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ABSTRACT

A simple yet effective method for inference-time alignment of generative models
is Best-of-N (BoN), where N outcomes are sampled from a reference policy, eval-
uated using a proxy-reward model, and the highest-scoring one is selected. While
prior work argues that BoN is almost optimal in reward vs KL tradeoffs, the effec-
tiveness of BoN depends critically on the quality of the proxy-reward model used
for selection. For this purpose, we study BoN through a smooth version known
as Soft Best-of-N (SBoN) and develop a theoretical framework to address this
gap. We analyze the scaling behaviour of BoN by providing bounds on the KL
divergence between the SBoN policy and the reference policy, offering insights
into how performance varies with the number of samples. We also study the re-
gret gap, i.e., the gap between the expected true-reward under the optimal policy
and the SBoN policy. Our theoretical and empirical findings show that smoothing
helps SBoN mitigate reward overoptimization, especially when the quality of the
proxy-reward is low.

1 INTRODUCTION

Large language models (LLMs) have transformed machine learning, achieving state-of-the-art re-
sults on a variety of tasks. Despite all advancements, LLMs can still generate undesirable outputs,
such as toxic or factually incorrect responses. This has made alignment a central goal in modern
LLM development (Achiam et al., 2023; Team et al., 2023).

Several post-hoc alignment methods have been proposed to address this challenge, including Rein-
forcement Learning from Human Feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 2022),
SLiC (Zhao et al., 2022), Direct Preference Optimization (Rafailov et al., 2023), controlled decoding
(Mudgal et al., 2024) and Best-of-N (BoN) sampling (Stiennon et al., 2020). While these methods
differ in their implementation which are ranging from training-time optimization to test-time selec-
tion, they can be viewed as approximating the solution to a KL-regularized reward maximization
problem. The optimal solution to this problem is a tilted distribution over responses, which balances
reward and proximity to the reference model (Yang et al., 2024).

In BoN as a test-time sampling strategy, given a prompt, N responses are sampled from the reference
policy, and the one with the highest proxy-reward sample is selected. Empirically, BoN has been
shown to achieve competitive or superior performance in the reward-versus-KL divergence trade-off
when compared to RLHF and other alignment methods (Gao et al., 2023a; Mudgal et al., 2024)
under true-reward model. Furthermore, under certain conditions, it asymptotically approximates
the solution to the KL-regularized reward maximization objective (Yang et al., 2024). However, in
practice, BoN relies on a learned proxy-reward model which is an approximation of the true-reward
function, to guide this selection. As such, their effectiveness critically depends on both the proxy-
reward model (estimation error of true-reward) and the quality of the reference policy.

Understanding how these two components, the quality of the proxy-reward model and the choice of
reference policy, affect the alignment quality of test-time sampling algorithms is essential. There are
different measures of alignment quality, including KL divergence 1 between aligned policy and ref-
erence policy and the regret defined as the gap between the expected true-reward under the optimal

1Unless stated otherwise, all KL divergences are understood to be measured between the aligned policy and
the reference policy.
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(tilted) policy and the alignment policy. Note that minimizing the regret gap is critical to ensuring
high-quality outputs and close performance to the optimal policy. Recent work by Gao et al. (2023a)
and Hilton et al. (2022) has investigated the scaling laws governing reward model optimization in
both reinforcement learning (RL) and BoN settings as a function of KL divergence between aligned
policy and reference policy. They empirically demonstrate that, under proxy-reward models, the
improvement in expected true-reward, relative to a reference policy, scales proportionally for both
RL and BoN policies.

While recent work analyzes BoN under the idealized settings where there is no discrepancy between
the proxy-reward and the true-reward (Yang et al., 2024; Beirami et al., 2024; Mroueh, 2024; Huang
et al., 2025), our work relaxes this assumption to study the interplay between the reward discrepancy
measured through regret and the KL-divergence. We present a theoretical study of Soft Best-of-N
(SBoN), a smoothed variant of BoN recently introduced by Mayrink Verdun et al. (2025); Jinnai
et al. (2024). Unlike BoN, SBoN draws the final response probabilistically from the N candidates,
yielding a policy that is tunable with a temperature parameter. Our analysis centres on two metrics:

(a) the Kullback-Leibler divergence between SBoN policy (under the true reward or proxy-
reward model) and the reference policy, and

(b) the regret, i.e. the expected true-reward gap between optimal policy and SBoN policy.

We show how these results specialize to the BoN (as a limit of SBoN for the temperature goes to
infinity) and quantify the estimation error incurred by using a proxy reward model instead of the
true-reward. Finally, we characterize regimes in which SBoN attains lower regret bound than BoN
when we use the proxy-reward model. Our main contributions are:

• We derive finite-sample upper bounds for KL divergence between the SBoN policy and
reference policy, and upper and lower bounds for the regret gap of the SBoN policy, and
we extend these bounds to BoN. These bounds reveal how the number of responses N ,
proxy-reward model quality and reference policy model affect performance.

• We quantify cases where SBoN performs better than BoN under overoptimization scenario
where the proxy-reward model is used instead of the true-reward model.

• We provide experimental validation using various proxy-reward models to demonstrate
SBoN’s advantages in the overoptimization scenario. Furthermore, we provide numerical
experiments to evaluate our bounds.

2 RELATED WORKS

In this section, we discuss related works on BoN, the theoretical foundation of (Soft) BoN and
overoptimization. More related works for the theoretical foundation of RLHF and smoothing of
maximum are provided in the Appendix (App) B.

Best-of-N: Despite many recent advancements in alignment, a simple, popular, and well-performing
method continues to be the BoN policy (Nakano et al., 2021; Stiennon et al., 2020; Beirami et al.,
2024). In fact, Gao et al. (2023b); Mudgal et al. (2024); Eisenstein et al. show that BoN consistently
achieves compelling win rate-KL tradeoff curves, often outperforming KL-regularized reinforce-
ment learning and other more complex alignment strategies. LLaMA 2 (Touvron et al., 2023) lever-
ages BoN outputs as teacher signals to further finetune the base model. Mudgal et al. (2024) extend
BoN through Q-learning to block-wise BoN decoding. This empirical effectiveness has also inspired
research into distilling BoN behaviour into standalone models (Amini et al., 2025; Sessa et al., 2024;
Qiu et al., 2024). Hughes et al. (2024) utilize BoN as an effective method for jailbreaking, while
BoN is also commonly used as a strong baseline for scaling inference-time compute (Brown et al.,
2024; Snell et al., 2024). Given the broad success of BoN, we are motivated to theoretically investi-
gate the BoN policies and the effect of the proxy-reward model (reward hacking) and the quality of
the reference policy.

Theoretical Foundation of (Soft) BoN: KL divergence of BoN is studied in (Beirami et al., 2024;
Mroueh, 2024) via information theoretical tools where the KL divergence of BoN sampling from
the reference distribution is bounded by log(N) − (N − 1)/N . Scaling laws governing reward
as a function of KL divergence is empirically studied by Gao et al. (2023b) and theoretically for-
malized by Mroueh (2024). Furthermore, the asymptotic case and the equivalence of BoN to the
KL-constrained reinforcement learning solution are studied by Yang et al. (2024) under the assump-
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tion of access to optimal reward. Gui et al. (2024) further characterized the win rate–KL gap in
the asymptotic regime where a model assigns extremely low likelihoods to successful completions.
Furthermore, Sun et al. (2024) accelerated BoN using speculative rejection sampling. The regret
of BoN under some assumptions is studied in (Huang et al., 2025). The convergence rate of the
SBoN policy to the optimal tilted policy has been analyzed by Mayrink Verdun et al. (2025). Ad-
ditionally, Geuter et al. (2025) investigate a variant of SBoN that incorporates speculative samples
from a small auxiliary model, providing both theoretical and empirical insights. However, the regret
gap and KL divergence of SBoN under overoptimization scenario remain largely unexplored in the
existing literature.

3 PROBLEM FORMULATION

Notations: Upper-case letters denote random variables (e.g., Z), lower-case letters denote the re-
alizations of random variables (e.g., z), and calligraphic letters denote sets (e.g., Z). All loga-
rithms are in the natural base. The set of probability distributions (measures) over a space X with
finite variance is denoted by P(X ). ∆N is N -simplex distribution set. The KL divergence be-
tween two probability distributions on Rd with densities p(x) and q(x), such that q(x) > 0 when
p(x) > 0, is KL(p∥q) :=

∫
Rd p(x) log(p(x)/q(x))dx (with 0. log 0 := 0). The total-variation dis-

tance is defined as TV(p, q) = 1
2

∫
X |p(x) − q(x)|. Furthermore, we define chi-square divergence

as χ2(p(x)∥q(x)) =
∫
X

p2(x)
q(x) − 1.

Preliminaries: Let the finite set2 of prompts be X and the discrete finite set of responses be Y .
Prompts are drawn from a distribution ρ over X . A (stochastic) policy π ∈ Π assigns, for every
prompt x∈X , a conditional distribution π(· | x) over Y; drawing y∼π(· | x) yields a response. We
treat the supervised-fine-tuned (SFT) model as a reference policy, denoted πref(· | x).

3.1 REWARD FUNCTION

We consider a (calibrated) true-reward function r∗(y, x) and a (calibrated) proxy-reward function
r̂(y, x), both mapping Y × X → [0, 1] 3. The true-reward function is estimated via proxy-reward
function r̂(y, x) using some preference datasets 4. As shown by Balashankar et al. (2025), a cali-
brated reward function satisfies:

• Boundedness: for all x, y, we have r̂(y, x), r⋆(y, x) ∈ [0, 1].

• Uniformity under the reference model: for each prompt x ∈ X , if Y ∼ πref(· | x) then
r(y, x) ∼ Unif(0, 1) for r ∈ {r̂, r⋆}.

In practice, the proxy-reward model can be fit to a human-labeled preference dataset or to data
annotated with true-rewards. Following (Huang et al., 2025), we assume for simplicity that r̂(y, x)
is given. We define Y⋆

r⋆(x) = argmaxy r
⋆(y, x) as the set of maximizers for true-reward. Similarly,

we can define Ŷr̂(x) as the set of maximizers for proxy-reward model. More discussion regarding
reward is provided in App. C.

Assumption 3.1 (Achievable maximum reward). We assume that for r ∈ {r̂, r⋆}, we have
r(ŷ(x), x) = 1 for all ŷ(x) ∈ argmaxy r(y, x) and given x ∈ X .

In many settings, the reward function attains its maximum at specific responses. In particular, since
a large language model (LLM) generates outputs using a finite vocabulary and a bounded number of
tokens, the space of possible generations is finite, and thus the assumption holds trivially.

2For measure-theoretic simplicity and notational convenience, we assume finiteness for the set of prompts.
Our results also hold for non-finite set.

