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Abstract

We prove rich algebraic structures of the solution space for 2-layer neural networks
with quadratic activation and L2 loss, trained on reasoning tasks in Abelian group
(e.g., modular addition). Such a rich structure enables analytical construction of
global optimal solutions from partial solutions that only satisfy part of the loss,
despite its high nonlinearity. We coin the framework as CoGS (Composing Global
Solutions). Specifically, we show that the weight space over different numbers of
hidden nodes of the 2-layer network is equipped with a semi-ring algebraic structure,
and the loss function to be optimized consists of sum potentials, which are ring
homomorphisms, allowing partial solutions to be composed into global ones by ring
addition and multiplication. Our experiments show that around 95% of the solutions
obtained by gradient descent match exactly our theoretical constructions. Although
the global solutions constructed only required a small number of hidden nodes,
our analysis on gradient dynamics shows that overparameterization asymptotically
decouples training dynamics and is beneficial. We further show that training
dynamics favors simpler solutions under weight decay, and thus high-order global
solutions such as perfect memorization are unfavorable. The code is open sourced1.

1 Introduction
Large Language Models (LLMs) have shown impressive results in various disciplines (OpenAI, 2024;
Anthropic; Team, 2024b,a; Dubey et al., 2024; Jiang et al., 2023), while they also make surprising
mistakes in basic reasoning tasks (Nezhurina et al., 2024; Berglund et al., 2023). Therefore, it remains
an open problem whether it can truly do reasoning tasks. On one hand, existing works demonstrate
that the models can learn efficient algorithms (e.g., dynamic programming (Ye et al., 2024) for
language structure modeling, etc) and good representations (Jin & Rinard, 2024; Wijmans et al.,
2023). Some reports emergent behaviors (Wei et al., 2022) when scaling up with data and model size.
On the other hand, many works also show that LLMs cannot self-correct (Huang et al., 2023), and
cannot generalize very well beyond the training set for simple tasks (Dziri et al., 2023; Yehudai et al.,
2024; Ouellette et al., 2023), let alone complicated planning tasks (Kambhampati et al., 2024; Xie
et al., 2024).

To understand how the model performs reasoning and further improve its reasoning power, people
have been studying simple arithmetic reasoning problems in depth. Modular addition (Nanda et al.,
2023; Zhong et al., 2024), i.e., predicting a + b mod d given a and b, is a popular one due to its
simple and intuitive structure yet surprising behaviors in learning dynamics (e.g., grokking (Power
et al., 2022)) and learned representations (e.g., Fourier bases (Zhou et al., 2024)). Most works
focus on various metrics to measure the behaviors and extracting interpretable circuits from trained
models (Nanda et al., 2023; Varma et al., 2023; Huang et al., 2024). Analytic solutions can be
constructed and/or reverse-engineered (Gromov, 2023; Zhong et al., 2024; Nanda et al., 2023) but it
is not clear how to construct a systematic framework to explain and generalize the results.

1https://github.com/facebookresearch/luckmatters/tree/yuandong3/ssl/real-dataset

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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In this work, we systematically analyze 2-layer neural networks with quadratic activation and L2

loss on predicting the outcome of group multiplication in Abelian group G, which is an extension of
modular addition. We find that global solutions can be constructed algebraically from small partial
solutions that are optimal only for parts of the loss. We achieve this by showing that (1) for the
2-layer network, there exists a semi-ring structure over the weights space across different order (i.e.,
number of hidden nodes or network width), with specifically defined addition and multiplication
(Sec. 4), and (2) the L2 loss is a function of sum potentials (SPs), which are ring homomorphisms
(Theorem 1) that allow compositions of partial solutions into global ones using ring operations.

As a result, our theoretical framework, named CoGS (i.e., Composing Global Solutions), successfully
constructs two distinct types of Fourier-based global solutions of per-frequency order 4 (or “2× 2”)
and order 6 (or “2× 3”), and a global solution of order d2 that correspond to perfect memorization.
Empirically, we demonstrate that around 95% of the solutions obtained from gradient descent (with
weight decay) have the predicted structure and match exactly with our theoretical construction of
order-4 and order-6 solutions. In addition, we also analyze the training dynamics, and show that the
dynamics favors low-order global solutions, since global solutions algebraically connected by ring
multiplication can be proven to also be topologically connected. Therefore, high-order solution like
perfect memorization is unfavorable in the dynamics. When the network width goes to infinity, the
dynamics of sum potentials becomes decoupled, demystifying why overparameterization improves
the performance.

To our best knowledge, we are the first to discover such algebraic structures inside network training,
apply it to analyze solutions to reasoning tasks such as modular additions, and show our theoretical
constructions occur in actual gradient descent solutions.

2 Related Works
Algebraic structures for maching learning. Many works leverage symmetry and group structure in
deep learning. For example, in geometric deep learning, different forms of symmetry are incorporated
into network architectures (Bronstein et al., 2021). However, they do not open the black box and
explore the algebraic structures of the network itself during training.

Expressibility. Existing works on expressibility (Li et al., 2024; Liu et al., 2022) gives explicit
weight construction of neural networks weights (e.g., Transformers) for reasoning tasks like automata,
which includes modular addition. However, their works do not discover algebraic structures in the
weight space and loss, nor learning dynamics analysis, and it is not clear whether the constructed
weights coincide with the actual solutions found by gradient descent, even in synthetic data.

Fourier Bases in Arithmetic Tasks. Existing works discovered that pre-trained models use Fourier
bases for arithmetic operations (Zhou et al., 2024). This is true even for a simple Transformer,
or even a network with one hidden layer (Morwani et al., 2023). Previous works also construct
analytic Fourier solutions (Gromov, 2023) for modular addition, but with the additional assumption
of infinite width, unaware of the algebraic structures we discover. Existing theoretical work (Morwani
et al., 2023) also shows group-theoretical results on algebraic tasks related to finite groups, also for
networks with one-hidden layers and quadratic activations. Compared to ours, they use the max-
margin framework with a special regularization (L2,3 norm) rather than L2 loss, do not characterize
and leverage algebraic structures in the weight space, and do not analyze the training dynamics.

3 L2 Loss Decoupling for Abelian group
Basic group theory. A set G forms a group, which means that (1) there exists an operation · (i.e.,
“multiplication”): G×G 7→ G and it satisfies association: (g1 ·g2) ·g3 = g1 ·(g2 ·g3). Often we write
g1g2 instead of g1 · g2 for brevity. (2) there exists an identity element e ∈ G so that eg = ge = g, (3)
for every group element g ∈ G, there is a unique inverse g−1 so that gg−1 = g−1g = e. In some
groups, the multiplication operation is commutative, i.e., gh = hg for any g, h ∈ G. Such groups are
called Abelian group. Modular addition forms a Abelian (more specifically, cyclic) group by noticing
that there exists a mapping a 7→ e2πai/d and a+ b mod d is e2πai/d · e2πbi/d = e2π(a+b)i/d.

Basic Ring theory. A set Z forms a ring, if there exists two operations, addition + and multiplication
∗, so that (1) ⟨Z,+⟩ forms an Abelian group, (2) ⟨Z, ∗⟩ is a monoid (i.e., a group without inverse), and
(3) multiplication distributes with addition (i.e., a∗(b+c) = a∗b+a∗c and (b+c)∗a = b∗a+c∗a).
Z is called a semi-ring if ⟨Z,+⟩ is a monoid.
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Figure 1: Overview of proposed theoretical framework CoGS. (1) The family of 2-layer neural networks, Z ,
form a semi-ring algebraic structure (Theorem 2) with ring addition and multiplication (Def. 5). Z =

⋃
q≥0 Zq

where Zq is a collection of all weights with order-q (i.e., q hidden nodes). (2) For outcome prediction of
Abelian group multiplication, the MSE loss ℓ(z) is a function of sum potentials (SPs) rk1k2k(z) and rpk1k2k(z)
(Theorem 1), which are ring homomorphisms (Theorem 3). (3) Thanks to the property of ring homomorphism,
global solutions to MSE loss ℓ(z) with quadratic activation can be constructed algebraically from partial
solutions that only satisfy a subset of constraints (Sec. 5) using ring addition and multiplication, instead of
running gradient descent. Examples include Fourier solution zF6 (Corollary 2) and zF4/6 (Corollary 4) and
perfect memorization solution zM (Corollary 3). In Sec. 6, we analyze the role played of SPs in gradient
dynamics, showing that the dynamics favors low-order global solutions (Theorem 5) under weight decay
regularization, and the dynamics of SPs become decoupled with infinite width (Theorem 6). In Sec. 7 we show
that the gradient descent solutions match exactly with our theoretical construction.

Notation. Let R be the real field and C be the complex field. For a complex vector z, z⊤ is its
transpose, z̄ is its complex conjugate and z∗ its conjugate transpose. For a tensor zijk, z·jk is a vector
along its first dimension, zi·k along its second dimension, and zij· along its last dimension.

Problem Setup. We consider the following 2-layer networks with q hidden nodes, trained with
(projected) ℓ2 loss on prediction of group multiplication in Abelian group G with |G| = d:

ℓ =
∑
i

∥∥∥P⊥
1

(
1

2d
o[i]− el[i]

)∥∥∥2, o[i] =
∑
j

wcjσ(w
⊤
ajeg1[i] +w⊤

bjeg2[i]) (1)

Input and Output. The input contains the two group elements g1[i], g2[i] ∈ G to be multiplied,
eg1[i], eg2[i] ∈ Rd are one-hot representation of g1[i] and g2[i]. Here i is the sample index. The target
el[i] is a one-hot representation of l[i] = g1[i]g2[i] ∈ G, the group product of g1[i] and g2[i].

Architectures. In Eqn. 1, we use quadratic activation σ(x) = x2 (Du & Lee, 2018; Allen-Zhu & Li,
2023), P⊥

1 = I − 1
d11

⊤ is the zero-mean projection, waj ,wbj ,wcj ∈ Rd are learnable parameters
(1 ≤ j ≤ q). Note that variants of quadratic activation have been used empirically, e.g. squared
ReLU and gated activations (So et al., 2021; Shazeer, 2020; Zhang et al., 2024).

We can extend our framework to group action prediction, in which g2 may not be a group element
but any object (e.g., a discrete state in reinforcement learning), See Appendix F.

Let ϕk = [ϕk(g)]g∈G ∈ Cd be the scaled Fourier bases (or more formally, character function of the
finite Abelian group G, see Appendix B). Then the weight vector W := {wj} can be written as:

waj =
∑
k ̸=0

zakjϕk, wbj =
∑
k ̸=0

zbkjϕk, wcj =
∑
k ̸=0

zckjϕ̄k (2)

where z := {zpkj} are the complex coefficients, p ∈ {a, b, c}, 0 ≤ k < d and j runs through q

hidden nodes. For convenience, we define ϕ−k := ϕk as the (complex) conjugate representation
of ϕk. We exclude ϕ0 ≡ 1 because the constant bias term has been filtered out by the top-down
gradient from the loss function. Leveraging the property of quadratic activation functions, we can
write down the loss function analytically (see Appendix B):
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Theorem 1 (Analytic form of L2 loss with quadratic activation). The objective of 2-layer MLP
network with quadratic activation can be written as ℓ = d−1

∑
k ̸=0 ℓk + (d− 1)/d, where

ℓk = −2rkkk+
∑
k1k2

|rk1k2k|2+
1

4

∣∣∣ ∑
p∈{a,b}

∑
k′

rp,k′,−k′,k

∣∣∣2+ 1

4

∑
m ̸=0

∑
p∈{a,b}

∣∣∣∑
k′

rp,k′,m−k′,k

∣∣∣2 (3)

Here rk1k2k :=
∑

j zak1jzbk2jzckj and rpk1k2k :=
∑

j zpk1jzpk2jzckj .

