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Abstract— The image-level label has prevailed in weakly super-
vised semantic segmentation tasks due to its easy availability.
Since image-level labels can only indicate the existence or absence
of specific categories of objects, visualization-based techniques
have been widely adopted to provide object location clues. Con-
sidering class activation maps (CAMs) can only locate the most
discriminative part of objects, recent approaches usually adopt
an expansion strategy to enlarge the activation area for more
integral object localization. However, without proper constraints,
the expanded activation will easily intrude into the background
region. In this paper, we propose spatial structure constraints
(SSC) for weakly supervised semantic segmentation to alleviate
the unwanted object over-activation of attention expansion.
Specifically, we propose a CAM-driven reconstruction module to
directly reconstruct the input image from deep CAM features,
which constrains the diffusion of last-layer object attention by
preserving the coarse spatial structure of the image content.
Moreover, we propose an activation self-modulation module to
refine CAMs with finer spatial structure details by enhancing
regional consistency. Without external saliency models to provide
background clues, our approach achieves 72.7% and 47.0%
mIoU on the PASCAL VOC 2012 and COCO datasets, respec-
tively, demonstrating the superiority of our proposed approach.
The source codes and models have been made available at
https://github.com/NUST-Machine-Intelligence-Laboratory/SSC.
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I. INTRODUCTION

WITH the development of deep learning algorithms,
semantic segmentation has achieved remarkable

progress and played an increasingly important role in many
practical applications, such as autonomous driving and medical
image analysis [1], [2], [3]. However, training a deep segmen-
tation model requires a large number of high-cost pixel-wise
accurate labels. Therefore, weakly supervised semantic seg-
mentation (WSSS) has recently attracted the attention of
researchers, which aims to alleviate the reliance on pixel-level
annotations by resorting to weak supervision. Compared to
bounding box [4], [5], [6], [7], point [8], and scribble [9],
[10], image-level label [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22] is the most challenging annota-
tion form which only indicates the presence or absence of
certain classes of objects. It is also the most popular weak
label due to its easy availability. In this paper, we concen-
trate on addressing the WSSS task based on image-level
labels.

The typical pipeline of the image-level label based weakly
supervised semantic segmentation is composed of three steps:
1) training a classification network with image-level annota-
tions; 2) relying on visualization techniques to locate target
objects and generating pixel-level pseudo-labels, e.g., class
activation maps (CAMs) [23]; 3) leveraging the obtained
pseudo-labels to train a segmentation model in the fully-
supervised setting. Though CAMs provide location clues for
targets in images, they can only locate a small discriminative
region of the target objects, which leads to unsatisfactory
pseudo-labels with a high false negative rate. Therefore, recent
efforts for WSSS tasks mainly focus on expanding the object
activation to cover more integral object regions. For example,
Kim et al. [24] proposed a discriminative region suppression
approach to suppress the attention on discriminative regions
and spread it to the adjacent non-discriminative area. They also
leverage localization map refinement learning to further refine
localization maps by recovering more missing parts. Though
these methods can enlarge activated object regions, they will
also inevitably result in over-activation, i.e., the expanded
object activation intrudes into the background area, illustrated
in Fig. 1 (c). Therefore, many approaches suffer from false
positive activation and have to rely on additional saliency
maps to provide background clues for post-processing or joint
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Fig. 1. Comparison between the traditional methods and ours. (a) Input
image. (b) Localization maps produced by CAM [23] only identify the
most discriminative part of the object, e.g., the window of a car. (c) CAM
expansion [24] results of traditional methods. They mainly focus on expanding
the activation region and rely on saliency maps to provide background clues.
Consequently, they will also inevitably result in over-activation, i.e., the
expanded object activation intrudes into the background area. (d) Our results.
Our proposed spatial structure constraints can constrain the activation within
the object area to alleviate object over-activation (first and second rows) and
help activate more integral object regions to mitigate object under-activation
(last row). Best viewed in color.

training. Few works focus on constraining the object attention
during the expansion process.

In this paper, we propose to exploit spatial structure con-
straints (SSC) for weakly supervised semantic segmentation to
alleviate the object over-activation problem mentioned above.
Though CAMs can help locate regions of target objects, they
can hardly provide any boundary clues due to the lack of
shape information during training. Such amorphous localiza-
tion accounts for the under-activation of naive CAMs and the
over-activation of enlarged CAMs with attention expansion.
Therefore, inspired by the self-supervised learning work of
Autoencoder [25], we propose a CAM-driven reconstruction
module to directly reconstruct the input image from its CAM
features i.e., the last-layer features used to generate CAMs.
To endow CAMs with spatial structure information of the
image content, we train the reconstruction network together
with the classification backbone using a perceptual loss [26]
that depends on high-level features from a pre-trained loss
network, instead of using the per-pixel loss function (L1
or L2 loss) depending only on low-level pixel information.
It is noteworthy that we reconstruct images directly from the
class-specific CAM features. This is essential to guide the
classification network to generate CAMs that maintain the
spatial structure of image content by penalizing the recon-
structed image that semantically and spatially deviates from
the corresponding input image.

