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Abstract001

Large language models (LLMs) can produce002
overconfident and factually unsupported an-003
swers, limiting their reliability for tasks that004
demand faithfulness to provided evidence. Soft-005
max tempering, which is multiplying pre-006
softmax logits by a temperature T at training007
time, was originally used for knowledge dis-008
tillation, then for offering a simple approach009
to improve both confidence calibration and010
factual consistency. In this paper, we pro-011
vide (1) a structured literature review of soft-012
max tempering in Transformer-based models;013
(2) an empirical study using Softmax., com-014
paring tempered fine-tuning against standard015
fine-tuning on SQuAD v2 and a new dataset,016
PolyCompQA, which contains QA pairs based017
on polymer composite literature tables. Our018
experiments reveal that moderate temperatures019
(e.g., T = 1.67) reduce hallucinations and im-020
prove calibration metrics, with minimal imple-021
mentation overhead.1022

1 Introduction023

Large Language Models (LLMs) have shown024

remarkable performance in various NLP tasks,025

including summarization and question answer-026

ing (QA) (Brown et al., 2020; Chowdhery027

et al., 2022), but they often exhibit hallucina-028

tion—overconfidence in incorrect or unsupported029

answers (Lin et al., 2022; Min et al., 2020; Xu030

et al., 2024). This issue is particularly problematic031

in domains where faithfulness - adhering closely032

to textual evidence - is crucial, such as scientific033

information extraction and QA.034

Overconfident but incorrect outputs limit the035

real-world applicability of LLMs, particularly036

in settings demanding factual accuracy and in-037

terpretability. While methods like retrieval-038

augmented generation (RAG; Lewis et al., 2020)039

and self-consistency decoding (Wang et al., 2022)040

1Code and data will be publicly released.

Figure 1: An example of the PolyCompQA task,
demonstrating the need for materials knowledge and
the ability to interpret various components of a table
and their relationships in order to answer the questions
accurately. For example, “epoxy with no filler” refers
to the neat polymer, and “glass transition temperature”
corresponds to Tg. Identifying the correct sample re-
quires utilizing information from the first two columns.

can help mitigate but not entirely remove hallu- 041

cination, they introduce substantial complexity in 042

implementation or inference. 043

In this paper, we revisit train-time softmax tem- 044

pering, which modifies the model’s training loss 045

to reduce overconfidence by dividing logits by a 046

temperature T > 1 (Hinton et al., 2015; Müller 047

and Müller, 2022). In contrast to existing work, we 048

explore softmax tempering during fine-tuning so 049

as to improve performance on downstream tasks. 050

In particular, we investigate the effects of softmax 051

tempering when fine-tuning on two QA datasets: 052

(1) a remix of that we make of SQuAD v2 (Ra- 053

jpurkar et al., 2018) and (2) a newly-introduced 054

Polymer Composite QA Dataset (PolyCompQA) 055

on scientific paper tables. 056

As in prior literature, we observe that softmax 057

tempering has dual-edged effects; that is, it can 058

be beneficial in some scenarios while introducing 059

trade-offs in others. We explore this dual behavior 060
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by adapting Birdie, a reinforcement learning (RL)061