Note that for cyclic group G, the frequency k is a mod-d integer. For general Abelian group which
can be decomposed into a direct sum of cyclic groups according to Fundamental Theorem of Finite
Abelian Groups (Diaconis, 1988), k is a multidimensional frequency index. Since {wpj} are all real,
the Hermitian constraints hold, i.e. zckj = ϕ∗

kwcj = ϕ∗
−kwcj = zc,−k,j (and similar for zakj and

zbkj). Therefore, zp,−k,j = z̄pkj , r−k,−k,−k = r̄kkk and ℓ is real and can be minimized.

Eqn. 3 contains different r terms, which play an important role in determining global solutions.

Definition 1 (0/1-set). Let R := {r} be a collection of r terms. The weight z is said to have 0-set
R0 and 1-set R1 (or 0/1-sets (R0, R1)), if r(z) = 0 for all r ∈ R0 and r(z) = 1 for all r ∈ R1.

With 0/1-sets, we can characterize rough structures of the global solutions to the loss:

Lemma 1 (A Sufficient Conditions of Global Solutions of Eqn. 3). If the weight z to Eqn. 3 has
0-sets Rc ∪Rn ∪R∗ and 1-set Rg, i.e.

rkkk(z) = I(k ̸= 0), rk1k2k(z) = 0, rpk1k2k(z) = 0 (4)

then it is a global solution with ℓ(z) = 0. Here Rg := {rkkk, k ̸= 0}, Rc :=
{rk1k2k, k1, k2, k not all equal}, Rn := {rp,k′,−k′,k} and R∗ := {rp,k′,m−k′,k,m ̸= 0}.

Lemma 1 provides sufficient conditions since there may exist solutions that achieve global optimum
(e.g.,

∑
k′ rp,k′,m−k′,k(z) = 0 but rp,k′,m−k′,k(z) ̸= 0). However, as we will see, it already leads

to rich algebraic structure, and serves as a good starting point. Directly finding the global solutions
using Eqn. 4 can be a bit complicated and highly non-intuitive, due to highly nonlinear structure of
Eqn. 3. However, there are nice structures we can leverage, as we will demonstrate below.

4 Algebraic Property of the Weight Space
We define the weight space Zq = {z} to include all the weight matrices with q hidden nodes (Z0

means an empty network), and Z =
⋃

q≥0 Zq be the solution space of all different number of hidden
nodes. Interestingly, Z naturally is equipped with a semi-ring structure, and each term of the loss
function can effective interact with such a semi-ring structure, yielding provable global solutions,
including both the Fourier solutions empirically reported in previous works (Zhou et al., 2024;
Gromov, 2023), and the perfect memorization solution (Morwani et al., 2023).

To formalize our argument, we start with a few definitions.

Definition 2 (Order of z). The order ord(z) of z ∈ Z is its number of hidden nodes.

Definition 3 (Scalar multiplication). αz ∈ Z is element-wise multiplication [αzpkj ] of z ∈ Z .

Definition 4 (Identification of Z). In Z , two solutions of the same order that differ only by a
permutation along hidden dimension j are considered identical.

We define operations for z1 := {z(1)pkj} and z2 := {z(2)pkj}:

Definition 5 (Addition and Multiplication in Z). Define z = z1 + z2 in which zpk· :=

concat(z
(1)
pk·, z

(2)
pk·) and z = z1 ∗ z2, in which zpk· := z

(1)
pk· ⊗ z

(2)
pk·. The addition and multiplication

respect Hermitian constraints and the identity element 1 is the 1-order solutions with {zpk0 = 1}.

Note that the multiplication definition is one special case of Khatri–Rao product (Khatri & Rao, 1968).
Although the Kronecker product and concatenation are not commutative, thanks to the identification
(Def. 4), it is clear that z1 + z2 = z2 + z1 and z1 ∗ z2 = z2 ∗ z1 and thus both operations are
commutative. Then we can show:

Theorem 2 (Algebraic Structure of Z). ⟨Z,+, ∗⟩ is a commutative semi-ring.
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As we shall see, Thm. 2 allows the construction of global solutions. Now let us explore the structure
of the loss (Eqn. 3), which turns out to be connected with the semi-ring structure of Z . For this, we
first define the concept of sum potentials:
Definition 6 (Sum potential (SP)). Let sum potential be r(z) :=

∑
j

∏
p,k∈idx(r) zpkj which takes

the summation of a monomial term over all hidden nodes. Here idx(r) specifies the terms involved.

Following this definition, terms in the loss function (Theorem 1) are examples of SPs.
Observation 1 (Specific SPs). rk1k2k(z) and rpk1k2k(z) defined in Theorem 1 are SPs.

So what is the relationship between SPs, which are functions that map a weight z to a complex scalar,
and the semi-ring structure of Z? The following theorem tells that SPs are ring homomorphisms, that
is, these mappings respect addition and multiplication:
Theorem 3. For any sum potential r : Z 7→ C, r(1) = 1, r(z1 + z2) = r(z1) + r(z2) and
r(z1 ∗ z2) = r(z1)r(z2) and thus r is a ring homomorphism.

Observation 2. The order function ord : Z 7→ N is also a ring homomorphism.

Since the loss function ℓ(z) depends on the weight z entirely through rk1k2k(z) and rpk1k2k(z),
which are SPs, due to the property of ring homomorphism, it is possible to construct a global solution
from partial solutions that satisfy only some of the constraints2:
Lemma 2 (Composing Partial Solutions). If z1 has 0/1-sets (R−

1 , R
+
1 ) and z2 has 0/1-sets (R−

2 , R
+
2 ),

then (1) z1 ∗ z2 has 0/1-sets (R−
1 ∪R−

2 , R
+
1 ∩R+

2 ) and (2) z1 + z2 have 0/1-sets (R−
1 ∩R−

2 , (R
+
1 ∩

R−
2 ) ∪ (R−

1 ∩R+
2 )).

Once we reach 0/1-sets (Rc ∪ Rn ∪ R∗, Rg), we find a global solution. In addition, we also
immediately know that there exists infinitely many global solutions, via ring multiplication (Def. 5):
Definition 7 (Unit). z is a unit if rkkk(z) = 1 for all k ̸= 0.

Corollary 1. If z is a global solution and y is a unit, then z ∗ y is also a global solution.

5 Composing Global Solutions
Constructing Partial Solutions with Polynomials. While intuitively one can get global solutions by
manually crafting some partial solutions and combining, in this section, we provide a more systematic
approach to compose global solutions as follows. Since Z enjoys a semi-ring structure, we consider
a polynomial in Z:

z = uL + c1 ∗ uL−1 + c2 ∗ uL−2 + . . .+ cL (5)

where the generator u and coefficients cl are order-1 and the power operation ul is defined by ring
multiplication. Then a partial solution can be constructed:
Theorem 4 (Construction of partial solutions). Suppose u has 1-set R1, ΩR(u) := {r(u)|r ∈ R} ⊆
C is a set of evaluations on R (multiple values counted once), then if 1 /∈ ΩR, then the polynomial
solution ρR(u) :=

∏
s∈ΩR(u)(u+ ŝ) has 0/1-set (R,R1) up to a scale. Here ŝ is any order-1 weight

that satisfies r(ŝ) = −s for any r ∈ R ∪R1. For example, ŝ = −s1/31.

For convenience, we use ρ(u) to represent the maximal polynomial, i.e., when R =
argmax1/∈ΩR(u) |ΩR(u)| is the largest subset of SPs with 1 /∈ ΩR(u). Our goal is to find low-order
(partial) solutions, since gradient descent prefers low order solutions (see Theorem 5). Although
there exist high-degree but low-order polynomials, e.g., u9 + 1, in general, degree L and order q are
correlated, and we can find low-degree ones instead. To achieve that, u should be properly selected
(e.g., symmetric weights) to create as many duplicate values (but not 1) in R as possible.

Composing Global Solutions. We first consider the case that the generator u is only nonzero at
frequency k (and thus −k by Hermitian constraints), but zero in other frequencies, i.e., upk′0 = 0
for k′ ̸= ±k. Such solutions correspond to Fourier bases in the original domain. Also, u has
1-set R1 = {rkkk}. This means that u can be characterized by three numbers uak0, ubk0, uck0 with

2Mathematically, the kernel Ker(r) := {z : r(z) = 0} of a ring homomorphism r is an ideal of the ring,
and the intersection of ideals are still ideals. For brevity, we omit the formal definitions.
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Evaluation on SPs
Rc Rn R∗ Maximal

Symbol [a, b, c] ābc ab̄c abc̄ āac b̄bc aac bbc āāc b̄b̄c polynomial ρ(u) order q
1k [1, 1, 1] 1 1 1 1 1 1 1 1 1 – –
1̃k [−1,−1, 1] 1 1 1 1 1 1 1 1 1 – –
uone [1,−1,−1] 1 1 1 −1 −1 −1 −1 −1 −1 u+ 1 2
usyn [ω3, ω3, ω3] ω3 ω3 ω3 ω3 ω3 1 1 ω̄3 ω̄3 u2 + u+ 1 3
u3c [ω3, ω̄3, 1] ω3 ω̄3 1 1 1 ω̄3 ω3 ω3 ω̄3 u2 + u+ 1 3
u3a [1, ω3, ω̄3] 1 ω3 ω̄3 ω̄3 ω̄3 ω̄3 ω3 ω̄3 1 u2 + u+ 1 3
u4c [i,−i, 1] −1 −1 1 1 1 −1 −1 −1 −1 u+ 1 2
u4a [1, i,−i] 1 −1 −1 −i −i −i i −i i u3 + u2 + u+ 1 4
uν [ν,−ν,−ν̄2] ν2 ν2 ν4 −ν̄2 −ν̄2 −1 −1 −ν4 −ν4 9-th degree 10

Table 1: Exemplar order-1 single frequency generator u(k) with rkkk(u
(k)) = 1. In the single-frequency case,

for each MP r we use “ābc” to represent r−k,k,k and “āāc” to represent ra,−k,−k,k, etc. For brevity, superscript
“(k)” and conjugate columns (i.e., āb̄c conjugate to abc̄) are omitted. Here, ω3 := e2πi/3 and ω4 := i are 3rd/4th
roots of unity. The constructions are partial, i.e., the evaluation of some SPs yields 1 (red cell) and cannot be the
root of the polynomial (Theorem 4). Note that uν is a general case with uν=1 = uone and uν=i = u4c.
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Figure 2: Solutions obtained by Adam optimizers on ℓ2 loss for modular addition task with |G| = d = 7
and q=20 hidden nodes. Top: For each frequency ±k, exactly 6 hidden nodes exist (Corollary 2). Bottom:

Optimizing Eqn. 3 without the last term
∑

m ̸=0

∑
p∈{a,b}

∣∣∣∑k′ rp,k′,m−k′,k

∣∣∣2 (i.e., without constraint R∗).

Now each frequency has exactly 3 hidden nodes, corresponding to the solution zsyn = ρ(usyn) in Tbl. 1.

uak0ubk0uck0 = 1. In this case, only a subset of sum potentials (SPs) whose indices only involve a
single frequency k are non-zero (e.g., rk,−k,k ∈ Rc and rb,−k,k,k ∈ Rn), facilitating our construction.

Following Theorem 4, we can construct different partial solutions. Some examples are shown in
Table 1. These solutions do not make all sum potentials in Rc ∪Rn ∪R∗ vanish and therefore are not
global. Note that it is possible to create a global solution this way, but then |ΩR(u)| will be too large,
producing high-degree/order polynomials (e.g., u3c ∗ u4a gives a 10th-degree polynomial). Instead,
utilizing these partial solutions, with Lemma 2 we can construct global solutions with smaller orders:
Corollary 2 (Order-6 global solutions). The following “3× 2” Fourier solutions satisfy the sufficient
condition (Lemma 1) and thus are global solutions when d is odd:

zF6 =
1
3
√
6

(d−1)/2∑
k=1

z(k)
syn ∗ z(k)

ν ∗ yk (6)

Here z
(k)
syn := ρ(u

(k)
syn) and z

(k)
ν := u

(k)
ν + 1k (i.e., not maximal polynomial), where usyn and uν

are defined in Table 1. y is an order-1 unit. As a result, ord(zF6) = 3 · 2 · 1 · (d− 1)/2 = 3(d− 1)
and each frequency are affiliated with 6 hidden nodes (order-6).

