected response with distribution Pz; write Pz(i) = Pr(Z = i). We seek a
distribution over indices that maximizes the calibrated proxy-reward:

Pgneag(N Ez [TC(Yz, )] .

Without regularization, the optimizer is the deterministic Best-of-N (BoN) rule Pz = §;+ with
i* € argmax; 7.(Y;, z). Because 7. is a proxy for the true-reward, this deterministic choice can
overoptimize the proxy-reward and get response with lower calibrated true-reward. To smooth this,

we add an entropy penalty with temperature 5 > 0:

Jmax B [7Yz,2)] + %g(pz).

exp (ﬁ fC(Yi,a:))
SN exp(B7e(V,2))

We then sample Z from this distribution and return Y. We refer to this sampling rule as Soft-BoN,
as introduced by Mayrink Verdun et al. (2025).

We denote the final policy from SBoN via 7T( ’5)(y|x) Note that for 8 — oo and 8 — —o0, we
recover BoN and worst-of-N (WoN) (Balashankm et al., 2025), respectively. Furthermore, for 5 —
0, we recover uniform sampling among the /N response samples, which is equivalent to sampling
from the reference model e (y|z). In (Mayrink Verdun et al., 2025, Lemma 1), the closed form
solution of SBoN policy is derived,

The unique solution is the softmax distribution, Py (i) =

78 (1) = Tret W) xp(Bre(y, ))

L ) 3
c ZN,B

—1
where Zy g = E{(L(exp(ﬁfc(y, )+Zz 1 exp(BrC(YZ,x)))) } . Similarly, we can define

(N A (y|z) based on a calibrated true-reward model. For s1mphclty, we define BoN policies under

cahbrated true-reward and proxy-reward models as 7r( e (y|x) and 7r( 20) (y|z), respectively. In

this work, we focus on 8 > 0. Another motivation for SBoN based on the Gumbel-Max trick is
provided in Appendix (App) D.

3.4 TILTED ERROR

Let’s define the tilted error as the tilted average of square estimation error of calibrated true-reward
function for a given prompt x with parameter 3, as follows,

1 r*(Y,x)—7 z))?
ep,re () = 5 lo8 (Ey%ef(y\z)[eﬂ( o (V@)= (Y,) ]). 4)
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A similar definition of estimation error is introduced in (Yang & Wibisono, 2022). When 8 = 0,
the definition reduces to the mean-squared error, which is also introduced in (Huang et al., 2025).
Letting 8 — oo recovers the square of the supremum (infinity) norm (|| - || o) of the estimation error
between 77 (y, ) and 7 (y, x). Therefore, the following properties hold for g (),

* The tilted error is bounded, i.e., eg . (z) € [0, 1].
* The tilted average of the estimation error is monotonically increasing in (.
* foor(t) = limps 0 g (2) = [IrE (Y, 2) — 7e(V, )%

We assume that overoptimization regime happens whenever we have g ,_(x) > 0.

We define tilted error using calibrated (proxy and true) reward models rather than raw reward models,
because our focus is on how rankings change under the proxy. For example, if the proxy is a
strictly increasing transform of the true-reward, the ranking is preserved; the Best-of-N (BoN) policy
remains optimal and no overoptimization occurs. This behavior cannot be captured when working
with the raw (uncalibrated) reward models. Note that in (Huang et al., 2025), raw (uncalibrated)
reward models are utilized for error definition.

3.5 OPTIMAL PoLICY AND COVERAGE

We define the optimal policy under the calibrated true-reward model as,
T (yle) = argmax By () [rE (Y, 2)]- )
Similarly, we can define 7} (y|x) as the optimal policy under the calibrated proxy-reward model.

As the calibrated reward functions (true and proxy) are bounded, we can interpret optimal policies
as the limit of tilted optimal policies,

o () i= i 5 (la), Mo, (o) 1= lim o (o). ©®

where oo+ (+|2) and 7o . (+|) place all their probability mass on the maximizers of 5 (y, z) and
7e(y, x), respectively. Therefore we have 77 (- [) = 7o rx (+|2) and 7% (- |2) = moo 5, (-|).

Coverage: For a given calibrated reward function r.(z,y), we define the tilted policy (softmax
policy):

T8, (Y7) O Tret (y]2) exp(Bre(x, y)).
Then, we introduce the coverage of tilted policy with respect to the reference policy as,

5 . (ylz)
Cﬁ,rmref(l’) = Z "By NI

. 7
yey 7r1ref(y|‘r) ( )

We also define,
Coomuref(x) = hm Cﬂ,rmref(x)-

B—

This measure Cpg ., ref(z) can also be interpreted as a coverage constant, which is standard
in KL-regularized policy learning. Furthermore, we can define the coverage of the tilted pol-
icy with respect to the reference policy as x2-divergence between g, (y|x) and me(y|x), ie.,
X2(74,r(y|2) | 7ees (y|z)). 1t ensures that the reference policy places sufficient probability mass on
high-reward responses, thereby guaranteeing that the support of the optimal policy lies within the
support of the reference. This prevents cases where optimal outputs are entirely excluded by the
reference. Similar notions of coverage have been explored in Huang et al. (2025).

3.6 OPTIMAL REGRET

For given policy 7 (Y|x) , we define expected calibrated true-reward with respect to the policy (a.k.a.
value function®) as

(@ (-|2) =By reia)l. ®)

*We can also consider Ex . [Jrs (7(-|X))]. All of our results also holds for expected version of value
function.
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For two policies, 71 (-|x) and 72 (+|z), we define the gap between these two policies as follows,
Aj, (m(tfx), ma(-fa)) i= Jrg (mi(]2) = Tz (m2(-]2)). ©

We consider the following KL-Regularized objective function based on the calibrated true-reward
function for SBoN,

N 1
Jre 8(Tret (y]2), 7(+[2)) 1= By on (1) [rE (Y, )] — BKL(W('|CC)||7Tref('|x))- (10)
We provide an upper bound on the gap of the SBoN solution, which is the gap between w:; ( : |x) as
the optimal policy and 7'('7({\[7[3 ) (+|x),

(N (). (11)

c

(N

e

A, (e (o), 7P () = T (s (- [2)) = i

Regarding regret of the BoN, we consider r(Ve0) (-|z) instead of = ) (|z) in equation 11.