procedure that dynamically adjusts hyperparame-062

ters during training to optimize the overall the loss063

reduction to instead maximize accuracy during text064

generation (Blouir et al., 2024).065

Our experiments show that the synergy between066

softmax tempering and Birdie’s adaptive schedul-067

ing further reduces hallucinations on SQuAD v2,068

as well as on PolyCompQA, a new “Research069

Paper Table QA” dataset of 4, 270 unique ques-070

tion–context pairs. The large-scale analysis we071

report here on this new dataset demonstrates that072

temperature tuning strongly influences whether the073

model can correctly identify missing context versus074

employing relevant evidence.075

Contributions076

Our paper provides the following contributions:077

• An introduction of PolyCompQA (Polymer078

Composite QA), a new dataset with 4, 270079

unique question-context pairs that focus on080

property information extraction from pub-081

lished materials science articles;082

• An investigation into softmax tempering dur-083

ing fine-tuning on model performance during084

downstream tasks;085

• An empirical demonstration of reduced hallu-086

cination and copying issues in scientific infor-087

mation extraction and QA; and088

• An exploration on the potential of maximiz-089

ing softmax tempering by adapting Birdie, a090

reward-based pretraining procedure to select091

softmax temperatures during finetuning092

The rest of this paper proceeds as follows. Sec-093

tion 2 places our contributions in context of related094

literature. The methodology is described in Sec-095

tion 3, and experiments are related in Section 4.096

2 Related Work097

Prior research has highlighted various methods to098

address hallucination, including RAG (Lewis et al.,099

2020), self-consistency (Wang et al., 2022), and re-100

ranking (Krishna et al., 2022). Calibration strate-101

gies, such as post-hoc temperature scaling (Guo102

et al., 2017) and confidence penalties (Pereyra et al.,103

2017), aim to align a model’s predicted probabili-104

ties with actual correctness rates, ensuring that the105

model’s outputs are more reliable. These post-hoc106

methods focus on adjusting model confidence af-107

ter training to better match true outcomes. f An108

alternative approach to model calibration is train- 109

time softmax tempering, which directly influences 110

the model’s softmax distribution during training. 111

This method modifies the model’s training loss by 112

dividing logits by a temperature T > 1, reducing 113

overconfidence before predictions are made (Hin- 114

ton et al., 2015; Müller and Müller, 2022). The 115

division by a temperature effectively smooths the 116

predicted probabilities, encouraging more uncer- 117

tainty in the model’s output, which can help re- 118

duce the risk of hallucination, particularly in QA 119

tasks (Wang et al., 2022). 120

Generalizing softmax tempering, entropy control 121

at training time can benefit convergence with semi- 122

supervised learning, model calibration, and reg- 123

ularization(Guo et al., 2017). In semi-supervised 124

learning, ? introduced minimum entropy regulariza- 125

tion to encourage confident cluster assignments for 126

unlabeled data, while Williams and Zipser (1989) 127

adopted pseudo-labeling as a practical way to push 128

unlabeled examples toward low-entropy, one-hot 129

predictions. Label smoothing (Dorigatti et al., 130

2024) or confidence penalty (Pereyra et al., 2017) 131

increase entropy during training, discouraging the 132

model from peaking its predictions too sharply.. 133

In QA tasks, the importance of avoiding hal- 134

lucination is heightened by the requirement of 135

faithful, evidence-based answers. Datasets such 136

as SQuAD v2 (Rajpurkar et al., 2018) have high- 137

lighted the need to detect unanswerable queries 138

or missing context, and methods that foster better 139

calibration can help models abstain from guessing 140

when unsure. Retrieval-based QA (Lewis et al., 141

2020) systems can mitigate hallucination by incor- 142

porating references to support an answer. However, 143

these solutions can incur complexity at inference 144

time. By contrast, train-time softmax tempering 145

(Dabre and Fujita, 2020; Li et al., 2022; Müller and 146

Müller, 2022) requires no greater infrastructure 147

when deploying a model, as it directly modifies the 148

model’s logit probability landscape during training. 149

3 Methodology 150

We present our two QA datasets, followed by the 151

train-time softmax tempering procedure with its ex- 152

tension via reinforcement learning to control tem- 153

perature dynamically in Section 3.3. We also de- 154

scribe our training setup and evaluation criteria. 155

2



3.1 Datasets156

Super SQuAD We modify SQuAD v2 (Ra-157

