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Abstract

We prove rich algebraic structures of the solution space for 2-layer neural networks
with quadratic activation and Lo loss, trained on reasoning tasks in Abelian group
(e.g., modular addition). Such a rich structure enables analytical construction of
global optimal solutions from partial solutions that only satisfy part of the loss,
despite its high nonlinearity. We coin the framework as CoGS (Composing Global
Solutions). Specifically, we show that the weight space over different numbers of
hidden nodes of the 2-layer network is equipped with a semi-ring algebraic structure,
and the loss function to be optimized consists of sum potentials, which are ring
homomorphisms, allowing partial solutions to be composed into global ones by ring
addition and multiplication. Our experiments show that around 95% of the solutions
obtained by gradient descent match exactly our theoretical constructions. Although
the global solutions constructed only required a small number of hidden nodes,
our analysis on gradient dynamics shows that overparameterization asymptotically
decouples training dynamics and is beneficial. We further show that training
dynamics favors simpler solutions under weight decay, and thus high-order global
solutions such as perfect memorization are unfavorable. The code is open source

1 Introduction

Large Language Models (LLMs) have shown impressive results in various disciplines (OpenAll [2024;
Anthropic; Team) [2024bla; Dubey et al., 2024} Jiang et al., |2023)), while they also make surprising
mistakes in basic reasoning tasks (Nezhurina et al.|[2024} Berglund et al.,2023)). Therefore, it remains
an open problem whether it can truly do reasoning tasks. On one hand, existing works demonstrate
that the models can learn efficient algorithms (e.g., dynamic programming (Ye et al.| [2024) for
language structure modeling, etc) and good representations (Jin & Rinard, 2024; |Wijmans et al.|
2023)). Some reports emergent behaviors (Wei et al.,2022) when scaling up with data and model size.
On the other hand, many works also show that LL.Ms cannot self-correct (Huang et al., [2023), and
cannot generalize very well beyond the training set for simple tasks (Dziri et al.| 2023} |Yehudai et al.}
2024; Ouellette et al., [2023), let alone complicated planning tasks (Kambhampati et al. [2024; Xie
et al., [2024).

To understand how the model performs reasoning and further improve its reasoning power, people
have been studying simple arithmetic reasoning problems in depth. Modular addition (Nanda et al.,
2023; [Zhong et al., 2024), i.e., predicting a + b mod d given a and b, is a popular one due to its
simple and intuitive structure yet surprising behaviors in learning dynamics (e.g., grokking (Power
et al.l 2022)) and learned representations (e.g., Fourier bases (Zhou et al., [2024)). Most works
focus on various metrics to measure the behaviors and extracting interpretable circuits from trained
models (Nanda et al., 2023} [Varma et al.l 2023} |[Huang et al., |2024). Analytic solutions can be
constructed and/or reverse-engineered (Gromovl, 20235 Zhong et al.,|2024; [Nanda et al., | 2023) but it
is not clear how to construct a systematic framework to explain and generalize the results.
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In this work, we systematically analyze 2-layer neural networks with quadratic activation and Lo
loss on predicting the outcome of group multiplication in Abelian group G, which is an extension of
modular addition. We find that global solutions can be constructed algebraically from small partial
solutions that are optimal only for parts of the loss. We achieve this by showing that (1) for the
2-layer network, there exists a semi-ring structure over the weights space across different order (i.e.,
number of hidden nodes or network width), with specifically defined addition and multiplication
(Sec. E]), and (2) the Lo loss is a function of sum potentials (SPs), which are ring homomorphisms
(Theorem|T)) that allow compositions of partial solutions into global ones using ring operations.

As a result, our theoretical framework, named CoGS (i.e., Composing Global Solutions), successfully
constructs two distinct types of Fourier-based global solutions of per-frequency order 4 (or “2 x 27)
and order 6 (or “2 x 3”), and a global solution of order d? that correspond to perfect memorization.
Empirically, we demonstrate that around 95% of the solutions obtained from gradient descent (with
weight decay) have the predicted structure and match exactly with our theoretical construction of
order-4 and order-6 solutions. In addition, we also analyze the training dynamics, and show that the
dynamics favors low-order global solutions, since global solutions algebraically connected by ring
multiplication can be proven to also be topologically connected. Therefore, high-order solution like
perfect memorization is unfavorable in the dynamics. When the network width goes to infinity, the
dynamics of sum potentials becomes decoupled, demystifying why overparameterization improves
the performance.

To our best knowledge, we are the first to discover such algebraic structures inside network training,
apply it to analyze solutions to reasoning tasks such as modular additions, and show our theoretical
constructions occur in actual gradient descent solutions.

2 Related Works

Algebraic structures for maching learning. Many works leverage symmetry and group structure in
deep learning. For example, in geometric deep learning, different forms of symmetry are incorporated
into network architectures (Bronstein et al.,[2021). However, they do not open the black box and
explore the algebraic structures of the network itself during training.

Expressibility. Existing works on expressibility (L1 et al.| [2024; [Liu et al.| |2022) gives explicit
weight construction of neural networks weights (e.g., Transformers) for reasoning tasks like automata,
which includes modular addition. However, their works do not discover algebraic structures in the
weight space and loss, nor learning dynamics analysis, and it is not clear whether the constructed
weights coincide with the actual solutions found by gradient descent, even in synthetic data.

Fourier Bases in Arithmetic Tasks. Existing works discovered that pre-trained models use Fourier
bases for arithmetic operations (Zhou et al.l 2024). This is true even for a simple Transformer,
or even a network with one hidden layer (Morwani et al., [2023). Previous works also construct
analytic Fourier solutions (Gromov}, 2023)) for modular addition, but with the additional assumption
of infinite width, unaware of the algebraic structures we discover. Existing theoretical work (Morwani
et al.| 2023)) also shows group-theoretical results on algebraic tasks related to finite groups, also for
networks with one-hidden layers and quadratic activations. Compared to ours, they use the max-
margin framework with a special regularization (L2 3 norm) rather than L loss, do not characterize
and leverage algebraic structures in the weight space, and do not analyze the training dynamics.

3 L, Loss Decoupling for Abelian group

Basic group theory. A set G forms a group, which means that (1) there exists an operation - (i.e.,
“multiplication”): G x G — G and it satisfies association: (g1 -g2)-g3 = ¢1- (g2 - g3). Often we write
g19g- instead of g; - go for brevity. (2) there exists an identity element e € G so that eg = ge = g, (3)
for every group element g € G, there is a unique inverse g~' so that gg~! = g~'g = e. In some
groups, the multiplication operation is commutative, i.e., gh = hg for any g, h € GG. Such groups are
called Abelian group. Modular addition forms a Abelian (more specifically, cyclic) group by noticing
that there exists a mapping a — €2™%/% and a + b mod d is e274/d . g27b1/d — 2m(at+b)i/d

Basic Ring theory. A set Z forms a ring, if there exists two operations, addition + and multiplication
*, so that (1) (£, +) forms an Abelian group, (2) (Z, x) is a monoid (i.e., a group without inverse), and
(3) multiplication distributes with addition (i.e., a* (b+c) = axb+a*cand (b+c)*xa = bxa+cxa).
Z is called a semi-ring if (Z,+) is a monoid.
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Figure 1: Overview of proposed theoretical framework CoGS. (1) The family of 2-layer neural networks, Z,
form a semi-ring algebraic structure (Theorem with ring addition and multiplication (Def. . Z = Uq>0 Zq
where Z, is a collection of all weights with order-q (i.e., ¢ hidden nodes). (2) For outcome prediction of
Abelian group multiplication, the MSE loss £(z) is a function of sum potentials (SPS) 7'k, ko1 (2) and rpk, kok (2)
(Theorem |I|), which are ring homomorphisms (Theorem E[) (3) Thanks to the property of ring homomorphism,
global solutions to MSE loss £(z) with quadratic activation can be constructed algebraically from partial
solutions that only satisfy a subset of constraints (Sec. [5) using ring addition and multiplication, instead of
running gradient descent. Examples include Fourier solution zr¢ (Corollary [2) and 246 (Corollary 4 and
perfect memorization solution zas (Corollary 3). In Sec.[6] we analyze the tole played of SPs in gradient
dynamics, showing that the dynamics favors low-order global solutions (Theorem [5) under weight decay
regularization, and the dynamics of SPs become decoupled with infinite width (Theorem[6)). In Sec.[7]we show
that the gradient descent solutions match exactly with our theoretical construction.