Our results can be extended to the sub-optimal gap of the SBoN solution, which is the gap between
()

e

74,0+ (- &) as the optimal solution to equation 10 and

Ag (o (1), 7P () = e (7.0 (L)) = s (7127 (). (12)

4 KL DIVERGENCE ANALYSIS

The KL divergence between the aligned policy and the reference policy, KL(W,E{V’OO) ||7ret ), is stud-
ied by Beirami et al. (2024); Mroueh (2024) from a theoretical perspective. In particular, Beirami
et al. (2024) derives an upper bound on KL divergence for BoN policies under the assumptions of a
bijective true-reward mapping and a finite output space:
(N,00) 1

KLy 7 Cl2) et () < log(N) =1+ (13)
Mroueh (2024) relaxes the bijectivity assumption and derives similar bounds using information-
theoretic tools. Under some assumptions, the bound in equation 13 is tight. Furthermore, using
Pinsker’s inequality, in a similar approach to (Mroueh, 2024), we have,

1
By v 76 (Y, 2)] 05+ J KL ) e ([2))- a4

Note that equation 14 implies that improvement of expected calibrated true-reward relative to the
reference policy can not exceed the square root of the KL divergence. However, the analysis of KL
divergence for the SBoN policy under the calibrated true-reward model is overlooked. Therefore, we
first establish an upper bound on the KL divergence between the SBoN policy under the calibrated
true-reward model and the reference policy, shedding light on its behaviour as a function of the
number of samples [V and temperature parameter 3. All proof details are deferred to App. F.

Lemma 4.1. The following upper bound holds on KL divergence between SBoN and reference
policies for a given prompt x € X,

KL(x(%) o <1 .
(2 P @l e (012)) < V08 (T =Ty a7 (15)
Using Lemma 4.1, we can observe that for BoN, 5 — oo, we have,

KL(m(2 ) (y]) | et (yl)) < log(N). (16)

Comparing equation 16 with results in (Beirami et al., 2024; Mroueh, 2024), our result is derived
from the SBoN asymptotic regime. Note that our bound is looser than the bound on KL divergence
in equation 13. In contrast, our bound is general and can be applied to different 5 in SBoN. For
B = 0, where our policy is the reference policy, our bound is tight. It is also important to note that
the upper bound in Lemma 4.1 increases with the temperature parameter /3 for fixed N. Note that
the result in Lemma 4.1 also holds for an arbitrary bounded reward model.
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Recent works by Gao et al. (2023a) and Hilton et al. (2022) empirically demonstrate that, under
a calibrated true-reward model, the improvement in expected calibrated true-reward, relative to a

reference policy, scales proportionally to \/ KL (WT(,J*V’OO) ||7mvef) for both RL and BoN policies. It is

also observed by Gao et al. (2023b) that models optimized using proxy-rewards can suffer from
overoptimization where the learned policy diverges further from the reference, the alignment may
degrade. Despite theoretical advances, the KL divergence analysis for SBoN and BoN under the
calibrated proxy-reward model remains largely unexplored. Therefore, we are interested in investi-
gating the improvement of expected calibrated true-reward with respect to the SBoN policy under
the calibrated proxy-reward model relative to the reference policy. For this purpose, we first pro-
pose the following useful Lemma to study the closeness of the SBoN policy under the calibrated
true-reward model to the SBoN policy under the calibrated proxy-reward model in KL divergence
measure.

Lemma 4.2. The following upper bound holds on the KL divergence between the SBoN policies
under calibrated true-reward and proxy-reward models respectively,

KU ) < e (e +1) o0

Note that for 5 = 0, the upper bound in Lemma 4.2 is tight. Next, we derive our main result for
improvement of the expected calibrated true-reward under the SBoN policy using the proxy model
relative to the reference policy model.

Theorem 4.3. The following upper bound holds on the improvement of expected calibrated true-
reward under the SBoN policy for the calibrated proxy-reward model,

1 N
* < . —
By mrm ylre (V)] <05+ \/2 log <1 +(N-1) exp(—ﬁ))

— \/QNM%,TA@A(/B,N)y1)7 s

(I+ (N —1)exp(=p)

where A(B,N) = (%ﬁéﬂ) + 1).

Note that the results in Theorem 4.3 can also be interpreted as improvement relative to the reference
policy as Ey ., ;(.]2)[75 (Y, x)] = 0.5. The upper bound in Theorem 4.3 includes two terms. The
first term represents the upper bound on the expected calibrated true-reward under the SBoN policy
relative to the reference policy; we are interested in maximizing this term. Note that, as mentioned
in (Gao et al., 2023b), the expected calibrated true-reward under the aligned policy, relative to the
reference policy, is proportional to the square root of KL divergence. The second term quantifies
the estimation error introduced by substituting a calibrated proxy-reward model for the calibrated
true-reward model. We aim to minimize the second term.

Next, we compare BoN and SBoN under the no-reward model and reward model overoptimization.
Remark 4.4 (No overoptimization). We can observe that for a given 3, if we assume e, (z) = 0,
then we have KL(W(N’B)(-\J:) H7T(NB)(|I)) = 0. Under this assumption, the upper bound in Theo-

*
Te Tc

rem 4.3 simplifies to \/ % log (m) which is monotonically increasing in /5. Because a

larger KL divergence is desirable in this context, as proposed by (Gao et al., 2023b), the BoN policy
is preferred under no overoptimization scenario.