jpurkar et al., 2018), by changing both the input and158

output formats. For each sample, we concatenate159

between 1 to 500 random Wikipedia documents160

to create the context. Each sample has a context161

length of up to 32,000 tokens.162

For each question, there are two possible cases:163

either the correct document is present in the context164

to answer the question, OR the correct document165

is NOT present. As was introduced in SQuAD v2,166

we want our model to recognize when the correct167

context is NOT present, and ideally avoid hallu-168

cinating an answer. In the other case, where the169

correct document CAN be found in the context, we170

want the model to copy it down the relevant para-171

graph to improve explainability and help auditing172

the system.173

We set the labels to be multi-field JSONs. Specif-174

ically, if a question’s document is present in the175

context, the model should return a JSON with four176

fields populated:177

1. Question: The model copies the same ques-178

tion it was just asked.179

2. Answer: The answer to the question.180

3. Context: The model copies down the docu-181

ment in which the answer to the question is182

found.183

4. Error code: 0 (This should always be 0 if the184

context and answer were found)185

If the document is NOT in the context, the model186

is supposed to recognize this and should refuse to187

answer the question (even if it thinks it knows the188

answer). In this case, only the following two fields189

should be filled out in the resulting JSON:190

1. Question: The model copies the same ques-191

tion it was just asked.192

2. Error code: 1 (This should always be 1 when193

the model thinks the document needed to an-194

swer the question is not present)195

Evaluation We evaluate using standard F1, pre-196

cision, and recall measures.197

For cases where the "Correct Document Re-198

trieved", then a test instance is marked:199

• True Positive, if the Correct document is in the200

context AND the model copied it down correctly201

• False Positive, if the Correct document is NOT202

in the context BUT the model copied something203

down204

• False Negative, if the Correct document is in the205

context, BUT the model thought it wasn’t there.206

• True Negative, otherwise. 207

For cases where the "Model Correctly Realized 208

Document is Missing", equivalently, we will have: 209

• True Positive, if the Correct document is NOT 210

in the context, AND the model correctly put an 211

error code of 1 212

• False Positive if the correct document is in the 213

context, BUT the model incorrectly put an error 214

code of 1 215

• False Negative, if the correct document is NOT 216

in the context, BUT the model thought it was. It 217

likely copied some other document. 218

• True Negative, otherwise. 219

PolyCompQA (Polymer Composite Question 220

Answering) Dataset Recent studies have em- 221

ployed table question answering as a key approach 222

to extract and utilize valuable information from ta- 223

bles found in various sources, including scientific 224

papers (Jin et al., 2022; Ghosh et al., 2024). In 225

materials science, several QA datasets exist, such 226

as Battery Device QA (Huang and Cole, 2022), 227

which includes 272 records for extractive question- 228

answering on battery component classification; Op- 229

ticalTable (Zhao et al., 2023), comprising 4, 534 230

tabular QA pairs; and MaScQA (Zaki et al., 2024), 231

which covers general materials science QA, in- 232

cluding inorganic composition extraction. To ad- 233

dress the lack of domain-specific benchmarks for 234

polymer composites, we curated PolyCompQA - 235

a dataset derived from 207 scientific tables across 236

118 research papers - resulting in 4, 270 QA pairs. 237

These papers were sourced from MaterialsMine 238

(Brinson et al., 2020), a repository dedicated to 239

polymer composite data. Each experimental sam- 240

ple in these tables is characterized by key attributes: 241

the matrix (polymer), the filler material, its compo- 242

sition, and any applied particle surface treatments. 243

To ensure high-quality annotations, three 244

domain-experienced researchers manually struc- 245

tured each table into lists containing: 246

• Material sample composition descriptions 247

– capturing the matrix material, filler charac- 248

teristics (including particle size (nano/micro), 249

composition (wt% or vol%), and surface treat- 250

ments). 251

• Material properties – listing the correspond- 252

ing measured properties, such as glass transi- 253

tion temperature and tensile strength, for each 254

sample along with the conditions under which 255

they were measured. 256

Using these structured lists, we automatically 257
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generate question-answer pairs. Each question is258