However, as we reconstruct images from deep semantic
features with reduced resolution, only overall image con-
tent and coarse spatial structure are preserved in CAMs but
exact shapes are not. Therefore, we propose an activation
self-modulation module to further refine CAMs with higher
resolution spatial structure details via enhancing regional
consistency. Specifically, we resort to superpixels that group
pixels that are similar in color and other low-level features.

We first refine the CAM features by averaging their values
in each superpixel to obtain regional consistent features,
which will also lead to CAMs with local smoothness and
consistency. Then we align the CAMs to the obtained regional
consistent CAM for encouraging the classification network
to maintain regional consistency. However, the average oper-
ation will also significantly suppress the activation of the
discriminative part if the high activation only occupies a small
portion of the corresponding superpixel, which will lead to
unwanted regional under-activation. Therefore, we also lever-
age a reliable activation selection strategy to maintain the high
activation of the most discriminative region. Our proposed
activation self-modulation module simultaneously enhances
the regional consistency of CAM and keeps the reliable high
activation, thus can significantly preserve the spatial structure
details of the target objects. As can be seen in the first two
rows of Fig. 1 (d), our proposed spatial structure constraints
can constrain the activation within the object area to alleviate
the object over-activation problem mentioned above. Besides,
as shown in the last row of Fig. 1 (d), constraining the object
attention with image content can also help activate more
integral object regions to mitigate object under-activation not
tackled by previous approaches.

Our proposed SSC is trained jointly with the classification
network in a single round, which can be directly plugged
into existing networks, as shown in Fig. 2. Without external
saliency models to provide background clues, our approach
achieves 72.7% and 47.0% mIoU on the PASCAL VOC
2012 and COCO datasets, respectively. These results demon-
strate the advantage of alleviating the object over-activation
problem by exploiting spatial structure constraints. Our con-
tributions can be summarized as follows:

• We propose spatial structure constraints (SSC) for weakly
supervised semantic segmentation to alleviate the object
over-activation problem of CAM expansion.

• To preserve coarse spatial structure of the image content,
we propose a CAM-driven reconstruction module with
the perceptual loss that directly reconstructs the input
image from its CAM features.

• We propose an activation self-modulation module with
a reliable activation selection strategy to further refine
CAMs with finer spatial structure details by enhancing
regional consistency.

The rest of this paper is organized as follows: the related
work is described in Section II and our approach is introduced
in Section III; we then report our evaluations and ablation
studies on two widely-used datasets in Section IV and finally
conclude our work in Section V.

II. RELATED WORK

A. Weakly Supervised Semantic Segmentation

Semantic segmentation aims to identify the category of
each image pixel. It has achieved significant progress with the
development of deep learning. For example, while prevalent
works like DeepLabV2 [27] typically learn parametric class
representations, the work of [28] represents each class as a
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set of non-learnable prototypes [29] to achieve dense predic-
tion by nonparametric nearest prototype retrieving. Recently,
LogicSeg [30] integrates neural inductive learning and logic
reasoning into a structured parser to holistically interpret visual
semantics. However, collecting dense annotations for training
fully supervised segmentation models is labor-intensive and
time-consuming.

Compared to pixel-level accurate labels, weakly supervised
semantic segmentation resorts to weaker annotations for alle-
viating the annotation burden of the segmentation task, e.g.,
image-level label [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], bounding box [4], [5], [7], point [8],
and scribble [9], [10]. Among them, the image-level label
is the most popular one and has attracted much attention
of researchers. Visualization techniques like CAMs [23] are
widely adopted to leverage image-level tags to locate target
object regions for facilitating the generation of pixel-level
pseudo labels. Considering object activation in CAMs is
usually incomplete and lacks shape information, recent works
mainly focus on: (1) expanding object attention to cover more
integral target regions, and (2) refining CAMs for accurate
boundaries.

An effective way for attention expansion is to transfer the
surrounding discriminative information to non-discriminative
object regions. For example, dilated [16] and deformable [19]
convolutions are exploited to sample increasingly less dis-
criminative object regions and Kim et al. [24] propose a
discriminative region suppression approach. Adversarial eras-
ing is proposed to hide highly activated regions and drive
the network to find more object parts [31], [32]. Instead of
treating each image independently, recent researchers also
propose group-wise learning to mine cross-image seman-
tic relations [33], [34]. While these methods can discover
more object parts, they suffer from the object over-activation
problem and rely on additional saliency maps to provide
background clues [17], [24], [35], [36], [37]. The generation of
saliency maps usually involves other datasets to train a salient
object detection model. In contrast, in this paper, we propose
spatial structure constraints for weakly supervised semantic
segmentation to constrain the activation of CAM expansion.