Notation. Let R be the real field and C be the complex field. For a complex vector z, z is its

transpose, Z is its complex conjugate and z* its conjugate transpose. For a tensor z;, 2.1 is a vector
along its first dimension, z;. along its second dimension, and z;;. along its last dimension.

Problem Setup. We consider the following 2-layer networks with ¢ hidden nodes, trained with
(projected) ¢5 loss on prediction of group multiplication in Abelian group G with |G| = d:

= Z HP% (;do{i] - ezm) ‘

Input and Output. The input contains the two group elements g1 [i], g2[i] € G to be multiplied,
€g,[i] €gsli] € R< are one-hot representation of g1 [i] and g»[i]. Here i is the sample index. The target
€[i] is a one-hot representation of I[i] = g1[i]gz[i] € G, the group product of g, [i] and gz|[d].

2
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Architectures. In Eqn. |1} we use quadratic activation o(x) = 22 (Du & Lee| 2018 |Allen-Zhu & Li,
2023), Pﬁ =1 - 511 is the zero-mean projection, W, Wy, W¢; € R< are learnable parameters
(I < j < g). Note that variants of quadratic activation have been used empirically, e.g. squared
ReLU and gated activations (So et al., 2021; Shazeer, [2020; |[Zhang et al.| [2024)).

We can extend our framework to group action prediction, in which g» may not be a group element
but any object (e.g., a discrete state in reinforcement learning), See Appendix [/

Let ¢y, = [¢r(9)]gec € C? be the scaled Fourier bases (or more formally, character function of the
finite Abelian group G, see Appendix . Then the weight vector W := {w} can be written as:

Wej = Zzakj¢ka Wy = Z 20kj Pl Wej = Z Zekj P (2)
k0 k0 k#£0

where z := {z,;} are the complex coefficients, p € {a,b,c}, 0 < k < d and j runs through ¢
hidden nodes. For convenience, we define ¢_j, := ¢,, as the (complex) conjugate representation
of ¢. We exclude ¢y = 1 because the constant bias term has been filtered out by the top-down
gradient from the loss function. Leveraging the property of quadratic activation functions, we can
write down the loss function analytically (see Appendix [B):



Theorem 1 (Analytic form of Lo loss with quadratic activation). The objective of 2-layer MLP
network with quadratic activation can be written as { = d~* > ko b + (d—1)/d, where
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Note that for cyclic group G, the frequency k is a mod-d integer. For general Abelian group which
can be decomposed into a direct sum of cyclic groups according to Fundamental Theorem of Finite
Abelian Groups (Diaconis} |1988)), k is a multidimensional frequency index. Since {ij} are all real,
the Hermitian constraints hold, i.e. Zopj = @;wej = @, Wej = 2 —k,; (and similar for z4;; and
Zpkj). Therefore, 2p _ k. j = Zpkj» T—k,—k,—k = Tkki and £ is real and can be minimized.

Eqn. [3| contains different r terms, which play an important role in determining global solutions.

Definition 1 (0/1-set). Let R := {r} be a collection of r terms. The weight z is said to have 0-set
Ry and 1-set Ry (or 0/1-sets (Ro, R1)), if r(z) = 0 forall v € Ry and r(z) = 1 forall r € Ry.

With 0/1-sets, we can characterize rough structures of the global solutions to the loss:

Lemma 1 (A Sufficient Conditions of Global Solutions of Eqn.[3). If the weight z to Eqn.[3| has
0-sets R. U R, U R, and 1-set Rg, i.e.

Teek(2) = 1k #0),  Thykok(2) =0, Tprykk(2) =0 4)

then it is a global solution with ¢(z) = 0. Here R, = {rwx,k # 0}, R. :=
{’I"klka, /{1, kg, k not all equal}, Rn = {Tp,k/,—k”,k} and R* = {Tp,k/,m—k/,k7m # O}

Lemma [T| provides sufficient conditions since there may exist solutions that achieve global optimum
(€8 > 1 Tpesm—kr k(2) = 0but 7 1 1 1(2) # 0). However, as we will see, it already leads
to rich algebraic structure, and serves as a good starting point. Directly finding the global solutions
using Eqn.[d]can be a bit complicated and highly non-intuitive, due to highly nonlinear structure of
Eqn. E} However, there are nice structures we can leverage, as we will demonstrate below.

4 Algebraic Property of the Weight Space

We define the weight space Z, = {z} to include all the weight matrices with ¢ hidden nodes (2,
means an empty network), and Z = |, Z4 be the solution space of all different number of hidden
nodes. Interestingly, Z naturally is equipped with a semi-ring structure, and each term of the loss
function can effective interact with such a semi-ring structure, yielding provable global solutions,
including both the Fourier solutions empirically reported in previous works (Zhou et al., [2024;
Gromov, |2023)), and the perfect memorization solution (Morwani et al., [ 2023).

To formalize our argument, we start with a few definitions.
Definition 2 (Order of z). The order ord(z) of z € Z is its number of hidden nodes.
Definition 3 (Scalar multiplication). az € Z is element-wise multiplication [ozpi;| of z € Z.

Definition 4 (Identification of 2Z). In Z, two solutions of the same order that differ only by a
permutation along hidden dimension j are considered identical.

We define operations for z; := {zé?j} and z5 := {zﬁ)j}
Definition 5 (Addition and Multiplication in Z). Define z = zi + 22 in which zp,. =
concat(zﬁ)_, zﬁ)) and z = z1 * zo, in which zpy,. = Z;SC) ® ZSC) The addition and multiplication

respect Hermitian constraints and the identity element 1 is the 1-order solutions with {zpro = 1}.

Note that the multiplication definition is one special case of Khatri—-Rao product (Khatri & Rao, |1968)).
Although the Kronecker product and concatenation are not commutative, thanks to the identification
(Def. EII), it is clear that z; + 2o = 22 + 27 and z1 * 23 = 25 * z; and thus both operations are
commutative. Then we can show:

Theorem 2 (Algebraic Structure of Z). (Z,+, %) is a commutative semi-ring.



As we shall see, Thm. [2] allows the construction of global solutions. Now let us explore the structure
of the loss (Eqn. [3)), which turns out to be connected with the semi-ring structure of Z. For this, we
first define the concept of sum potentials:

Definition 6 (Sum potential (SP)). Let sum potential be r(2) := >, ], vciax(r) 2pks Which takes
the summation of a monomial term over all hidden nodes. Here idx(r) specifies the terms involved.

Following this definition, terms in the loss function (Theorem are examples of SPs.
Observation 1 (Specific SPS). 74, k,k(2) and v, k.1 (2) defined in Theorem|l|are SPs.

So what is the relationship between SPs, which are functions that map a weight z to a complex scalar,
and the semi-ring structure of Z? The following theorem tells that SPs are ring homomorphisms, that
is, these mappings respect addition and multiplication:

Theorem 3. For any sum potential v : Z — C, (1) = 1, r(z1 + 22) = 7(21) + r(22) and
r(z1 * z2) = r(z1)r(22) and thus r is a ring homomorphism.

Observation 2. The order function ord : Z +— N is also a ring homomorphism.

Since the loss function ¢(z) depends on the weight z entirely through ry, x,%(2) and rpg, k,%(2),
which are SPs, due to the property of ring homomorphism, it is possible to construct a global solution
from partial solutions that satisfy only some of the constraint

Lemma 2 (Composing Partial Solutions). If z; has 0/1-sets (Ry , R{") and zo has 0/1-sets (Ry , RS ),
then (1) zy * z9 has 0/1-sets (Ry UR, , R N RY) and (2) z1 + 2o have 0/1-sets (R N Ry, (R} N
Ry) U (Ry NRy)).

Once we reach 0/1-sets (R. U R, U R,, Rg), we find a global solution. In addition, we also
immediately know that there exists infinitely many global solutions, via ring multiplication (Def. [5):

Definition 7 (Unit). z is a unit if ik (z) = 1 forall k # 0.