formulated by constructing a detailed material de-259

scription that integrates the polymer matrix, filler260

characteristics, and surface treatments, linking this261

description to a specific material property. When262

a property is measured under varying conditions263

(e.g., temperature or pressure), the relevant con-264

ditions are included in the question. An example265

table, along with the corresponding generated ques-266

tions and answers, is illustrated in Figure 1. Tables267

exhibit significant diversity, as both sample and268

property information can be reported in various for-269

mats. In some cases, the entire sample description270

is condensed into a single cell, while in others, in-271

dividual fields are spread across multiple columns.272

Property names may be explicitly stated in each273

row or column or only mentioned in the table title.274

Even for human annotators, distinguishing between275

the matrix, filler, and surface treatment can be chal-276

lenging due to bespoke abbreviations. Additionally,277

incomplete sample descriptions often require cross-278

referencing other parts of the article. When key279

fields cannot be determined, they are annotated as280

“not specified” and excluded from question genera-281

tion.282

For each table, the maximum number of possible283

questions is determined by the number of experi-284

mental samples (n) multiplied by the number of285

reported properties (p), i.e., n×p. For example, for286

the table in Figure 1, a total of 5 (n)× 3 (p) = 15287

questions would be generated. Some properties are288

only available for specific samples. Extracting a289

complete set of samples and their corresponding290

properties presents a significant information ex-291

traction challenge (Gupta et al., 2022; Circi et al.,292

2024). We reformulated this task as a question-293

answering problem and obtained 4, 270 questions,294

where the sample details are provided in the ques-295

tion similarly to (Sipilä et al., 2024), and the LLM296

is expected to generate the correct property value.297

To convert article table images into text inputs, we298

use GPT-4o to generate a CSV format by prompt-299

ing it with: “Please convert this table into a CSV300

format. The first row should contain the table title,301

and include all data and footnotes if present.” Out302

of 369 unique properties, 364 of them occurred in303

< 1% of the questions. Total property distribution304

across all questions can be found in Figure 2.305

3.2 Evaluation Metrics306

PolyCompQA (Polymer Composite Question307

Answering) Task To effectively accelerate scien-308

Figure 2: A pie chart showing the distribution of proper-
ties across all questions reveals that the most frequently
reported material properties are: glass transition temper-
ature (5.7%), young’s modulus (2.5%), tensile strength
(2.0%), melting temperature (1.6%), and elongation at
break (1.6%).

tific discovery, LLMs must interact seamlessly with 309

human scientists by answering questions reliably, 310

making their evaluation and improvement essential 311

(Miret and Krishnan, 2024). We calculate the ac- 312

curacy score based on exact matching between the 313

model’s answers and ground truth labels. A binary 314

score (1 for exact match, 0 for any mismatch) is 315

assigned to each response. The final accuracy is 316

calculated by dividing the total number of correct 317

answers by the total number of questions. 318

3.3 Softmax Tempering 319

Following Dabre and Fujita (2020), who used Soft- 320

max Tempering to improve Machine Translation 321

models, we let z represent the logits predicted by 322

the model for the next token. The temperature T , 323

which is a hyperparameter that controls the sharp- 324

ness of the distribution, determines how much the 325

logits z should be scaled before applying the soft- 326

max function. Dividing each logit z by the temper- 327

ature T provides us with ztemp tempered version 328

of the logits. Mathematically, the relationship is 329

expressed as: 330

ztemp =
z

T
, (1) 331

The temperature scaling effectively softens or 332

sharpens the probability distribution depending on 333

the value of T . The cross-entropy loss is then com- 334

puted with respect to ztemp. A higher temperature 335
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leads to a softer (more uniform) probability dis-336