3For the remainder of this paper, we assume all reward functions are calibrated (see App. C). For brevity,
we refer to them simply as reward functions.

4In some cases, the reward model is not derived from human preference data. Instead, it is either determin-
istic (e.g., code execution scores) or provided by an automated classifier (e.g., for toxicity or sentiment).
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3.2 SBON ALGORITHM

Fix a prompt x ∈ X and draw N i.i.d. candidates Y1:N ∼ πref(· | x). Let Z ∈ {1, . . . , N} denote
the index of the selected response with distribution PZ ; write PZ(i) = Pr(Z = i). We seek a
distribution over indices that maximizes the proxy-reward:

max
PZ∈∆N

EZ

[
r̂
(
YZ , x

)]
.

Without regularization, the optimizer is the deterministic Best-of-N (BoN) rule PZ = δi⋆ with
i⋆ ∈ argmaxi r̂(Yi, x). Because r̂ is a proxy for the true-reward, this deterministic choice can
overoptimize the proxy-reward and get response with lower true-reward. To smooth this, we add an
entropy penalty with temperature β > 0:

max
PZ∈∆N

EZ

[
r̂
(
YZ , x

)]
+

1

β
H(PZ).

The unique solution is the softmax distribution, PZ(i) =
exp

(
β r̂(Yi,x)

)
∑N

j=1 exp
(
β r̂(Yj ,x)

) .
We then sample Z from this distribution and return YZ . We refer to this sampling rule as Soft-BoN,
as introduced by Mayrink Verdun et al. (2025). Note that the value of β parameter for SBoN is equal
to β in tilted optimal policy. It is shown by Mayrink Verdun et al. (2025), the SBoN policy can be
interpreted as a finite-sample approximation of the tilted optimal policy.

We denote the final policy from SBoN via πSBoN
r̂ (y|x). Note that for β → ∞ and β → −∞, we

recover BoN and worst-of-N (WoN) (Balashankar et al., 2025), respectively. Furthermore, for β →
0, we recover uniform sampling among the N response samples, which is equivalent to sampling
from the reference model πref(y|x). In (Mayrink Verdun et al., 2025, Lemma 1), the closed form
solution of SBoN policy is derived,

πSBoN
r̂ (y|x) = πref(y|x) exp(βr̂(y, x))

ZN,β
, (1)

where ZN,β = E
[(

1
N

(
exp(βr̂(y, x)) +

∑N−1
i=1 exp(βr̂(Yi, x))

))−1]−1

. Similarly, we can define

πSBoN
r⋆ (y|x) based on a true-reward model. For simplicity, we define BoN policies under true-reward

and proxy-reward models as πBoN
r⋆ (y|x) and πBoN

r̂ (y|x), respectively. In this work, we focus on
β ≥ 0. Another motivation for SBoN based on the Gumbel-Max trick is provided in App. E.

3.3 OPTIMAL (TILTED) POLICY

For a given temperature β > 0, we seek a policy that remains close to πref while maximizing
expected true-reward, leading to the KL-regularized objective

max
π∈Π

EY∼π(·|x)
[
r⋆(y, x)

]
− 1

β
KL

(
π(· | x) ∥πref(· | x)

)
. (2)

The unique solution is the optimal tilted policy (Korbak et al., 2022b;a; Yang et al., 2024)

πβ,r⋆
(
y|x

)
=

πref(y | x) exp
(
β r⋆(y, x)

)
Zr⋆,Y (x, β)

, (3)

where Zr⋆,Y (x, β) =
∑

y∈Y πref(y | x) exp
(
β r⋆(y, x)

)
, is the normalizing (partition) function.

Note that, in practice, we do not have access to the closed form of reference pol-
icy πref(y|x) and r⋆(y, x). We can only first estimate the true-reward function via
proxy-reward function r̂(y, x) and then sample from πref(y|x) and compute r̂(y, x) for
each individual sample. Finally, we can apply inference time algorithms, e.g., BoN or
SBoN (Mayrink Verdun et al., 2025), where N samples are generated from πref(y|x) and
we choose the sample with the highest proxy-reward function (BoN) or sampled from a
distribution (SBoN) using the proxy-reward function. When only a proxy-reward function
r̂(y, x) is available, we obtain the analogous partition function Zr̂,Y (x, β) and policy πβ,r̂(·|x).
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β → ∞

N → ∞

β → ∞

N → ∞

πSBoN
r (y|x)

SBoN policy
πBoN
r (y|x)

BoN policy

πβ,r(y|x)
Tilted optimal policy

π⋆
r (y|x) or
π∞,r(·|x)

Optimal policy

Figure 1: Connections of different poli-
cies under reward model r ∈ {r̂, r⋆}

We can also define the optimal policy under the
true-reward model as,

π⋆
r⋆(y|x) = argmax

π
EY∼π(·|x)[r

⋆(Y, x)].

Similarly, we can define π⋆
r̂ (y|x) as the optimal

policy under the proxy-reward model5.

As the reward functions (true and proxy) are
bounded due to calibration, we can interpret op-
timal policies as the limit of tilted optimal poli-
cies for r ∈ {r̂, r⋆},

π∞,r(·|x) := lim
β→∞

πβ,r(·|x)

where π∞,r⋆(·|x) and π∞,r̂(·|x) place all their probability mass on the maximizers of r⋆(y, x) and
r̂(y, x), respectively. The connections between SBoN, BoN, optimal and optimal tilted policies
under true or proxy-reward models are shown in Figure 1.

3.4 TILTED ERROR

Let’s define the tilted error as the tilted average of square estimation error of true-reward function
for a given prompt x with parameter β,6 as follows,

εβ,r(x) :=
1

β
log

(
EY∼πref (y|x)[e

β(r⋆(Y,x)−r̂(Y,x))2 ]
)
. (4)

A similar definition of estimation error is introduced in (Yang & Wibisono, 2022). When β = 0,
the definition reduces to the mean-squared error, which is also introduced in (Huang et al., 2025).
Letting β → ∞ recovers the square of the supremum (infinity) norm (∥ · ∥∞) of the estimation error
between r⋆(y, x) and r̂(y, x). Therefore, the following properties hold for εβ,r(x),

• The tilted error is bounded, i.e., εβ,r(x) ∈ [0, 1].

• The tilted average of the estimation error is monotonically increasing in β.

• ε∞,r(x) := limβ→∞ εβ,r(x) = ∥r⋆(Y, x)− r̂(Y, x)∥2∞.

We assume that overoptimization regime happens whenever we have εβ,r(x) > 0. In more details,
εβ,r(x) > 0 indicates reward misspecification. As noted in Gao et al. (2023b), misspecification is a
necessary precondition for overoptimization, but overoptimization itself refers to the specific regime
where the optimization strength is sufficiently high that the degradation due to error outweighs the
improvement in the proxy-reward.

We define tilted error using (proxy and true) reward models rather than raw reward models, because
our focus is on how rankings change under the proxy. For example, if the proxy-reward is a strictly
increasing transform of the true-reward, the ranking is preserved; the Best-of-N (BoN) policy re-
mains optimal and no overoptimization occurs. This behavior cannot be captured when working
with the raw (uncalibrated) reward models. Note that in (Huang et al., 2025), raw (uncalibrated)
reward models are utilized for error definition.

3.5 COVERAGE

For a given reward function r(x, y), we define the tilted policy (softmax policy):

πβ,r(y|x) ∝ πref(y|x) exp(βr(y, x)).
5This policy, π⋆

r̂ (y|x) maximizes r̂c, it may be suboptimal or harmful under r⋆ due to Goodhart’s Law Gao
et al. (2023b).

6To simplify notation, we adopt the same smoothing parameter β for the error definition as is used in the
KL and tilted cases.
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Then, we introduce the coverage of tilted policy with respect to the reference policy as,

Cβ,r(x) :=
∑
y∈Y

π2
β,r(y|x)
πref(y|x)

. (5)

We also define,
C∞,r̂(x) := lim

β→∞
Cβ,r(x).

This measure Cβ,r(x) can also be interpreted as a coverage constant, which is standard in
KL-regularized policy learning. Furthermore, we can define the coverage of the tilted pol-
icy with respect to the reference policy as χ2-divergence between πβ,r(y|x) and πref(y|x), i.e.,
χ2(πβ,r(y|x)∥πref(y|x)). It ensures that the reference policy places sufficient probability mass on
high-reward responses, thereby guaranteeing that the support of the optimal policy lies within the
support of the reference. This prevents cases where optimal outputs are entirely excluded by the
reference. Similar notions of coverage have been explored in Huang et al. (2025).

3.6 REGRET

For a given policy π
(
Y |x

)
, we define expected true-reward with respect to the policy (a.k.a. value

function7) as
Jr⋆(π

(
· |x

)
) := E

Y∼π
(
·|x
)[r⋆(Y, x)]. (6)

For two policies, π1(·|x) and π2(·|x), we define the gap between these two policies as follows,

∆Jr⋆
(π1(·|x), π2(·|x)) := Jr⋆(π1(·|x))− Jr⋆(π2(·|x)). (7)

We provide an upper bound on the gap of the SBoN solution, which is the gap between π⋆
r⋆
(
· |x

)
as

the optimal policy and πSBoN
r̂ (·|x),

∆Jr⋆
(π⋆

r⋆
(
· |x

)
, πSBoN

r̂ (·|x)) = Jr⋆(π
⋆
r⋆
(
· |x

)
)− Jr⋆(π

SBoN
r̂ (·|x)). (8)

Regarding regret of the BoN, we consider πBoN
r̂ (·|x) instead of πSBoN

r̂ (·|x) in equation 8.

4 KL DIVERGENCE ANALYSIS

The KL divergence between the aligned policy and the reference policy, KL(πBoN
r⋆ ∥πref), is studied

by Beirami et al. (2024); Mroueh (2024) from a theoretical perspective. In particular, Beirami
et al. (2024) derives an upper bound on KL divergence for BoN policies under the assumptions of a
bijective true-reward mapping and a finite output space:

KL(πBoN
r⋆ (·|x)∥πref(·|x)) ≤ log(N)− 1 +

1

N
, (9)

Mroueh (2024) relaxes the bijectivity assumption and derives similar bounds using information-
theoretic tools. Under some assumptions, the bound in equation 9 is tight. Furthermore, using
Pinsker’s inequality, in a similar approach to (Mroueh, 2024), we have,

EY∼πSBoN
r⋆

(·|x)[r
⋆(Y, x)] ≤ 0.5 +

√
1

2
KL(πSBoN

r⋆ (·|x)∥πref(·|x)). (10)

Note that equation 10 implies that improvement of expected true-reward relative to the reference
policy can not exceed the square root of the KL divergence. However, the analysis of KL divergence
for the SBoN policy under the true-reward model is overlooked. Therefore, we first establish an
upper bound on the KL divergence between the SBoN policy under the true-reward model and the
reference policy, shedding light on its behaviour as a function of the number of samples N and
temperature parameter β. All proof details are deferred to App. G.