Corollary 1. If z is a global solution and y is a unit, then z * y is also a global solution.

5 Composing Global Solutions

Constructing Partial Solutions with Polynomials. While intuitively one can get global solutions by
manually crafting some partial solutions and combining, in this section, we provide a more systematic
approach to compose global solutions as follows. Since Z enjoys a semi-ring structure, we consider
a polynomial in Z:

L-1

z:uL+cl*u +c2*uL*2+...+cL 5)

where the generator u and coefficients ¢; are order-1 and the power operation ! is defined by ring
multiplication. Then a partial solution can be constructed:

Theorem 4 (Construction of partial solutions). Suppose u has 1-set Ry, Qr(u) := {r(u)|r € R} C
C is a set of evaluations on R (multiple values counted once), then if 1 ¢ Qp, then the polynomial
solution pr(w) := [ cq, () (w+8) has 0/1-set (R, Ry) up to a scale. Here § is any order-1 weight

that satisfies r(8) = —s for any r € RU Ry. For example, § = —s'/31.

For convenience, we use p(u) to represent the maximal polynomial, i.e., when R =
arg maxi¢q,(v) |2r(u)| is the largest subset of SPs with 1 ¢ Qr(u). Our goal is to find low-order
(partial) solutions, since gradient descent prefers low order solutions (see Theorem 3. Although
there exist high-degree but low-order polynomials, e.g., u” + 1, in general, degree L and order g are
correlated, and we can find low-degree ones instead. To achieve that, u should be properly selected
(e.g., symmetric weights) to create as many duplicate values (but not 1) in R as possible.

Composing Global Solutions. We first consider the case that the generator w is only nonzero at
frequency k (and thus —k by Hermitian constraints), but zero in other frequencies, i.e., uprg = 0
for k' # +k. Such solutions correspond to Fourier bases in the original domain. Also, u has
1-set Ry = {rgkx . This means that u can be characterized by three numbers 4,10, Upko, Ueko With

*Mathematically, the kernel Ker(r) := {z : 7(z) = 0} of a ring homomorphism r is an ideal of the ring,
and the intersection of ideals are still ideals. For brevity, we omit the formal definitions.



Evaluation on SPs
R, R, R. Maximal
Symbol| [a,b, (] abc|abc|abé|| aac | bbe ||aac|bbe| aac | bbe || polynomial p(u) |order ¢
1 [1,1,1] 1] 1] 1 1 1 11 1] 1 1 - -
1, |[[-1,-1,1)| 2| 21| 1| 1| 2| 1|[1] 1| 1 - -
Uone | [L—1,—1] || 1 [ 1| 1 ||—-1|—-1|-1]|-1]-1]-1 wt1 2
Usyn | [w3,ws,ws] || w3 | w3 | w3 || w3 | ws 1| 1| @3 | @s w4 u+1 3
U3c [UJ3, @3, 1] w3 | W3 1 1 1 w3 | w3 | ws w3 u2 +u—+1 3
U3, [17 w3, (:)3] 1 |ws|ws3l|| w3 | w3 || W3 |w3]| w3 1 u? +u+1 3
Wac [i, —1,1] —1|-1] 1 1 1 ||—1|{-1]—-1] -1 u+1 2
Uda 1,1, —i] 1| =1|=1| =i | —=i|l=i|i]| -] i ||[v®+u®+u+1] 4
w, |[v,—v,=0?|| v? | V| vt || =2? | =22 -1 | -1| vt | =t 9-th degree 10

Table 1: Exemplar order-1 single frequency generator w(*) with ryzx(u®)) = 1. In the single-frequency case,
for each MP r we use “abc” to represent 7_ &, and “aac” to represent rq,_,, —k &, €tc. For brevity, superscript
“(k)” and conjugate columns (i.e., @bc conjugate to abc) are omitted. Here, w3 := €®™/3 and wy := i are 3rd/4th
roots of unity. The constructions are partial, i.e., the evaluation of some SPs yields 1 (red cell) and cannot be the
root of the polynomial (Theorem ). Note that w,, is a general case with #,—1 = Uone and Uy—i = U4c.

8 10 12 14 16 18 0o 2 8 10 12 14 16 18 2 8 10 12 14 16 18

Figure 2: Solutions obtained by Adam optimizers on £2 loss for modular addition task with IGl=d="7
and ¢ =20 hidden nodes. Top: For each frequency =k, exactly 6 hidden nodes exist (Corollary2). Bottom:
2

Optimizing Eqn. [3| without the last term Zmﬂ) Zpe{a’b} > Tpk! ;m—k' k| (.., without constraint R.).
Now each frequency has exactly 3 hidden nodes, corresponding to the solution zgyn = p(tusyn) in Tbl

UgkoUbkoUcko = 1. In this case, only a subset of sum potentials (SPs) whose indices only involve a
single frequency k are non-zero (e.g., 7y, i,k € Rc and rp _j 1 1 € Ry), facilitating our construction.

Following Theorem [ we can construct different partial solutions. Some examples are shown in
Tablem These solutions do not make all sum potentials in R, U R,, U R, vanish and therefore are not
global. Note that it is possible to create a global solution this way, but then |2z (w)| will be too large,
producing high-degree/order polynomials (e.g., ®3. * w4, gives a 10th-degree polynomial). Instead,
utilizing these partial solutions, with Lemma[2] we can construct global solutions with smaller orders:

Corollary 2 (Order-6 global solutions). The following “3 x 2” Fourier solutions satisfy the sufficient
condition (Lemmall)) and thus are global solutions when d is odd:

(d—1)/2
1
Zpg = —\3/6 E zs(}’fr)l * zl(,k) * Yg 6)
k=1

Here zgr)l = p(ué%) and zl(,k) = ul(,k) + 1y, (i.e., not maximal polynomial), where ugy,, and u,

are defined in Tablell} y is an order-1 unit. As a result, ord(zpg) =3-2-1-(d—1)/2 =3(d — 1)
and each frequency are affiliated with 6 hidden nodes (order-6).

Remarks. We may replace ug,,, and u, with other pairs that collectively cover all SPs. For example,
Ugyn can be combined with any of {usc, Usa, Waa }, and w,—; can be coupled with w3, Or U4y, ete.
Here we pick one with a small order. Compared to|Gromov| (2023)), our construction is more concise
without infinite-width approximation. For even d, simply replace (d — 1)/2 with |(d — 1)/2] and
add an additional order-2 term p(Uone) = Uone + 1 (TbL.[1) for frequency k = d/2, which only has
Trkks Takkik and rprrk, and all other combinations are absent.

Fig. 2| shows a case with d = 7. In this case, each frequency, out of (d — 1)/2 = 3 total number of
frequencies, is associated with 6 hidden nodes. If we remove the last term in the loss that corresponds



to R,, then an order-3 solution suffices (i.e. zsyn = pP(uUsyn)). Perfect-memorization solutions

can also be constructed. Let two generators be u, with u(”) [wk 1,@%1(k # 0), and ug with
u(,fg =[1,wk, @¥1(k#0). Here w, := 7/ is the d-th root of unity. Then,
Corollary 3 (Perfect Memorization). We construct two d-order weights (2, z3) from order-1

generators (Uq, ug):
d—1 d—1
za:Zui, zﬁ:Zué (7)
3=0 3=0
Here zo € Re(k1 # k)NRyNR.(p=borm #k), z3 € Re(ka # k)NR,NR.(p =aorm # k).

Then zp; = d=2/3z4 zg satisfies the sufficient condition ( Lemma and is the perfect memorization
solution with ord(zy) = d?:

Z(M) — d- 3k (M) —d k]z (M) —d- k(j1+72) ®)

akji o Pbkjiga Zekjijz
where each hidden node is indexed by j = (j1,72), 0 < j1,j2 < d, k # 0.

To see why this corresponds to perfect memorization, simply apply an inverse Fourier transform for
each hidden node (j1, j2), which leads to (zero-mean) delta weights located at ji, j2 and j1 + jo.
Interestingly, there also exists a lower-order solution, 2 x 2, that meets R, and R, but not Ry:

Corollary 4 (Order-4 single frequency solution). Define single frequency order-2 solution z¢:
Zak- = [1,€],  zon. = [1, =], zer. = [L,1] )
where || = 1. Then the order-4 solution zg,) = p(u, (k) L) * z(k) has 0-sets R. and R, (but not Ry,).