tribution, encouraging the model to avoid placing337

extremely high probability on a single token unless338

strongly justified by the context. A lower tempera-339

ture makes the distribution sharper (more confident340

in fewer choices), penalizing the model for incor-341

rect and noisy predictions. Although temperature342

scaling is typically only used at inference time, here343

it is integrated into the standard cross-entropy loss.344

Later work by (Li et al., 2022) brought softmax345

tempering to the code generation domain. However,346

the authors reported that using values below 1.0347

for T worked better than values above 1.0, which348

stands in contrast in the results in (Dabre and Fujita,349

2020). While these works feature different goals350

- translation and code generation - we decide to351

investigate these different observations and perform352

a grid search over a wide variety of values for T .353

Specifically, for PolyCompQA, we sweep these354

settings:355

T ∈
{

0.2, 0.36, 0.52, 0.68, 0.84, 1.0, 1.1,
1.25, 1.43, 1.67, 2.0, 3.0

}
356

We finetune LLaMa-1B-Instruct for one epoch357

on our PolyCompQA dataset. We create a 10%358

validation for our hyperparameter sweep and report359

results on a 10% test split.360

For Super SQuAD, which is significantly more361

costly to train on, we use these:362

T ∈ { 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, }363

.364

For finetuning runs on both of these datasets, we365

also included three more hyperparameters:366

• Weight decay: {0.0, 0.1}367

• Learning rate: {5× 10−5, 5× 10−4}368

• Batch size: {32, 64}369

All combinations were trained under the same ran-370

dom initialization and data order for a single epoch.371

For each configuration in the powerset, we report372

the best performing settings as measured on the test373

set of PolyCompQA.374

When we train with Birdie, we keep these same375

settings in our hyperparameter sweep.376

Universally, the best found settings were a batch377

size of 64, a learning rate of 5×10−4, and a weight378

decay of 0.1.379

3.4 Adaptive Softmax Tempering with Birdie380

In addition to sweeping fixed softmax temperatures,381

we explore dynamic scheduling of the temperature382

T via Birdie (Blouir et al., 2024), an reinforce- 383

ment learning-based method originally designed to 384

mix different pre-training objectives automatically. 385

Here, we adapt Birdie in two important ways: 386

1. Rather than minimizing per-objective losses, 387

we replace Birdie reward function with one to 388

maximize validation set accuracy. Specifically, 389

we measure accuracy by generating responses 390

to the test set every 256 steps. We define the 391

scalar reward as 392

R = (accuracynew)
2 − (accuracyold)

2. 393

2. We use Birdie to ultimately predict a proba- 394

bility vector (of three dimensions) that corre- 395

late to three discrete softmax-temperature set- 396

tings: T ∈ {0.5, 1.0, 1.67}. Each "action" that 397

Birdie outputs is used by the trainer to choose 398

a given setting given this probability vector. 399

3. Given enough time, the reward for a given set 400

of actions as a signal allows Birdie to predict 401

rewards given an action. Then, we can generate 402

random actions to Birdie, and choose one with a 403

high predicted reward to estimate which would 404

be a good action. In this case, actions are the 405

per-batch sampling ratios of different values of 406

T , the softmax tempering hyperparameter. 407

Searching through the hyperparameter settings 408

in subsection 3.3, we train Llama-1B-Instruct on 409

the PolyCompQA dataset with Birdie controlling 410

the softmax tempering hyperparameter T . Every 411

256 steps, we pass the previous validation set accu- 412

racy, the current accuracy, and the action probabil- 413

ity vector that was taken. Birdie trains its internal 414

model, a miniature decoder-only Transformer, and 415

outputs calculates the reward R for each candidate 416

action, and updates its internal reward model for 417

200 steps to pick the next probability distribution 418

over {T = 0.5, T = 1.0, T = 1.67}. In practice, 419

we sample 2,048 candidate distributions (actions), 420

run them through Birdie’s state model pick the ac- 421

tion with the highest predicted reward to act as our 422

new action distribution. 423

4 Experiments 424

4.1 PolyCompQA 425

We plot a chart of the best performances for each 426

softmax temperature in Figure 3, and Table 2 shows 427

the validation accuracy for the tested temperatures 428

on both QA tasks. T = 0.5 and T = 1.67 each 429
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Figure 3: Train-time Softmax Temperature versus Test Set accuracy on our PolyCompQA dataset with a finetuned
Llama-3.1-1B-Instruct. We see the standard softmax tempering setting of 1.0 underperform compared to T = 0.5 and
T = (5/3). A "Cat Ear" shape emerges. Results are the maximum accuracy for each run over several hyperparameter
searches and are described in subsection 3.3. Details on fine-tuning on this dataset are included in subsection 4.1.