Remarks. We may replace usyn and uν with other pairs that collectively cover all SPs. For example,
usyn can be combined with any of {u3c,u3a,u4a}, and uν=±i can be coupled with u3a or u4a, etc.
Here we pick one with a small order. Compared to Gromov (2023), our construction is more concise
without infinite-width approximation. For even d, simply replace (d− 1)/2 with ⌊(d− 1)/2⌋ and
add an additional order-2 term ρ(uone) = uone + 1 (Tbl. 1) for frequency k = d/2, which only has
rkkk, rakkk and rbkkk, and all other combinations are absent.

Fig. 2 shows a case with d = 7. In this case, each frequency, out of (d− 1)/2 = 3 total number of
frequencies, is associated with 6 hidden nodes. If we remove the last term in the loss that corresponds
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to R∗, then an order-3 solution suffices (i.e. zsyn = ρ(usyn)). Perfect-memorization solutions
can also be constructed. Let two generators be uα with u

(α)
·k0 = [ωk

d , 1, ω̄
k
d ]I(k ̸= 0), and uβ with

u
(β)
·k0=[1, ωk

d , ω̄
k
d ]I(k ̸=0). Here ωd := e2πi/d is the d-th root of unity. Then,

Corollary 3 (Perfect Memorization). We construct two d-order weights (zα, zβ) from order-1
generators (uα,uβ):

zα =

d−1∑
j=0

uj
α, zβ =

d−1∑
j=0

uj
β (7)

Here zα ∈ Rc(k1 ̸= k)∩Rn∩R∗(p = b orm ̸= k), zβ ∈ Rc(k2 ̸= k)∩Rn∩R∗(p = a orm ̸= k).
Then zM = d−2/3zα ∗zβ satisfies the sufficient condition (Lemma 1) and is the perfect memorization
solution with ord(zM ) = d2:

z
(M)
akj1j2

= d−
2
3ωkj1 , z

(M)
bkj1j2

= d−
2
3ωkj2 , z

(M)
ckj1j2

= d−
2
3ω−k(j1+j2) (8)

where each hidden node is indexed by j = (j1, j2), 0 ≤ j1, j2 < d, k ̸= 0.

To see why this corresponds to perfect memorization, simply apply an inverse Fourier transform for
each hidden node (j1, j2), which leads to (zero-mean) delta weights located at j1, j2 and j1 + j2.
Interestingly, there also exists a lower-order solution, 2× 2, that meets Rc and R∗ but not Rn:
Corollary 4 (Order-4 single frequency solution). Define single frequency order-2 solution zξ:

zak· = [1, ξ], zbk· = [1,−iξ̄], zck· = [1, i] (9)

where |ξ| = 1. Then the order-4 solution z
(k)
F4 := ρ(u

(k)
ν=i) ∗ z

(k)
ξ has 0-sets Rc and R∗ (but not Rn).

Although z
(k)
F4 does not satisfy the sufficient condition (Eqn. 4), it is part of a global solution when

mixed with zF6:

Corollary 5 (Mixed order-4/6 global solutions). With z
(k)
F4 , there is a global solution to Eqn. 3 that

does not meet the sufficient condition, i.e.,
∑

k′ rp,k′,−k′,m = 0 but rp,k′,−k′,m ̸= 0:

zF4/6 =
1
3
√
6
ẑ
(k0)
F6 +

1
3
√
4

(d−1)/2∑
k=1,k ̸=k0

z
(k)
F4 (10)

where ẑ
(k0)
F6 is a perturbation of z(k0)

F6 := z
(k0)
syn ∗ z(k0)

ν=1 by adding constant biases to its (c, k) entries
for k ̸= k0. The order is lower than zF6: ord(zF4/6) = 6 + 4 · ((d− 1)/2− 1) = 2d < ord(zF6).

The specific formats of ẑ(k0)
F6 is shown in Appendix (please check the proof and Eqn. 68). Multiple

order-6 solutions per frequency can be inserted in this construction. Compared to zF6, this order-4/6
mixture solution has a lower order and is perceived in the experiments (See Fig. 6), in particular when
d is large (Tbl. 2), showing a strong preference of gradient descent towards lower order solutions.

6 Exploring the solution solution with Gradient dynamics
Now we have characterized the structures of global solutions. One natural question arises: why does
the optimization procedure not converge to the perfect memorization solution zM , but to the Fourier
solutions zF6 and zF4/6? Although characterizing the full gradient dynamics is beyond the scope of
this paper, we theoretically characterize some rough behaviors below.

Corollary 1 shows that by ring multiplication, we could create infinitely many global solutions from
one. Then Thm. 5 answers which solution the gradient dynamics may pick:
Theorem 5 (The Occam’s Razer: Preference of low-order solutions). If z = y ∗ z′ and both z (of
order q) and z′ are global optimal solutions, then there exists a path of zero loss connecting z and z′

in the space of Zq . As a result, lower-order solutions are preferred if trained with L2 regularization.

This shows that gradient dynamics (with weight decay) may pick a lower-order (i.e., simpler) solution.
This suggests that gradient dynamics may not favor perfect memorization, which is of high order. We
leave it a future work to prove the existence of a path that connects perfect memorization solutions
with a lower-order one. The following theorem shows that the dynamics enjoys asymptotic freedom:
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Figure 3: Dynamics of sum potentials (SPs) over the training process for modular addition with d = 23 and
q = 1024 hidden nodes. Top Row. Left: Training/test accuracy reaches 100% and loss close to 0. Test accuracy
jumps after training reaches 100% (grokking). Mid: After 10k epochs, the distribution of solution orders are
concentrated at 4 and 6 (Corollary 2 and 4). Right: Dynamics of rk1k2k. Summation of diagonal rkkk converges
towards d− 1 (dotted line) with ripple effects, while off-diagonal rk1k2k converges towards 0. Bottom Row.
Dynamics of different SPs. Order-4 and order-6 behave differently on rp,k,−k,k, because order-4 does not satisfy
the sufficient condition (Lemma 1) but a mixture of order-4 and order-6 (i.e., zF4/6) is still the global solution
to the L2 loss (Corollary 5).
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Figure 4: Solution distribution (accumulated over 5 random seeds) over different weight decay regularization
for q = 512, trained with 10k epochs with Adam with learning rate 0.01 on modular addition (i.e., predicting
a+ b mod d) with d ∈ {23, 71, 127}. Red dashed lines correspond to order-4/6 solutions.

Theorem 6 (Infinite Width Limits at Initialization). Considering the modified loss of Eqn. 3 with only
the first two terms: ℓ̃k := −2rkkk +

∑
k1k2

|rk1k2k|2, if the weights are i.i.d Gaussian and network
width q → +∞, then JJ∗ converge to diagonal and the dynamics of SPs is decoupled.

Intuitively, this means that a large enough network width (q → +∞) makes the dynamics much
easier to analyze. On the other hand, the final solution may not require that large q. As analyzed in
Corollary 2, for each frequency, to achieve global optimality, 6 hidden nodes suffice.

7 Experiments
Setup. We train the 2-layer MLP on the modular addition task, which is a special case of outcome
prediction of Abelian group multiplication. We use Adam optimizer with learning rate 0.01, MSE
loss, and train for 10000 epochs with weight decays. We tested on |G| = d ∈ {23, 71, 127}. All
data are generated synthetically and training/test split is 90%/10%. Each training with a fixed set of
hyperparameter configuration is conducted on NVIDIA V100 for a few minutes.

Solution Distributions. As shown in Fig. 3, we see order-4 and order-6 solutions in each frequency
emerging from well-trained networks on d = 23. The mixed solution zF4/6 can be clearly observed
in a small-scale example (Fig. 6). This is also true for larger d (Fig. 4). Although the model is
trained with heavily over-parameterized networks, the final solution order remains constant, which
is consistent with Corollary 1. Large weight decay shifts the distribution to the left (i.e., low-order
solutions) until model collapses (i.e., all weights become zero), consistent with our Theorem 5 that

8



d
%not %non-factorable error (×10−2) solution distribution (%) in factorable ones

order-4/6 order-4 order-6 order-4 order-6 z
(k)
ν=i ∗ z

(k)
ξ z

(k)
ν=i ∗ z

(k)
syn,αβ z

(k)
ν ∗ z(k)

syn others
23 0.0±0.0 0.00±0.00 5.71±5.71 0.05±0.01 4.80±0.96 47.07±1.88 11.31±1.76 39.80±2.11 1.82±1.82

71 0.0±0.0 0.00±0.00 0.00±0.00 0.03±0.00 5.02±0.25 72.57±0.70 4.00±1.14 21.14±2.14 2.29±1.07

127 0.0±0.0 1.50±0.92 0.00±0.00 0.26±0.14 0.93±0.18 82.96±0.39 2.25±0.64 14.13±0.87 0.66±0.66

Table 2: Matches between order-4/6 solutions from gradient descent and those constructed by CoGS. Number
of hidden nodes q = 512 and weight decay is 5× 10−5. Around 95% gradient descent solutions are factorable
with very small factorization error (∼ 0.04 compared to solution norm on the order of 1). Furthermore, CoGS
successfully predicts ∼ 98% of the structure of the empirical solutions, while the remaining 2% are largely
due to insufficient training, near miss against known theoretical construction. Here zξ is defined in Corollary 4,
zν := uν + 1 is defined in Tbl. 1, and zsyn,αβ is defined in Eqn. 68. The means/standard deviations are
computed over 5 seeds.

demonstrates that gradient descent with weight decay favors low-order solutions. Similar conclusions
follow for fewer and more overparameterization (Appendix I).

Exact match between theoretical construction and empirical solutions. A follow-up question
arises: do the empirical solutions match exactly with our constructions? After all, distribution of
solution order is a rough metric. For this, we identify all solutions obtained by gradient descent at each
frequency, factorize them and compare with theoretical construction up to conjugation/normalization.
To find such a factorization, we use exhaustive search (Appendix I).

The answer is yes. Tbl. 2 shows that around 95% of order-4 and order-6 solutions from gradient
descent can be factorized into 2×2 and 2×3 and each component matches our theoretical construction
in Corollary 2 and 4, with minor variations. Furthermore, when d is large, most of the solutions
become order-4, which is consistent with our analysis for mixed solution zF4/6 (Corollary 5) that
one order-6 solution in the form of zν=i ∗ zsyn,αβ suffices to achieve a global solution, with all other
frequencies taking order-4s. In fact, for d = 127, the number of order-6 solution taking the form of
zν=i ∗ zsyn,αβ is (d− 1)/2 · 2.25% ≈ 1.26, coinciding with the theoretical results.

Implicit Bias of gradient descent. Our construction gives other possible solutions (e.g., z3c ∗ zsyn)
which are never observed in the gradient solutions. Even for the observed solutions, e.g. zν ∗ zsyn,
the distribution of free parameters is highly non-uniform (see Fig. 12 in Appendix), showing a strong
preference of parameters that lead to symmetry. These suggest strong implicit bias in optimization,
which we leave for future work.

8 Conclusion and future work
In this work, we propose CoGS (Composing Global Solutions), a theoretical framework that models
the algebraic structure of global solutions when training a 2-layer network on reasoning tasks of
Abelian group with L2 loss. We find that the global solutions can be algebraically composed by
partial solutions that only fit parts of the loss, using ring operations defined in the weight space of the
2-layer neural networks across different network widths. Under CoGS, we also analyze the training
dynamics, show the benefit of over-parameterization, and the inductive bias towards simpler solutions
due to topological connectivity between algebraically linked high-order (i.e., involving more hidden
nodes) and low-order global solutions. Finally, we show that the gradient descent solutions exactly
match what constructed solutions (e.g. zF4/6 and zF6, see Corollary 5 and Corollary 2).