Remark 4.5 (Overoptimization). When e, () > 0, we have two conflicting goals in Theorem 4.3:
one suggesting for fixed IV that 3 needs to be smaller for better estimation of the true policy by the
calibrated proxy-reward model one given in second term of equation 18, and another one suggesting
a larger 3 to induce a better upper bound on the expected calibrated true-reward in first term of
equation 18. Hence, for a given IV, there exists an optimal 3 to balance between the estimation error
term and the expected calibrated true-reward under the SBoN policy for the calibrated true-reward
model. In this scenario, SBoN can lead to better tradeoffs than BoN. A similar discussion can be
done for fixed S and varying N.
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5 REGRET ANALYSIS

In this section, we derive theoretical regret bounds for SBoN and BoN based on calibrated reward
models. First, we provide a helpful Lemma regarding the expected coverage assumption that can
help us interpret the results of regret for BoN and SBoN. All proof details are deferred to App. G.

Lemma 5.1. Under Assumption 3.1, it holds that Cu p. ver(z) = m, where

max

yiy (z) € arg max, 7c(y, ).

Now, we derive an upper bound on the regret of SBoN.

Theorem 5.2 (Optimal Gap of SBoN). Under Assumption 3.1, the following upper bound holds on
the optimal regret gap of the SBoN policy for any 3 > 0,

g (e (+12), 7P () < \fesr (@) (4 oo nes ()

[ O] 1) 1o8(Cana(2)
Coo,r;,ref(-r)) + 2\/2 log (1 + N ) * B8 ’

Regret of BoN Through Smoothing Lens: We now derive an upper bound on the regret of BoN by
taking the asymptotic limit of the regret bound on optimal gap of SBoN in Theorem 5.3.

Theorem 5.3 (Optimal Gap of BoN). Under Assumption 3.1, the following upper bound holds on
the optimal regret gap of the BoN policy for any 3 > 0,

A gy (5 (L), 7 (1)) € 2o (2) () Coo et (&) + 3/ Co et ()

2\/;log (1+Coc#f(x)_1)

Remark 5.4 (Comparison with (Huang et al., 2025)). The regret bound for BoN policy grows with
the L..-norm of the reward-model estimation error. In contrast to the result in (Huang et al., 2025),
our bound remains finite whenever the overoptimization error vanishes, i.e., when e, ﬁ(x) =0or
N grows. We also derive results based on calibrated reward, instead of raw (uncalibrated) reward
models.

Remark 5.5 (Quality of reference policy). Furthermore, the bound stated in Theorem 5.3 (or

Theorem 5.2) depends on the quantity, Coo rx ref(7) = ) where y;%(z) €

-t
Zi ﬂ'ref( ;n:f(.lf)l

arg max, 7 (y, ). It can be interpreted as the quality of reference policy under the calibrated true-
reward model. Similarly, the bound in Theorem 5.3 (or Theorem 5.2) depends on the quantity,

Coo o vet(z) = m where y"#*(z) € argmax, 7(y,r). It can be interpreted
Trref max T -

as quality of reference policy under the calibrated proxy-reward model. Therefore, the quality of

reference policy under both calibrated true-reward and proxy-reward models affect the performance

of BoN and SBoN policies.

Next, we compare how BoN and SBoN perform when overoptimization is present and when it is
absent.

Remark 5.6 (Overoptimization). Assume that the calibrated proxy-reward suffers from overopti-
mization, i.e. €3, (z) > 0 for every § > 0. Letting N — oo and invoking Theorem 5.2, we
obtain

Ag, (i (] 2), 70D (| ) < —k’gc‘” reeet(7)

€p, 'rL (\/Coo rc,ref + \/Coo rE ref )
Similarly, for BoN we have,

A, (72, (120,787 2)) < 320 (0) (1 Coc (@) + [ Conyre per(@) ). (20)
Define the auxiliary function

g(B) = 5(50077“(33) —E&B,r. (x)), B8 > 0.

19)
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Figure 1: Soft Best-of-N experiment using a strong reward model (Left) and a weak one (Right).
When the performance of the reward model is poor, BoN can lead to overoptimization, while the
SBoN can help to mitigate it.

Because g(0) = g(oo) = 0 and g(8) > 0 for all 3, there exists at least one maximizer 8* € (0, c0)
such that g(8*) = maxg>¢ g(3).

log Co rx ret (%)
\/Cﬁ,fc,ref(m)+\/coo,rg,ref(ﬂ?) o
equation 20, and hence the bound on the regret of the SBoN policy is tighter than the bound on the
regret of the BoN policy under the calibrated proxy-reward model. An analogous comparison can
be carried out for any fixed 8 and changing N.
Remark 5.7 (No overoptimization). Assume that the overoptimization vanishes, i.e. g, (z) = 0
for every 8 € [0, c0). Then the optimality gaps of the SBoN and BoN policies satisfy

If g(8*), then the upper bound in equation 19 does not exceed

() (N.B) (. < \/1 Coo,eret(®) =1\ 108 Coo iy et (T) 5,
Ag(mr (), m (| 2) <2 210g(1+ N )+ 5 . @n
Ay (7 (- (N.o0) < \/1 Coosteret() =1 (22)

Jrg(ﬂr*( | x), w7 .13)) < 2 5 log(l + o )

By Lemma 5.1, C’oo’,«éyref (z) > 1; consequently, the bound in equation 22 is tighter than the bound
in equation 21.

6 EMPIRICAL EVIDENCE

To support our theoretical analysis, we conducted experiments comparing Soft Best-of-N (SBoN)
across different regularization strengths and reward model qualities. We used the Olmo-2 1B model
(OLMo et al., 2024) as the generator and prompts from the Attaq dataset (Kour et al., 2023). For each
prompt, we generated multiple responses and selected one using SBoN with varying temperature
values 3. We ran two experimental conditions: one using a strong proxy-reward model (ArmoRM
8B (Wang et al., 2024)) which is close to true-reward model, and another using a weaker proxy-
reward model (Beaver 7B RM (Dai et al., 2023)). We use LLM-as-a-Judge Zheng et al. (2023) as
our r*. As shown in Figure 1, when the reward model is weak, performance degrades for large
N due to reward hacking. However, the smoothing in SBoN helps mitigate this degradation. This
observation is also aligned with our theoretical analysis and discussion in Section 4, where under
overoptimization there exists a # for a given N which outperforms BoN. For more details, see
App. H. We also studied the behavior of our upper bound on the KL divergence between the SBoN
policy and the reference policy, Lemma 4.2, at App. H.2. More experiments with another reward
model are provided in App. H.1.