outperform the default T = 1.0, reflecting the non-430

monotonic “cat-ear” pattern.431

We also evaluate the GPT-4o, o3-mini, LLaMa432

3.1 1B, and LLaMa 3.1 8B models on the 449433

test set questions. The results are presented in434

Figure 4, and the prompts are detailed in Section435

7.3. We observe that the GPT-4o model slightly436

outperforms the o3-mini model, with the GPT-4o437

achieving an accuracy of 0.686 and the o3-mini438

achieving 0.6459 in the zero-shot setting. There is439

no significant difference between the zero-shot and440

three-shot settings, as the GPT-4o model achieved441

an accuracy of 0.6704 in the three-shot setting, and442

the o3-mini model achieved 0.6437. The LLaMa443

3.1 8B model achieved an accuracy of 0.509, while444

the LLaMa 3.1 1B model achieved 0.129.445

4.2 Super SQuAD446

In Table 2, we show results for Softmax Tempering447

on PolyCompQA. We see Birdie is is virtually tied448

with the best run.449

5 Discussion450

5.0.1 Discussion of Temperature Trends451

Our exploration of train-time softmax tempering452

during fine-tuning on both the expanded SQuAD v2453

Temperature Noticing Context is
Missing F1 (%)

Retrieving Correct
Context F1 (%)

0.7 69.3 41.6
0.8 53.6 33.3
0.9 42.9 29.2
1.0 59.8 34.2
1.1 54.6 30.8
1.2 48.7 28.7
1.3 59.4 35.6

Base Llama-
1B-Instruct

46.1 0.0

Table 1: F1 scores (%) for 8,183 question–context pairs
on Super SQuAD. Lower-temperature settings (e.g.,
T = 0.7) can help the model notice when the contxet
is missing, as well as when retrieving the correct con-
text. The base instruct model is unable to retrieve any
context correctly. We include Llama-1B-Instruct before
finetuning on Super SQuAD. More details on the task
and finetuning procedure are available in section 3.1.

(Super SQuAD) and our newly created Poly- 454

CompQA dataset underscores the nuanced ways 455

that manipulating the model’s probability distribu- 456

tion at training time can improve performance in 457

downstream QA tasks. 458
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Figure 4: Accuracy results for different models in zero-shot and three-shot settings on the PolyCompQA dataset.

softmax_temperature accuracy
0.20 26.8
0.330 40.5
0.50 48.1
0.80 41.2
0.90 41.7
1.00 40.6
1.11 40.7
1.25 37.1
1.43 44.3
1.67 49.2
2.00 41.3
3.00 39.4

Birdie 49.4

Table 2: Accuracy at different softmax temperatures

6 Conclusion459

In information extraction and QA, we observe that460

even frontier language models can hallucination461

significantly. Through our investigation of soft-462

max tempering and adaptive scheduling, we demon-463

strate reduced hallucination on two QA datasets,464

including our newly introduced PolyCompQA. Our465

benchmarking reveals that even large parameter466

models struggle with question answering on this467

specialized dataset. We improve the performance468

of the LLaMa 3.2 1B model through softmax tem-469

pering by using temperatures that deviate from the470

default value of 1.0 in both directions. Furthermore,471

reinforcement learning-based dynamic parameter472

adjustment during training shows promise in fur-473

ther enhancing model performance, suggesting a474

path forward for developing more reliable QA sys- 475

tems. We hope that future work looks closer at why 476

both wildly different settings of softmax tempering 477

- whether it is minimizing or maximizing entropy - 478

can empirically help performance. 479

Limitations 480

Due to the diverse ways materials can be syn- 481

thesized and processed in laboratory experiments, 482

some samples in the PolyCompQA dataset can- 483

not be fully distinguished using the predefined key 484

fields. While these fields, identified by domain ex- 485

perts, are sufficient for differentiating most samples 486

reported in the articles, certain cases require addi- 487

tional context - such as the presence of multiple 488

fillers or variations in processing methods - that can 489

significantly impact the material’s properties. As a 490

result, given a question based on a sample descrip- 491

tion, it may not always be possible to uniquely iden- 492

tify the corresponding material and, consequently, 493

determine its true property value. Future work can 494

address this limitation by incorporating more de- 495

tailed annotations, including processing conditions, 496

and generating questions that account for these 497

factors. Our results with softmax tempering were 498

performed on an academic budget and were exclu- 499

sively performed on LLaMa 3.2 1B, which only 500

has 1.2B parameters. Our results may not extrap- 501

olate to significantly larger models. Additionally, 502

our experiments also deal with small finetuning 503

datasets. 504
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7 Appendix 675