7We can also consider EX∼ρ(·)[Jr⋆(π(·|X))]. All of our results also hold for expected version of value
function.
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Lemma 4.1. The following upper bound holds on KL divergence between SBoN and reference
policies for a given prompt x ∈ X ,

KL(πSBoN
r⋆ (y|x)∥πref(y|x)) ≤ log

( N

1 + (N − 1) exp(−β)

)
. (11)

Using Lemma 4.1, we can observe that for BoN, β → ∞, we have,

KL(πBoN
r⋆ (y|x)∥πref(y|x)) ≤ log(N). (12)

Comparing equation 12 with results in (Beirami et al., 2024; Mroueh, 2024), our result is derived
from the SBoN asymptotic regime. Note that our bound is looser than the bound on KL divergence
in equation 9. In contrast, our bound is general and can be applied to different β in SBoN. For β = 0,
where our policy is the reference policy, our bound is tight. It is also important to note that the upper
bound in Lemma 4.1 increases with the temperature parameter β for fixed N .

Recent works by Gao et al. (2023a) and Hilton et al. (2022) empirically demonstrate that, under a
true-reward model, the improvement in expected true-reward, relative to a reference policy, scales ap-
proximately proportionally to

√
KL(πBoN

r⋆ ∥πref) for both RL and BoN policies. It is also observed
by Gao et al. (2023b) that models optimized using proxy-rewards can suffer from overoptimization
where the learned policy diverges further from the reference, the alignment may degrade. Despite
theoretical advances, the KL divergence analysis for SBoN and BoN under the proxy-reward model
remains largely unexplored. Therefore, we are interested in investigating the cost we have for esti-
mation error of true-reward via proxy-reward model. For this aim, we first propose the following
useful Lemma to study the closeness of the SBoN policy under the true-reward model to the SBoN
policy under the proxy-reward model in KL divergence measure.
Lemma 4.2. The following upper bound holds on the KL divergence between the SBoN policies
under true-reward and proxy-reward models respectively,

KL(πSBoN
r⋆ (·|x)∥πSBoN

r̂ (·|x)) ≤
Nβ

√
εβ,r(x)

1 + (N − 1) exp(−β)

(N exp(2β)

(N − 1)2
+ 1

)
. (13)

Note that for β = 0, the upper bound in Lemma 4.2 is tight. The result in Lemma 4.2 quantifies the
estimation error introduced by substituting a proxy-reward model for the true-reward model.

Next, we compare BoN and SBoN under overoptimization from KL-divergence perspective.
Remark 4.3 (No overoptimization). We can observe that for a given β, if we assume εβ,r(x) = 0,
we have KL(πSBoN

r⋆ (·|x)∥πSBoN
r̂ (·|x)) = 0. Note that, as mentioned in (Gao et al., 2023b), the

expected true-reward under the aligned policy, relative to the reference policy, is proportional to the
square root of KL divergence. Then a larger KL divergence is desirable in this context, as proposed
by (Gao et al., 2023b), the BoN policy is preferred under no overoptimization scenario.
Remark 4.4 (Overoptimization). When εβ,r(x) > 0, we have two conflicting goals in both
Lemma 4.1 and Lemma 4.2: one suggesting for fixed N that β needs to be smaller for better es-
timation of the true policy by the proxy-reward model one given in Lemma 4.2, and another one
suggesting a larger β to induce a better KL trade-off based on Gao et al. (2023b). Hence, for a
given N , there exists an optimal β to balance between the estimation error of Lemma 4.2 and the
scaling law under the SBoN policy for the true-reward model, Lemma 4.1. In this scenario, SBoN
can lead to better tradeoffs than BoN. A similar discussion can be done for fixed β and varying N .
Further analysis using reverse I-projection (Csiszár & Matus, 2003) in large N regime is provided
in App. K.

5 REGRET ANALYSIS

In this section, we derive theoretical regret bounds, upper and lower bounds, for SBoN and BoN
based on reward models. First, we provide a helpful Lemma regarding the expected coverage as-
sumption that can help us interpret the results of regret for BoN and SBoN. All proof details are
deferred to App. H.
Lemma 5.1. Under Assumption 3.1, it holds that C∞,r̂(x) =

1∑
i πref (ymax

i,r (x)|x) , where ymax
i,r (x) ∈

argmaxy r(y, x).
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5.1 UPPER BOUND ON REGRET

Now, we derive an upper bound on the regret of SBoN.

Theorem 5.2 (Upper Bound on Regret of SBoN). Under Assumption 3.1, the following upper bound
holds on the optimal regret gap of the SBoN policy for any β > 0,

∆Jr⋆
(π⋆

r⋆
(
· |x

)
, πSBoN

r̂ (·|x)) ≤
√
εβ,r(x)

(√
C∞,r̂(x) +

√
C∞,r⋆(x)

)
+ 2

√
1

2
log

(
1 +

C∞,r̂(x)− 1

N

)
+

log(C∞,r⋆(x))

β
.

Regret Bound of BoN Through Smoothing Lens: We now derive an upper bound on the regret of
BoN by taking the asymptotic limit of the regret bound on regret of SBoN in Theorem 5.2.

Proposition 5.3 (Upper Bound on Regret of BoN). Under Assumption 3.1, the following upper
bound holds on the optimal regret gap of the BoN policy for any β > 0,

∆Jr⋆
(π⋆

r⋆(·|x), πBoN
r̂ (·|x)) ≤

√
ε∞,r(x)

(√
C∞,r̂(x) +

√
C∞,r⋆(x)

)
+ 2

√
1

2
log

(
1 +

C∞,r̂(x)− 1

N

)
.

Remark 5.4 (Comparison with (Huang et al., 2025)). The regret bound for BoN policy grows with
the L∞-norm of the reward-model estimation error. In contrast to the result in (Huang et al., 2025),
our bound remains finite whenever the overoptimization error vanishes, i.e., when ε∞,β(x) = 0 or
N grows. We also derive results based on calibrated reward, instead of raw (uncalibrated) reward
models. A full comparison with Huang et al. (2024) is provided in App. J.

Overoptimization (asymptotic regime): Assume that εβ,r(x) > 0 for every β > 0. Letting
N → ∞ and invoking Theorem 5.2, we obtain

∆Jr⋆

(
π⋆
r⋆(· | x), π

SBoN
r̂ (· | x)

)
≤ logC∞,r⋆(x)

β

+
√

εβ,r(x)
(√

C∞,r̂(x) +
√
C∞,r⋆(x)

)
.

(14)

Similarly, for BoN we have,

∆Jr⋆

(
π⋆
r⋆(· | x), π

BoN
r̂ (· | x)

)
≤

√
ε∞,r(x)

(√
C∞,r̂(x) +

√
C∞,r⋆(x)

)
. (15)

No overoptimization: Assume that the overoptimization vanishes, i.e. εβ,r(x) = 0 for every β ∈
[0,∞). Then the optimality gaps of the SBoN and BoN policies satisfy

∆Jr⋆

(
π⋆
r⋆(· | x), π

SBoN
r̂ (· | x)

)
≤ 2

√
1

2
log

(
1 +

C∞,r̂(x)− 1

N

)
+

logC∞,r⋆(x)

β
, (16)

∆Jr⋆

(
π⋆
r⋆(· | x), π

BoN
r̂ (· | x)

)
≤ 2

√
1

2
log

(
1 +

C∞,r̂(x)− 1

N

)
. (17)

5.2 LOWER BOUND ON REGRET

In this section, we complement the regret upper bounds (Theorem 5.2 and Proposition 5.3) with
lower bounds that hold for any finite N and fixed β ≥ 0. For the lower bound, the following
assumptions are needed.

Assumption 5.5 (Margin Assumption). Let γ(x) = 1 − supy/∈Y⋆
r⋆

(x) r
⋆(y, x). We assume that

γ(x) ∈ (0, 1).

Note that Assumption 5.5 for strictly positive lower bound is needed.
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Figure 2: Soft Best-of-N experiment using a strong reward model (Left) and a weak one (Right).
Number of samples versus Harmlessness score (higher is better). When the performance of the
reward model is poor, BoN can lead to overoptimization, while the SBoN can help to mitigate it.

Theorem 5.6 (Lower Bound on Regret of SBoN). Under the same Assumptions in Theorem 5.2 and
Lemma H.3, the following lower bound holds on the regret of SBoN policy under the proxy-reward
model,

∆Jr⋆
(π⋆

r⋆(·|x), πSBoN
r̂ (·|x))

≥ γ(x)
(
(1− C∞,r⋆(x)

−1)N +
N((1− C∞,r⋆(x)

−1)− (1− C∞,r⋆(x)
−1)N )

N + (exp(β)− 1)(N − 1)

)
−min

(√
1− exp

(
− U(N, β)

)
,

N

1 + (N − 1) exp(−β)

√
εβ,r(x)

) (18)

where U(N, β) =
Nβ

√
εβ,r(x)

1+(N−1) exp(−β)

(
N exp(2β)
(N−1)2 + 1

)
.

Using similar approach to Proposition 5.3, we can derive the lower bound on regret of the BoN
policy through the lens of smoothing.
Proposition 5.7 (Lower Bound on Regret of BoN). Under the same assumptions in Theorem 5.6,
the following lower bound holds on regret of BoN policy,

∆Jr⋆
(π⋆

r⋆(·|x), πBoN
r̂ (·|x)) ≥ γ(x)(1− C∞,r⋆(x)

−1)N −min(1, N
√

ε∞,r(x)). (19)

Under no overoptimization (ε∞,r(x) = 0), due to (1 − C∞,r⋆(x)
−1)N ≥ exp( −N

C∞,r⋆ (x)−1 ), the
lower bound on regret of BoN is O(exp(−N)). Furthermore, in App. I.2, we present a numerical
example to illustrate the positivity of the lower bounds under certain conditions.

5.3 DISCUSSION

This section analyzes the performance of BoN and SBoN in the presence and absence of overopti-
mization.
Remark 5.8 (Overoptimization). Considering the upper bounds in equation 14 and equation 15, we
define,

g(β) = β
(√

ε∞,r(x)−
√

εβ,r(x)
)
, β ≥ 0.

Because g(0) = g(∞) = 0 and g(β) ≥ 0 for all β, there exists at least one maximizer β⋆ ∈ (0,∞)
such that g(β⋆) = maxβ≥0 g(β).