Although zgif does not satisfy the sufficient condition (Eqn. , it is part of a global solution when
mixed with zgg:

Corollary 5 (Mixed order-4/6 global solutions). With 2 F 4, there is a global solution to Egn. @that

does not meet the sufficient condition, i.e., Y ., T'p jr,—k/.m = 0 but 1p 7 _jr m 7 0:
(d—1)/2
k
ZF4/6 = \[ F6 Z ZEM) (10)
k 1,k#ko
where z( ) isa b (k ") (ko) o 5 (ko) i 1 i 1
perturbation of zpg’ 1= Zsyn’ * z,; by adding constant biases to its (¢, k) entries

Sork # ko The order is lower than zpe: ord(zpas) =644 ((d—1)/2 — 1) = 2d < ord(zF).
The specific f 5 (Fo) i i i

pecific formats of Z” is shown in Appendix (please check the proof and Eqn. . Multiple
order-6 solutions per frequency can be inserted in this construction. Compared to zpg, this order-4/6
mixture solution has a lower order and is perceived in the experiments (See Fig.[6), in particular when
d is large (Tbl.[2), showing a strong preference of gradient descent towards lower order solutions.

6 Exploring the solution solution with Gradient dynamics

Now we have characterized the structures of global solutions. One natural question arises: why does
the optimization procedure not converge to the perfect memorization solution zj, but to the Fourier
solutions z¢ and 24,67 Although characterizing the full gradient dynamics is beyond the scope of
this paper, we theoretically characterize some rough behaviors below.

Corollary [T]shows that by ring multiplication, we could create infinitely many global solutions from
one. Then Thm. [5answers which solution the gradient dynamics may pick:

Theorem 5 (The Occam’s Razer: Preference of low-order solutions). If z = y * 2’ and both z (of
order q) and z' are global optimal solutions, then there exists a path of zero loss connecting z and 2’
in the space of Z,. As a result, lower-order solutions are preferred if trained with Lo regularization.

This shows that gradient dynamics (with weight decay) may pick a lower-order (i.e., simpler) solution.
This suggests that gradient dynamics may not favor perfect memorization, which is of high order. We
leave it a future work to prove the existence of a path that connects perfect memorization solutions
with a lower-order one. The following theorem shows that the dynamics enjoys asymptotic freedom:
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Figure 3: DynanElpioéhs of sum potentials (SPs) over the E;oz;'ining process for modular additionE:;;;th d = 23 and
q = 1024 hidden nodes. Top Row. Left: Training/test accuracy reaches 100% and loss close to 0. Test accuracy
jumps after training reaches 100% (grokking). Mid: After 10k epochs, the distribution of solution orders are
concentrated at 4 and 6 (Corollary@and@). Right: Dynamics of 7, k,%. Summation of diagonal 7% converges
towards d — 1 (dotted line) with ripple effects, while off-diagonal 7, 1, converges towards 0. Bottom Row.
Dynamics of different SPs. Order-4 and order-6 behave differently on 7, 1, — %, because order-4 does not satisfy
the sufficient condition (LemmaE[) but a mixture of order-4 and order-6 (i.e., zr4/¢) is still the global solution
to the L loss (Corollary 3).
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Figure 4: Solution distribution (accumulated over 5 random seeds) over different weight decay regularization
for ¢ = 512, trained with 10k epochs with Adam with learning rate 0.01 on modular addition (i.e., predicting
a+b mod d) with d € {23,71,127}. Red dashed lines correspond to order-4/6 solutions.

Theorem 6 (Infinite Width Limits at Initialization). Considering the modified loss of Eqn.[3|with only

the first two terms: Zk = —2TLEk + Zkle |7k konke 2 if the weights are i.i.d Gaussian and network
width ¢ — 400, then JJ* converge to diagonal and the dynamics of SPs is decoupled.

Intuitively, this means that a large enough network width (¢ — +00) makes the dynamics much
easier to analyze. On the other hand, the final solution may not require that large ¢q. As analyzed in
Corollary 2] for each frequency, to achieve global optimality, 6 hidden nodes suffice.

7 Experiments

Setup. We train the 2-layer MLP on the modular addition task, which is a special case of outcome
prediction of Abelian group multiplication. We use Adam optimizer with learning rate 0.01, MSE
loss, and train for 10000 epochs with weight decays. We tested on |G| = d € {23,71,127}. All
data are generated synthetically and training/test split is 90%/10%. Each training with a fixed set of
hyperparameter configuration is conducted on NVIDIA V100 for a few minutes.

Solution Distributions. As shown in Fig.[3] we see order-4 and order-6 solutions in each frequency
emerging from well-trained networks on d = 23. The mixed solution z 4/ can be clearly observed
in a small-scale example (Fig. [6). This is also true for larger d (Fig. d). Although the model is
trained with heavily over-parameterized networks, the final solution order remains constant, which
is consistent with Corollary [T} Large weight decay shifts the distribution to the left (i.e., low-order
solutions) until model collapses (i.e., all weights become zero), consistent with our Theorem|§| that



d Yonot 9Yonon-factorable error (x1072) solution distribution (%) in factorable ones
order-4/6| order-4 ‘ order-6 || order-4 ‘ order-6 z,(/'l“:)i * zék)‘zy“:)i * Zs(}lfr)) o B‘zl(,k) * zgf.l‘ others
23 || 0.0+0.0 {0.00+0.00|5.71+5.71(|0.0540.01(4.80+0.96|[47.07+1.88| 11.31+1.76 |39.80+2.11|{1.82+1.82
71 || 0.0+0.0 {0.00+0.00/0.00+0.00(|0.0340.00({5.02+0.25|| 72.57+0.70| 4.00+1.14 |21.14+2.14|2.29+1.07
127]] 0.0+0.0 |1.5040.92[{0.0040.00{|0.26+0.14]/0.93+0.18|| 82.96+0.39| 2.25+0.64 |14.13+0.87|0.66+0.66

Table 2: Matches between order-4/6 solutions from gradient descent and those constructed by CoGS. Number
of hidden nodes ¢ = 512 and weight decay is 5 x 10~°. Around 95% gradient descent solutions are factorable
with very small factorization error (~ 0.04 compared to solution norm on the order of 1). Furthermore, CoGS
successfully predicts ~ 98% of the structure of the empirical solutions, while the remaining 2% are largely
due to insufficient training, near miss against known theoretical construction. Here z¢ is defined in Corollary 4]
z, = u, + 1 is defined in Tbl. [B and zgyn,op is defined in Eqn. @ The means/standard deviations are
computed over 5 seeds.

demonstrates that gradient descent with weight decay favors low-order solutions. Similar conclusions
follow for fewer and more overparameterization (Appendix [f)).

Exact match between theoretical construction and empirical solutions. A follow-up question
arises: do the empirical solutions match exactly with our constructions? After all, distribution of
solution order is a rough metric. For this, we identify all solutions obtained by gradient descent at each
frequency, factorize them and compare with theoretical construction up to conjugation/normalization.
To find such a factorization, we use exhaustive search (Appendix [I).

The answer is yes. Tbl. [2| shows that around 95% of order-4 and order-6 solutions from gradient
descent can be factorized into 2 x 2 and 2 x 3 and each component matches our theoretical construction
in Corollary [2| and E], with minor variations. Furthermore, when d is large, most of the solutions
become order-4, which is consistent with our analysis for mixed solution z g4/ (Corollary |5)) that
one order-6 solution in the form of z,—; * zsyn,«p suffices to achieve a global solution, with all other
frequencies taking order-4s. In fact, for d = 127, the number of order-6 solution taking the form of
Zy=i * Zgyn,ap 18 (d — 1)/2 - 2.25% =~ 1.26, coinciding with the theoretical results.

Implicit Bias of gradient descent. Our construction gives other possible solutions (€.g., 23¢ * Zsyn)
which are never observed in the gradient solutions. Even for the observed solutions, e.g. 2, * Zsyn,
the distribution of free parameters is highly non-uniform (see Fig.[12]in Appendix), showing a strong
preference of parameters that lead to symmetry. These suggest strong implicit bias in optimization,
which we leave for future work.