For CAM refinement, Ahn and Kwak propose Affini-
tyNet [15] to predict semantic affinity between a pair of
adjacent image coordinates, which are then propagated via a
random walk to recover delicate shapes of objects. To learn
semantic affinities more effectively and efficiently, class
boundary detection is exploited in IRN [38] to discover the
entire instance areas with more accurate boundaries. The work
of BES [39] proposes explicitly exploring object boundaries
through learning with synthetic boundary labels derived from
localization maps. In this paper, we propose CAM-driven
reconstruction and activation self-modulation modules, which
can refine CAMs with more accurate boundaries by exploiting
both coarse and fine-level spatial structure information of the
input image.

B. Self-Supervised Learning

Deep supervised learning algorithms typically require large-
scale annotated data to achieve satisfactory performance.

In contrast, self-supervised learning (SSL), a branch of unsu-
pervised learning methods, aims to learn general image and
video features from large numbers of unlabeled examples [40],
[41], and [42]. A pre-defined pretext task is usually designed
for SSL with pseudo labels automatically generated based on
attributes of data, e.g., relative position [43], jigsaw [44], and
rotation [45]. Recently, through constructing the pretext task of
instance discrimination, contrastive learning-based SSL meth-
ods, such as MoCo and SimCLR series [46], [47], [48], [49],
have pushed the performance of self-supervised pretraining to
a level comparable to that of supervised learning. With the
advent of vision transformer, masked image modeling (MIM)
methods like MAEs [50] and SimMIM [51] have also become
very popular due to their massive potential in SSL. Following
the idea of Autoencoder [25], the pioneering work about image
generation-based SSL methods, we propose a CAM-driven
reconstruction module to reconstruct the input image from
features. However, different from the goal of Autoencoder to
reduce the image dimension or extract features for downstream
tasks, our reconstruction module aims to preserve the spatial
structure of the image content. Therefore, we propose to
directly reconstruct the input image from its CAM features
and leverage perceptual loss to train the networks.

C. Superpixel Guidance in Weakly Supervised Segmentation

Superpixel aims to group pixels that are similar in color
and other low-level features. After obtaining visually signifi-
cant entities, superpixels can lower the number of primitives
required for future processing stages and thus have been
widely applied in tasks like medical and satellite imaging [52].
Weakly supervised approaches also explore the contexts of
superpixels to improve the segmentation performance [53],
[54], [55], [56]. For example, Li et al. [54] apply a superpixel-
CRF refinement model to rectify the mistakes of the initial
pixel annotations by an iteration framework. SGWS [56]
introduces the local and global consistency information of
superpixel to optimize the coarse initial seeds that only cover
the most discriminative parts of objects. Different from these
methods that leverage superpixels at the post-processing stage
to refine pseudo labels, we propose to exploit their regional
consistency during the training of the classification network
to derive more integral object activation. The most related
work is ICD [55], which leverages superpixels to refine the
ICD score for intra-class discrimination. However, focusing
on separating the foreground and the background pixels,
ICD [55] is mainly learned by single-class images to avoid
mixing multi-class objects, which hampers its application in
complex datasets like COCO [57]. In contrast, our proposed
spatial structure constraints are conducted directly with the
CAM feature and thus can be extended to multi-class images.
Besides, our proposed activation self-modulation keeps the
reliable high activation rather than simply learning from the
regional consistency.

III. THE PROPOSED APPROACH

In this paper, we propose spatial structure constraints (SSC)
for weakly supervised semantic segmentation to alleviate the

Authorized licensed use limited to: NANJING NORMAL UNIVERSITY. Downloaded on February 08,2024 at 00:44:11 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: SSC FOR WEAKLY SUPERVISED SEMANTIC SEGMENTATION 1139

Fig. 2. The architecture of our proposed approach. While training the classification network with the image-level labels, we propose a CAM-driven
reconstruction module to reconstruct the input image from its CAM-related features. Moreover, we propose an activation self-modulation module to further
refine CAMs with finer spatial structure details through enhancing regional consistency. Our proposed modules help the classification network learn to preserve
the spatial structure of the image content and constrain high activation within the object area. ⊗ is the Hadamard product. Best viewed in color.

object over-activation problem induced by CAM expansion.
Our framework is illustrated in Fig. 2. Given only image-
level weak labels, a classification network is trained. Then
CAMs are derived from the last-layer convolutional features
to help locate the object regions and generate pixel-level
pseudo labels for standard segmentation network training.
Considering existing attention expansion methods suffer from
the over-activation problem, we first introduce a CAM-driven
reconstruction network to reconstruct the input image from its
CAM-related features. This helps the classification network
learn to preserve the coarse spatial structure of the image
content and constrain high activation within the object area.
In addition, we propose an activation self-modulation module
to further refine CAMs with finer spatial structure details by
enhancing regional consistency.