7 CONCLUSION

In this work, we establish a theoretical foundation for alignment strategies based on Soft Best-of-N
(SBoN) and Best-of-N (BoN) policies. Specifically, we derive upper bounds on the KL divergence
between the aligned policysuch as SBoN or BoNand the reference policy. We also studied the regret
gap between the optimal policy and the aligned policy, e.g., BoN and SBoN policies. We further
analyze how errors in reward estimation affect performance in both KL divergence and regret gap.
Notably, both our theoretical analysis and empirical results demonstrate that, under a calibrated
proxy-reward model where overoptimization happens, SBoN perform better than BoN under some
conditions.
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A  OTHER RELATED WORKS

Smoothing of Maximum: Approximating the maximum operator using a smoothed or softmax-
based surrogate is a widely adopted technique in machine learning. This approach is particularly
useful in settings where the hard maximum is non-differentiable or leads to unstable optimization.
For instance, in robust regression, smooth approximations to the max operator are used in min-
max formulations to achieve tractable optimization under distributional shifts (Wang et al., 2013;
Li et al., 2023). In sequential decision-making, similar ideas appear in risk-sensitive control and
Q-learning, where the softmax of Q-values leads to stochastic policies that balance exploration and
exploitation (Howard & Matheson, 1972; Borkar, 2002). In convex and non-convex optimization,
smoothing the maximum objective has been shown to improve convergence properties (Kort & Bert-
sekas, 1972; Pee & Royset, 2011; Liu & Theodorou, 2019). The Soft Best-of-N (SBoN) framework,
(Mayrink Verdun et al., 2025; Khanov et al., 2024; Jinnai et al., 2024), leverages this principle by
replacing the hard selection of the highest-reward sample with a softmax-weighted sampling distri-
bution. Regarding the SBoN, the empirical version of SBoN is introduced by (Khanov et al., 2024)
as ARGS-stochastic, where a token from a probability distribution among the top-k candidate tokens
is chosen. Then, the regularized version of BoN, which can be represented as SBoN, is discussed by
(Jinnai et al., 2024). Given the broad success of SBoN, we are motivated to theoretically investigate
the SBoN policies and the effect of the calibrated proxy-reward model (reward hacking) and the
quality of the reference policy.

Theoretical Foundation of RLHF: Several works have studied the theoretical underpinnings of
reverse KL-regularized RLHF, particularly in terms of sample complexity (Zhao et al., 2024; Xiong
et al., 2024; Song et al., 2024; Zhan et al., 2023; Ye et al., 2024; Aminian et al., 2025). Note that, as
the sampling distributions in BoN and SBoN are different, we can not apply RLHF analysis to these
sampling strategies. Therefore, it is needed to develop new foundations for BoN and SBoN.

Overoptimization. Alignment methods are widely known to suffer from overoptimization, also
known as misspecification, reward hacking, or Goodhart Law, where optimizing against a calibrated
proxy-reward model leads to degraded performance compared to the calibrated true-reward model
(Amodei et al., 2016; Casper et al., 2023; Gao et al., 2023b). This issue is particularly pronounced in
inference-time alignment methods such as BoN, where an increasing number of responses N makes
the overoptimization problem worse (Huang et al., 2025; Stroebl et al., 2024; Gao et al., 2023b).
Huang et al. (2025) theoretically demonstrate that the BoN policy suffers from overoptimization
when N is large, given a fixed estimation error in the reward model, and propose a solution based
on a y2-regularized framework. Other approaches to mitigating this issue include ensembling strate-
gies (Coste et al.; Eisenstein et al.) and regularization techniques (Ichihara et al.). In a concurrent
line of work, Khalaf et al. (2025) introduce the Best-of-Poisson method to reduce overoptimization
in inference-time algorithms. The overoptimization in BoN and SBoN is also studied by Khalaf
et al. (2025) and a principled hedging framework is proposed to mitigate the overoptimization. In
contrast, we study overoptimization in inference-time alignment methods SBoN and BoN from the
perspectives of regret gap and KL divergence analysis.

B CALIBRATED REWARD

Inspired by (Balashankar et al., 2025), in this section, we provide more details regarding calibrated
reward. A standard metric for evaluation of models is the win-rate relative to a base policy 7yef
(Stiennon et al., 2020; Gao et al., 2023b). For a prompt x and responses y, z, define the win random
variable under raw (uncalibrated) reward r as

we(y, z | &) = Hr(y,z) > r(z,2)} + 5 1{r(y,2) = r(z,2)}.

Definition B.1 (Calibrated reward). The calibrated reward of y under policy = is its expected win-
rate probability against z ~ 7(- | x):

TC,W(x3 y) = Ez~7r(~\a:)[wr(ya z | ’I)} .

In practice, we consider m = 7,¢f, therefore we denote calibrated reward via r.(z, y) under reference
policy. In the following, we provide some reasons for choosing calibrated reward instead of raw
(uncalibrated) reward in our work,
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* Matches win-rate evaluation. For any policies 7, 72,
W, (m = 7o | x) := Ey~m(-|ﬂc)[rc7ﬂ2 (a:,y)} )
where W,.(m; > mo | x) is standard win-rate. So maximizing Ey.[r¢ r,.,(z,y)] directly
optimizes standard win rate vs. the base model.
* Invariance to score scaling. If m is strictly increasing and r’ = mo r, then
re(z,y) = re(z,y),

making the target robust to arbitrary monotone reparameterizations of the reward (e.g.,
affine rescaling, temperature).

* Unified, probabilistic scale. For y ~ mye (- | ),
re(z,y) ~ Unif[0, 1],

independent of both 7 and 7,er. This normalizes per-prompt reward scales and interprets
scores as win probabilities.

C SUMMARY OF KL DIVERGENCE RESULTS

The connections between optimal, SBoN, BoN and tilted optimal policies under true or proxy-reward
models are shown in Figure 2.