Develop novel training algorithms. Instead of applying (stochastic) gradient descent to overpa-
rameterized networks, CoGS suggests a completely different path: decompose the loss, find the
SPs, construct low-order solutions and combine them to achieve the final solutions on the fly using
algebraic operations. Such an approach may be more efficient and scalable than gradient descent, due
to its factorable nature. Also, our framework works for losses depending on sum potentials (L2 loss
is just one example), which opens a new dimension for loss design.

Putting different widths into the same framework. Many existing theoretical works study proper-
ties of networks with fixed width. However, CoGS demonstrates that nice mathematical structures
emerge when putting networks of different widths together, which is an interesting direction to
consider. This is related to dynamically adding/pruning neurons during training Yoon et al. (2017);
Yu et al. (2018); Wu et al. (2019).

Grokking. When learning modular addition, there exists a phase transition from memorization to
generalization during training, known as grokking (Varma et al., 2023; Power et al., 2022), long
after the training performance becomes (almost) perfect. While our work does not directly address
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grokking, which involves more complicated training dynamics than described in Sec. 6, our framework
may be extended to a nonuniformly distributed training set (e.g. some input pairs (g1, g2) are missing
in the training set), in order to study the dynamics of representation learning on grokking.

Extending to other activations and loss functions. For other activations (e.g., SiLU) with σ(0) = 0,
with a Taylor expansion, the same framework may still apply, but with higher rank sum potentials
(SPs). For other loss functions, we can do a similar Taylor expansion. We leave them for future work.
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A Notation Table

Symbol Description
C The set of complex numbers. The complex field.
N The set of natural numbers.
i The imaginary unit. i =

√
−1.

ā, ā, Ā The complex conjugate of a scalar a, a vector a or a matrix A.
A∗ The conjugate transpose of matrix A. A∗ = Ā⊤.
I(x) The indicator function. I(x) = 1 if x is true, otherwise 0.
G The Abelian group to be studied.
g ∈ G Group element g in G.
g1g2 Production of group element g1 and g2 under group multiplication.
d Size of the group G. |G| = d.
eg One-hot representation of group element g. The dimension of eg is d.
ϕk : G 7→ C The k-th character function of G. If G is cyclic and 0 ≤ g < d, then ϕk(g) = ei2πkg/d.
ϕk ∈ Cd The k-th character function in vector form. ϕk = [ϕk(g)]g∈G.
P⊥
1 Zero-mean projection matrix P⊥

1 ≡ I − 1
d11

⊤.
waj , wbj Fan-in weight vectors for node j in 2-layer networks defined in Eqn. 1.
wcj The fan-out weight vector for node j in 2-layer networks defined in Eqn. 1.
Zq Collection of weight (in Fourier space) of all 2-layer networks with q hidden nodes.
Z Collection of weight (in Fourier space) of all 2-layer networks. Z =

⋃
q≥0 Zq .

z ∈ Z Weight matrices of one specific instance of 2-layer network.
ord(z) The number of hidden nodes in z.
z1 + z2, z1 ∗ z2 The ring addition and multiplication (Def. 5).
r : Z 7→ C The sum potential (Def. 6).
R Collection of sum potentials. E.g., Rg = {rkkk, k ̸= 0}.
Rg, Rc, Rn, R∗ Collections of sum potentials (Lemma 1) that appear in MSE loss function (Eqn. 3).

Table 3: The notation table.

B Decoupling L2 Loss (Proof)

We use the character function ϕ : G → C, which maps a group element g into a complex number.
Lemma 3. For finite Abelian group, the character function ϕ has the following properties Fulton &
Harris (2013); Steinberg (2009):

• It is a 1-dimensional (irreducible) representation of the group G, i.e., |ϕ(g)| = 1 for g ∈ G
and for any g1, g2 ∈ G, ϕ(g1g2) = ϕ(g1)ϕ(g2).

• There exists d character functions {ϕk} that satisfy the orthonormal condition
1
d

∑
g∈G ϕk(g)ϕk′(g) = I(k = k′). Here ϕ is the complex conjugate of ϕ and is also

a character function.

• The set of character functions {ϕk} forms a character group Ĝ under pairwise multiplication:
ϕk1+k2 = ϕk1 ◦ ϕk2 .

Note that the frequency k goes from 0 to d− 1, where ϕ0 ≡ 1 is the trivial representation (i.e., all
g ∈ G maps to 1). According to the Fundamental Theorem of Finite Abelian Groups, each finite
Abelian group can be decomposed into a direct sum of cyclic groups, and the character function
of each cyclic group is exactly (scaled) Fourier bases. Therefore, in Abelian group, k is a multi-
dimensional frequency index. Conrad (2010) shows that Ĝ ∼= G (Theorem 3.13) so each character
function ϕ ∈ Ĝ can also be indexed by g itself. Right now we keep the index k.

For convenience, we define ϕ−k := ϕk as the (complex) conjugate representation of ϕk.

Let ϕk = [ϕk(g)]g∈G ∈ Cd be the vector that contains the value of the character function ϕk over
G. Then {ϕk} form an orthogonal base in Cd and we can represent the weight vector wpj as the
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following, where p ∈ {a, b, c}:

waj =
∑
k ̸=0

zakjϕk, wbj =
∑
k ̸=0

zbkjϕk, wcj =
∑
k ̸=0

zckjϕ̄k (11)

where z := {zpkj} are the complex coefficients. Here p ∈ {a, b, c}, 0 ≤ k < d and j runs through
hidden nodes.
Theorem 1 (Analytic form of L2 loss with quadratic activation). The objective of 2-layer MLP
network with quadratic activation can be written as ℓ = d−1

∑
k ̸=0 ℓk + (d− 1)/d, where

ℓk = −2rkkk+
∑
k1k2

|rk1k2k|2+
1

4

∣∣∣ ∑
p∈{a,b}

∑
k′

rp,k′,−k′,k

∣∣∣2+ 1

4

∑
m ̸=0

∑
p∈{a,b}

∣∣∣∑
k′

rp,k′,m−k′,k

∣∣∣2 (3)

Here rk1k2k :=
∑

j zak1jzbk2jzckj and rpk1k2k :=
∑

j zpk1jzpk2jzckj .

Proof. Note that the objective ℓ can be written down as

ℓ = Eg1,g2

[
∥P⊥

1 (o(g1, g2)/2d− eg1g2)∥2
]

(12)

= Eg1,g2

[
o⊤P⊥

1 o/4d2 − o⊤P⊥
1 eg1g2/d+ e⊤g1g2P

⊥
1 eg1g2

]
(13)

For notation brevity, let zakj := akj , zbkj := bkj and zckj := ckj . For E
[
o⊤P⊥

1 eg1g2
]
, since

e⊤g1g2P
⊥
1 o =

∑
j

e⊤g1g2P
⊥
1 wcjσ(w

⊤
ajeg1 +w⊤

bjeg2) (14)

=
∑
j

∑
k′ ̸=0

ck′j ϕ̄k′(g1g2)

(w⊤
ajeg1 +w⊤

bjeg2
)2

(15)

=
∑
j

∑
k′ ̸=0

ck′j ϕ̄k′(g1g2)

∑
k

∑
p∈{a,b}

zpkjϕk(gp)

2

(16)

Therefore, leveraging the fact that ϕ̄k′(g1g2) = ϕ̄k′(g1)ϕ̄k′(g2), we have:

Eg1,g2

[
e⊤g1g2P

⊥
1 o
]
=

∑
k1,k2,k′ ̸=0,p1,p2,j

ck′jzp1k1jzp2k2jEg1,g2

[
ϕ̄k′(g1)ϕ̄k′(g2)ϕk1

(gp1
)ϕk2

(gp2
)
]

(17)
Since Eg

[
ϕk(g)ϕ̄k′(g)

]
= I(k = k′), there are only a few cases that the summand is nonzero:

• p1 = a, p2 = b, k′ = k1 = k2 ̸= 0.

• p1 = b, p2 = a, k′ = k1 = k2 ̸= 0.

In both cases, the summation reduces to
∑

k ̸=0,j ckjzakjzbkj =
∑

k ̸=0,j ckjakjbkj . Let rk1k2k′ :=∑
j ak1jbk2jck′j , then we have

Eg1,g2

[
o⊤(g1, g2)P

⊥
1 eg1g2

]
= 2

∑
k ̸=0,j

akjbkjckj = 2
∑
k ̸=0

rkkk (18)

For E
[
o⊤P⊥

1 o
]
, we have:

o⊤P⊥
1 o =

∑
j,j′

w⊤
cjP

⊥
1 wcj′σ(w

⊤
ajeg1 +w⊤

bjeg2)σ(w
⊤
aj′eg1 +w⊤

bj′eg2) (19)

here

w⊤
cjP

⊥
1 wcj′ =

∑
k′ ̸=0

ck′jϕ̄k′

⊤∑
k′′ ̸=0

c̄k′′j′ϕk′′

 = d
∑
k′ ̸=0

ck′j c̄k′j′ (20)
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due to the fact that ϕ̄⊤
k ϕk′ =

∑
g ϕ̄k(g)ϕk′(g) = dI(k = k′).

Then the key part is to compute the following terms:

Eg1,g2 [zp1k1j1zp2k2j1zp3k3j2zp4k4j2ck′j1 c̄k′j2ϕk1(gp1)ϕk2(gp2)ϕk3(gp3)ϕk4(gp3)] (21)

summing over {p1, p2, p3, p4, k1, k2, k3, k4, k′ ̸= 0, j1, j2}. Note that since each p ∈ {a, b}, there
are 24 = 16 choices of (p1, p2, p3, p4). For notation brevity, we use (1, 3) to represent the subset of
p that takes the value of a (e.g., (1, 3) means that p1 = p3 = a and p2 = p4 = b). It is clear that for
odd assignments such as (1, 2, 3), since zp0j = 0, the summation is zero. Then, we only discuss the
even cases as follows:

Case 1: (1, 3), (2, 4), (1, 4), (2, 3). The 4 cases are identical so we only need to analyze one. We
take (1, 3) as an example. For (1, 3), p1 = p3 = a, p2 = p4 = b and the only nonzero terms is when
k1 + k3 = 0 mod d, k2 + k4 = 0 mod d, since Eg1 [ϕk1

(g1)ϕk3
(g1)] = I(k1 + k3 = 0 mod d)

(and similar in other cases). Then Eqn. 21 becomes:∑
k1,k2,k′ ̸=0

∑
j1j2

zak1j1zbk2j1za,−k1,j2zb,−k2,j2ck′j1 c̄k′j2 (22)

=
∑

k1,k2,k′ ̸=0

∑
j1

zak1j1zbk2j1ck′j1

∑
j2

zak1j2zbk2j2ck′j2 (23)

=
∑

k1,k2,k′ ̸=0

∑
j1

ak1j1bk2j1ck′j1

∑
j2

ak1j2bk2j2ck′j2 (24)

=
∑

k1,k2,k′ ̸=0

rk1k2k′rk1k2k′ =
∑

k1,k2,k′ ̸=0

|rk1k2k′ |2 (25)

Since there are 4 such cases, we have:

ϵ1 = 4
∑
k′ ̸=0

∑
k1k2

|rk1k2k′ |2 (26)

Case 2: (1, 2) and (3, 4). The two cases are identical. Take (1, 2) as an example. In this case,
p1 = p2 = a and p3 = p4 = b. The only non-zero terms are when k1 + k2 = 0, k3 + k4 = 0. Then
Eqn. 21 becomes: ∑

k1,k3,k′ ̸=0

∑
j1j2

zak1j1 z̄ak1j1zbk3j2 z̄bk3j2ck′j1 c̄k′j2 (27)

=
∑

k1,k3,k′ ̸=0

∑
j1

|ak1j1 |2ck′j1

∑
j2

|bk3j2 |2c̄k′j2 (28)

=
∑
k′ ̸=0

∑
j1

(∑
k1

|ak1j1 |2
)
ck′j1

∑
j2

(∑
k3

|bk3j2 |2
)
c̄k′j2

 (29)

Let r⊛amk′ :=
∑

j

(∑
k1+k2=m ak1jak2j

)
ck′j (similar for r⊛bmk′), then the above becomes∑

k′ ̸=0 r
⊛
a0k′ r̄

⊛
b0k′ .