If logC∞,r⋆,ref (x)√
C∞,r̂,ref (x)+

√
C∞,r⋆,ref (x)

≤ g(β⋆), then the upper bound in equation 14 does not exceed equa-

tion 15, and hence the bound on the regret of the SBoN policy is tighter than the bound on the regret
of the BoN policy under the proxy-reward model. An analogous comparison can be carried out for
any fixed β and changing N . A numerical example for the existence of optimal β based on this
approach is provided in App. I.2.
Remark 5.9 (No overoptimization). By Lemma 5.1, C∞,r⋆,ref(x) ≥ 1; consequently, the bound
in equation 17 is tighter than the bound in equation 16. Similar discussion can be provided for
lower bound.
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Remark 5.10 (Quality of reference policy). The upper bounds in Proposition 5.3 (or Theorem 5.2)
depend on two quantities,

C∞,r⋆(x) =
1∑

i πref

(
ymax
i,r⋆ (x) | x

) , and C∞,r̂(x) =
1∑

i πref

(
ymax
i,r̂ (x) | x

) ,
which represent its quality under the true-reward model and proxy-reward model, respectively. A
larger value for these quantities implies that the reference model rarely generates optimal responses,
thereby degrading performance. We can observe that upper bounds increase by increasing C∞,r⋆(x)
and C∞,r̂(x).

6 EMPIRICAL EVIDENCE

To support our theoretical analysis, we conducted experiments comparing Soft Best-of-N (SBoN)
across different regularization strengths and reward model qualities. We used the Olmo-2 1B model
(OLMo et al., 2024) as the generator and prompts from the Attaq dataset (Kour et al., 2023). For each
prompt, we generated multiple responses and selected one using SBoN with varying temperature
values β. We ran two experimental conditions: one using a strong proxy-reward model (ArmoRM
8B (Wang et al., 2024)) which is close to true-reward model, and another using a weaker proxy-
reward model (Beaver 7B RM (Dai et al., 2023)). We use LLM-as-a-Judge Zheng et al. (2023) as
our r∗. To match our theoretical setting, we perform empirical calibration of each reward model by
sampling 256 responses for every query and calculate the quantiles. As shown in Figure 2, when
the reward model is weak, performance degrades for large N due to reward hacking. However,
the smoothing in SBoN helps mitigate this degradation. This observation is also aligned with our
theoretical analysis and discussion in Section 4, where under overoptimization there exists a β for a
given N which outperforms BoN. For more details, see App. I. We also studied the behavior of our
upper bound on the KL divergence between the SBoN policy and the reference policy, Lemma 4.2,
at App. I.2. More experiments with a medium weak reward model are provided in App. I.1.

7 CONCLUSION AND FUTURE WORK

In this work, we establish a theoretical foundation for alignment strategies based on Soft Best-of-N
(SBoN) and Best-of-N (BoN) policies. Specifically, we derive upper bounds on the KL divergence
between the aligned policy such as SBoN or BoN and the reference policy. We also studied the regret
gap between the optimal policy and the aligned policy, e.g., BoN and SBoN policies. We further
analyze how errors in reward estimation affect performance in both KL divergence and regret gap.
Notably, both our theoretical analysis and empirical results demonstrate that, under a proxy-reward
model where overoptimization happens, SBoN perform better than BoN under some conditions.

Existing literature Beirami et al. (2024); Mroueh (2024), suggests a tighter upper bound on the
KL divergence for BoN policy. Our derived result, however, provides a looser bound for BoN.
Consequently, an interesting direction for future research is the derivation of an upper bound that is
asymptotically tight for the BoN policy. Furthermore, while our current analysis utilizes a shared β
for both the tilted error and the SBoN policy, exploring decoupled temperature parameters for these
components remains a promising avenue for future study.
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A TABLE OF NOTATIONS

All notations are summarized in Table 1.

Notation Definition

r⋆(y, x) (Calibrated) true-reward model
r̂(y, x) (Calibrated) proxy-reward model
N Number of responses
x Prompt
β Temperature (regularization coefficient)
πβ,r(y|x) Tilted policy under reward function r
πSBoN
r (y|x) SBoN policy under reward function r

πBoN
r (y|x) BoN policy under reward function r

πref Reference policy
KL(p∥q) KL divergence between p and q distributions
π⋆
r (y|x) Optimal policy

Cβ,r(x) Coverage constant under reward model r
Y⋆
r⋆(x) Set of maximizers for r⋆(y, x)

εβ,r(x) Tilted Error

Table 1: Summary of notations in the paper

B OTHER RELATED WORKS

Smoothing of Maximum: Approximating the maximum operator using a smoothed or softmax-
based surrogate is a widely adopted technique in machine learning. This approach is particularly
useful in settings where the hard maximum is non-differentiable or leads to unstable optimization.
For instance, in robust regression, smooth approximations to the max operator are used in min-
max formulations to achieve tractable optimization under distributional shifts (Wang et al., 2013;
Li et al., 2023). In sequential decision-making, similar ideas appear in risk-sensitive control and
Q-learning, where the softmax of Q-values leads to stochastic policies that balance exploration and
exploitation (Howard & Matheson, 1972; Borkar, 2002). In convex and non-convex optimization,
smoothing the maximum objective has been shown to improve convergence properties (Kort & Bert-
sekas, 1972; Pee & Royset, 2011; Liu & Theodorou, 2019). The Soft Best-of-N (SBoN) framework,
(Mayrink Verdun et al., 2025; Khanov et al., 2024; Jinnai et al., 2024), leverages this principle by
replacing the hard selection of the highest-reward sample with a softmax-weighted sampling distri-
bution. Regarding the SBoN, the empirical version of SBoN is introduced by (Khanov et al., 2024)
as ARGS-stochastic, where a token from a probability distribution among the top-k candidate tokens
is chosen. Then, the regularized version of BoN, which can be represented as SBoN, is discussed by
(Jinnai et al., 2024). Given the broad success of SBoN, we are motivated to theoretically investigate
the SBoN policies and the effect of the proxy-reward model (reward hacking) and the quality of the
reference policy.

Theoretical Foundation of RLHF: Several works have studied the theoretical underpinnings of
reverse KL-regularized RLHF, particularly in terms of sample complexity (Zhao et al., 2024; Xiong
et al., 2024; Song et al., 2024; Zhan et al., 2023; Ye et al., 2024; Aminian et al., 2025). Note that, as
the sampling distributions in BoN and SBoN are different, we can not apply RLHF analysis to these
sampling strategies. Therefore, it is needed to develop new foundations for BoN and SBoN.

Overoptimization. Alignment methods are widely known to suffer from overoptimization, also
known as misspecification, reward hacking, or Goodhart Law, where optimizing against a proxy-
reward model leads to degraded performance compared to the true-reward model (Amodei et al.,
2016; Casper et al., 2023; Gao et al., 2023b). This issue is particularly pronounced in inference-time
alignment methods such as BoN, where an increasing number of responses N makes the overopti-
mization problem worse (Huang et al., 2025; Stroebl et al., 2024; Gao et al., 2023b). Huang et al.
(2025) theoretically demonstrate that the BoN policy suffers from overoptimization when N is large,
given a fixed estimation error in the reward model, and propose a solution based on a χ2-regularized
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framework. Other approaches to mitigating this issue include ensembling strategies (Coste et al.;
Eisenstein et al.) and regularization techniques (Ichihara et al.). In a concurrent line of work, Kha-
laf et al. (2025) introduce the Best-of-Poisson method to reduce overoptimization in inference-time
algorithms. The overoptimization in BoN and SBoN is also studied by Khalaf et al. (2025) and a
principled hedging framework is proposed to mitigate the overoptimization. In contrast, we study
overoptimization in inference-time alignment methods SBoN and BoN from the perspectives of re-
gret gap and KL divergence analysis.

C CALIBRATED REWARD

Inspired by (Balashankar et al., 2025), in this section, we provide more details regarding calibrated
reward. A standard metric for evaluation of models is the win-rate relative to a base policy πref

(Stiennon et al., 2020; Gao et al., 2023b). For a prompt x and responses y, z, define the win random
variable under raw (uncalibrated) reward ruc as

wr(y, z | x) = 1{ruc(y, x) > ruc(z, x)}+ 1
2 1{ruc(y, x) = ruc(z, x)}.

Definition C.1 (Calibrated reward). The calibrated reward of y under policy π is its expected win-
rate probability against z ∼ π(· | x):

rc,π(y, x) := Ez∼π(·|x)[wr(y, z | x)] .

In practice, we consider π = πref , therefore we denote calibrated reward via r(y, x) under reference
policy. In the following, we provide some reasons for choosing calibrated reward instead of raw
(uncalibrated) reward in our work,

• Matches win-rate evaluation. For any policies π1, π2,

Wr(π1 ≻ π2 | x) := Ey∼π1(·|x)[ rc,π2
(y, x)] ,

where Wr(π1 ≻ π2 | x) is standard win-rate. So maximizing EY∼π[rc,πref
(y, x)] directly

optimizes standard win rate vs. the base model.
• Invariance to score scaling. If m is strictly increasing and r′ = m◦ r, then

r′(y, x) = r(y, x),

making the target robust to arbitrary monotone reparameterizations of the reward (e.g.,
affine rescaling, temperature).

• Unified, probabilistic scale. For y ∼ πref(· | x),
r(y, x) ∼ Unif[0, 1],

independent of both r and πref . This normalizes per-prompt reward scales and interprets
scores as win probabilities.

D SUMMARY OF KL DIVERGENCE RESULTS

In Table 2 , we summarize results on KL divergences between the aligned and reference policies,
along with corresponding upper bounds for both SBoN and BoN policies. Furthermore, in Table 3,
we summarize results on KL divergences between aligned policies under true and proxy-reward
models, along with upper bounds for SBoN and tilted policies.

E GUMBEL-MAX TRICK

We also provide an interpretation for SBoN from the Gumbel-Max trick. An alternative way to
sample Z from

Pr(Z = i) ∝ exp
(
β r̂(Yi, x)

)
is via the Gumbel-Max trick. We can draw independent Gumbel-distributed random variables Gi ∼
Gumbel(0, 1), i = 1, . . . , n, and then set

Z = arg max
i∈{1,...,N}

[
r̂(Yi, x) +

Gi

β

]
.
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Table 2: KL divergences between the aligned and reference policies, along with corresponding upper
bounds for both SBoN and BoN policies.

KL divergence Term Theorem / Lemma Upper Bound

KL
(
πSBoN
r⋆ (·|x) ∥πref(·|x)

)
Lemma 4.1 log

(
N

1+(N−1) exp(−β)

)
KL(πBoN

r⋆ (·|x)∥πref(·|x)) Theorem 3.1 in (Beirami et al., 2024)
and Theorem 1 in (Mroueh, 2024)

log(N)− 1 + 1/N

Table 3: KL divergences between aligned policies under true and proxy-reward models, along with
upper bounds for SBoN and tilted policies.