7.1 Hardware 676

All experiments were performed using a TPUv4-32 677

and four Nvidia H100 GPUs. 678

7.2 Super SQuAD Results 679

We show our detailed results in Table 3 and Table 4. 680

681

7.3 PolyCompQA Prompts 682

7.3.1 Zero-shot prompt 683

684
Given the table contents , answer the 685

following question. Please provide 686
only the numerical or categorical 687
answer without any explanation. If 688
the answer is a number , provide just 689
the number without units. 690

691
{table_content} 692

693
Question: {question} 694695

7.3.2 Three-shot prompt for PolyCompQA 696

We use these prompts for the few-shot models in 697

Figure 4. 698
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T F1

(%)
Prec
(%)

Rec
(%)

Acc
(%)

FDR
(%)

NPV
(%)

FOR
(%)

TPS FPS TNS FNS NPL NNL NPP NNP NP

0.7 41.6 59.7 32.0 43.8 40.3 35.9 64.1 1,639 1,108 1,949 3,487 5,126 3,057 4,406 3,777 8,183
0.8 33.3 69.1 22.0 45.0 30.9 39.0 61.0 1,126 504 2,553 4,000 5,126 3,057 2,565 5,618 8,183
0.9 29.2 74.7 18.2 44.9 25.3 39.5 60.5 932 316 2,741 4,194 5,126 3,057 1,802 6,381 8,183
1 34.2 63.8 23.4 43.7 36.2 37.7 62.3 1,197 679 2,378 3,929 5,126 3,057 3,154 5,029 8,183
1.1 30.8 65.4 20.1 43.3 34.6 38.0 62.0 1,032 546 2,511 4,094 5,126 3,057 2,675 5,508 8,183
1.2 28.7 70.1 18.1 43.8 29.9 38.8 61.2 927 396 2,661 4,199 5,126 3,057 2,174 6,009 8,183
1.3 35.6 65.1 24.5 44.5 34.9 38.1 61.9 1,256 674 2,383 3,870 5,126 3,057 3,127 5,056 8,183

Table 3: F1 score for retrieving the correct source document for a given question. The document is retrieved from a
context with 1 - 500 random Wikipedia documents, if present. Results are from our finetuned Llama-3.1-1B-instruct.
Please see section 3.1 for more details. FDR stands for false discovery rate, NPV for negative predictive value, FOR
for false ommission rate, TPS for TP Sum, FPS for FP Sum, TNS for TN Sum, FNS for FN Sum, NPL for number
of positive labels, NNL for number of negative labels, NPP for number of positive predictions, NNP for number of
negative predictions, and NP for number of generations.

T F1

(%)
Prec
(%)

Rec
(%)

Acc
(%)

FDR
(%)

NPV
(%)

FOR
(%)

TPS FPS TNS FNS NPL NNL NPP NNP NP

0.7 69.3 74.9 64.4 64.2 25.1 51.7 48.3 3,301 1,105 1,952 1,825 5,126 3,057 4,406 3,777 8,183
0.8 53.6 80.4 40.2 56.4 19.6 45.4 54.6 2,061 504 2,553 3,065 5,126 3,057 2,565 5,618 8,183
0.9 42.9 82.5 29.0 51.7 17.5 43.0 57.0 1,486 316 2,741 3,640 5,126 3,057 1,802 6,381 8,183
1 59.8 78.5 48.3 59.3 21.5 47.3 52.7 2,476 678 2,379 2,650 5,126 3,057 3,154 5,029 8,183
1.1 54.6 79.6 41.5 56.7 20.4 45.6 54.4 2,129 546 2,511 2,997 5,126 3,057 2,675 5,508 8,183
1.2 48.7 81.8 34.7 54.2 18.2 44.3 55.7 1,778 396 2,661 3,348 5,126 3,057 2,174 6,009 8,183
1.3 59.4 78.4 47.9 59.1 21.6 47.1 52.9 2,453 674 2,383 2,673 5,126 3,057 3,127 5,056 8,183

Table 4: F1 score for correct error code predictions, where our finetuned Llama-3.1-1B-instruct outputs a 1 to
indicate it cannot find the original source document of a question on our Super SQuAD dataset. Please see the
task details in section 3.1. Train-Time Softmax Tempering. FDR stands for false discovery rate, NPV for negative
predictive value, FOR for false ommission rate, TPS for TP Sum, FPS for FP Sum, TNS for TN Sum, FNS for
FN Sum, NPL for number of positive labels, NNL for number of negative labels, NPP for number of positive
predictions, NNP for number of negative predictions, and NP for numbr of predictions.
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Given the table contents , answer the
following question. Please provide
only the numerical or categorical
answer without any explanation. If
the answer is a number , provide just
the number without units. Do not

include the standard deviation or
any other information.