Similarly, for (3, 4), the above equation becomes
∑

k′ ̸=0 r̄
⊛
a0k′r

⊛
b0k′ . Therefore, we have:

ϵ2 =
∑
k′ ̸=0

r⊛a0k′ r̄
⊛
b0k′ + r̄⊛a0k′r

⊛
b0k′ (30)

Note that this term can be negative. However, we will see that when it is combined with the following
terms, all terms will be non-negative.
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Case 3: (1, 2, 3, 4) and (). In this case we have:∑
k′ ̸=0

∑
j1j2

∑
p∈{a,b}

∑
k1+k2+k3+k4=0

zpk1j1zpk2j1zpk3j2zpk4j2ck′j1 c̄k′j2 (31)

=
∑
k′ ̸=0

∑
j1j2

∑
p∈{a,b}

∑
k1+k2=k3+k4

zpk1j1zpk2j1 z̄pk3j2 z̄pk4j2ck′j1 c̄k′j2 (32)

=
∑
k′ ̸=0

∑
m

∑
p∈{a,b}

∑
j1j2

∑
k1+k2=m

∑
k3+k4=m

zpk1j1zpk2j1 z̄pk3j2 z̄pk4j2ck′j1 c̄k′j2 (33)

=
∑
k′ ̸=0

∑
m

∑
p∈{a,b}

∑
j1

( ∑
k1+k2=m

zpk1j1zpk2j1

)
ck′j1

∑
j2

( ∑
k3+k4=m

zpk3j2zpk4j2

)
c̄k′j2


=

∑
k′ ̸=0

∑
m

|r⊛amk′ |2 + |r⊛bmk′ |2 (34)

In particular, when m = 0, we have
∑

k′ ̸=0 |r
⊛
a0k′ |2 + |r⊛b0k′ |2. Therefore, we have

ϵ2 + ϵ3,m=0 =
∑
k′ ̸=0

|r⊛a0k′ + r⊛b0k′ |2 (35)

Finally, putting them together, we have:

E
[
o⊤P⊥

1 o
]

= d(ϵ1 + ϵ2 + ϵ3) = d(ϵ1 + (ϵ2 + ϵ3,m=0) + ϵ3,m ̸=0) (36)

= d
∑
k′ ̸=0

4
∑
k1k2

|rk1k2k′ |2 + |r⊛a0k′ + r⊛b0k′ |2 +
∑
m̸=0

|r⊛amk′ |2 + |r⊛bmk′ |2


≥ 0 (37)

Putting them together, we arrived at the conclusion.

Lemma 1 (A Sufficient Conditions of Global Solutions of Eqn. 3). If the weight z to Eqn. 3 has
0-sets Rc ∪Rn ∪R∗ and 1-set Rg, i.e.

rkkk(z) = I(k ̸= 0), rk1k2k(z) = 0, rpk1k2k(z) = 0 (4)

then it is a global solution with ℓ(z) = 0. Here Rg := {rkkk, k ̸= 0}, Rc :=
{rk1k2k, k1, k2, k not all equal}, Rn := {rp,k′,−k′,k} and R∗ := {rp,k′,m−k′,k,m ̸= 0}.

Proof. Note that 2
∑

k rkkk −
∑

k |rkkk|2 has a minimizer rkkk = 1. Therefore, the best loss value
any assignment of weights is able to achieve is the following:

rk1k2k′ =
∑
j

ak1jbk2jck′j = I(k1 = k2 = k′) k′ ̸= 0 (38)

r⊛a0k′ + r⊛b0k′ :=
∑
j

(∑
k

|akj |2 + |bkj |2
)
ck′j = 0 k′ ̸= 0 (39)

r⊛amk′ :=
∑
j

( ∑
k1+k2=m

ak1jak2j

)
ck′j = 0 k′ ̸= 0,m ̸= 0 (40)

r⊛bmk′ :=
∑
j

( ∑
k1+k2=m

bk1jbk2j

)
ck′j = 0 k′ ̸= 0,m ̸= 0 (41)

Therefore the sufficient conditions (Eqn. 4) will make all above come true.

C Semi-ring structure of Z (Proof)

Theorem 2 (Algebraic Structure of Z). ⟨Z,+, ∗⟩ is a commutative semi-ring.
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Proof. Straightforward from the definition of addition and multiplication (Def. 5) and identification
of hidden nodes under permutation (Def. 4). Note that ring addition (i.e., concatenation) does not
have inverse and thus it is a semi-ring.

Theorem 3. For any sum potential r : Z 7→ C, r(1) = 1, r(z1 + z2) = r(z1) + r(z2) and
r(z1 ∗ z2) = r(z1)r(z2) and thus r is a ring homomorphism.

Proof. Let r(z) =
∑

j

∏
(p,k)∈idx(r) zpkj . Since the ring identity 1 is order-1 and all zpkj = 1, it is

obvious that r(1) = 1.

Let supp(z1) be the subset of the hidden nodes that corresponds to z1 in the concatenated solution
z1 + z2, similar for supp(z2). Note that

r(z1 + z2) =
∑

j∈supp(z1)

∏
(p,k)∈idx(r)

z
(1)
pkj +

∑
j∈supp(z2)

∏
(p,k)∈idx(r)

z
(2)
pkj = r(z1) + r(z2) (42)

On the other hand, we have

r(z1 ∗ z2) =
∑
j1j2

∏
(p,k)∈idx(r)

(
z
(1)
pkj1

z
(2)
pkj2

)
(43)

=
∑
j1j2

 ∏
(p,k)∈idx(r)

z
(1)
pkj1

 ∏
(p,k)∈idx(r)

z
(2)
pkj2

 (44)

=

∑
j1

∏
(p,k)∈idx(r)

z
(1)
pkj1

∑
j2

∏
(p,k)∈idx(r)

z
(1)
pkj2

 (45)

= r(z1)r(z2) (46)

Corollary 1. If z is a global solution and y is a unit, then z ∗ y is also a global solution.

Proof. Straightforward by leveraging the property of ring homomorphism. E.g.,

rkkk(z ∗ y) = rkkk(z)rkkk(y) = rkkk(z) (47)

and the proof is complete.

D Solution Construction (Proof)

D.1 Construction of Partial Solutions

Theorem 4 (Construction of partial solutions). Suppose u has 1-set R1, ΩR(u) := {r(u)|r ∈ R} ⊆
C is a set of evaluations on R (multiple values counted once), then if 1 /∈ ΩR, then the polynomial
solution ρR(u) :=

∏
s∈ΩR(u)(u+ ŝ) has 0/1-set (R,R1) up to a scale. Here ŝ is any order-1 weight

that satisfies r(ŝ) = −s for any r ∈ R ∪R1. For example, ŝ = −s1/31.

Proof. By definition, for any r ∈ R we have:

r(z(u)) =
∏

s∈ΩR(u)

(r(u) + r(ŝ)) =
∏

s∈ΩR(u)

(r(u)− s) = 0 (48)

similarly for any rkkk ∈ R+ we have:

rkkk(z(u)) =
∏

s∈ΩR(u)

(rkkk(u) + rkkk(ŝ)) =
∏

s∈ΩR(u)

(1− s) ̸= 0 (49)

which is constant over different k. So z(u) satisfies Lemma 1, up to a scaling factor.
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D.2 Construction of Global Solutions

Corollary 2 (Order-6 global solutions). The following “3× 2” Fourier solutions satisfy the sufficient
condition (Lemma 1) and thus are global solutions when d is odd:

zF6 =
1
3
√
6

(d−1)/2∑
k=1

z(k)
syn ∗ z(k)

ν ∗ yk (6)

Here z
(k)
syn := ρ(u

(k)
syn) and z

(k)
ν := u

(k)
ν + 1k (i.e., not maximal polynomial), where usyn and uν

are defined in Table 1. y is an order-1 unit. As a result, ord(zF6) = 3 · 2 · 1 · (d− 1)/2 = 3(d− 1)
and each frequency are affiliated with 6 hidden nodes (order-6).

Proof. Just notice that zsyn := ρ(usyn) = u2
syn+usyn+1k (superscript (k) are omitted for brevity)

makes all MPs in Rn, Rc and part of R∗ (Tbl. 1) equal to 0, except for “aac” and “bbc”, which
corresponds to monomial polynomials rakkk :=

∑
j zakjzakjzckj and rbkkk :=

∑
j zbkjzbkjzckj .

On the other hand, according to Tbl. 1, zν := uν + 1k has rakkk(zν) = rbkkk(zν) = 0. Therefore,
using ring homomorphism, we know that for any r ∈ Rn ∪ Rc ∪ R∗, r(zsyn ∗ zν) = 0 and thus
Rn ∪Rc ∪R∗ is the 0-sets.

On the other hand for any k′, we have:

rk′k′k′(zF6) = rk′k′k′

 1
3
√
6

(d−1)/2∑
k=1

z(k)
syn ∗ z(k)

ν ∗ yk

 (50)

=
1

6

(d−1)/2∑
k=1

rk′k′k′(z(k)
syn ∗ z(k)

ν ∗ yk) (51)

=
1

6

(d−1)/2∑
k=1

6(I(k = k′) + I(k = −k′)) = 1 (52)

The last equality is due to the fact that we only sum over half of the frequency. This means that
Rg is a 1-set of zF6. Therefore, zF6 satisfies the sufficient condition (Eqn. 4) and the conclusion
follows.

Corollary 3 (Perfect Memorization). We construct two d-order weights (zα, zβ) from order-1
generators (uα,uβ):

zα =

d−1∑
j=0

uj
α, zβ =

d−1∑
j=0

uj
β (7)

Here zα ∈ Rc(k1 ̸= k)∩Rn∩R∗(p = b orm ̸= k), zβ ∈ Rc(k2 ̸= k)∩Rn∩R∗(p = a orm ̸= k).
Then zM = d−2/3zα ∗zβ satisfies the sufficient condition (Lemma 1) and is the perfect memorization
solution with ord(zM ) = d2:

z
(M)
akj1j2

= d−
2
3ωkj1 , z

(M)
bkj1j2

= d−
2
3ωkj2 , z

(M)
ckj1j2

= d−
2
3ω−k(j1+j2) (8)

where each hidden node is indexed by j = (j1, j2), 0 ≤ j1, j2 < d, k ̸= 0.

Proof. Simply plugging in the solution and check whether the equations specified the equations. For
za, for k = 0 everything is zero; for k ̸= 0, we have:

rk1k2k(za) =
∑
j

ak1jbk2jckj =
∑
j

ωj(k1−k) = I(k1 = k ̸= 0) (53)

ramk′k(za) =
∑
j

ak′jam−k′,jckj =
∑
j

ωj(m−k) = I(m = k ̸= 0) (54)

rbmk′k(za) =
∑
j

bk′jbm−k′,jckj =
∑
j

ω−jk = I(k = 0) = 0 (55)
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Therefore, za ∈ Rc(k1 ̸= k)∩Rn ∩R∗(p = b orm ̸= k). Similar for zb. For zM := d−2/3za ∗ zb,
it satisfies all 0-sets constraints (i.e., for any r, either za satisfies with r(za) = 0, or zb satisfies with
r(zb) = 0) and we have:

rkkk(d
−2/3za ∗ zb) = d−2rkkk(za)rkkk(zb) = d−2 · d · d = 1 (56)

So zM satisfies the sufficient conditions (Eqn. 4).