A. CAM Generation and Attention Expansion

Following the recent progress of WSSS approaches, we train
a classification network and leverage CAMs to locate the
target objects. To facilitate the implementation of our proposed
CAM-driven reconstruction and activation self-modulation
modules, we remove the final fully-connected layer in the
classification network and set the output channel of the last
convolutional layer to the number of classes C . We can thus
directly generate object localization maps from the class-
aware feature maps F of the last convolutional layer in the
forward pass, which is proven by [58] identical to the attention
generation process in the original CAMs [23]. In detail, for
each target category c, we feed attention map Fc into a ReLU
layer and then normalize it to range from 0 to 1:

Ac
=

ReLU (Fc)

max (Fc)
. (1)

For the training of the classification network, we adopt the
multi-label soft margin loss as follows:

Lcls = −
1
C

C∑
c=1

yc log σ
(
qc)

+
(
1 − yc) log

[
1 − σ

(
qc)] .

(2)

Here, σ (·) is the sigmoid function. yc is the image-level label
for the c-th class. Its value is 1 if the class is present in the
image; otherwise, its value is 0.

Since the classification network tends to only identify pat-
terns from the most discriminative parts for recognition, the
generated object activation is usually sparse and incomplete.
Therefore, we follow the recent work of DRS [24] to expand
the activated object regions, which is a simple yet effective
method and requires few or no additional parameters. Given
an intermediate feature map X ∈ RK×H×W , where H , W ,
and K are the height, width, and number of channels of
X , we first leverage global max pooling to extract the max-
element of each channel Xmax ∈ RK×1×1. Then we suppress
the discriminative regions by using a constant value of 0.55
(suggested in DRS [24]) to determine the upper bound of X .

Xnew = min(X, 0.55 · Xmax ). (3)

Such a parameter-free module suppresses the attention on
the most discriminative regions and forces the classification
network to focus on more non-discriminative regions.

B. CAM-Driven Reconstruction

While suppressing the highest activation can success-
fully spread the attention on discriminative regions to the
surrounding non-discriminative object regions, it will also
cause the over-activation problem. Without proper constraints,
attention will easily intrude background area and parts of
objects belonging to other categories. Therefore, many recent
approaches resort to additional saliency maps to provide back-
ground clues for post-processing or joint training. However,
the usage of saliency maps usually requires extra training of
the salient object detection model with corresponding ground
truth. In contrast, we propose a CAM-driven reconstruction
module to help constrain the activation within the target object
area. Specifically, we propose to leverage a reconstruction
network to recover input images I directly from the class-
specific CAM features F of the last convolutional layers:

Î = Reconstruct (F), (4)
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where Î is the reconstructed image. Note that all channels of
the CAM features are used here to reconstruct the image (e.g.,
20-channel features for the VOC dataset) rather than one or
several specific feature channels related to the categories that
exist in the image. For driving the classification network to
preserve the spatial structure of image content, we penalize
the reconstructed image that semantically and spatially devi-
ates from the original image. To encourage the network to
concentrate on the semantic content and spatial structure more
than the color or texture of images, we propose to train the
reconstruction network together with the backbone using a
perceptual loss. This loss relies on high-level features from a
pre-trained loss network rather than the per-pixel loss function
depending only on low-level pixel information. Specifically,
after obtaining the reconstructed image Î , we input it together
with the original input image I into a pre-trained loss network
φ. Let φ j (I ) and φ j ( Î ) be the loss network’s feature maps of
j-th convolutional layer (stage) output with shape C j × H j ×

W j , the feature reconstruction loss is the Mean Absolute Error
between the two feature representations:

ℓrec
j ( Î , I ) =

1
C j H j W j

∥∥∥φ j ( Î ) − φ j (I )
∥∥∥ . (5)

The perceptual loss is then defined as the sum of several
reconstruction losses for multi-stage output features of the loss
network:

L p =

J∑
j=1

1
2(J+1)− j · ℓrec

j ( Î , I ). (6)

Here J denotes the number of stages for reconstruction loss
calculation. 1

2(J+1)− j is the weight (designed to match the
gradually reduced feature resolution) that controls the relative
importance of reconstruction loss for different-stage features.
While the higher level features contain rich semantic infor-
mation, the lower level ones can provide rich clues of object
edge and shape. Benefiting from the preserved spatial structure
of image content, our CAM-driven reconstruction module can
help constrain the activation of target objects (within their own
region) from intruding into their surrounding background area.
At the same time, the proposed CAM-driven reconstruction
also promotes the activation to cover more integral object
regions under the situation of object under-activation.