8 Conclusion and future work

In this work, we propose CoGS (Composing Global Solutions), a theoretical framework that models
the algebraic structure of global solutions when training a 2-layer network on reasoning tasks of
Abelian group with L loss. We find that the global solutions can be algebraically composed by
partial solutions that only fit parts of the loss, using ring operations defined in the weight space of the
2-layer neural networks across different network widths. Under CoGS, we also analyze the training
dynamics, show the benefit of over-parameterization, and the inductive bias towards simpler solutions
due to topological connectivity between algebraically linked high-order (i.e., involving more hidden
nodes) and low-order global solutions. Finally, we show that the gradient descent solutions exactly
match what constructed solutions (e.g. 2r4/6 and zpg, see Corollary E] and Corollary .

Develop novel training algorithms. Instead of applying (stochastic) gradient descent to overpa-
rameterized networks, CoGS suggests a completely different path: decompose the loss, find the
SPs, construct low-order solutions and combine them to achieve the final solutions on the fly using
algebraic operations. Such an approach may be more efficient and scalable than gradient descent, due
to its factorable nature. Also, our framework works for losses depending on sum potentials (Lo loss
is just one example), which opens a new dimension for loss design.

Putting different widths into the same framework. Many existing theoretical works study proper-
ties of networks with fixed width. However, CoGS demonstrates that nice mathematical structures
emerge when putting networks of different widths together, which is an interesting direction to
consider. This is related to dynamically adding/pruning neurons during training Yoon et al.|(2017);
Yu et al.|(2018); ' Wu et al.| (2019).

Grokking. When learning modular addition, there exists a phase transition from memorization to
generalization during training, known as grokking (Varma et al., [2023} [Power et al.| [2022)), long
after the training performance becomes (almost) perfect. While our work does not directly address



grokking, which involves more complicated training dynamics than described in Sec.[6} our framework
may be extended to a nonuniformly distributed training set (e.g. some input pairs (g, g2) are missing
in the training set), in order to study the dynamics of representation learning on grokking.

Extending to other activations and loss functions. For other activations (e.g., SiLU) with o(0) = 0,
with a Taylor expansion, the same framework may still apply, but with higher rank sum potentials
(SPs). For other loss functions, we can do a similar Taylor expansion. We leave them for future work.
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A Notation Table

Symbol Description

C The set of complex numbers. The complex field.

N The set of natural numbers.

i The imaginary unit. i = v/—1.

a,a, A The complex conjugate of a scalar a, a vector a or a matrix A.
A The conjugate transpose of matrix A. A* = AT,

=
~—

The indicator function. I(x) = 1 if x is true, otherwise 0.

G The Abelian group to be studied.

geG Group element g in G.

g192 Production of group element g; and g» under group multiplication.

d Size of the group G. |G| = d.

eg One-hot representation of group element g. The dimension of ey is d.

¢ :G—C The k-th character function of G. If G is cyclic and 0 < g < d, then ¢ (g) = e'27k9/4,
¢ € C? The k-th character function in vector form. ¢y, = [¢x(9)]4eq-

P+ Zero-mean projection matrix Pi- = I — éllT.

Waj, Wp; Fan-in weight vectors for node j in 2-layer networks defined in Eqn. |1

Wej The fan-out weight vector for node j in 2-layer networks defined in Eqn.

2, Collection of weight (in Fourier space) of all 2-layer networks with ¢ hidden nodes.
Z Collection of weight (in Fourier space) of all 2-layer networks. Z = | J >0 Zq-
zeZ Weight matrices of one specific instance of 2-layer network. B

ord(z) The number of hidden nodes in z.

21 + 29, 21 * zo | The ring addition and multiplication (Def..

r:2Z2—=C The sum potential (Def.|6).

R Collection of sum potentials. E.g., Rg = {rur, k # 0}.

R, R, R, R, | Collections of sum potentials (Lemma that appear in MSE loss function (Eqn. [3).
Table 3: The notation table.

B Decoupling L, Loss (Proof)

We use the character function ¢ : G — C, which maps a group element g into a complex number.

Lemma 3. For finite Abelian group, the character function ¢ has the following properties|Fulton &
Harris|(12013)); |Steinberg| (2009):

* It is a I-dimensional (irreducible) representation of the group G, i.e., |¢(g)| = 1 forg € G
and for any g1, g2 € G, ¢(g192) = #(91)d(92).

e There exists d character functions {gf)kl that satisfy the orthonormal condition
ézgeG or(9)br (9) = W(k = K'). Here ¢ is the complex conjugate of ¢ and is also
a character function.

* The set of character functions { ¢y, } forms a character group G under pairwise multiplication:
Pky+ky = Pky © Py

Note that the frequency k goes from 0 to d — 1, where ¢y = 1 is the trivial representation (i.e., all
g € G maps to 1). According to the Fundamental Theorem of Finite Abelian Groups, each finite
Abelian group can be decomposed into a direct sum of cyclic groups, and the character function
of each cyclic group is exactly (scaled) Fourier bases. Therefore, in Abelian group, k is a multi-
dimensional frequency index. (Conrad|(2010) shows that G = @ (Theorem 3.13) so each character
function ¢ € G can also be indexed by g itself. Right now we keep the index k.

For convenience, we define ¢_j, := ¢,, as the (complex) conjugate representation of ¢y.

Let ¢y = [pr(9)],ec € C? be the vector that contains the value of the character function ¢, over
G. Then {¢;} form an orthogonal base in C% and we can represent the weight vector Wy, as the
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following, where p € {a,b, c}:
Wai = Zakibk, Wi = D 2ok Wi = > ZokjPr (1)
k#0 k#0 k#0

where z := {z,;,} are the complex coefficients. Here p € {a, b, c}, 0 < k < d and j runs through
hidden nodes.

Theorem 1 (Analytic form of Ly loss with quadratic activation). The objective of 2-layer MLP
network with quadratic activation can be written as { = d~* > ko b + (d —1)/d, where

1 21 2
2 E E E
Ek:—2rkkk+g |7k koo | +Z’ E E Tp,k/,—k’,k‘ Jrz ‘ Tp,k'ym—kﬁk‘ (€)
kiko p€{ab} k' m#0pe{ab} K

Here Ty, ok 1= D Zaky j2bksjZckj ANA Tpkykyk ™= D ; Zpki j Zpkaj Zekj-

Proof. Note that the objective £ can be written down as

= E91»92 [pr'(o(gth)/Qd— eglgz)HQ] (12)
= Egg [OTle_O/4d2 - OTplLeng/d"'eT Plj_eglg2} (13)

9192

- - — — — Tpl -
For notation brevity, let zak; := akj, 2pr;j = brj and zej == cij. For E [0 Pi-eg, 4, ], since

e;gzplLo = Ze;—ngPlLWCjO-(W(;Degl +Wl;|;‘egz) (14)
J
_ 2

= Z Z Ck/j(ybk/ (gng) (W;}egl + Wl;l;-eéh) (15)

J k’#0
2

= Z Z kO (9192) Z Z Zpkj O (9p) (16)

i \Kk'#0 k pefa,b}

Therefore, leveraging the fact that ¢ (g192) = drr (91) P (g2), we have:

Bogs [ Plo] = D witkitpakaiBongn (B (91)00 (92)6k: (9. Oha (91:)]
ki,k2,k’'#0,p1,p2,j
- (17)
Since Ey [¢r(9)dw (9)] = I(k = k'), there are only a few cases that the summand is nonzero:
b plza,pgzb,k’:klzkgyéo.
o plzb,pgza,kl:]ﬁ:]@#o.

In both cases, the summation reduces to Zk#O j CkjZakj2bkj = Zk;éo j ChjOkjbrj. Let v ponr 1=
Zj g, jbr,jcrrj, then we have

Egig: [07(91,92) Pl egigs] =2 D arjbrjon; =2 rin (18)
k20, k#0

For E [OTPf- o], we have:

Tpl z : T pl T T T T
o Pl 0o = Wcjpl WCj/G(Wajeg1 + ijegQ)U(Waj/egl + ij/egQ) (19)
JJ
here
T
W;rjpllwcj/ = E ck/ng)k: E Ek”j’¢k” =d E Ck’jék’j’ (20)
k’#0 k"0 k20
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due to the fact that ¢, ¢ = >, b1 (9)dw (g9) = dI(k = K').