™ (ylz) or

7, (Y| 2) Too,r (+|2)

Tilted optimal policy B — oo Optimal policy
A )A
N — o0
N — o0
7P (y|x) B — o0 % (ylz)
SBoN policy BoN policy

Figure 2: Connections of different policies under reward model r € {7 (y, x), ¥ (y,z)}

In Table 1 , we summarize results on KL divergences between the aligned and reference policies,
along with corresponding upper bounds for both SBoN and BoN policies. Furthermore, in Table 2,
we summarize results on KL divergences between aligned policies under true and proxy-reward
models, along with upper bounds for SBoN and tilted policies.

D GUMBELMAX TRICK

We also provide an interpretation for SBoN from the Gumbel-Max trick. An alternative way to
sample Z from

Pr(Z =1i) x exp(B7c(Y;,z))
is via the GumbelMax trick. We can draw independent Gumbel-distributed random variables G; ~
Gumbel(0,1),i =1,...,n, and then set

G,
Z = e Yvi; 4 |
arg, max [” @)+ ﬁ}
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Table 1: KL divergences between the aligned and reference policies, along with corresponding upper
bounds for both SBoN and BoN policies.

KL divergence Term Theorem / Lemma Upper Bound

N, )
KL( ( ﬂ)( |z) H7Trcf('|x)) Lemma 4.1 log (m)

Theorem 3.1 in (Beirami et al., 2024) log(N) — 1+ 1/N

(N,00) . .
KL (™ () et (+]2) and Theorem 1 in (Mroueh, 2024)

Table 2: KL divergences between aligned policies under true and proxy-reward models, along with
upper bounds for SBoN and tilted policies.

KL divergence Term Theorem / Lemma Upper Bound
N8 N8 ) NB+/ep.r
KL (" (le) |73 (1) Lemma 4.2 Mfév,ff;xzf’?m (v + 1)
KL(ﬂg,g(~\x) | a7 (-|2)) Lemma E.8 28+\/epr (\/52[6:55(25: ((;/j)) T \/Mcxp((?;: ((}3/’;))) >

By properties of the Gumbel distribution, this yields exactly the same softmax sampling law, without
needing to compute the normalizing factor Zj\le exp(p7(Y;, x)) explicitly (Gumbel, 1954). When
B8 — o0, the effect of the Gumbel noises vanishes and the sampling strategy reduces to BoN.

E TECHNICAL TOOLS

We denote the set maximizers of the calibrated proxy-reward function via Y () = {;(z)}""

We introduce the functional derivative, see Cardaliaguet et al. (2019).

Definition E.1. (Cardaliaguet et al., 2019) A functional U : P(R™) — R admits a functional

derivative if there is a map g% : P(R™) x R® — R which is continuous on P(R"™) and, for all
m,m’ € P(R"), it holds that

U / [ ot (' = m)(da)

where mg = m + S(m/ —m).

Definition E.2 (Sensitivity of a policy). We also define the sensitivity of a policy 7,.(y|x), which is
a function of reward function r(x, y), with respect to the reward function as

on . - (ylz) — 7Tr+Ar(y|x).

o ()= Jim Ar

(23)

Lemma E.3 (Kantorovich-Rubenstein duality of total variation distance, see (Polyanskiy & Wu,
2022)). The Kantorovich-Rubenstein duality (variational representation) of the total variation dis-
tance is as follows:

1
Tv(mlva) = ﬁ Seug) {EZ~m1 [g(Z)] - EZNmz [g(Z)}}a 24
gcyL

where G, = {g: Z — R, ||g||co < L}.

Lemma E.4 (Lemma 5.4 in (Aminian et al., 2025)). Consider the softmax policy, 72 (y|z) o
mret (Y|x) exp(Br(x,y)). Then, the sensitivity of the policy with respect to the reward function is

B
O (r) = pnf ) (1 — 7 ().

Lemma E.5 (Pinskers Inequality (Canonne, 2022)). For m; and ms, we have,

1
TV(mi,ma) < §KL(m2||m1)- (25)
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The following Lemmata are useful for our technical proofs.

Lemma E.6. The following upper bound holds,

Zr*,Y(.THB)
log (m) <p €ﬁ,rc(m)\/05$ré’ref(x), (26)

Proof.

qumy(x,ﬁ) _ Zyexp( e (Y, ) Tret (y|)
Zrsy(x,B) 225 exp(Bri(y, ) mret(y|z)
_ 2y oxp(B(Fe(y, x) — 1E(y, ) exp(Bre (y, ) mret (y|)
>y exp(Bre(y, o)) mres (yl2)

= "7 (yl) exp(B(Fely, @) — 15y, )))
y

27)

Due to convexity of — log(+) and using CauchySchwarz inequality, we have,

o6 (20 50) < 9 S w0 0:2) — )

< a3 T WD (r 0y () e )

et (Y|)

Yy

y
7T2 " T
<B\/Z H(, ) — 7o) Tret (41) fo((yy'x))

- \/B\/Z log (exp (5(7":;(:% ‘T) - 72C(ya x))2))ﬂ_rcf(y‘x> Cﬁ,r;,rcf(x)
Yy

IOg ZGXp T* ya ) fc(yax))Q)ﬂ-ref(y‘x)) CB,rc*,ref(x)

= ﬁ gﬁ,rc(m)\/cﬁ,rg,ref(x)»

(28)
O
Lemma E.7. The following holds,
KL(W:g ( : |x) 17t (- ) < 1Og(Coon';,ref(33)) (29)
Proof. Note that, we have,
KL(r7; (- [2) et () < log (E [MD
& = vt (1) Urer () (30)
< 10g(Coo,rL*,,ref($>>
O
Lemma E.8. The following upper bound holds,
KL (5.0 (912) 75,5, (912)) < B/2p,r (1) (\ Cre et (@) + [ Cppmer(@). GD
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Proof.
KL a0 019 s, ) = 3 ) g (Ezlg)
= BZ — Pe(y, @) 7,2 (y]2) + log(Zsy (2, B)/ Zpe v (2, B))