Corollary 4 (Order-4 single frequency solution). Define single frequency order-2 solution zξ:

zak· = [1, ξ], zbk· = [1,−iξ̄], zck· = [1, i] (9)

where |ξ| = 1. Then the order-4 solution z
(k)
F4 := ρ(u

(k)
ν=i) ∗ z

(k)
ξ has 0-sets Rc and R∗ (but not Rn).

Proof. First, uν=i = u4c in Tbl. 1 and thus ρ(uν=i) has 0-sets Rc and R∗ except for “abc̄”, which
corresponds to MP rk,k,−k ∈ Rc. On the other hand, we have

rk,k,−k(zξ) = 1 + ξ · (−iξ̄) · (−i) = 0 (57)

With the property of ring homomorphism, the conclusion follows.

Corollary 5 (Mixed order-4/6 global solutions). With z
(k)
F4 , there is a global solution to Eqn. 3 that

does not meet the sufficient condition, i.e.,
∑

k′ rp,k′,−k′,m = 0 but rp,k′,−k′,m ̸= 0:

zF4/6 =
1
3
√
6
ẑ
(k0)
F6 +

1
3
√
4

(d−1)/2∑
k=1,k ̸=k0

z
(k)
F4 (10)

where ẑ
(k0)
F6 is a perturbation of z(k0)

F6 := z
(k0)
syn ∗ z(k0)

ν=1 by adding constant biases to its (c, k) entries
for k ̸= k0. The order is lower than zF6: ord(zF4/6) = 6 + 4 · ((d− 1)/2− 1) = 2d < ord(zF6).

Proof. While z
(k)
F4 does not satisfy Rn, a weaker condition for a global optimizer to Theorem 1 is

that
∑

k′ rp,k′,−k′,m = 0. We show that by adding constants to (c, k) entries of z(k0)
F6 for k ̸= ±k0,

we can achieve that while not changing the value of other MPs.

To see this, we compute for each m ̸= ±k0:∑
k′

rp,k′,−k′,m(ẑ
(k0)
F6 ) = 2

∑
k′

∑
j

|[ẑ(k0)
F6 ]pk′j |2[ẑ(k0)

F6 ]cmj (58)

= 2
∑
j

|[ẑ(k0)
F6 ]pk0j |2[ẑ

(k0)
F6 ]cmj = 2

∑
j

[ẑ
(k0)
F6 ]cmj (59)

The second equality is because all (a, k′) and (b, k′) entries are 0 except for k′ = ±k0, and the last
equality is because all nonzero entries of z(k0)

F6 have magnitude 1.

On the other hand, we have:

∑
k′

rp,k′,−k′,m

∑
k ̸=k0

z
(k)
F4

 =
∑
k′

rp,k′,−k′,m(ρ(u
(m)
4c ))rp,k′,−k′,m(z

(m)
ξ ) (60)

= 2rp,m,−m,m(ρ(u
(m)
4c ))rp,m,−m,m(z

(m)
ξ ) (61)

= 2(1 + 1)(1 + i) = 4(1 + i) (62)

For m = ±k0, we have rp,k′,−k′,m(ẑ
(k0)
F6 ) = 0 and rp,k′,−k′,m(z

(k)
F4 ) = 0 for k ̸= m.

Therefore, we just let

[ẑ
(k0)
F6 ]cmj = −4(1 + i)

2 · 6
= −1

3
(1 + i) (63)

and
∑

k′ rp,k′,−k′,m(zF4/6) = 0 for all m. See Fig. 5 for the construction.
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Figure 5: Visualization of ẑ(k0)
F6 .

To see why such a modification of z(k0)
F6 won’t change other MPs, simply notice that candidate MPs

that may not be zero anymore are r±k0±k0m, rpk0k0m and rp,−k0,−k0,m for m ̸= ±k0. For m = ±k0,
z
(k0)
F6 are well behaved.

Note that r±k0±k0k(ẑ
(k0)
F6 ) is the same as applying r±k0±k0k0 to a solution ẑ which replaces (c, k0)

entries of ẑ
(k0)
F6 by (c,m) entries. Let ûsyn = [ω3, ω3, 1] and ûone = [1,−1, 1]. Then ẑ =

ρ(ûsyn) ∗ ρ(ûone) and thus for m ̸= ±k0, we have:

r±k0±k0m(zF4/6) = r±k0±k0m(ẑ
(k0)
F6 ) ∝ r±k0±k0k0

(ẑ) (64)

= r±k0±k0k0
(ρ(ûsyn))r±k0±k0k0

(ρ(ûone)) = 0 (65)

since r±k0±k0k0
(ρ(ûone)) = 0. Similarly for m ̸= ±k0,

rpk0k0m(zF4/6) = rpk0k0m(ẑ
(k0)
F6 ) ∝ rpk0k0k0(ẑ) (66)

= rpk0k0k0
(ρ(ûsyn))rpk0k0k0

(ρ(ûone)) = 0 (67)

since rpk0k0k0(ρ(ûsyn)) = 0. Similarly for rp,−k0,−k0,m.

Remarks. To construct ẑF6, in addition to zsyn ∗ zν=1 shown in the main proof, we could use other
compositions to achieve the same effects. For example, zsyn,αβ ∗ zν=i, where zsyn,αβ is:

zak· = [1, ω3α, ω̄3β], zbk· = [1, ω3ᾱ, ω̄3β̄], zck· = [1, ω3, ω̄3] (68)

where |α| = |β| = 1. Note that zsyn = ρ(usyn) is a special case of zsyn,αβ when α = β = 1.

D.3 Canonical Forms

Definition 8. A solution z is called canonical at k0, or z ∈ Ck0
, if zpk0 = 1 for all p and k = ±k0.

Lemma 4 (Canonical Decomposition). Any solution z with rk0k0k0(z) ̸= 0 can be decomposed into
z = z′ ∗ y, where z′ is canonical at k0 and ord(y) = 1. Both rk0k0k0(z

′) ̸= 0 and rk0k0k0(y) ̸= 0.

Proof. Since rk0k0k0
(z) =

∑
j ak0jbk0jck0j ̸= 0, there must exist some j so that zak0jzbk0jzck0j ̸=

0, which means that zak0j ̸= 0, zbk0j ̸= 0 and zck0j ̸= 0. Since the node index j can be permuted,
we can let node j be the first node 0 and let ypk0 = zpkj and z′pkj′ = zpkj′z

−1
pkj for p ∈ {a, b, c} and

k = ±k0, then z′ is canonical at k0 and ord(y) = 1. Finally, by ring homomorphism, since

rk0k0k0
(z) = rk0k0k0

(z′)rk0k0k0
(y) ̸= 0 (69)

we know that both rk0k0k0(z
′) ̸= 0 and rk0k0k0(y) ̸= 0.

Lemma 5 (Necessary Condition for Rc). All order-1 and order-2 solutions satisfying Rc :=
{rk1k2k = 0, k1, k2, k not all equal} must have rkkk = 0 for all k (i.e. the first equation in Eqn. 4
cannot be satisfied).
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Proof. For any order-1 solution, for any k, in order to make rk,−k,k = zak0zb,−k,0zck0 =
zak0z̄bk0zck0 = 0, either zak0, zbk0 or zck0 has to be zero, which means that rkkk = 0.

For order-2, first of all if any zpk0 = 0 for any p ∈ {a, b, c}, then a constraint like rk,k,−k =
zak0zbk0z̄ck0 + zak1zbk1z̄ck1 = 0 yields zak1zbk1zck1 = 0 and thus rkkk = 0. If not, then for
any two complex numbers zpk0 and zpk1, there always exist four real numbers θp ∈ (−π, π],
θ′p ∈ (−π, π], mp0 > 0 and mp1 > 0 so that

zpk0 = mp0e
iθ′

peiθp , zpk1 = mp1e
iθ′

pe−iθp (70)

Then a constraint like rk,k,−k = zak0zbk0z̄ck0 + zak1zbk1z̄ck1 = 0 can be written as zak0zbk0z̄ck0 =
−zak1zbk1z̄ck1, or equivalently:

ma0mb0mc0e
i(θ′

a+θ′
b+θ′

c)ei(θa+θb−θc) = −ma1mb1mc1e
i(θ′

a+θ′
b+θ′

c)e−i(θa+θb−θc) (71)
ma0mb0mc0e

iθaeiθbe−iθc = −ma1mb1mc1e
−iθae−iθbeiθc (72)

Comparing their magnitude and phase, we have ma0mb0mc0 = ma1mb1mc1 and

θa + θb − θc = ±π/2 mod 2π (73)

Similarly, we have:

θa + θc − θb = ±π/2 mod 2π, θb + θc − θa = ±π/2 mod 2π (74)

Solving the three equations and we have 6 possible solutions:

(θa, θb, θc) = (0, 0,±π/2) mod 2π (75)
(θa, θb, θc) = (0,±π/2, 0) mod 2π (76)
(θa, θb, θc) = (±π/2, 0, 0) mod 2π (77)

For all such solutions, let m := ma0mb0mc0 = ma1mb1mc1, then we have:

rkkk = zak0zbk0zck0 + zak1zbk1zck1 (78)

= mei(θ
′
a+θ′

b+θ′
c)(ei(θa+θb+θc) + e−i(θa+θb+θc)) (79)

= mei(θ
′
a+θ′

b+θ′
c)(e±iπ/2 + e∓iπ/2) (80)

= 0 (81)

Lemma 6 (Property of order-3 solutions satisfying Rc and Rg). With small L2 regularization, all per-
frequency order-3 canonical solutions z at frequency k0 that satisfy Rc and Rg are in the following
form:

zpk0· = [1, αpω3, βpω̄3], for p ∈ {a, b, c} (82)
where αp = ±1 and βp = ±1 with the constraint that αaαbαc = βaβbβc = 1. For k ̸= k0, zpk· = 0.

Proof. We first prove that z satisfies Rc and Rg. To see this, we have

rk1k2k =
∑
j

I(k1 = k2 = k = k0)ω
3j
3 +

∑
j

I(−k1 = k2 = k = k0)ω
j
3 (83)

+ . . .+
∑
j

I(−k1 = −k2 = −k = k0)ω̄
3j
3 (84)

= 3I(k1 = k2 = k = k0) + 3I(k1 = k2 = k = −k0) (85)

Note that all cross terms are gone since
∑

j ω
j
3 = 0. It is clear that rk1k2k ̸= 0 unless k1 = k2 = k

so z satisfies Rc and Rg.

Now we consider any per-frequency order-3 canonical solution (Def. 8) at frequency k. Let aj :=
zakj , bj := zbkj and cj := zckj . Let a = [aj ] ∈ C3, b = [bj ] ∈ C3 and c = [cj ] ∈ C3. Since the
solution is canonical, we have a0 = b0 = c0 = 1.