Then the key part is to compute the following terms:

Egl 292 [Zpl k11 Zpakagi psksja “pakagja Ck' j1 Ck/ ja ¢k1 (gm )d)lm (gp2 )¢k3 (gpz )¢k4 (gpa )] (21)

summing over {p1, p2, D3, Pa, k1, k2, k3, ka, k' # 0, 41, j2 }. Note that since each p € {a, b}, there
are 2% = 16 choices of (p1, p2, p3, p4). For notation brevity, we use (1, 3) to represent the subset of
p that takes the value of a (e.g., (1, 3) means that p; = p3 = a and py = pg = b). It is clear that for
odd assignments such as (1, 2, 3), since Zpo; = 0, the summation is zero. Then, we only discuss the
even cases as follows:

Case 1: (1,3), (2,4), (1,4), (2,3). The 4 cases are identical so we only need to analyze one. We
take (1, 3) as an example. For (1, 3), p; = ps = a, p2 = p4 = b and the only nonzero terms is when
ki + ks =0 mod d, ks + ks =0 mod d, since Ey, [¢r, (g1)Prs(91)] = 1(k1 + k3 =0 mod d)
(and similar in other cases). Then Eqn. @beoomes:

E Zaky j1 Zbkajr Za,—kn ,ja 2b,— ks, j2 Ck’ j1 Ck/ j (22)
k1,ko,k'#0 j1j2

E : § Zakl]lzkachk/J1§ Rak jz Bbkajz Ck’ j2 (23)

ki1,k2,kE'#0 j1

E E:akljlbkzjlck'jli Ay i Okia o ChY (24)

k1,k2,k'#0 j1 J2
—_— 2
= E Thykok' Thykak! = E 17k koo et | (25)
r K2 K/ £0 oy ko K £0

Since there are 4 such cases, we have:

=43 |rkkar |’ (26)

k0 k1 ks

Case 2: (1,2) and (3,4). The two cases are identical. Take (1,2) as an example. In this case,
p1 = p2 = a and p3 = py = b. The only non-zero terms are when k1 + ko = 0, k3 + k4 = 0. Then
Eqn. 21| becomes:

E § Zaky j1 Zak: j1 Zbks jo Zbks ja Ck’ 1 CK' ja (27)
k1,k3,k’#0 j1j2

= Z Z |ak1j1| Ck' j1 Z |bk3J2| Ck'ja (28)

k1,k3,k'#0 j1
= Z Z (Z |ak1j1|2> Cr'jy Z <Z bk3j2|2> Ch'j (29)
kE'#0 | 1 k1 J2 k3
Let 7o 0o = 25 (Xk, s kom @k1j@koj) Gy (similar for 7, ), then the above becomes

k’#0 aOk’ bOk’*

Similarly, for (3,4), the above equation becomes } -, ., 7 T . Therefore, we have:

_ ® =® -® @
= Z T a0k Took' T Taok Thok? (30)
k' £0

Note that this term can be negative. However, we will see that when it is combined with the following
terms, all terms will be non-negative.
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Case 3: (1,2,3,4) and (). In this case we have:

E E E E Zpky 1 Zpkajy Zpks o Zpkajs Ck! j1 CK' ja (31

k'#0 j1j2 pe{a,b} k1+ka+ks+ks=0

= E , E E E Zpk1 j1 Zpkaj1 Zpksjz Zpkaja Ck' 1 Ck! j2 (32)

k'#0 j1j2 pe{a,b} k1+ko=kz+k4

= E , § E E E E Zpk1 j1 Zpkaj1 Zpksja Zpkajs Ck’ 1 Ck! j2 (33)

k'#A0 m pe{a,b} j1j2 k1+ka=m ks+ks=m

= E E E E ( E Zpkljlzpkm) Ck'jy E ( E Zpkgjzzpkuz) Ck' j

k'#0 m pe{a,b} | J1 ki+ko=m J2 k3+ka=m

= >3 Pl (34)

k'#0 m
In particular, when m = 0, we have Ir® 2+ |r,|?. Therefore, we have
— ® ® |2
€2 + €3,m=0 = Z " a0 T Thor | (35)
k/#0

Finally, putting them together, we have:

Elo'Plo] = d(e1+ e +e3) =d(er + (€2 + €3,m=0) + €3,m0) (36)
= d Z 4 Z |Tk1k2k/|2 + |T((?0k/ + rg%k’|2 + Z |r((?mk/|2 + |,’11<?mk’|2
k'#0 kiks m#0
> 0 (37)
Putting them together, we arrived at the conclusion. O

Lemma 1 (A Sufficient Conditions of Global Solutions of Eqn.[3). If the weight z to Eqn. 3| has
0-sets Rc U R, U R, and 1-set R, i.e.

Teek(2) = 1k #0),  Thykok(2) =0, Tprykk(2) =0 )
then it is a global solution with ¢(z) = 0. Here Ry = {rpgx,k # 0}, R, =
{rklkzka kh ]{72, k not all equal}, Rn = {Tp,k’,fkr’,k} and R* = {Tp,k’,mfk’,lm m 75 0}

Proof. Notethat 2>, riek — Y |71k |? has a minimizer ryx = 1. Therefore, the best loss value
any assignment of weights is able to achieve is the following:

Thykok! = Zakljbkgjck’j =1k = ke =k') K #0 (38)
J
Taow T Thow = D (Z ks |* + Ibkjl2> ok =0 K#0 (39
j k
Tk = Z ( Z am%n) crj =0 k' #0,m#0 (40)
J ki+ko=m
Tl(?mk’ = Z ( Z bk]jbk2j> Crk'j = 0 K ?é 0,m ?é 0 41)
J ki+ko=m
Therefore the sufficient conditions (Eqn. ) will make all above come true. O

C Semi-ring structure of Z (Proof)

Theorem 2 (Algebraic Structure of Z). (Z,+, %) is a commutative semi-ring.
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Proof. Straightforward from the definition of addition and multiplication (Def. 5 and identification
of hidden nodes under permutation (Def. Ef[) Note that ring addition (i.e., concatenation) does not
have inverse and thus it is a semi-ring. O

Theorem 3. For any sum potential v : Z — C, (1) = 1, r(z1 + z2) = 7(21) + r(22) and
r(z1 * z9) = r(21)r(22) and thus r is a ring homomorphism.

Proof. Letr(z) =3, I1(, 1) ciax(r) Zpk;- Since the ring identity 1 is order-1 and all z,; = 1, itis
obvious that (1) = 1.

Let supp(z1) be the subset of the hidden nodes that corresponds to z; in the concatenated solution
z1 + 29, similar for supp(z2). Note that

ratz) = > I s+ X I an=rE) ) @2
Jj€supp(z1) (p,k)€Eidx(r) Jj€supp(z2) (p,k)€idx(r)
On the other hand, we have

r(z1 % z2) = Z H (z;}c)jlzﬁzz) (43)

J1j2 (p,k)€idx(r)

S1OIT =i, I1 =, (44)

Jijz \(p,k)€idx(r) (p,k)€idx(r)
_ 1) 1)
B Z H Zpkj1 Z H zpka (45)
J1 (p,k)€idx(r) J2 (p,k)€idx(r)
= r(z1)r(z2) (46)
O
Corollary 1. If z is a global solution and y is a unit, then z x y is also a global solution.
Proof. Straightforward by leveraging the property of ring homomorphism. E.g.,
Terk (2 * Y) = Tk (2)Tkk(Y) = TRk (2) (47)
and the proof is complete. O

D Solution Construction (Proof)

D.1 Construction of Partial Solutions

Theorem 4 (Construction of partial solutions). Suppose u has 1-set Ry, Qr(u) := {r(u)|r € R} C
C is a set of evaluations on R (multiple values counted once), then if 1 ¢ Q g, then the polynomial
solution pr(w) = [ cq, () (w+8) has 0/1-set (R, Ry) up to a scale. Here § is any order-1 weight

that satisfies r(8) = —s for any r € RU Ry. For example, § = —s'/31.