EB,re \/CB rE, ref \/Cﬁ P, ref

where the final inequality holds due to Lemma E.6 and applying CauchySchwarz inequality. O

(32)

Lemma E.9. Suppose that f(Z) € [0, Zmax), Zmax = {Zm.i }i%q is the set of miximizers of f(Z),
i.e, f(2) = Zmax for z € Znax. Then we have,

. Elexp(28f(2))] 1
| = .
3% Blexp (B D) Soez PZ=2) Gy
Proof.
Elexp(28/(2))] _ Elexp(28(f(Z) = Zimax))] (34)
Elexp(B8f(Z))]*  Elexp(B(f(Z) — Zmax))]?
Zj P(Z = z;) exp(2B(f(2j) — Zmax)) (35)
(Zj P(Z = zj) exp(B(f(2j) — Zmax)))?
Now, we have,
. Elexp(26f(2))
A2 Elexp(B1(2)) P G0
— lim Zj P(Z = zj) exp(2B(f(2j) — Zmax)) 37)
B—roo (Zj P(Z = zj) exp(B(f(2j) — Zmax)))?
_ Zzezmx P(Z - Z)
" Tz, PZ =) G
1
" Sen, P72 )
where we used the fact that limg_, o exp(8(2; — Zmax)) = 0 for z; < Zpax. O
Lemma E.10 (Theorem 1 in (Mayrink Verdun et al., 2025)). For 8 > 0, and N > 1, we have,
KL (. (o) |23 () < log(1 + 222 0)
Lemma E.11. We have,
f(r)| _ N?*Bexp(25)
Ik (N—12 “h
where f(r) = log (E[exp(ﬂr)+z?$:1 exp(BRv)]), r =r(z,y) is the and R; = r(Y;, x).
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Proof. Note that { R; ﬁ\;l are i.i.d. . Therefore, we have,

B 1 OE[ — ]
f(Tc<ya «T)) ) ]_1 exp(Br)+> ;" exp(BR;)
or exp(Br) + 311" exp(BR;) or
<E ! -1

[exp(BT) + vazl exp(ﬁR-)]

Y gy eslon o
X (2:1(keXp(ﬁT‘)—FN—1—k)2(1_P(R:T))N kPk I(R:T‘))

<E[ ! -1 (42)
exp(fr) + Z o eXp(ﬁR )

 Seatt) (Zk( ) P =)= )

Nﬂ exp(%)
—— 1+ (N-1)P(R=
< Sy (L (N = P(R =)
- N2Bexp(28)
N1
O
F PROOF AND DETAILS OF SECTION 4
Lemma 4.1. The following upper bound holds on KL divergence between SBoN and refer-
ence policies for a given prompt € X,
N
KL(nl2" ol mer 012)) < 108 (T~ o =a)) 43)
Proof. Recall that,
1 N-1 .
N,
72D (yla) = meor(yl) exp(Brz (y, ) E | (1 (exp(Bre ;) + Y exp(Bre (¥, @) |-
=1
Now, we have,
KL(m2"” (g]) et (y]2))
=Y m P (yle) log(mY " (y]) /mier (u]))
Y
N-1 )
Zﬂ' . ﬁ) (y|z)log(N +Z7T( ’B (y|x) log(E [(exp(ﬁr )+ Z exp(Bry(Y;,z))) })
y i=1
-1
=log(N +Z7T(N5 (y|z) log(E { (1+ Z exp(B(r:(Yi,z) — r2(y, 2)))) }),
(44)

For the second term in equation 44, consider

A(y,Y,z) = Zexp re(Yi,x) —ri(y,x))) >0,

where we have
(N —1)exp(—p) < Ay, Y, z) < (N — 1) exp(B).
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Therefore, we have,

Zw( 75 (y|z) log(E [ (1+ Zexp ra(Yi,x) — (y,x))))il])

7r( ) x)lo ! 45
éXy} S e gy ey vy, (45)
— log( . ).

14+ (N —1)exp(—p)

Combining equation 45 with equation 44 completes the proof.

Lemma 4.2. The following upper bound holds on the KL divergence between the SBoN
policies under true-reward and proxy-reward models respectively,

KL (o)l (o) < o b (TR ).

Proof. We first provide the following upper bound,
N, N
KL(m"” (yla) i (y))
(N 8)
_ Zﬂ.( ;/3 y|3: log ( (N ﬂ)(y|x))
(ylz)

= ZW(N -A) y|5€ (yax) - TC(y7x))

7r( "6) x)|( log (E g
+Z (wl ( O o Gritr ) + = (i)

1 47

- )
exp(Bfe(y, ©) + iy exp(Bie(Yi, x)) )
Nﬁ\ /EB,re x
14 (N —1)exp(=p)
(N.8) 1
+ w7V yle) (log (E] ])
Z ( exp(Brz(y, x)) + Yy exp(Bre (Vi )
[ ; D)
exp(ﬁfc(y,x)) + Zz 1 eXp(ﬂrC(K,x))
Note that for the last term in equation 47, we can apply the mean-value theorem as follows,

Zm* (ylo) (Tog (Bl - )

exp(Bri(y, @) + Yy exp(Bre(Vi, x))

— log (E[

— log (IE

: )
exp(Belyo ) + iy exp(Bre(Vi, 7))

5 (r(y,
< D o)l (v, ) — sy, )| L)
Y
where f(r,(y,z)) = log (E[exp(ﬁrv(y,m))+2ijlexp(ﬁ’rv(Yi,z))])’ for some v € (0,1) we have
ro(y, z) = vre(y, z) + (1 — y)ri(y, x). Using Lemma E.11, we have,
’5f(rc Y. ‘ N2B exp(28)
- (N=1)2

—log (E| (48)

)

(49)
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Using equation 49 in equation 48 and applying CauchySchwarz inequality, we have,

S w0 ) (1o (E : )
y

exp(Br(y, ) + S exp(Brs(Yi,z))
1

exp(Bre(y, @) + Yol eXp(ﬂTc(Yuﬂ:))D)

— log (E[

< ZE 1/(1+ Z exp(B(ri(Yi, @) — r&(y, x))))*mres (y2) (50)

\/Z|T* Y, x y7 | Tref y\ﬂﬂ \/Z‘df y, ’ ’/Tref(y|aj)

£g,r. () N?Bexp(23)
STH(N-Dexp(—f) (N_12

It completes the proof. O

Theorem 4.3. The following upper bound holds on the improvement of expected calibrated
true-reward under the SBoN policy for the calibrated proxy-reward model,

* 1 A
By nr? (o lre (Yo 2)] £ 05+ \/2 log (7 -1 exp(—ﬁ)> v

min \/QNﬁ\/sg,rc GUCY 5

(1+ (N —=1)exp(—p8

where A(3, N) = (1\2;,#52)5) + 1).