C. Activation Self-Modulation

Benefiting from the reconstruction module with perceptual
loss, the activation derived from the class-aware features tends
to be more compact and consistent to align with the content
of the image. However, as we reconstruct images from deep
semantic features with reduced resolution, only overall image
content and coarse spatial structure are preserved in CAMs
but exact shapes are not. To endow CAM with more detailed
spatial structure knowledge, we propose an activation self-
modulation module to further refine CAMs via enhancing
regional consistency. For regional consistent activation learn-
ing, we first refine the CAM features F by averaging their
values in each superpixel Sk to obtain regional consistent

feature representations:

F̄i j =

∑
m,n∈Sk(i j)

Fmn∣∣Sk(i j)
∣∣ . (7)

Here, Sk(i j) denotes the k-th superpixel that contains the pixel
at position (i, j). |·| is the operation that counts the number
of pixels in Sk(i j). Then we apply the ReLU and maximum
normalization illustrated in Equation 1 to generate the regional
consistent CAM. After that, we propose to align the CAM Ac

to the obtained regional consistent CAM Āc with a mean-
squared loss for driving the classification network to extract
features maintaining the regional consistency:

La =
1

C ′ H ′W ′

C ′∑
c=1

∥∥Ac
− Āc∥∥2

, (8)

where H ′, W ′, and C ′ are the height, width of the CAM,
and the number of classes that exist in the image. Note that
we up-sample the CAM here to match the half resolution of
the superpixel for taking advantage of finer spatial structure
information. With our regional consistent activation learning,
we can increase the attention of non-discriminative object
areas, especially those within the superpixel that contain the
most discriminative object part.

However, the average operation will also dilute the acti-
vation of the discriminative part if it only occupies a small
portion of the corresponding superpixel, resulting in unwanted
regional low-activation. In the scenario where several sparse
high activation regions exist, the original high attention within
a large superpixel might be significantly suppressed after
the average dilation. This will lead to the false modulation
towards the opposite direction, and the localization map might
gradually lose the activation of the object region. Therefore,
we propose a reliable activation selection strategy to main-
tain the high activation of the most discriminative regions.
Specifically, we first leverage an object threshold Tobj to
filter out the area with relatively higher attention values.
Then we apply an erosion operation to further narrow the
region mask Mc with high activation for reliable activation
selection. Our erosion operation can help remove the unwanted
high activation intruding into the background. Consequently,
we obtain the CAM with reliable activation selection (RS Āc)
for alignment as follows:

Āc
= max( Āc, Ac

⊗ Mc), (9)

where ⊗ is the Hadamard product. Our proposed activation
self-modulation module simultaneously enhances the regional
consistency of CAM and keeps the reliable high activation,
thus can significantly preserve the spatial structure details of
target objects.

D. Training Objective

With our proposed CAM-driven reconstruction and activa-
tion self-modulation modules, the overall training loss of the
classification network is as follows:

L = Lcls + βp L p + βa La . (10)
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Here, βp and βa are the hyperparameters that control the rel-
ative importance of perceptual loss and alignment loss. After
leveraging the trained classification network to obtain CAMs
to locate target objects, we follow the recent works [59], [60],
[61], [62], [63] and adopt IRN [38] to further refine CAMs
for pseudo label generation.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

Following previous works, we evaluate our approach on the
PASCAL VOC 2012 dataset [64] and COCO dataset [57].
As the most popular benchmark for WSSS, the PASCAL VOC
2012 dataset contains 21 classes (20 object categories and the
background) for semantic segmentation. The official dataset
split contains 1,464 images for training, 1,449 for validation
and 1,456 for testing. Following the common protocol in
semantic segmentation, we expand the training set to 10,582
images with additional data from SBD [65]. The COCO
dataset is a more challenging benchmark with 80 semantic
classes and the background. Following previous works [60],
[66], [67], we use the default train/val splits (80k images for
training and 40k for validation) in the experiment. For all
the experiments, we only adopt the image-level classification
labels for training. Mean intersection over union (mIoU) is
adopted as the metric to evaluate the quality of our generated
CAMs, pseudo labels and segmentation results. The results
for the PASCAL VOC test set are obtained from the official
evaluation server.

B. Implementation Details

For the classification network, we follow the work of
IRN [38] and adopt the ResNet-50 [68] model as our backbone
for a fair comparison, which is pre-trained on ImageNet [69].
A 1 × 1 convolutional layer of C channels is adopted as
the pixel-wise classifier to generate CAM features. Then,
the CAM features are directly input into our CAM-driven
reconstruction module, and coarse spatial structure constraint
on features is added through minimizing the perceptual loss
between the reconstructed and the original images. On the
other hand, CAM features are also fed into our activation
self-modulation module to further refine CAMs with finer
spatial structure details by enhancing regional consistency with
an alignment loss. The momentum and weight decay of the
SGD [70] optimizer are 0.9 and 1×10−4. The initial learning
rate is set to 0.1. The input images are resized and cropped
to 512 × 512, and the size of generated CAM feature is
32 × 32 with stride = 16. We train the classification network
for 10 epochs with batch size = 6.