Proof. By definition, for any € R we have:

rzw) = [ r@+r@3)= [[ (w)-s)=0 (48)
sEQR(u) s€EQR(u)
similarly for any rx, € R+ we have:
reer(z(w) = [ (rese(w) +ri(8) = J[ (1=s)#0 (49)
sEQR(u) sEQR(u)

which is constant over different k. So z(u) satisfies Lemma up to a scaling factor. O
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D.2 Construction of Global Solutions

Corollary 2 (Order-6 global solutions). The following “3 x 2” Fourier solutions satisfy the sufficient
condition (Lemmall)) and thus are global solutions when d is odd:

(d—1)/2
1 k k
Zrg = % ; zs(yr)l * z£ ) x Yk (6)

Here zs(yl)l = p(uglﬁl) and 25 = u + 1, (i.e., not maximal polynomial), where ugy, and u,,
are defined in Table[l] y is an order-1 unit. As a result, ord(zpg) =3-2-1-(d—1)/2 =3(d — 1)

and each frequency are affiliated with 6 hidden nodes (order-6).

Proof. Just notice that zgyy 1= p(Usyn) = ugyn + Ugyn + 1 (superscript (k) are omitted for brevity)
makes all MPs in Ry, R, and part of R, (Tbl.[I) equal to 0, except for “aac” and “bbc”, which
corresponds to monomial polynomials r,xxr = Z ZakjZakjZckj and Tpppr = Z Zbkj Zbkj Zekj -
On the other hand, according to Tbl. I 1 z, :=u, + 1k has rqkkk(20) = rokkk(2,) = 0. Therefore,
using ring homomorphism, we know that for any r € R, U R, U R,, r(zsyn * 2z,) = 0 and thus
R, UR. U R, is the 0-sets.

On the other hand for any &', we have:

(d—1) /2
’I"k/k/k/(z’pﬁ =Tk'k'k s(}lle * Zlgk) % yk (50)
1 (d—1)/2
=3 i (28« 20« yp) (51)
k=1
Kk
=5 6(1(k=kK)+1(k=—k)) =1 (52)
k=1

The last equality is due to the fact that we only sum over half of the frequency. This means that
R is a 1-set of zpg. Therefore, zp¢ satisfies the sufficient condition (Eqn. E[) and the conclusion
follows. O

Corollary 3 (Perfect Memorization). We construct two d-order weights (2, zg) from order-1
generators (Uq, ug):

d—1 d—1
za= ub, 2= uf @
j=0 j=0

Here zo € R.(k1 # k)NR.NR.(p=borm # k), zg € Rc(ks # k)NRyNR.(p =aorm # k).
Then zp; = d=2/3 2z, * zg satisfies the sufficient condition ( Lemma and is the perfect memorization
solution with ord(zpr) = d?:

M) g=gkan G g=Fgkia M) g=3—k(iitd2) 8)

Fakji 2 Zbkj1je

where each hidden node is indexed by j = (j1,72), 0 < j1,j2 < d, k # 0.

Proof. Simply plugging in the solution and check whether the equations specified the equations. For
zg4, for k = 0 everything is zero; for k # 0, we have:

Tklkzk(za) = Zakljbkzjckj = ij(klik) = |(k1 =k 7é 0) (53)
J J

Tamk’k(za) = Zak’jam—k’,jckj = ij(mik) = |(m =k 7£ 0) (54)
J J

Tomkk(Za) = Y brribmoi jorg =y w F =1k =0)=0 (55)
J J
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Therefore, z, € Re(k1 # k) N Ry N R.(p = bor m # k). Similar for z;,. For zys := d=2/3z, * 2,
it satisfies all O-sets constraints (i.e., for any r, either z, satisfies with r(z,) = 0, or z, satisfies with
r(zp) = 0) and we have:

Tkkk(d_z/gza * 2p) = d_Z’I“kkk(Za)’/‘kkk(Zb) =d?.d-d=1 (56)
So z satisfies the sufficient conditions (Eqn. [). O

Corollary 4 (Order-4 single frequency solution). Define single frequency order-2 solution z¢:
Zak- = [155]7 2k = [la _ig]a Zek- = [Ll} (9)

where |§| = 1. Then the order-4 solution zgz) = p(u, (k) ) * zé ) has 0-sets R and R, (but not R,)).

Proof. First, u,—; = w4 in Tbl. and thus p(u,—;) has 0-sets R, and R, except for “abc”, which
corresponds to MP 7y, ;. . € R.. On the other hand, we have

Tk, —k(2¢) =1+ & (=i€) - (=) =0 (57)
With the property of ring homomorphism, the conclusion follows. O

Corollary 5 (Mixed order-4/6 global solutions). With zgil) , there is a global solution to Egn. E|that
does not meet the sufficient condition, i.e., Y ., T'p i/ — k' ;m = 0 bUt 1p v _js m :

1 (d—1)/2
A(ko) (k)
zrae = =200 ¥ 55 D 2 (10)
\[ z k=1,k+#ko
where 25 is a bati (ko) , (ko) 2(K0) by addi 1 i k ]
Fo perturbation of zpg’ = Zsyn * 2, by adding constant biases to its (c, k) entries

for k # ko. The order is lower than zpe: ord(zps/6) =6 +4 - ((d —1)/2 — 1) = 2d < ord(zpg).

Proof. While z}; 4) does not satisfy R, a weaker condition for a global optimizer to Theoremis

that >, 7p i/, —k’,m = 0. We show that by adding constants to (c, k) entries of zl(fg’) for k # +ko,
we can achieve that while not changing the value of other MPs.

To see this, we compute for each m # +kg:

k k k
Z m(Z0) —2ZZ| B L P (58)
k k k:
—22|ng> Ipkos 122508 Jemy —22ng> Jemg (59)

The second equality is because all (a, k") and (b, k) entries are 0 except for k' = +ky, and the last

ko)

equality is because all nonzero entries of z;ﬂﬁ have magnitude 1.

On the other hand, we have:

k m m

er,k’,—k’,m Z Z(F4) = er,k’,—k’,m(p(ué(lc )))rp,k’,—k’,m(zé )) (60)
K k£ko Y

= 2, (P(Whe )T, = (™) (61)

=201+ 1)(1+i) = 4(1 +1) (62)

For m = +ko, we have 7p i/ _ i/ m (zgcﬁo)) =0and rp,k/,,kgm(zg“i) = 0 for k # m.

Therefore, we just let
. (ko) 4(1 + i) 1 .
(26 lems = ——5 = = —3(1+) (63)

and ), rp p — k' ;m(2pas6) = O for all m. See Fig. for the construction.
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Figure 5: Visualization of ,égfg).

To see why such a modification of zg,kﬁo ) won’t change other MPs, simply notice that candidate MPs

that may not be zero anymore are 7+ iy +kom- Tpkokom aNd 'p ko —ko.m for m # £ko. For m = %k,
29 are well behaved
F6 :
Note that 74 j, 4+ 1, k(ﬁgcg )) is the same as applying 74y, +k.k, t0 a solution 2 which replaces (¢, ko)
5 (ko)

entries of 2,5’ by (c,m) entries. Let Ugyn = [w3,ws, 1] and Uone = [1,—1,1]. Then 2 =
P(Usyn) * p(tone) and thus for m # +kg, we have:
(k .
Ttkotkom(ZFa/6) = rikoikom(Z%g)) OC T kg thoko (£) (64)
= Ttkgthoko (P(Tsyn) )T ko £hoko (P(Tone)) = 0 (65)

SINCE T4 oy £ ko ko (P(Tone)) = 0. Similarly for m # +ko,

Ppkokom(24/6) = Tphokom (Z1a)) X Tpkokoko (2) (66)
= Tpkokoko (p(ﬁsyn))rpkokoko (p(ﬁone)) =0 (67)
$INCe T'pkokoko (P(Usyn)) = 0. Similarly for rp, _ k. —kg.m.- O

Remarks. To construct 2, in addition to Zeyy * 2,—1 shown in the main proof, we could use other
compositions to achieve the same effects. For example, zgyn o3 * 2y—=i, Where zgyn o is:

Zak' = [17&)30[,&_)3B], Zbk~ = [13("-)30_[7("_}36]7 ch‘n = [1,&)3,5)3] (68)

where |a| = | 3] = 1. Note that zsy;, = p(usyn) is a special case of Zgyn o When a = § = 1.