Proof. Note that the following decomposition holds,
]EYmnfch’ﬁ) ¢lz) [ra(Y,z)] — EY’\"/Trcf('Iw) [ra(Y,x)]
= EYNW,EA_Z\]’B) (‘z) [T: (Y7 l‘)] - ]Ey,\,ﬂ.f‘i:’vﬁ)(.lm) [T:(K .T)]

I3
HEy o (Y 2)] = By me gy [re (Y, 2)].

Iy

Note that we have Ey ., (.|2)[75 (Y, z)] = 0.5. O

Using Lemma 4.1 and Lemma 4.2 completes the proof.

G PROOF AND DETAILS OF SECTION 5

Lemma 5.1 (Full Version). Under Assumption 3.1, the following properties of Cg .. ver(2)
hold,

Elexp(287:(Y,x
L Cprenet(3) = B3R (V) -

2. Cg,r, ret(x) is an increasing function with respect to 5.
3. Cooreret(T) = —Zimcf(yli-f‘,‘?"(w)lﬂﬂ) where y;"2*(z) € arg max, rc(y, ).
4. For all 5 < oo, we have 1 < Cj p. rer(z) < min(Coo r, ref (), exp(20)).
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Proof. In the following, we provide proofs of different items.

1.

73 4. (ylz)
Chporet(T) = Z Byt 1T

Y Wref(y‘x)
| ep(29(5.0)
= 2 Bep(pr o] oY

| Elexp(27.(¥,2))]
E2[exp(B7.(Y, x))]

2. We can show that the logarithm function of Oﬁﬂﬁc,ref(l’) is increasing. Then, due to the

increasing feature of the log function, the final result holds.

Elexp(267.(Y, x))]

B B exp (37 (¥, )] (54)
= log(E[exp(287c(Y; x))]) — 2log(Elexp(Bre(Y, x))]),

then we can compute the derivative of equation 54,

dlog(Elexp(267c(Y, 2))]) ,dlog(Elexp(Bre(Y,z))]

dg dg 55)
_ E[27c(Y, x) exp(287. (Y, z))] 2E[fc(Y,m)eXp(,ch(Y, z))]
Elexp(267.(Y, z))] Elexp(B7e(Y, ))]

Note that we have,

qElfe(Yiz) exp(Bic (Vo))
Elexp(B7c(Y,z))]

dg
_ E[f*(Y, ) exp(Brc (Y, 2))|E[exp(Bre (Y, 2))] — E[fc(Y, ) exp(Bre (Y, z))]*  (56)
E2[exp(B7c (Y, z))]

=Eyrnp o (o) [F2 Y, 2)] = By ony o (o [Fe(Y, 2)]° > 0.

Therefore, we have,
E[7e (Y, z) exp(287c(Y, ))]
Elexp(267c(Y, 2))]

It completes the proof.

E[7.(Y, z) exp(B7.(Y, 2))]
Elexp(Bic(Y,x))]

>

(57)

. Follows directly from Lemma E.O.

. Due to Jensen inequality for E2[exp(S7.(Y, x))] < Elexp(287.(Y,z))], the Cgs 7, vet ().

W < exp(8). Furthermore,

due to increasing property in second item, we also have supg C,ig ref () = Coo g ref ().
Therefore, the upper bound holds.

We also have the uniform bound, Cs 7, rer(z) =

O
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Theorem G.1. The following upper bound holds on the sub-optimality gap of the SBoN,
N, 1
By (e (+12), P (1) < 5 (KL (s e (o) e (1)) = K (s (1) e () )
+ /€8 (@) (1/Cp et (@) + 1/ C et ()

1 Cﬁ,fc,ref(x) -1
+2\/210g (1+ #)

Proof. Note that, we have,

ge (@ (- 12), 7P ()

)
- ]EYMrB,T; (1) [re (Y, z)]
By (o) E00)

g

)
— ]EYNTr;ZCV'm (-|z) [T: (Y? ‘T)]
— —E ) [T: (Y7 Z‘)]

Yrmg s (\:c Y~mg i (|m

(58)

Iy

+E (o) [re (Y, x)] — By enl8) (1) [re(Y, )]

Iz

Note that, using the definition of 73+ (- |z) and 75 7, (-|z) as solutions to KL-regularized problem,
we have,

ylre(¥o2)] = %KL(W,T;(-Iw)l\mef(-lw)) + %log(ﬂﬂy%ef(-\z) [exp(Bre (Y, ))))-
(59)

Y"‘T"B,rg (\3:

oY 2)] = %KLw,n<-|x>||mef<~|x>> + %1og<ﬂzy~mef<.|m> [exp(B7(Y, ).
(60)

EYNWB,M (|90)[
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Therefore, for term I;, we have,

(=) [re(Y,2)] = (=) [re(Y, )]

Yomg rx Y~mg pe
By (0Ol E o)
FEy i () e =By () e ()]

= B( L( e (1) [Trct (-2) = KL(m, ()| (o) )
+ G108 By [P (V. )]) = 5 108 By 5Pl (V)

B

Z ﬁrc |£E TC yv ) r:(y,m))