The reconstruction network comprises one head ConvBlock,
one ResBlock, four Up-sample blocks and one tail ConvBlock
to recover the size of CAM features to the input image.
Specifically, each Up-sample block contains a 4 × 4 transpose
convolution to up-sample the features and a 3×3 convolution
to further aggregate the representation. Its detailed architecture
is demonstrated in Table I. For the loss network, we adopt the
VGG-19 model [71] pre-trained on ImageNet [69]. For the
perceptual loss, we set J = 5 to choose features before each

TABLE I
DETAILED ARCHITECTURE OF THE RECONSTRUCTION NETWORK

TABLE II
ACCURACY (MIOU) OF PSEUDO-MASKS EVALUATED ON PASCAL

VOC 2012 TRAINING SET

pooling layer for reconstruction loss calculation. For the super-
pixels, we directly leverage the ones provided by the work
of ICD [55] for fair comparison. Specifically, superpixels are
first generated with the method of [72] and then hierarchically
merged with selective search [73] so that each image contains
at most 64 superpixels.

For the second stage training of WSSS, following the
recent work of BECO [74], we adopt DeeplabV2 [27] as
the segmentation network, which uses ResNet101 [68] as the
backbone with an output stride of 16. The momentum and
weight decay of the SGD optimizer are 0.9 and 10−4. The
initial learning rate is set to 10−2 and is decreased using
polynomial decay. The segmentation model is trained for
80 epochs and 40 epochs on VOC and MS COCO datasets,
respectively, with a common batch size of 16. We also follow
the default setting of DeeplabV2 [27] and conduct experiments
with VGG16 backbone for a more comprehensive comparison
with previous approaches [15], [35], [36], [39], [55], [75].
Both ResNet101 and VGG16 backbones are pretrained on
ImageNet dataset [69].

C. Comparisons to the State-of-the-Arts

1) Accuracy of Pseudo-Masks: For weakly supervised
semantic segmentation, the quality of generated pseudo labels
directly influences the performance of the trained segmentation
network. Therefore, we first present the comparison of the
quality of pseudo-masks derived from our approach and other
state-of-the-arts. As shown in Table II, the segmentation seed
generated by our approach can arrive at the mIoU of 58.3%,
bringing a gain of 10% compared to the baseline reported
by IRN [38]. Our method can obtain more accurate seeds
than state-of-the-art methods like RIB [62] and ReCAM [63]
by 1.7%. Our proposed SSC can also outperform the recent
D2CAM [76] by 0.3% mIoU. Leveraging the random walk
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TABLE III
QUANTITATIVE COMPARISONS TO PREVIOUS STATE-OF-THE-ART

APPROACHES ON PASCAL VOC 2012 VAL AND TEST SETS WITH
VGG BACKBONE. SUP: SUPERVISION, I: IMAGE-LEVEL LABEL,

S: SALIENCY MAPS

algorithm in IRN [38] to further refine CAMs for pseudo label
generation, the mIoU of our pseudo-masks can reach 71.9%.

2) Accuracy of Segmentation Maps on PASCAL VOC 2012:
We present our segmentation results on PASCAL VOC
2012 for the backbone of VGG and ResNet in Table III
and Table IV, respectively. As can be seen, for the VGG
backbone, our approach achieves better results than other state-
of-the-art methods with only image-level labels. Specifically,
our segmentation results can reach 67.4% on the test set,
which outperforms the recent work of ECS [75] by 4%.
Our performance is also competitive to many approaches that
rely on saliency maps, e.g., NSROM [77] and EPS [35]. For
the ResNet backbone, we can get 72.7% on the validation
set and 72.8% on the test set. Our proposed approach can
outperform the recent work of ACR [78] and BECO [74] by
0.6% on the validation set and 0.9% on the test set. Though
approaches of W-OoD [79] and CLIP-ES [80] leverage addi-
tional out-of-distribution images and language supervision to
help distinguish the foreground from the background, our
method can still outperform them by 1.4%. Besides, our
proposed SSC can also achieve competitive performance with
recent SOTA approaches like PPC [81] and RCA [82] that
require additional saliency models. Some example prediction
maps on the PASCAL VOC 2012 val set can be viewed in
Fig. 3.

3) Accuracy of Segmentation Maps on COCO: For the more
challenging COCO dataset, we provide performance compar-
isons with state-of-the-art WSSS methods for the backbone
of VGG and ResNet in Table V and Table VI, respectively.
As shown in Table V, our proposed SSC with VGG backbone
can achieve the performance of 38.1% mIoU, much better than
previous methods supervised with only image-level labels, e.g.,
14.4% mIoU higher than CONTA [60]. Besides, our approach
can also obtain better results compared to previous SOTA
methods with additional saliency guidance (e.g., outperform
RCA [82] and MDBA [1] by 1.3% and 0.3% mIoU on the vali-
dation set, respectively ). Similarly, with the ResNet backbone,
our proposed SSC reaches the best results of 47.0% mIoU
compared to previous SOTA WSSS methods. Specifically, our
approach outperforms ACR [78] and BECO [74] by 1.7%
and 1.9% mIoU, respectively. Our SSC can also obtain 1.6%
higher mIoU than CLIP-ES [80] than relies on language-image