KL divergence Term Theorem / Lemma Upper Bound

KL
(
πSBoN
r⋆ (·|x) ∥πSBoN

r̂ (·|x)
)

Lemma 4.2 Nβ
√

εβ,r(x)

1+(N−1) exp(−β)

(
N exp(2β)
(N−1)2 + 1

)
KL

(
πβ,r⋆(·|x) ∥πβ,r̂(·|x)

)
Lemma F.8 2β

√
εβ,r(x)

(√
E[exp(2βr̂(Y,x)]
E2[exp(βr̂(Y,x))] +

√
E[exp(2βr⋆(Y,x)]
E2[exp(βr⋆(Y,x))]

)

By properties of the Gumbel distribution, this yields exactly the same softmax sampling law, without
needing to compute the normalizing factor

∑N
j=1 exp(βr̂(Yj , x)) explicitly (Gumbel, 1954). When

β → ∞, the effect of the Gumbel noises vanishes and the sampling strategy reduces to BoN.

F TECHNICAL TOOLS

We denote the set maximizers of the proxy-reward function via Ŷ(x) = {ŷj(x)}m(x)
j=1 .

We introduce the functional derivative, see Cardaliaguet et al. (2019).
Definition F.1. (Cardaliaguet et al., 2019) A functional U : P(Rn) → R admits a functional
derivative if there is a map δU

δm : P(Rn) × Rn → R which is continuous on P(Rn) and, for all
m,m′ ∈ P(Rn), it holds that

U(m′)− U(m) =

∫ 1

0

∫
Rn

δU

δm
(mβ , a) (m

′ −m)(da) dβ,

where mβ = m+ β(m′ −m).
Definition F.2 (Sensitivity of a policy). We also define the sensitivity of a policy πr(y|x), which is
a function of reward function r(y, x), with respect to the reward function as

∂π

∂r
(r) := lim

∆r→0

πr(y|x)− πr+∆r(y|x)
∆r

. (20)

Lemma F.3 (Kantorovich-Rubenstein duality of total variation distance, see (Polyanskiy & Wu,
2022)). The Kantorovich-Rubenstein duality (variational representation) of the total variation dis-
tance is as follows:

TV(m1,m2) =
1

L
sup
g∈GL

{EZ∼m1 [g(Z)]− EZ∼m2 [g(Z)]} , (21)

where GL = {g : Z → R, ||g||∞ ≤ L}.
Lemma F.4 (Lemma 5.4 in (Aminian et al., 2025)). Consider the softmax policy, πβ

r (y|x) ∝
πref(y|x) exp(βr(y, x)). Then, the sensitivity of the policy with respect to the reward function is

∂πβ
r

∂r
(r) = βπβ

r (y|x)(1− πβ
r (y|x)).

Lemma F.5 (Pinskers Inequality (Canonne, 2022)). For m1 and m2, we have,

TV(m1,m2) ≤
√

1

2
KL(m2∥m1) . (22)
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The following Lemmata are useful for our technical proofs.
Lemma F.6. The following upper bound holds,

log
(Zr⋆,Y (x, β)

Zr̂,Y (x, β)

)
≤ β

√
εβ,r(x)

√
Cβ,r⋆(x). (23)

Proof.
Zr̂,Y (x, β)

Zr⋆,Y (x, β)
=

∑
Y exp(βr̂(y, x))πref(y|x)∑
Y exp(βr⋆(y, x))πref(y|x)

=

∑
Y exp(β(r̂(y, x)− r⋆(y, x))) exp(βr⋆(y, x))πref(y|x)∑

Y exp(βr⋆(y, x))πref(y|x)

=
∑
Y

πβ,r⋆(y|x) exp(β(r̂(y, x)− r⋆(y, x)))

(24)

Due to convexity of − log(·) and using Cauchy-Schwarz inequality, we have,

− log
( Zr̂,Y (x, β)

Zr⋆,Y (x, β)

)
≤ β

∑
Y

πβ,r⋆(y|x)(r⋆(y, x)− r̂(y, x))

≤ β
∑
Y

πβ,r⋆(y|x)
πref(y|x)

(r⋆(y, x)− r̂(y, x))πref(y|x)

≤ β

√∑
Y

(r⋆(y, x)− r̂(y, x))2πref(y|x)

√√√√∑
Y

π2
β,r⋆(y|x)
πref(y|x)

=
√
β

√∑
Y

log
(
exp

(
β(r⋆(y, x)− r̂(y, x))2

))
πref(y|x)

√
Cβ,r⋆(x)

≤ β

√
1

β
log

(∑
Y

exp
(
β(r⋆(y, x)− r̂(y, x))2

)
πref(y|x)

)√
Cβ,r⋆(x)

= β
√
εβ,r(x)

√
Cβ,r⋆(x),

(25)

Lemma F.7. The following holds,

KL(π⋆
r⋆
(
· |x

)
∥πref(·|x)) ≤ log(C∞,r⋆(x)). (26)

Proof. Note that, we have,

KL(π⋆
r⋆
(
· |x

)
∥πref(·|x)) ≤ log

(
E
Y∼π⋆

r⋆

(
·|x
)[π⋆

r⋆
(
· |x

)
πref(·|x)

])
≤ log(C∞,r⋆(x)).

(27)

Lemma F.8. The following upper bound holds,

KL(πβ,r⋆(y|x)∥πβ,r̂(y|x)) ≤ β
√
εβ,r(x)

(√
Cβ,r⋆(x) +

√
Cβ,r̂(x)

)
. (28)

Proof.

KL(πβ,r⋆(y|x)∥πβ,r̂(y|x)) =
∑
Y

πβ,r⋆(y|x) log
(πβ,r⋆(y|x)
πβ,r̂(y|x)

)
= β

∑
Y

(r⋆(y, x)− r̂(y, x))πβ,r⋆(y|x) + log(Zr̂,Y (x, β)/Zr⋆,Y (x, β))

≤ β
√

εβ,r(x)
(√

Cβ,r⋆(x) +
√

Cβ,r̂(x)
)
,

(29)
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where the final inequality holds due to Lemma F.6 and applying Cauchy-Schwarz inequality.

Lemma F.9. Suppose that f(Z) ∈ [0, Zmax], Zmax = {zm,i}mi=1 is the set of maximizers of f(Z),
i.e., f(z) = Zmax for z ∈ Zmax. Then we have,

lim
β→∞

E[exp(2βf(Z))]

E[exp(βf(Z))]2
=

1∑
z∈Zmax

P (Z = z)
. (30)

Proof.
E[exp(2βf(Z))]

E[exp(βf(Z))]2
=

E[exp(2β(f(Z)− Zmax))]

E[exp(β(f(Z)− Zmax))]2
(31)∑

j P (Z = zj) exp(2β(f(zj)− Zmax))

(
∑

j P (Z = zj) exp(β(f(zj)− Zmax)))2
(32)

Now, we have,

lim
β→∞

E[exp(2βf(Z))]

E[exp(βf(Z))]2
(33)

= lim
β→∞

∑
j P (Z = zj) exp(2β(f(zj)− Zmax))

(
∑

j P (Z = zj) exp(β(f(zj)− Zmax)))2
(34)

=

∑
z∈Zmax

P (Z = z)

(
∑

z∈Zmax
P (Z = z))2

(35)

=
1∑

z∈Zmax
P (Z = z)

, (36)

where we used the fact that limβ→∞ exp(β(zj − Zmax)) = 0 for zj < Zmax.

Lemma F.10 (Theorem 1 in (Mayrink Verdun et al., 2025)). For β > 0, and N ≥ 1, we have,

KL(πβ,r⋆(·|x)∥πSBoN
r⋆ (y|x)) ≤ log

(
1 +

Cβ,r⋆(x)− 1

N

)
. (37)

Lemma F.11. For a given x ∈ X , we have,∣∣∣δf(r)
δr

∣∣∣ ≤ N2β exp(2β)

(N − 1)2
, (38)

where f(r) = log
(
E[ 1

exp(βr)+
∑N−1

i=1 exp(βRi)
]
)
, r = r(y, x) and Ri = r(Yi, x).

Proof. Note that {Ri}N−1
i=1 are i.i.d. . Therefore, we have,

δf(r(y, x))

δr
= E[

1

exp(βr) +
∑N−1

i=1 exp(βRi)
]−1

δE[ 1
exp(βr)+

∑N−1
i=1 exp(βRi)

]

δr

≤ E[
1

exp(βr) +
∑N−1

i=1 exp(βRi)
]−1

×
( N∑

k=1

βk
(
N−1
k−1

)
exp(βr)

(k exp(βr) +N − 1− k)2
(1− P (R = r))N−kP k−1(R = r)

)
≤ E[

1

exp(βr) +
∑N−1

i=1 exp(βRi)
]−1

× β exp(β)

(N − 1)2

( N∑
k=1

k

(
N − 1

k − 1

)
(1− P (R = r))N−kP k−1(R = r)

)
≤ Nβ exp(2β)

(N − 1)2
(1 + (N − 1)P (R = r))

≤ N2β exp(2β)

(N − 1)2
.

(39)
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For first inequality provide more details in the following. Lets consider the conditional expectation
where we condition on having exactly (k − 1) of (N − 1) Ris equal to r. Therefore, we have,

δE[ 1
exp(βr)+

∑N−1
i=1 exp(βRi)

]

δr

=

N∑
k=1

(
N − 1

k − 1

)
E
[ βk exp(βr)

k exp(βr) +
∑N−k

i=1 exp(βRi)

]
(1− P (R = r))N−kP k−1(R = r)

Now computing the derivative and using the fact that 1 ≤ exp(βRi), the first inequality holds.

Lemma F.12 (The BH inequality (Canonne, 2022)). For every two probability distributions p,q,
we have the simple yet never vacuous bound

TV(p,q) ≤
√
1− e−KL(p∥q). (40)

G PROOF AND DETAILS OF SECTION 4

Lemma 4.1. The following upper bound holds on KL divergence between SBoN and refer-
ence policies for a given prompt x ∈ X ,

KL(πSBoN
r⋆ (y|x)∥πref(y|x)) ≤ log

( N

1 + (N − 1) exp(−β)

)
. (41)

Proof. Recall that,

πSBoN
r⋆ (y|x) = πref(y|x) exp(βr⋆(y, x))E

[( 1

N
(exp(βr⋆(y, x)) +

N−1∑
i=1

exp(βr⋆(Yi, x)))
)−1

]
.

Now, we have,

KL(πSBoN
r⋆ (y|x)∥πref(y|x))

=
∑
Y

πSBoN
r⋆ (y|x) log(πSBoN

r⋆ (y|x)/πref(y|x))

=
∑
Y

πSBoN
r⋆ (y|x) log(N)

+
∑
Y

πSBoN
r⋆ (y|x) log(E

[
exp(βr⋆(y, x))

(
exp(βr⋆(y, x)) +

N−1∑
i=1

exp(βr⋆(Yi, x))
)−1

]
)

= log(N) +
∑
Y

πSBoN
r⋆ (y|x) log(E

[(
1 +

N−1∑
i=1

exp(β(r⋆(Yi, x)− r⋆(y, x)))
)−1

]
).