Then the conditions yield that

(a ◦ b̄)⊤c = 0, (a ◦ b̄)⊤c̄ = 0, (ā ◦ b)⊤c = 0, (ā ◦ b)⊤c̄ = 0 (86)
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which means that in R3 space, the following condition holds:

span(ℜ(a ◦ b̄),ℑ(a ◦ b̄)) ⊥ span(ℜ(c),ℑ(c)) (87)

where ℜ(·) and ℑ(·) are real and imaginary parts of a complex vector. Since Eqn. 87 holds in R3, it
must be the following cases: either ℜ(a ◦ b̄) is co-linear with ℑ(a ◦ b̄), or ℜ(c) is co-linear with
ℑ(c).
If the latter is true (i.e., there exists β so that βℜ(c) = ℑ(c)), then since c0 = 1 is real, β = 0 and
ℑ(c) = 0. So c is real. In this case,

rkkk = (a ◦ b)⊤c = (a ◦ b)⊤c̄ = 0 (88)

If the former is true, then similarly we conclude that ℑ(a ◦ b̄) = 0 and a ◦ b̄ is real. Applying the
same reasoning symmetrically, in order to find cases such that rkkk ̸= 0, a necessary condition is that

a ◦ b̄, b ◦ c̄, c ◦ ā ∈ R3 (89)

Let zpkj = |zpkj |eiθpj . Let’s first consider the case that a ◦ b̄, b ◦ c̄, c ◦ ā ∈ R3
≥0. Then we

have θa0 = θb0 = θc0 = θ0 = 0, θa1 = θb1 = θc1 = θ1, θa2 = θb2 = θc2 = θ2. Letting
mj := |aj ||bj ||cj |, then the corresponding rkkk can be written as:

rkkk =

2∑
j=0

mje
3iθj (90)

with the constraints that
∑2

j=0 mje
iθj = 0 imposed by Rc.

Minimal Norm solutions. One interesting question is that what is the minimal norm representation
that achieves the highest objective? For this we can solve the following optimization problem:

max
{mj ,θj}

∑
j

mj(e
3iθj + e−3iθj )− ϵ

∑
j

m2
j s.t.

∑
j

mje
iθj = 0 (91)

which achieves the maximal when mj = 1/ϵ, θ1 = 2πi/3 and θ2 = 4πi/3 (or vise versa). Note that
the optimal θj is fixed no matter how small the regularization coefficient ϵ is.

To see that, let uj := eiθj . Then we have:∑
j

mj(uj + ūj)
3 =

∑
j

mj [u
3
j + 3uj ūj(uj + ūj) + ū3

j ] =
∑
j

mj(u
3
j + ū3

j ) (92)

Therefore, letting xj := 2ℜuj , we just need to consider the real part of the objective, and solve the
following optimization in R:

max
{mj ,−2≤xj≤2,x0=2}

∑
j

mjx
3
j − ϵ

∑
j

m2
j s.t.

∑
j

mjxj = 0 (93)

whose solutions give a sufficient condition. Using Lagrangian multiplier, we have:

∂L

∂xj
= mj(3x

2
j − λ) = 0,

∂L

∂mj
= x3

j − 2ϵmj − λxj = 0 (94)

which leads to λ = 3, mj = 1/ϵ and x1 = x2 = −1. This corresponds to the solution

zpk· = [1, ω3, ω̄3], where p ∈ {a, b, c} (95)

Note that the original necessary condition is a ◦ b̄, b ◦ c̄, c ◦ ā ∈ R3. Considering the possible
negativity, the solutions can be written as

zpk· = [1, αpω3, βpω̄3], for p ∈ {a, b, c} (96)

where αp = ±1 and βp = ±1 with the constraint that αaαbαc = βaβbβc = 1.

Remarks. Note that this conclusion does not contradict with the constructed solution zsyn,αβ in
Eqn. 68 in which α and β are allowed to be any complex number with magnitude 1. This is because
zsyn,αβ does not satisfy all the constraints in Rc (but zsyn,αβ ∗ zν=i will) unless α and β are real and
thus ±1.
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Figure 6: The convergence path of zc·· when training modular addition using Adam optimizer (learning rate
0.05, weight decay 0.005). The final solution contains 2 order-6 (z(k)

F6 ) and 1 order-4 (z(k)
F4 ) solutions. Note that

for zc··, unlike Fig. 2, each order-6 solution contains a constant bias term to cancel out the artifacts of order-4
solution (Corollary 5). For each hidden node j, once a dominant frequency emerges, others fade away.

E Gradient Dynamics (Proof)

Let r = [rk1k2k, rpk1k2k] ∈ C4d3

be a vector of all MPs, and J := ∂r
∂z

∂z
∂W be the Jacobian matrix of

the mapping r = r(z(W)) in which W is the collection of original weights. Note that when we take
derivatives with respect to r and apply chain rules, we treat r and its complex conjugate (e.g., rkkk
and r−k,−k,−k = r̄kkk) as independent variables. Since we run the gradient descent on W , will such
(indirect) optimization leads to a descent of r towards the desired targets (Lemma 1)? The following
lemma confirms that:

Lemma 7 (Dynamics of MPs). The dynamics of MPs satisfies ṙ = −JJ∗∇rℓ, which has positive
inner product with the negative gradient direction −∇rℓ.

Proof. By gradient descent of W , we have Ẇ = −∇Wℓ. By chain rule, we have:

Ẇ = −∇Wℓ = −J⊤∇rℓ = −J∗∇rℓ (97)

Then the dynamics of r = r(z(W)), as driven by the dynamics of W , is given by

ṙ = JẆ = −JJ∗∇rℓ (98)

To show positive inner product, we have:

−∇rℓ
∗
ṙ = ∇rℓ

∗
JJ∗∇rℓ = ∥J∗∇rℓ∥22 ≥ 0 (99)

Theorem 5 (The Occam’s Razer: Preference of low-order solutions). If z = y ∗ z′ and both z (of
order q) and z′ are global optimal solutions, then there exists a path of zero loss connecting z and z′

in the space of Zq . As a result, lower-order solutions are preferred if trained with L2 regularization.

Proof. Let ord(z) = q and ord(z′) = q′. Then q′|q. Since both z and z′ are global optimal. Since
rkkk is ring homomorphism, we know that rkkk(z) = rkkk(z

′)rkkk(y) = 1/2d = rkkk(z
′) and

thus rkkk(y) = 1 for all k ̸= 0.

Let the augmented identity e ∈ Zq be epmj = I(j = 0). Then rkkk(e) = 1 for all k ̸= 0.

We want to construct a path in Zq , the space of order-q solutions as follows:

z̃(t) = ỹ(t) ∗ z′, 0 ≤ t ≤ 1 (100)

in which ỹ(0) = e, ỹ(1) = y, and rkkk(ỹ(t)) = 1 for any t. To see why this is possible, pick a
continuous family of trajectories ŷ(t;λ) with λ ∈ [0, 1] so that they satisfies

ŷ(0;λ) = e, ŷ(1;λ) = y, rkkk(ŷ(t; 0)) ≤ 1, rkkk(ŷ(t; 1)) ≥ 1 (101)
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which can always be achieved by scaling some trajectory with a factor that depends on λ. Then
by intermediate theorem, there exists λ(t) so that rkkk(ŷ(t;λ(t))) = 1 for some k. Note that for
different frequency k and k′, rkkk and rk′k′k′ involves disjoint components of z so we could find
such a path for all k ̸= 0.

Therefore, for any monomial potential r included in MSE loss (Eqn. 3), we have

r(z̃(t)) = r(ỹ(t))r(z′) =

{
finite · 0 = 0 r ̸= rkkk

1 · 1/2d = 1/2d r = rkkk
(102)

and thus the entire trajectory z̃(t) = ỹ(t) ∗ z′ ∈ Zq connecting z and e ∗ z′, which is z′ in the space
of Zq , is also globally optimal.

To see why weight decay regularization leads to lower-order solution, we could simply compare the
ℓ2 norm of z = y ∗ z′ and e ∗ z′. At each frequency k, this reduces to the following optimization
problem:

min
∑
j

|aj |2 + |bj |2 + |cj |2, s.t.
∑
j

ajbjcj = 1 (103)

where aj := yakj , bj := ybkj and cj := yckj . Since we know that arithmetic mean is no less than
geometric mean:

|aj |2 + |bj |2 + |cj |2

3
≥ 3

√
|ajbjcj |2 (104)

We have: ∑
j

|aj |2 + |bj |2 + |cj |2 ≥ 3
∑
j

|ajbjcj |2/3 ≥ 3 (105)

The last inequality holds because (1) if any |ajbjcj | ≥ 1, then it holds, (2) if all |ajbjcj | < 1, then
since ax is a decreasing function for a < 1,

∑
j |ajbjcj |2/3 ≥

∑
j |ajbjcj | ≥ |

∑
j ajbjcj | = 1.

The minimizer is reached when |aj | = |bj | = |cj |. Note that if ajbjcj has any complex phase or
negative, then in order to satisfy

∑
j ajbjcj = 1, objective function needs to be larger. So without

loss of generality, we could study aj = bj = cj = xj ≥ 0 and the optimization problem becomes

min
∑
j

x2
j , s.t.

∑
j

x3
j = 1, xj ≥ 0 (106)

which has a minimizer at the corners (1, 0, . . .). This corresponds to aj = bj = cj = I(j = 0), which
is the augmented identity e ∈ Zq .

Theorem 6 (Infinite Width Limits at Initialization). Considering the modified loss of Eqn. 3 with only
the first two terms: ℓ̃k := −2rkkk +

∑
k1k2

|rk1k2k|2, if the weights are i.i.d Gaussian and network
width q → +∞, then JJ∗ converge to diagonal and the dynamics of SPs is decoupled.

Proof. Let ℓ̃ :=
∑

k ∇ℓ̃k. Let’s compute the dynamics of MPs following Theorem 7: ṙ = −JJ∗∇r ℓ̃.

First it is clear that

∂ℓ̃

∂rk1k2k
=
∑
k

∂ℓ̃k
∂rk1k2k

= −2I(k1 = k2 = k) + 2rk1k2k (107)

So the (k1, k2, k) component of ∇r ℓ̃ only contains rk1k2k.
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Then we compute H := JJ∗ and show that it is asymptotically diagonal. To see this, each component
of H , i.e., hk1k2k3,k′

1k
′
2k

′
3

can be computed as the following:

hk1k2k3,k′
1k

′
2k

′
3
=
∑
pmj

∂rk1k2k3

∂zpmj

∂rk′
1k

′
2k

′
3

∂zpmj
(108)

= I(k1 = k′1)
∑
j

bk2j b̄k′
2j
ck3j c̄k′

3j
(109)

+ I(k2 = k′2)
∑
j

ak1j āk′
1j
ck3j c̄k′

3j
(110)

+ I(k3 = k′3)
∑
j

ak1j āk′
1j
bk2j b̄k′

2j
(111)

where akj := zakj , bkj := zbkj and ckj := zckj . Then for component (k1k2k3, k′1, k
′
2, k

′
3), if any

kp ̸= k′p for some p ∈ {a, b, c}, then the corresponding zpkpj z̄pk′
pj

has random phase for hidden
node j, and hk1k2k3,k′

1k
′
2k

′
3
→ 0 when q → +∞.

Combining the two, we know that the dynamics of MPs is decoupled, that is, each rk1k2k evolves
independently over time.

Ripple effects. While Theorem 6 only holds at initialization, the resulting decoupled MP dynamics,
e.g., drkkk/dt = 1 − rkkk that leads to rkkk(t) = 1 − e−t, already captures the rough shape of
the curve (Fig. 3 top right). To capture its fine structures (e.g., ripples before stabilization), we can
also model the dynamics of the diagonal element in JJ∗. Consider a symmetric 1D case on a fixed
frequency k, where all diagonal rkkk = r0 − r (where r0 = 1/2d) and all off-diagonal rk1k2k = r,
then

ṙ = −ṙkkk = κ(rkkk−r0) = −κr, κ̇ = α(r0−rkkk)−(1−α)rk1k2k−c0 = (2α−1)r−c0 (112)

where κ > 0 is the diagonal element of JJ∗ and α is a coefficient that characterizes the relative
strength of two negative gradient −∇rkkk

ℓ = r0 − rkkk and −∇rk1k2k
ℓ = −rk1k2k, and c0 is the

gradient terms caused by asymmetry and/or other frequencies. This yields a second-order ODE that
has complex roots in the characteristic function when c0 > 0.
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Figure 7: An example case of group action on state set X , X can be partitioned into several disjointed
components, each is a transitive graph w.r.t the group actions in G.