TABLE IV
QUANTITATIVE COMPARISONS TO PREVIOUS STATE-OF-THE-ART

APPROACHES ON PASCAL VOC 2012 VAL AND TEST SETS WITH
RESNET BACKBONE. SUP: SUPERVISION, I: IMAGE-LEVEL LABEL,

S: SALIENCY MAPS, O: OUT-OF-DISTRIBUTION DATA, L:
LANGUAGE SUPERVISION

TABLE V
QUANTITATIVE COMPARISONS TO PREVIOUS STATE-OF-THE-ART

APPROACHES ON COCO VAL SET WITH VGG BACKBONE. SUP:
SUPERVISION, I: IMAGE-LEVEL LABEL, S: SALIENCY MAPS

pretraining models with super-large datasets. Some example
prediction maps on the COCO val set can be viewed in Fig. 4.

D. Ablation Studies

1) Element-Wise Component Analysis: In this part,
we demonstrate the contribution of each component proposed
in our approach to improving the quality of pseudo-masks.
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Fig. 3. Example prediction maps on the PASCAL VOC 2012 val set. For each (a) image, we show (b) the ground truth (GT), predictions of (c) baseline,
(d) DRS [24], (e) DRS + CDR, and (f) DRS + CDR + ASM. Best viewed in color.

TABLE VI
QUANTITATIVE COMPARISONS TO PREVIOUS STATE-OF-THE-ART

APPROACHES ON COCO VAL SET WITH RESNET BACKBONE. SUP:
SUPERVISION, I: IMAGE-LEVEL LABEL, S: SALIENCY MAPS, L:

LANGUAGE SUPERVISION

The experimental results are given in Table VII. While the
accuracy of pseudo-labels from baseline is 48.3%, DRS [24]
can improve the result to 50.2%. With our proposed CAM-
driven reconstruction module, we can significantly improve the
quality of pseudo-masks and the accuracy arrives at 54.5%.
We can notice that if we reconstruct the input image from
early features, the accuracy will drop to 52.3%. This highlights
the importance of directly reconstructing the input image
from its CAM features to preserve the spatial structure in
attention maps. Some visualization of the image reconstruction

Fig. 4. Example prediction maps on the COCO val set. For each (a) image,
we show (b) the ground truth (GT), and (c) prediction. Best viewed in color.

TABLE VII
ELEMENT-WISE COMPONENT ANALYSIS. THE ACCURACY (MIOU)

OF PSEUDO-MASKS ON PASCAL VOC 2012 TRAINING SET IS
REPORTED. DRS [24]: DISCRIMINATIVE REGION SUPPRESSION;

CDR: CAM-DRIVEN RECONSTRUCTION; ASM: ACTIVATION
SELF-MODULATION; RAS: RELIABLE ACTIVATION SELEC-

TION

results can be observed in Fig. 6. As can be seen, the recon-
structed results with the perceptual loss focus more on the
content and spatial structure of images rather than low-level
pixel information. With our activation self-modulation module,
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Fig. 5. Example localization maps on the PASCAL VOC 2012 training set. For each (a) image, we show (b) the ground truth (GT), localization maps
produced by (c) baseline, (d) DRS [24], (e) DRS + CDR, and (f) DRS + CDR + ASM. Best viewed in color.

Fig. 6. Example image reconstruction results on the PASCAL VOC 2012 and
COCO datasets. Best viewed in color.

we further constrain the localization maps with detailed spatial
structure information and improve the accuracy of pseudo-
masks to 58.3%. As can be seen, without our reliable activation
selection strategy, the accuracy will decline to 57.2%. This
highlights the importance of maintaining the high activation
of the most discriminative regions to alleviate the false mod-
ulation in the opposite direction.

TABLE VIII
COMPARISON OF PERCEPTUAL LOSS WITH L1 AND L2 LOSSES FOR

CAM-DRIVEN RECONSTRUCTION (CDR). THE ACCURACY (MIOU) OF
PSEUDO-MASKS ON THE PASCAL VOC 2012 TRAINING SET IS

REPORTED

Some example localization maps on the PASCAL VOC
2012 training set can be viewed in Fig. 5. As can be seen from
the first two columns, though DRS [24] can help enlarge the
activated region, it will also inevitably result in over-activation
where the expanded object activation intrudes into the back-
ground area. With our proposed CAM-driven reconstruction
module, we can help constrain the activation within the object
region (e.g., the plane in the first column and the beak of
bird in the second column). Our proposed activation self-
modulation module further constrains the network attention
on target objects by enhancing regional consistency, which
leads to more compact object activation. In addition, benefiting
from our spatial structure constraints, our proposed CAM-
driven reconstruction and activation self-modulation modules
can also help activate more integral object regions to alleviate
the remaining under-activation problem in difficult images,
illustrated in the last column. Some example prediction maps
on the PASCAL VOC 2012 val set can be viewed in Fig. 3.
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Fig. 7. The analysis of parameter sensitivity. The accuracy (mIoU) of
pseudo-masks on the PASCAL VOC 2012 training set is reported.