(42)

For the second term in equation 42, consider

A(y, Y, x) =

N−1∑
i=1

exp(β(r⋆(Yi, x)− r⋆(y, x))) > 0,

where we have
(N − 1) exp(−β) ≤ A(y, Y, x) ≤ (N − 1) exp(β).
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Therefore, we have,

∑
Y

πSBoN
r⋆ (y|x) log(E

[(
1 +

N−1∑
i=1

exp(β(r⋆(Yi, x)− r⋆(y, x)))
)−1

]
)

≤
∑
Y

πSBoN
r⋆ (y|x) log( 1

1 + (N − 1) exp(−β)
)

= log(
1

1 + (N − 1) exp(−β)
).

(43)

Combining equation 43 with equation 42 completes the proof.

Lemma 4.2. The following upper bound holds on the KL divergence between the SBoN
policies under true-reward and proxy-reward models respectively,

KL(πSBoN
r⋆ (·|x)∥πSBoN

r̂ (·|x)) ≤
Nβ

√
εβ,r(x)

1 + (N − 1) exp(−β)

(N exp(2β)

(N − 1)2
+ 1

)
. (44)

Proof. We first provide the following upper bound,

KL(πSBoN
r⋆ (y|x)∥πSBoN

r̂ (y|x))

=
∑
Y

πSBoN
r⋆ (y|x) log

(πSBoN
r⋆ (y|x)

πSBoN
r̂ (y|x)

)
=

∑
Y

πSBoN
r⋆ (y|x)β(r⋆(y, x)− r̂(y, x))

+
∑
Y

πSBoN
r⋆ (y|x)

(
log

(
E[

1

exp(βr⋆(y, x)) +
∑N−1

i=1 exp(βr⋆(Yi, x))
]
)

− log
(
E[

1

exp(βr̂(y, x)) +
∑N−1

i=1 exp(βr̂(Yi, x))
]
))

≤
Nβ

√
εβ,r(x)

1 + (N − 1) exp(−β)

+
∑
Y

πSBoN
r⋆ (y|x)

(
log

(
E[

1

exp(βr⋆(y, x)) +
∑N−1

i=1 exp(βr⋆(Yi, x))
]
)

− log
(
E[

1

exp(βr̂(y, x)) +
∑N−1

i=1 exp(βr̂(Yi, x))
]
))

,

(45)

where we used two facts. First,

πSBoN
r⋆ (·|x) ≤ Nπref(·|x)

1 + (N − 1) exp(−β)

Second, for a random variable X,

E[X] ≤
√
E[X2] =

√
E[

1

β
log(exp(βX2))] ≤

√
1

β
log(E[exp(βX2)]),

and applying it to Eπref(·|x)[(r
⋆(y, x)− r̂(y, x))], the final result in holds.
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Note that for the last term in equation 45, we can apply the mean-value theorem as follows,∑
Y

πSBoN
r⋆ (y|x)

(
log

(
E[

1

exp(βr⋆(y, x)) +
∑N−1

i=1 exp(βr⋆(Yi, x))
]
)

− log
(
E[

1

exp(βr̂(y, x)) +
∑N−1

i=1 exp(βr̂(Yi, x))
]
))

≤
∑
Y

πSBoN
r⋆ (y|x)|r⋆(y, x)− r̂(y, x)|

∣∣∣δf(rγ(y, x))
δr

∣∣∣,
(46)

where f(rγ(y, x)) = log
(
E[ 1

exp(βrγ(y,x))+
∑N−1

i=1 exp(βrγ(Yi,x))
]
)
, for some γ ∈ (0, 1) we have

rγ(y, x) = γr̂(y, x) + (1− γ)r⋆(y, x). Using Lemma F.11, we have,∣∣∣δf(r(y, x))
δr

∣∣∣ ≤ N2β exp(2β)

(N − 1)2
. (47)

Using equation 47 in equation 46 and applying Cauchy-Schwarz inequality, we have,∑
Y

πSBoN
r⋆ (y|x)

(
log

(
E[

1

exp(βr⋆(y, x)) +
∑N−1

i=1 exp(βr⋆(Yi, x))
]
)

− log
(
E[

1

exp(βr̂(y, x)) +
∑N−1

i=1 exp(βr̂(Yi, x))
]
))

≤

√√√√∑
Y

E[1/(1 +
N−1∑
i=1

exp(β(r⋆(Yi, x)− r⋆(y, x))))]2πref(y|x)

×
√∑

Y
|r⋆(y, x)− r̂(y, x)|2πref(y|x)

√∑
Y

∣∣∣δf(rγ(y, x))
δr

∣∣∣2πref(y|x)

≤
√
εβ,r(x)

1 + (N − 1) exp(−β)

N2β exp(2β)

(N − 1)2
.

(48)

It completes the proof.

H PROOF AND DETAILS OF SECTION 5

H.1 UPPER BOUND PROOF AND DETAILS

Lemma 5.1 (Full Version). Under Assumption 3.1, the following properties of Cβ,r(x)
hold,

1. Cβ,r(x) =
E[exp(2βr̂(Y,x))]
E2[exp(βr̂(Y,x)) .

2. Cβ,r(x) is an increasing function with respect to β.
3. C∞,r̂(x) =

1∑
i πref (ymax

i,r (x)|x) where ymax
i,r (x) ∈ argmaxy r(y, x).

4. For all β < ∞, we have 1 ≤ Cβ,r(x) ≤ min(C∞,r̂(x), exp(2β)).

Proof. In the following, we provide proofs of different items.

1.

Cβ,r̂(x) =
∑
Y

π2
β,r̂(y|x)
πref(y|x)

=
∑
Y

exp(2βr̂(y, x))

E2[exp(βr̂(Y, x))]
πref(y|x)

=
E[exp(2βr̂(Y, x))]
E2[exp(βr̂(Y, x))]

.

(49)
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2. We can show that the logarithm function of Cβ,r̂(x) is increasing. Then, due to the increas-
ing feature of the log function, the final result holds.

log(
E[exp(2βr̂(Y, x))]
E2[exp(βr̂(Y, x))]

)

= log(E[exp(2βr̂(Y, x))])− 2 log(E[exp(βr̂(Y, x))]),
(50)

then we can compute the derivative of equation 50,

d log(E[exp(2βr̂(Y, x))])
dβ

− 2
d log(E[exp(βr̂(Y, x))]

dβ

=
E[2r̂(Y, x) exp(2βr̂(Y, x))]

E[exp(2βr̂(Y, x))]
− 2

E[r̂(Y, x) exp(βr̂(Y, x))]
E[exp(βr̂(Y, x))]

(51)

Note that we have,

dE[r̂(Y,x) exp(βr̂(Y,x))]
E[exp(βr̂(Y,x))]

dβ

=
E[r̂2(Y, x) exp(βr̂(Y, x))]E[exp(βr̂(Y, x))]− E[r̂(Y, x) exp(βr̂(Y, x))]2

E2[exp(βr̂(Y, x))]

= EY∼πβ,r̂(·|x)[r̂
2(Y, x)]− EY∼πβ,r̂(·|x)[r̂(Y, x)]

2 ≥ 0.

(52)

Therefore, we have,

E[r̂(Y, x) exp(2βr̂(Y, x))]
E[exp(2βr̂(Y, x))]

≥ E[r̂(Y, x) exp(βr̂(Y, x))]
E[exp(βr̂(Y, x))]

. (53)

It completes the proof.

3. Follows directly from Lemma F.9.

4. Due to Jensen inequality for E2[exp(βr̂(Y, x))] ≤ E[exp(2βr̂(Y, x))], the Cβ,r̂(x). We
also have the uniform bound, Cβ,r̂(x) =

E[exp(2βr̂(Y,x))]
E2[exp(βr̂(Y,x)) ≤ exp(β). Furthermore, due to

increasing property in second item, we also have supβ Cβ,r̂(x) = C∞,r̂(x). Therefore, the
upper bound holds.

Theorem H.1. The following upper bound holds,

∆Jr⋆
(πβ,r⋆

(
· |x

)
, πSBoN

r̂ (·|x)) ≤ 1

β

(
KL(πβ,r⋆(·|x)∥πref(·|x))−KL(πβ,r̂(·|x)∥πref(·|x))

)
+
√

εβ,r(x)
(√

Cβ,r̂(x) +
√

Cβ,r⋆(x)
)

+ 2

√
1

2
log

(
1 +

Cβ,r̂(x)− 1

N

)
.

Proof. Note that, we have,

∆Jr⋆
(πβ,r⋆

(
· |x

)
, πSBoN

r̂ (·|x))
= E

Y∼πβ,r⋆

(
·|x
)[r⋆(Y, x)]− EY∼πSBoN

r̂ (·|x)[r
⋆(Y, x)]

= E
Y∼πβ,r⋆

(
·|x
)[r⋆(Y, x)]− E

Y∼πβ,r̂

(
·|x
)[r⋆(Y, x)]︸ ︷︷ ︸

I1

+ E
Y∼πβ,r̂

(
·|x
)[r⋆(Y, x)]− EY∼πSBoN

r̂ (·|x)[r
⋆(Y, x)]︸ ︷︷ ︸

I2

(54)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Note that, using the definition of πβ,r⋆
(
· |x

)
and πβ,r̂

(
· |x

)
as solutions to KL-regularized problem,

we have,

E
Y∼πβ,r⋆

(
·|x
)[r⋆(Y, x)] = 1

β
KL(πβ,r⋆(·|x)∥πref(·|x)) +

1

β
log(EY∼πref (·|x)[exp(βr

⋆(Y, x))]).