F Extending CoGS to Group Action Prediction

While in this work we mainly focus on Abelian group, CoGS can be extended to more general group
action prediction: given a group element g ∈ G and the current state x ∈ X , the goal is to predict
gx ∈ X , i.e., the next state after action g. Such tasks include modular addition/multiplication in
which the group acts on itself (i.e., X = G), and also includes the transition function in reinforcement
learning (Sutton, 2018) and world modeling (Garrido et al., 2024), in which an action changes the
current state to a new one.

Setup. Consider a state space X and group action G × X 7→ X where g ∈ G is a group element
acting on a state x ∈ X to get an update state gx ∈ X . It satisfies two axioms (1) the group identity
maps everything to itself: ex = x, and (2) the group action is compatible with group multiplication:
g(hx) = (gh)x for any g, h ∈ G and x ∈ X .

Equipped with the group action, the state space now can be decoupled into a disjoint of transitive
components.

Definition 9 (Transitive group action). A group action is transitive, if for any x1, x2 ∈ X , there
exists g ∈ G so that gx1 = x2.

Since the group action is compatible with multiplication, X under G will be partitioned into disjoint
components X =

⋃
l Xl and we can analyze each component separately (Fig. 7).

Transitive Group Action. For each transitive component X (dropping l for brevity), under certain
conditions, we could define a state multiplication operation (a formal definition in Def. 10 in
Appendix) so that for any group action gx ∈ X , there is an associated state x′ ∈ X so that x′ ·x = gx.
Furthermore, under the multiplication, X itself becomes a group:

Theorem 7 (X ∼= G/Gx0
). If the group stabilizer Gx0

:= {g|gx0 = x0} is a normal subgroup of G,
then X is isomorphic to the quotient group G/Gx0

and thus forms a group.

Moreover, we can prove that for any group element g ∈ G, there exists x = ι0(g) ∈ X so that for
any state x′, the group action gx′ is the same as the state multiplication x′ · x. Therefore, for group
action prediction tasks, we have (note the difference compared to Eqn. 11):

wj = UG

(
P0w

||
j,G +w⊥

j,G

)
+ UXwj,X (113)

where w||
j,G ∈ R|X | is the “in-graph” component of G, w⊥

j,G ∈ R|G| is the “out-of-graph” component
of G, and P0 ∈ R|G|×|X| “lifts” from X to G using ι0, i.e., (P0)gx = 1 for g ∈ ι−1

0 (x), and
w⊥

j,G ⊥ P0w
||
j,G. Since any g just behaves like ι0(g) when acting on X , our framework can be

applied to characterize the learning of w||
j,G. Intuitively, we only learn representation of G’s element

“module” its kernel Gx0
, since element in the kernel is indistinguishable from each other.

On the other hand, the behavior of w⊥
j,G will be influenced by g acting on other graphs, and the final

learned representation of a group element g is the direct sum of them.
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G Detailed explanation of Sec. F

Matrix Representation. Each group element g can be represented by a matrix Rg, i.e., its matrix
representation, so that it respects the group multiplication (i.e., homomorphism): Rgh = RgRh for
any group elements g, h ∈ G.

The dimension of such a representation may differ widely. Some representation can be 1-dimensional
(e.g., for Abelian group), while others can be infinitely dimensional. The permutation representation
Rg ∈ Rd×d maps a one-hot representation ex ∈ Rd of an object X into its image egx ∈ Rd, also
a one-hot representation. Intuitively, (Rg)jk = 1 means that it maps the k-th element into the j-th
element.
Lemma 8 (Structure of Rg). For any g ∈ G, Rg is a permutation matrix.

Lemma 9 (Summation of Rg). If the group action is transitive, then
∑

g∈G Rg = |G|
d 11⊤.

G.1 Transitive Case

To construct the multiplication operation on X , we first pick reference point x0 ∈ X , and establish a
mapping ι0 : G 7→ X : ι0(g) = gx0. Note that ι0 is not necessarily a bijection; in fact we have:

Lemma 10 (Co-set Mapping ι0). There is a bijection between {ι−1
0 (x)}x∈X and co-sets [G : Gx0

]
of group stabilizer Gx0

:= {g ∈ G|gx0 = x0}, which is a subgroup of G fixing x0.

Lemma 11 (Uniqueness of Multiplication Mapping). If Gx0 is a normal subgroup, then for all
g1 ∈ ι−1

0 (x1) and g2 ∈ ι−1
0 (x2), all g1g2Gx0 correspond to the same coset.

Definition 10 (The multiplication operator on X ). When Gx0 is a normal subgroup, we define
multiplication on X : X × X 7→ X to be x1x2 := ι0(g1g2Gx0

) for x1 = g1x0 and x2 = g2x0.
Under this definition, x0 is the identity element.

Lemma 12. If g ∈ ι−1
0 (x), then for any x′ ∈ X , gx′ = xx′.

This means that in terms of group action, the group element g is indistinguishable to x on X .

G.2 General group action

In this case, Rg can be decomposed into a direct sum of smaller matrices, and all our analysis applies
to each of these small matrices.

In the main text, to simplify the notation, we assume that the group action is transitive, i.e., for any
y, y′ ∈ Y , there exists g ∈ G so that gy = y′. In the following we will show that for general group
actions, the conclusion still follows.

Group orbit. For any x ∈ X , Let G · y := {gy|g ∈ G} ⊆ Y be its orbit.
Lemma 13. For y, y′ ∈ G, either G · y = G · y′ (two orbits collapse) or G · y ∩ G · y′ ̸= ∅ (two
orbits are disjoint). Therefore, orbits form a partition of X .

Let X/G := {G · y|x ∈ X} be the collection of all orbits. The following lemma tells that the matrix
representation Rg can be decomposed into a direct sum (i.e., block diagonal matrix) on each orbit.
Lemma 14 (Direct sum decomposition of Rg).

Rg =
⊕

Y ′∈Y/G

RY ′

g (114)

and each RY ′

g ∈ R|Y ′|×|Y ′| is a permutation matrix with
∑

g R
Y ′

g = |G|
|Y ′|11

⊤.

Proof. By the definition of group orbits, the group action g is closed within each Y ′. Therefore, Rg

is a direct sum (i.e., block-diagonal).

For each element x ∈ X ′, let’s check its destination under G. It is clear that if two group elements
g, h ∈ G maps X to the same destination, then

gy = hy ⇐⇒ y = g−1hy ⇐⇒ g−1h ∈ Gy ⇐⇒ h = gGy (115)
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where Gy is the stabilizer of X , a subgroup of G. Therefore, g and h map X to the same destination,
if and only if they are from the same coset of Gy . Therefore, each entry of

∑
g R

Y ′

g on the column X
equals to the size of cosets of Gy , which is |Gy|. Furthermore, for y1, y2 ∈ Y ′, since they belong to
the same orbit, there exists g so that gy1 = y2 and thus for any g′ ∈ Gy1 , we have

g′y1 = y1 ⇐⇒ gg′y1 = gy1 = y2 ⇐⇒ gg′g−1y2 = y2 ⇐⇒ gg′g−1 ∈ Gy2
(116)

So there exists bijection between Gy1
and Gy2

. This means that |Gy| is constant for any x ∈ X ′ and
thus all elements in

∑
g R

Y ′

g are equal to |G|/|Y ′| (i.e., the number of the group elements that send
X out to various destinations in Y ′, divided by the possible distinct destinations |Y ′|, results in the
number of times each destination gets hit).

H Proofs for the content in Appendix

Lemma 8 (Structure of Rg). For any g ∈ G, Rg is a permutation matrix.

Proof. Since every element needs to have a destination, every column of Rg sums to 1, i.e., 1⊤Rg =
1⊤. Then we prove that the mapping y 7→ gy is a bijection. Suppose there exists y1, y2 so that
gy1 = gy2. Therefore by compatibility we have:

g−1(gy1) = g−1(gy2) ⇐⇒ (g−1g)y1 = (g−1g)y2 ⇐⇒ ey1 = ey2 ⇐⇒ y1 = y2 (117)

So any g is a bijective mapping on X . Since every element of Rg is either 0 or 1, Rg is a permutation
matrix.

Lemma 9 (Summation of Rg). If the group action is transitive, then
∑

g∈G Rg = |G|
d 11⊤.

Proof. Simply apply Lemma 14 and notice that for transitive group action, X/G = {Y }.

Lemma 10 (Co-set Mapping ι0). There is a bijection between {ι−1
0 (x)}x∈X and co-sets [G : Gx0

]
of group stabilizer Gx0

:= {g ∈ G|gx0 = x0}, which is a subgroup of G fixing x0.

Proof. First we have

ι0(g) = ι0(h) ⇐⇒ gy0 = hy0 ⇐⇒ y0 = g−1hy0 ⇐⇒ g−1h ∈ Gy0
⇐⇒ h ∈ gGy0

(118)

So for any y = gy0, all elements in ι−1
0 (y) are also in gGy0 and vice versa. The bijection is:

ι−1
0 (y) ↔ gGy0 , for y = gy0 (119)

or equivalently,

y ↔ ι0(gGy0) (120)

Lemma 12. If g ∈ ι−1
0 (x), then for any x′ ∈ X , gx′ = xx′.

Proof. For g ∈ ι−1
0 (x), we have gx0 = x. For any x′ = hx0, we have:

gx′ = ghx0 = (gh)x0 (121)

On the other hand, by definition, xx′ := ι0(ghGx0
) = (gh)x0. So for any x′, gx′ = xx′.
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Figure 8: Distribution of solutions with hidden size q = 256.

I Additional Experiments

Algorithm to extract factorization from gradient descent solutions. Given the solutions obtained
by gradient descent using Adam optimizer, we first compute the corresponding z via the Fourier
transform (that is, Eqn. 11). Here z = [zpkj ] is a 3-by-d-by-q tensor. Here d = |G| and q is the
number of hidden nodes in the 2-layer neural networks.

Then for each frequency k, we extract the salient components of z by thresholding with a universal
threshold (e.g. 0.05). The number of salient components (e.g., 6 or 4) is the order of the per-frequency
solution.

Suppose we now get z(k) for frequency k, which is a 3-by-6 (and thus an order-6) solution. Then we
enumerate all possible permutation of 6 hidden nodes (6! = 720 possibilities) to find one permutation
τ so that ∥zpkτ(·) − z

(1)
pk· ⊗ z

(2)
pk·∥ is minimized, following ring multiplication defined in Def. 5. Note

that for each permutation, we also need to consider whether 1̃ := [−1,−1, 1] can be applied to each
hidden node j (1̃ is also defined in Tbl. 1). This is because both z1 + z2 and z1 + 1̃ ∗ z2 have
exactly the same values on all sum potentials (SPs) we consider, due to the fact that r(1̃) = 1 for any
r ∈ Rg ∪Rc ∪Rn ∪R∗. Therefore we call 1̃ “pseudo-1”.

For search efficiency, we therefore first consider the permutation τ so that ∥zckτ(·) − z
(1)
ck· ⊗ z

(2)
ck·∥ is

minimized, since the component c is invariant to the pseudo-1 transformation 1̃, and then for those
eligible τ , we search whether 1̃ should be applied when considering p ∈ {a, b}.

Once we find such z1 and z2, we convert them into their canonical forms z̃1 and z̃2 (Def. 8) to
eliminate any possible multiplicative term y so that z1 = y ∗ z̃1. We then compare the canonical
forms (up to complex conjugate) with various order-3 and order-2 partial solutions constructed by
CoGS, as detailed in Sec. 5. If their distance is below a certain threshold (e.g., < 10% of the norm
after normalizing both ẑ1 and ẑ2), then a match is detected.
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Figure 9: Distribution of solutions with hidden size q = 512.
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Figure 10: Distribution of solutions with hidden size q = 1024.
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Figure 11: Distribution of solutions with hidden size q = 2048.
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descent solutions identified by CoGS. While any value of these parameters makes a global solution, gradient
descent dynamics has a particular preference in picking them during optimization.
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