2) Discussion of Perceptual Loss: For driving the classi-
fication network to preserve the spatial structure of image
content, we propose a CAM-driven reconstruction module to
recover the input image. Then the perceptual loss is adopted
to penalize the reconstructed image that semantically and
spatially deviates from the original image. The motivation for
selecting perceptual loss rather than L1 or L2 losses which
are also widely used in self-supervised learning is twofold.
First, L1 and L2 losses highlight the alignment of low-level
information. Such strict per-pixel alignment will encourage the
network to focus more on color and texture than image content
and spatial structure. Second, image reconstruction with L1
or L2 loss requires the network to preserve more subtle
information than perceptual loss, which might exceed the
capacity of CAM features and thus deteriorate its localization
ability. The qualitative comparison of perceptual loss with L1
and L2 losses for CAM-driven reconstruction is demonstrated
in Table VIII. As can be seen, only about 1% performance
gain is achieved with L1 or L2 losses. In contrast, with the
perceptual loss, our proposed CAM-driven reconstruction can
improve the accuracy from 50.2% to 54.5%.

3) Parameter Analysis: For the CAM-driven reconstruction
module, we conduct experiments to study the effect of per-
ceptual loss. As shown in Fig. 7 (a), we vary the weight βp
over the range {0.1, 0.5, 1, 2, 5}. As we can see, we get better
performance when the weight is between 1 and 2. A too-
small βp may not improve the results very much, and a large
βp deteriorates the performance seriously. We conjecture that
increasing the importance of perceptual loss will make the
network overemphasize reconstruction results and weaken the
localization ability. Similarly, we vary βa with the same range
to study the effect of the activation self-modulation module.
Though more stable performance can be achieved while βa is
between 0.1 and 2, the results drop significantly with a large
weight as well. In our experiments, we empirically set βp =

1 and βa = 1.
For the reliable activation selection strategy, the object

threshold Tobj will affect the parameter of the erosion opera-
tion. Therefore, we first empirically fix Tobj = 0.3 to locate
the area with relatively higher attention values, which is a
threshold adopted in OAA+ [17] and NSROM [77] as the
foreground object threshold. Then we conduct experiments
to study the effect of the erosion kernel size r . As shown
in Fig. 7 (b), we vary the kernel size r over the range
{2, 4, 6, 8, 10, 12}. As we can see, we get better performance
when the kernel size is between 6 and 10. A too-large or
small kernel size may not improve the results very much.
We conjecture that a too-small kernel size keeps too much

TABLE IX
GPU CONSUMPTION ANALYSIS. DRS [24]: DISCRIMINATIVE REGION

SUPPRESSION; CDR: CAM-DRIVEN RECONSTRUCTION; ASM: ACTI-
VATION SELF-MODULATION

Fig. 8. Failure cases on PASCAL VOC 2012 val set. Best viewed in color.

high activation in the CAM and mistakes the background
as foreground, which will deteriorate the CAM modulation.
Meanwhile, a too-large kernel size keeps less object activation,
which dilutes the effect of reliable activation selection. In our
experiments, we empirically set Tobj = 0.3 and r = 8.

E. Limitation and Failure Cases

1) GPU Consumption: As can be seen in Table IX, com-
pared to the parameter-free DRS [24], the introduction of
our CAM-driven reconstruction module will increase the GPU
consumption from 3.2G to 10.6G. However, our full approach
consumes only 14.2G GPU memory, which can be trained with
a single 16G or 24G GPU.

2) Failure Cases: Though our proposed SSC has achieved
great success in the WSSS task, it still faces difficulties
in some challenging scenes. Some typical failure cases are
demonstrated in Fig. 8. First, our approach may fail to tackle
the co-occurrence problem. For example, in the 1st row of
Fig. 8, our model fails to distinguish the train from the
railway background since these two categories often co-occur
in images. Similarly, our method will treat the keyboard as
the part of the monitor in the 2nd row. In addition, our model
sometimes cannot recognize objects of different categories
with similar appearances, e.g., it mistakes the person in the
last row for the motorcycle. In the future, we would like to
explore the solutions to the above challenges.

V. CONCLUSION

In this work, we proposed spatial structure constraints
for weakly supervised semantic segmentation to alleviate the
object over-activation problem during attention expansion.
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Specifically, we proposed a CAM-driven reconstruction mod-
ule that directly reconstructs the input image from its CAM
features. A perceptual loss was adopted to encourage the clas-
sification backbone to preserve the coarse spatial structure of
the image content. Moreover, we proposed an activation self-
modulation module to further refine CAMs with finer spatial
structure details through enhancing regional consistency. Our
proposed approach can help activate more integral target areas
and constrain the activation within object regions. Extensive
experiments on the PASCAL VOC 2012 and COCO datasets
demonstrated the superiority of our proposed approach.
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