Examples:

Table: Table 1. Weibull parameters for
Epoxy TiO2 composites.

Composition ,Shape Parameter ,Scale
Parameter

Unfilled ,8.789 ,52.30
0.1% nano ,11.11 ,33.28
0.5% nano ,13.46 ,28.64
1% nano ,10.17 ,33.71
5% nano ,12.36 ,30.15
10% nano ,8.154 ,34.57
10% micron ,25.45 ,38.43

Question: What is the shape parameter
value for epoxy with TiO2 filler at
0.1%?

Answer: 11.11

Table: TABLE II: Dynamic Mechanical
Properties of EVA and Its
Nanocomposites

Sample ,Tg (°C),E’ (Pa) at Tg,E’ (Pa) at
30°C,tan δ at Tg,tan δ at 30°C

Pure EVA ,-27,05 × 10∧7,1.5 × 10∧

6 ,0.95 ,0.17
EVA + 4 wt % 12Me-MMT ,-30,1.9 × 10∧8,04

× 10∧6 ,0.68 ,0.16
EVA + 6 wt % 12Me-MMT ,-32,06 × 10∧8,07 ×

10∧6 ,0.55 ,0.17

Question: What is the storage modulus
value at temperature 30 °C for EVA
with no filler?

Answer: 1500000.0

Table: Table 1. Properties of UV cured
samples.

Cured sample (a),Epoxy group conversion
(b) %,Gel content (c) %,Tg (d) °C,
Absorption maximum (e) nm

CE + 5 wt.-% AgSbF6 ,82 ,98 ,182 ,400
CE + 10 wt.-% AgSbF6 ,80 ,100 ,170 ,410
CE + 20 wt.-% AgSbF6 ,87 ,98 ,156 ,415
- (a) The cured sample composition.
- (b) Epoxy group conversion percentage.
- (c) Gel content percentage.
- (d) Glass transition temperature.
- (e) Absorption maximum wavelength.

Question: What is the glass transition
temperature value for CE with
AgSbF6 filler at 20%?

Answer: 156

Table: {table_content}
Question: {question}
Answer:

699

7.4 Super SQuAD 700

7.5 Risks 701

This could help material science progress and help 702

nefarious individuals make bad items. 703
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Super SQuAD Sample:

[[1-500 Articles Total]]

In 1907, the newly established Board of Education found that greater
capacity for higher technical education was needed and a proposal
to merge the City and Guilds College, the Royal School of Mines and
the Royal College of Science was approved and passed, creating
The Imperial College of Science and Technology ...

A strong consistent theme in his family-friendly work is a childlike,
even naïve, sense of wonder and faith, as attested by works such
as Close Encounters of the Third Kind, E.T. the Extra-Terrestrial, ...

Relatively insensitive film, with a correspondingly lower speed
index, requires more exposure to light to produce the same image
density as a more sensitive film, and is thus commonly termed
a slow film. ...

What speed of film is produced by insensitive film?
Please format your response using JSON.

{
"question": "What speed of film is produced by insensitive film?",
"error_code": 0,
"context": "Relatively insensitive film, with a correspondingly lower speed index, requires more

exposure to light to produce the same image density as a more sensitive film, and is thus commonly termed
a slow film.",

}

Figure 5: A sample from our Super SQuAD dataset, which is a remix of SQuAD-v2 dataset. We concatenate
hundreds of Wikipedia documents together. The question requires identifying if the original source document can
be found in the context. We concatenate random articles together until we reach a target length of 32,000 tokens.
More details are available in section 3.1.
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