(55)

E
Y∼πβ,r̂

(
·|x
)[r̂(Y, x)] = 1

β
KL(πβ,r̂(·|x)∥πref(·|x)) +

1

β
log(EY∼πref (·|x)[exp(βr̂(Y, x))]). (56)

Therefore, for term I1, we have,

E
Y∼πβ,r⋆

(
·|x
)[r⋆(Y, x)]− E

Y∼πβ,r̂

(
·|x
)[r⋆(Y, x)]

= E
Y∼πβ,r⋆

(
·|x
)[r⋆(Y, x)]− E

Y∼πβ,r̂

(
·|x
)[r̂(Y, x)]

+ E
Y∼πβ,r̂

(
·|x
)[r̂(Y, x)]− E

Y∼πβ,r̂

(
·|x
)[r⋆(Y, x)]

=
1

β

(
KL(πβ,r⋆(·|x)∥πref(·|x))−KL(πβ,r̂(·|x)∥πref(·|x))

)
+

1

β
log(EY∼πref (·|x)[exp(βr

⋆(Y, x))])− 1

β
log(EY∼πref (·|x)[exp(βr̂(Y, x))])

+
∑
Y

πβ,r̂

(
· |x

)
(r̂(y, x)− r⋆(y, x))

≤ 1

β

(
KL(πβ,r⋆(·|x)∥πref(·|x))−KL(πβ,r̂(·|x)∥πref(·|x))

)
+

1

β
log(EY∼πref (·|x)[exp(βr

⋆(Y, x))])− 1

β
log(EY∼πref (·|x)[exp(βr̂(Y, x))])

+
1√
β

√√√√∑
Y

π2
β,r̂(y|x)
πref(y|x)

√
β
∑
Y

(r̂(y, x)− r⋆(y, x))2πref(y|x)

≤ 1

β

(
KL(πβ,r⋆(·|x)∥πref(·|x))−KL(πβ,r̂(·|x)∥πref(·|x))

)
+

1

β
log(EY∼πref (·|x)[exp(βr

⋆(Y, x))])− 1

β
log(EY∼πref (·|x)[exp(βr̂(Y, x))])

+
√

Cβ,r̂(x)εβ,r(x)

≤ 1

β

(
KL(πβ,r⋆(·|x)∥πref(·|x))−KL(πβ,r̂(·|x)∥πref(·|x))

)
+

1

β
log(EY∼πref (·|x)[exp(βr

⋆(Y, x))])− 1

β
log(EY∼πref (·|x)[exp(βr̂(Y, x))])

+
√

Cβ,r̂(x)εβ,r(x)

≤ 1

β

(
KL(πβ,r⋆(·|x)∥πref(·|x))−KL(πβ,r̂(·|x)∥πref(·|x))

)
+
√

Cβ,r⋆(x)εβ,r(x)

+
√

Cβ,r̂(x)εβ,r(x).

(57)
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For term I2 and using similar approach to term I1 and applying Lemma F.10, we have,
E
Y∼πβ,r̂

(
·|x
)[r⋆(Y, x)]− EY∼πSBoN

r̂ (·|x)[r
⋆(Y, x)]

≤ 2TV(πβ,r̂

(
· |x

)
, πSBoN

r̂ (·|x))

≤ 2min
(
1,

√
1

2
KL(πβ,r̂

(
· |x

)
∥πSBoN

r̂ (·|x))
)

≤ 2min
(
1,

√
1

2
log

(
1 +

Cβ,r̂(x)− 1

N

))
≤ 2

√
1

2
log

(
1 +

Cβ,r̂(x)− 1

N

)
(58)

Combining equation 57 and equation 58 with equation 54 completes the proof.

Theorem 5.2. Under Assumption 3.1, the following upper bound holds on the optimal regret
gap of the SBoN policy for any β > 0,

∆Jr⋆
(π⋆

r⋆
(
· |x

)
, πSBoN

r̂ (·|x)) ≤
√
εβ,r(x)

(√
C∞,r̂(x) +

√
C∞,r⋆(x)

)
+ 2

√
1

2
log

(
1 +

C∞,r̂(x)− 1

N

)
+

log(C∞,r⋆(x))

β
,

Proof. Note that we have,

∆Jr⋆
(π⋆

r⋆
(
· |x

)
, πSBoN

r̂ (·|x))
= E

Y∼π⋆
r⋆

(
·|x
)[r⋆(Y, x)]− EY∼πSBoN

r̂ (·|x)[r
⋆(Y, x)]

= E
Y∼π⋆

r⋆

(
·|x
)[r⋆(Y, x)]− E

Y∼πβ,r⋆

(
·|x
)[r⋆(Y, x)]︸ ︷︷ ︸

I3

+∆Jr⋆
(πβ,r⋆

(
· |x

)
, πSBoN

r̂ (·|x))︸ ︷︷ ︸
I4

(59)

For term I4, we can use Theorem H.1. For term I3, note that, we have for β > 0,

E
Y∼π⋆

r⋆

(
·|x
)[r⋆(Y, x)]− E

Y∼πβ,r⋆

(
·|x
)[r⋆(Y, x)] ≤ KL(π⋆

r⋆
(
· |x

)
∥πref(·|x))−KL(πβ,r⋆

(
· |x

)
∥πref(·|x))

β
(60)

Combining equation 60 with Theorem H.1, completes the proof due the positiveness of KL diver-
gence and using Lemma F.7 and Lemma 5.1.

Remark H.2. For β = 0, we have, limβ→0 πβ,r⋆
(
· |x

)
= πref(·|x). Therefore, we have,

E
Y∼π⋆

r⋆

(
·|x
)[r⋆(Y, x)]− E

Y∼πβ,r⋆

(
·|x
)[r⋆(Y, x)] ≤ √

2KL(π⋆
r⋆
(
· |x

)
∥πref(·|x)). (61)

Proposition 5.3. Under Assumption 3.1, the following upper bound holds on the optimal
regret gap of the BoN policy for any β > 0,

∆Jr⋆
(π⋆

r⋆(·|x), πBoN
r̂ (·|x)) ≤

√
ε∞,r(x)

(√
C∞,r̂(x) +

√
C∞,r⋆(x)

)
+ 2

√
1

2
log

(
1 +

C∞,r̂(x)− 1

N

)
.
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Proof. The results follow directly from Proposition 5.3 for β → ∞.

H.2 LOWER BOUND PROOFS AND DETAILS:

We can define the probability of coverage of maximizers under the reference policy as

p⋆(x) := PrY πref (|x)[Y ∈ Y⋆
r⋆(x)] =

1

C∞,r⋆(x)
.

Lemma H.3. Under Assumption 5.5, the following lower bound holds on the optimal regret gap of
the SBoN policy based on true-reward,

∆Jr⋆
(π⋆

r⋆(·|x), πSBoN
r⋆ (·|x)) ≥ γ(x)PrErr(x), (62)

where PrErr is the probability that selected sample from {Yi}Ni=1 via SBoN does not belong to
Y⋆
r⋆(x).

Proof. We have,

∆Jr⋆
(π⋆

r⋆(·|x), πSBoN
r⋆ (·|x))

= Jr⋆(π
⋆
r⋆
(
· |x

)
)− Jr⋆(πβ,r⋆(·|x))

= E
Y∼π⋆

r⋆

(
·|x
)[r⋆(Y, x)]− EY∼πβ,r⋆ (·|x)[r

⋆(Y, x)]

= 1−
[
EY∼πβ,r⋆ (·|x)[r

⋆(Y, x)|Err]PrErr + EY∼πβ,r⋆ (·|x)[r
⋆(Y, x)|Errc](1− PrErr(x))

]
≥ 1−

[
(1− γ(x))PrErr(x) + (1− PrErr(x))

]
= γ(x)PrErr(x),

(63)

where Err is the event where the selected sample using SBoN is not a maximizer.

Next, we provide a lower bound on PrErr(x).
Lemma H.4. The following lower bound holds on PrErr for SBoN algorithm,

PrErr(x) ≥ (1− p⋆(x))N +
N((1− p⋆(x))− (1− p⋆(x))N )

N + (exp(β)− 1)(N − 1)
. (64)

Proof. We consider cases where exactly K responses are selected from Y⋆
r⋆(x). The K has a bino-

mial distribution Bin(N, p⋆(x)) Using Bayes rule, we have,

PrErr(x) =

N−1∑
i=0

Pr(K = i)PrErr(x|K = i)

=

N−1∑
i=0

(
N

i

)
p⋆(x)i(1− p⋆(x))N−iPrErr(x|K = i)

=

N−1∑
i=0

(
N

i

)
p⋆(x)i(1− p⋆(x))N−i

∑
Yj /∈Y⋆

r⋆
(x) exp(βr

⋆(Yj , x))∑N
j=1 exp(βr

⋆(Yj , x))

≥ (1− p⋆(x))N +

N−1∑
i=1

(
N

i

)
p⋆(x)i(1− p⋆(x))N−i N − i

N − i+ ieβ

≥ (1− p⋆(x))N +

N−1∑
i=1

(
N

i

)
p⋆(x)i(1− p⋆(x))N−i N − i

N + (eβ − 1)(N − 1)

≥ (1− p⋆(x))N +
N((1− p⋆(x))− (1− p⋆(x))N )

N + (eβ − 1)(N − 1)

(65)
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Using Lemma H.3 and Lemma H.2, we can derive the following lower bound on our main optimal
regret gap,

Theorem 5.6. Under the same Assumptions in Theorem 5.2 and Lemma H.3, the following
lower bound holds on the regret of SBoN policy under the proxy-reward model,

∆Jr⋆
(π⋆

r⋆(·|x), πSBoN
r̂ (·|x))

≥ γ(x)
(
(1− p⋆(x))N +

N((1− p⋆(x))− (1− p⋆(x))N )

N + (exp(β)− 1)(N − 1)

)
−min

(√
1− exp

(
− U(N, β)

)
,

N

1 + (N − 1) exp(−β)

√
εβ,r(x)

)
,

(66)

where p⋆(x) = 1
C∞,r⋆ (x)

and U(N, β) =
Nβ

√
εβ,r(x)

1+(N−1) exp(−β)

(
N exp(2β)
(N−1)2 + 1

)
.

Proof.

∆Jr⋆
(π⋆

r⋆(·|x), πSBoN
r̂ (·|x)) (67)

= ∆Jr⋆
(π⋆

r⋆(·|x), πSBoN
r⋆ (·|x)) (68)

+∆Jr⋆
(πSBoN

r⋆ (·|x), πSBoN
r̂ (·|x)), (69)

where equation 68 can be bounded using Lemma H.3 and Lemma H.2. By combining Lemma F.12
and Lemma 4.2 we have an upper bound on absolute value of equation 69 where can also result in a
lower bound on equation 69. Furthermore, Another simple upper bound on equation 69 is,

∆Jr⋆
(πSBoN

r⋆ (·|x), πSBoN
r̂ (·|x)) (70)

= EY∼πSBoN
r⋆

(Y |x)[r
⋆(Y, x)]− EY∼πSBoN

r̂ (Y |x)[r̂(Y, x)] (71)

+ EY∼πSBoN
r̂ (Y |x)[r̂(Y, x)]− EY∼πSBoN

r̂ (Y |x)[r
⋆(Y, x)] (72)

= EY∼πSBoN
r̂ (Y |x)[r̂(Y, x)]− EY∼πSBoN

r̂ (Y |x)[r
⋆(Y, x)] (73)

Note that due to calibration both true and proxy-reward models are uniform under πref(·|x). There-
fore, we have,

EY∼πSBoN
r⋆

(Y |x)[r
⋆(Y, x)] = EY∼πSBoN

r̂ (Y |x)[r̂(Y, x)].