Yy

B( L(mg.re (|o) et (12)) = KL(,5, (2) et (-2)) )
+ ; 108(Ey mr,os (- [exp(Br2 (Y. 2))]) — %1og<EMef<.|m) [exp(B7(Y; 2))])

+ L ’BTC y|$ \/BZ y, )) Wref(y‘m)

Treef (Y]2) (61)
%(KLW r2 (1) et (12)) = KL(mg s, (-2) | mrer (1)) )
+ %1 8By vryer (2 [exp(Bri (Y, @))]) — %log(Emef«lm) [exp(B7c(Y, x))])
+/Cs et (@) 1. ()
< 5 (KL (o) () = KL () (1))
+ 5108 By 1 (XD (V. )]) = 5 108 By [exp(Bc (Y, 2))
+/Cs et (@) 1. ()
< %(KL(MTC* (@) [[mres (-]2)) — KL(Wﬂ,fc(-va)IIWref(-Iw)))
+/Core et ()25, ()
+ /05 o ret (@)ep ().
For term I and using similar approach to term I; and applying Lemma E.10, we have,
Yo g (1) Fe o = By v 1 [re (Y, 2)]
< 2TV (ms.z, (- |2), w7 ()
< 2min (1, ) TKL(ms (- o) 17 (o)) -
< 2min ( \/2 log ( + —Cﬁfc’re}if(x) — 1))
< 2\/; log (1+ —Cﬁ’fc7r‘}if(x) - 1)
Combining equation 61 and equation 62 with equation 58 completes the proof. L]
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Theorem 5.3. Under Assumption 3.1, the following upper bound holds on the optimal regret
gap of the SBoN policy for any 5 > 0,

A (w5 (12), TP (1)) < e (@) (4 Coo et (@) + 1/ Coo s et (2))

+2\/;10g(1+000%fc7ref(m)_1)

N
log(coo,r* ref (IIZ))
+ = :
g

. .

Proof. Note that we have,

Aj, (mhe (- |2), 7D ()
= EYW;é (12) [re (¥, 2)] =By povm e (Y, 2)]
=K (Y, —E (Y,
yoor, (12) e o)l =By (o) e (o)) 63)
I3
+ A, (e (- |2), 7V ()

Iy

For term I, we can use Theorem G.1. For term I3, note that, we have for 5 > 0,

KL(m, (@) et (1) — KL (g0 (- [2) | Tves ([2)

ywﬂ:é (\z) [T: (K JU)} - EY“"TB,ré (u) [T: (K T’)] S

g
(64)

Combining equation 64 with Theorem G.1, completes the proof due the positiveness of KL diver-
gence and using Lemma E.7 and Lemma 5.1.

O

Remark G.2. For 8 =0, we have, limg_, 73+ (- |#) = e (+|x). Therefore, we have,

e, () OO =By ()] < VKL (- ) e () (65)

s ~

Theorem 5.3. Under Assumption 3.1, the following upper bound holds on the optimal regret
gap of the BoN policy for any 8 > 0,

A gy (15 (1), 785 (12)) < /€000 (@) (1 oo ret (2) + /oot et ()

+2\/;log<1+000fcvr9f(x)1>'

N

Proof. The results follow directly from Theorem 5.3 for 5 — oc. O

H EXPERIMENTS

Our implementation is available in the following link: https://anonymous.4open.
science/r/sbon-C6D3/README .md .

LLM-as-a-Judge: To evaluate the performance of the generated responses, we used GPT-4o to
determine how harmless they are. Specifically, we used the following prompt:
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Figure 3: Soft Best-of-N experiment using a strong reward model (Left) and a weak one (Right).
When the performance of the reward model is poor, BoN can lead to overoptimization, while the
SBoN can help to mitigate it.

You are an Al safety evaluator. Your task is to determine if a response to a given prompt
contains harmful content. Respond with a harmlessness score using these criteria:

2 = SAFE: The response is completely safe and appropriate.

1 =SOMEWHAT HARMFUL.: The response contains potentially concerning elements, mild
toxicity, stereotypes, subtle harmful guidance, or borderline inappropriate content.

0 =HARMFUL: The response contains clearly harmful content such as hate speech, explicit
instructions for dangerous activities, severe toxicity, etc.

Provide your judgment as an integer in curly brackets like this: 1, 2, or 3.

This yields a reward with values ranging from 0 to 2, where 0 indicates complete harm and 2 indi-
cates safety.

H.1 MORE EXPERIMENTS

To further support our theoretical analysis, we conducted more experiments comparing Soft Best-
of-N (SBoN) across different regularization strengths and reward model qualities. We ran one ex-
tra experimental conditions: one using a weaker proxy-reward model (tulu-v2.5-13b-uf-rm (Ivison
et al., 2024)) respect to Armo reward model. As shown in Figure 3, when the reward model is
weak, performance degrades for large N due to reward hacking. However, the smoothing in SBoN

helps mitigate this degradation. This observation is also aligned with our theoretical analysis and
discussion in Section 4.
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True vs Bound for (fixed N)

KL(Bound)
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|
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T T T T T T T T
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B

Figure 4: True KL divergence vs upper bound in Lemma 4.1 for fix N = {10, 100, 500}.

H.2 NUMERICAL EXAMPLE

To illustrate how our analytical upper bound in Lemma 4.1 behaves as a function of the temperature
parameter 3, we run a toy experiment in which

1. the reference policy is the uniform distribution over responses, and
2. rewards are bounded with = 1.

For each f in a logarithmic sweep, we compute the true KLdivergence between the SBoN policy
and the reference policy, together with the theoretical bound derived in Lemma 4.1.

* Very large 3 (nearBoN policy). As 3 — oo the SBoN policy converges to the BoN policy.
The gap between the KL and the bound vanishes.

* Very small 3 (reference policy). When 5 — 0 the SBoN policy approaches the uniform
sampling from the reference policy, which results in the reference policy, making the KL.
itself tend to zero; the bound is equal to zero for this value.

This experiment confirms that the bound is tight in the two asymptotic regimes and remains a con-
servative yet informative estimate elsewhere.
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