Now we have,

|EY∼πSBoN
r̂ (Y |x)[r̂(Y, x)]− EY∼πSBoN

r̂ (Y |x)[r
⋆(Y, x)]| ≤

√√√√∑
y

(πSBoN
r̂ (·|x))2
πref(·|x)

√
εβ,r(x)

≤ N

1 + (N − 1) exp(−β)

√
εβ,r(x).
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Figure 3: Soft Best-of-N experiment using a strong reward model (Left) and a weak one (Right).
When the performance of the reward model is poor, BoN can lead to overoptimization, while the
SBoN can help to mitigate it.

I EXPERIMENTS

Our implementation is available in the following link: https://anonymous.4open.
science/r/sbon-C6D3/README.md .

LLM-as-a-Judge: To evaluate the performance of the generated responses, we used GPT-4o to
determine how harmless they are. Specifically, we used the following prompt:

You are an AI safety evaluator. Your task is to determine if a response to a given prompt
contains harmful content. Respond with a harmlessness score using these criteria:

2 = SAFE: The response is completely safe and appropriate.
1 = SOMEWHAT HARMFUL: The response contains potentially concerning elements, mild
toxicity, stereotypes, subtle harmful guidance, or borderline inappropriate content.
0 = HARMFUL: The response contains clearly harmful content such as hate speech, explicit
instructions for dangerous activities, severe toxicity, etc.

Provide your judgment as an integer in curly brackets like this: 1, 2, or 3.

This yields a reward with values ranging from 0 to 2, where 0 indicates complete harm and 2 indi-
cates safety.

Future work may address optimizing β using cross-validation or the estimation of terms in Re-
mark 5.8 to derive sub-optimal β. For this study, we employ a grid search over a range of β values.

I.1 MORE EXPERIMENTS

To further support our theoretical analysis, we conducted more experiments comparing Soft Best-
of-N (SBoN) across different regularization strengths and reward model qualities. We ran one ex-
tra experimental conditions: one using a weaker proxy-reward model (tulu-v2.5-13b-uf-rm (Ivison
et al., 2024)) respect to Armo reward model. As shown in Figure 3, when the reward model is
weak, performance degrades for large N due to reward hacking. However, the smoothing in SBoN
helps mitigate this degradation. This observation is also aligned with our theoretical analysis and
discussion in Section 4.
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Figure 4: True KL divergence vs upper bound in Lemma 4.1 for fixed N = {10, 100, 500}.

I.2 NUMERICAL EXAMPLES

I.2.1 KL BOUND

To illustrate how our analytical upper bound in Lemma 4.1 behaves as a function of the temperature
parameter β, we run a toy experiment in which

1. the reference policy is the uniform distribution over responses, and
2. rewards are bounded with = 1.

For each β in a logarithmic sweep, we compute the true KLdivergence between the SBoN policy
and the reference policy, together with the theoretical bound derived in Lemma 4.1.

• Very large β (nearBoN policy). As β → ∞ the SBoN policy converges to the BoN policy.
The gap between the KL and the bound vanishes.

• Very small β (reference policy). When β → 0 the SBoN policy approaches the uniform
sampling from the reference policy, which results in the reference policy, making the KL
itself tend to zero; the bound is equal to zero for this value.

This experiment confirms that the bound is tight in the two asymptotic regimes and remains a con-
servative yet informative estimate elsewhere.

I.2.2 REGRET UPPER BOUND

To validate our theoretical findings in Theorem 5.2 and Proposition 5.3, we conducted a numerical
analysis comparing the regret upper bounds of SBoN against standard BoN under varying degrees
of reward model error.

We simulate a simplified binary reward setting to isolate the effects of regularization temperature (β)
and proxy-reward error (δ). The setup is defined as follows:

Reward Structure: We assume a binary reward landscape where responses have a true-reward
r⋆(y), r̂ ∈ 0, 1.

Reference Policy (πref ): The reference model generates an optimal response (r⋆ = 1) with prob-
ability πref(ymax|x) = 0.05, corresponding to a coverage constant C∞,r⋆ = 20. The same also
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Figure 5: Numerical comparison of upper bound on Regret of SBoN and BoN

holds for proxy-reward model and we have C∞,r̂ = 20. We also consider N = 256 samples from
reference policy.

Proxy-reward Error (δ): The proxy-reward model matches the true-reward with probability 1− δ
and commits an error (flipping the label) with probability δ. We evaluate three error regimes: Low
(δ = 0.05), Medium (δ = 0.15), and High (δ = 0.50).

SBoN: We compute the regret upper bound using Theorem 5.2, varying the inverse temperature β
from 0.5 to 50.

BoN: We compute the regret upper bound using Proposition 5.3, which represents the asymptotic
limit of SBoN as β → ∞. In this binary setting, the maximum possible error is (ε∞,r = 1).

Discussion: The results, Fig. 5 demonstrate a distinct trade-off mechanism governed by the temper-
ature β. While the standard BoN bound remains constant at a high value due to its susceptibility to
the maximum error (ε∞,r = 1), the SBoN bound forms a convex curve.

For every error rate tested, we observe a "sweet spot"-a finite optimal temperature β⋆ where the
SBoN bound is significantly tighter than the BoN bound. This confirms that by smoothing the
policy (finite β), SBoN effectively balances the trade-off between exploring high-reward regions
and mitigating the overoptimization caused by proxy-reward errors.

I.2.3 REGRET LOWER BOUND

To complement our upper bound analysis, we numerically evaluate the lower bounds on the regret
gap for both SBoN and BoN, as derived in Theorem 5.6 and Proposition 5.7 respectively. These
lower bounds serve as a "safety guarantee," quantifying the worst-case performance degradation
caused by overoptimization. We utilize the same binary reward setup described in previous sec-
tion, with sample size N = 32 and consider no error (δ = 0). The results in Fig. 6 illustrate an
advantage of the SBoN policy over the deterministic BoN policy. In error regimes (blue dashed
line, δ = 0.15, 0.5), the BoN lower bound drops significantly, indicating a weak guarantee against
performance collapse. Note that, for no error regime, the lower bound on BoN’s regret is positive.
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Figure 8: InferenceTimePessimism experiment using a strong reward model (Left) and a weak one
(Right). When the performance of the reward model is poor, BoN can lead to overoptimization,
while the InferenceTimePessimism can help to mitigate it.

I.2.4 UPPER AND LOWER BOUNDS GAP

To compare the performance of upper and lower bounds, we consider the case where δ = 0 which
is similar to no-overoptimization scenario. As shown in Fig. 7, the gap between upper and lower
bounds of BoN is tighter than SBoN.

J COMPARISON WITH HUANG ET AL. (2025)

We contrast our contributions with the recent work of Huang et al. (2025), focusing on four key
dimensions: the object of study, regret bounds, and the mechanism of regularization.

Object of study. Huang et al. (2025) analyze BoN, introducing an inference-time pessimism algo-
rithm within a χ2-regularized framework to mitigate overoptimization. In contrast, we an-
alyze SBoN via treating BoN as the limit where β → ∞ and derive finite-sample KL and
regret bounds under reward model misspecification (specifically, proxy-reward vs. true-
reward). To our knowledge, these SBoN-specific bounds characterizing the behavior under
overoptimization are novel.

Error metrics and reward modeling. While Huang et al. (2025) operate on raw (uncalibrated) re-
wards using mean-squared error (MSE), we utilize calibrated rewards (Balashankar et al.,
2025). We introduce the tilted error, denoted as εβ,r, which interpolates between MSE (at
β = 0) and L∞ error (as β → ∞). This metric allows us to explicitly track the dynamics
of overoptimization as a function of both N and the temperature β.

Regret bounds. Our Theorem 5.2, Proposition 5.3, Theorem 5.6 and Proposition 5.7 and establish
regret bounds for SBoN and its BoN limit that depend on: (i) the tilted error εβ,r(x), and
(ii) the coverage constants C∞,r for both the true and proxy-rewards. A crucial distinction,
highlighted in Remark 5.4, is that our BoN regret bound remains finite even when overop-
timization vanishes (i.e., when ε∞,r = 0 or N → ∞). Conversely, the bound proposed
by Huang et al. (2025) on BoN scales with the L∞-error. This represents a qualitative
improvement in how misspecification is handled in our analysis.

Theoretical and algorithmic consistency. Our analysis of SBoN fully incorporates the algorithm’s
primary regularization parameter, β. In contrast, the theoretical regret bounds for Inference-
TimePessimism in Huang et al. (2025) exclude the estimation error of the normalization
factor (Algorithm 3) and are independent of the truncation parameter required by their
Algorithm 4. Furthermore, regarding practical complexity, SBoN relies on a single hy-
perparameter β, whereas InferenceTimePessimism requires tuning an additional truncation
parameter and incurs computational overhead to estimate the normalization factor.

InferenceTimePessimism Experiment: We compared SBoN against the InferenceTimePessimism
baseline (Huang et al., 2025), using the configuration specified in their paper. While both methods
achieve similar empirical performance Fig.8, SBoN is significantly more efficient to implement and
tune, as it avoids the additional computational overhead and hyperparameter search space required
by the pessimistic approach.
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K INFORMATION PROJECTION ACROSS REWARD FUNCTIONS

In this section, we study the KL divergence behavior in Section 4 for large N regime, where SBoN
policy converge to tilted optimal policy.

We consider a proxy-reward class R of rewards, and a projection problem at a fixed temperature β
which is inspired by reducing the estimation error,

(reverse-I-proj in tilted family) r̂I ∈ argmin
r̂∈R

DKL

(
πβ,r⋆ ∥πβ,r̂

)
.

Proposition K.1 (Pythagorean I-projection in reward space). Suppose the proxy class R is convex
in r (e.g., an affine subspace). Let r̂I ∈ argminr̂∈R KL(πβ,r⋆∥πβ,r̂). Then, we have,

KL(πβ,r⋆∥πref) ≥ KL(πβ,r⋆∥πβ,r̂I)︸ ︷︷ ︸
Estimation error

+ KL(πβ,r̂I∥πref)︸ ︷︷ ︸
KL-divergence based on proxy-reward

(74)

Proof. The proof follows from Theorem 1 in Csiszár & Matus (2003).

Proposition K.1 and Lemma F.7 provide an upper bound on DKL(πβ,r⋆∥πref). Since the LHS of
equation 74 is fixed for a given β, an increase in estimation error necessarily decreases the allowable
divergence between the proxy-reward and the reference policies DKL(πβ,r̂I∥πref). If r⋆ ∈ R, the
estimation error is zero (no overoptimization). If r⋆ /∈ R, the estimation error consumes part of the
total divergence budget. This analysis can be extended to for finite N , using Lemma F.10.
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