D.3 Canonical Forms
Definition 8. A solution z is called canonical at ko, or z € Cy,, if zpro = 1 for all p and k = k.

Lemma 4 (Canonical Decomposition). Any solution z with Ti,k,k, (2) 7 0 can be decomposed into
z = 2’ xy, where z' is canonical at ko and ord(y) = 1. Both Ty, kok, (2') # 0 and Tigkgk, (y) # 0.

Proof. Since Tigkoky (2) = D Ao jbkojChoj # 0, there must exist some j 50 that Zakqj 2bkojZckoj 7
0, which means that z,,; # 0, 2pi,; 7 0 and z.r,; 7 0. Since the node index j can be permuted,
we can let node j be the first node 0 and let Y10 = 2pk; and z,;,; = zpkj/z;klj forp € {a,b, c} and
k = +ky, then 2’ is canonical at ky and ord(y) = 1. Finally, by ring homomorphism, since

Thokoko (2) = Thokoko (2 )Tkokoko (¥) # 0 (69)
we know that both 7 g0k, (2') # 0 and 74, ko ko (¥) # O. O

Lemma 5 (Necessary Condition for R.). All order-1 and order-2 solutions satisfying R. =
{Tkykok = 0, k1, ko, k not all equal} must have rix = 0 for all k (i.e. the first equation in Eqn.
cannot be satisfied).
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Proof. For any order-1 solution, for any k, in order to make i —rr = Zak02b,—k,0%ck0 =
Zak0Zbk0Zcko = 0, either 240, Zpk0o OF Zcxo has to be zero, which means that 7y, = 0.

For order-2, first of all if any z,,0 = O for any p € {a,b,c}, then a constraint like r ; _ =
Zak02bk02ck0 + Zak12bk1Zck1 = 0 yields zqx12pk12c,1 = 0 and thus rix, = 0. If not, then for
any two complex numbers zyxo and zpy1, there always exist four real numbers 6, € (—m,7],
9;, € (—m, 7], mpo > 0 and my; > 0 so that

_ iQ;U iep _ iG;, —ia,, (70)
Zpko = Mpo€ €7, Zpkl = Mpr€ re

Then a constraint like 7, .,k = Zak02bk0Zck0 + Zak12bk1Zck1 = 0 can be written as 2qx02pk0Zcko =
—Zak12bk1Zck1, OF equivalently:

i(0,+0,40,) i(0a+0p—0c)  _

H ’ ’ ’ .
MaoMpoMeoe' (0, 40,400) =100 —00)  (77)

—Ma1Mp1Mec1€
Maompomeoe2e?e 0 = —m 1mpyyme e %2 e 1%l (72)

Comparing their magnitude and phase, we have mgompomeo = Mq1Mp1 M1 and

0o +6p—0.=+7/2 mod 27 (73)
Similarly, we have:
0o +0.— 60, ==+7/2 mod 2m, Op+60.—0,==+7/2 mod 2x (74)
Solving the three equations and we have 6 possible solutions:
(64,0p,0.) = (0,0,£7/2) mod 27 (75)
(64,0p,0.) = (0,£7/2,0) mod 27 (76)
(04,0p,0.) = (£7/2,0,0) mod 27 a7
For all such solutions, let m := m,ompgMeo = Ma1Mp1Me1, then we have:
Tkkk = Zak0Zbk0Zck0 T ZaklZbklZckl (78)
_ mei(9;+eg+9;)(ei(9a+eb+ec) + e_i(9a+0b+96)> (79)
_ mei(9;+0g+9;)(eiin/2 + e:pm/Q) (80)
0 (81)
O

Lemma 6 (Property of order-3 solutions satisfying R and Rg). With small Ly regularization, all per-
frequency order-3 canonical solutions z at frequency kg that satisfy R. and R, are in the following
form:

Zpko- — [17 QpW3, /6;0(33]’ for pe {aa b7 C} (32)
where o, = +1 and 8, = £1 with the constraint that o0 = BofBpfe = 1. For k # ko, 2pi. = 0.

Proof. We first prove that z satisfies 2. and R,. To see this, we have

Phokok = O (k1 = ko =k = ko)wy’ + > 1(=ky = ky = k = ko)w] (83)
J J
+ ...+ Z |(—k1 =—ky=—-k= ko)@gj (84)
J
=3l(k1 = ko = k = ko) + 31(k1 = ko = k = —ky) (85)

Note that all cross terms are gone since Zj wg = 0. Itis clear that ry, k1 7 O unless k1 = ko =k
so z satisfies 1. and RR,.

Now we consider any per-frequency order-3 canonical solution (Def. E[) at frequency k. Let a; :=
Zakjs bj = zpk; and ¢; 1= zek;. Leta = [a;] € C3, b = [b;] € C? and ¢ = [¢;] € C>. Since the
solution is canonical, we have ag = by = ¢y = 1.

Then the conditions yield that
(@ob)’c=0, (aob)'é=0, (aob)'c=0, (aob)'é=0 (86)
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which means that in R? space, the following condition holds:
span(R(a o b), (a o b)) L span(R(c), I(c)) (87)

where R(-) and () are real and imaginary parts of a complex vector. Since Eqn.[87|holds in R3, it
must be the following cases: either R(a o b) is co-linear with S(a o b), or R(c) is co-linear with
S(e).

If the latter is true (i.e., there exists § so that SR(c) = 3(c¢)), then since ¢y = 1 is real, § = 0 and
S(e) = 0. So cis real. In this case,

Trer = (@ob) e =(aob) e=0 (88)

If the former is true, then similarly we conclude that S(a o b) = 0 and a o b is real. Applying the
same reasoning symmetrically, in order to find cases such that 7 # 0, a necessary condition is that

aob,boé,coacR? (89)
Let zpr; = |2pk;]€?7i. Lets first consider the case that @ o b,bo & coa € R%,. Then we
have 0,0 = Oyo = 00 = 0p = 0, 0q1 = Oy = 01 = 01, 0u2 = Opp = 02 = 0. Letting
m; = |a;||b;||c;|, then the corresponding ryx can be written as:
2
ek = Y mjed%s (90)
with the constraints that Z 0 mj 4 = (0 imposed by R..

Minimal Norm solutions. One interesting question is that what is the minimal norm representation
that achieves the highest objective? For this we can solve the following optimization problem:

{nr?agc} m(?"ej-i-e 3i6; —eZm s.t. ij 5 = 91)
” j j

which achieves the maximal when m; = 1/, 1 = 27i/3 and 6 = 47i/3 (or vise versa). Note that
the optimal ¢; is fixed no matter how small the regularization coefficient € is.

To see that, let u; := €% . Then we have:
ij(uj—ku] Zm]u + Bu;it; (uj + u;) + @) ij ul + ) (92)
j J

Therefore, letting z; := 2Ru;, we just need to consider the real part of the objective, and solve the
following optimization in R:

288y e T st e, =0 o
whose solutions give a sufficient condition. Using Lagrang1an multiplier, we have:
oL 9 oL 3
67% = mj(?)xj — )\) = 07 8mj = l'j — 26mj — )\.’Ej =0 (94)
which leads to A = 3, m; = 1/e and 2y = 29 = —1. This corresponds to the solution
Zpk. = [1, w3, W3], where p € {a,b, ¢} (95)

Note that the original necessary condition is @ o b,b o &,c o @ € R3. Considering the possible
negativity, the solutions can be written as

Zpk- = [17 QpW3s, Bp@3]7 forp € {aa b, C} (96)
where oy, = 1 and 3, = £1 with the constraint that c,opaee = B0 Bp5c = 1. O
Remarks. Note that this conclusion does not contradict with the constructed solution zgyn g in
Eqn. [68]in which « and 3 are allowed to be any complex number with magnitude 1. This is because

Zsyn,a does not satisfy all the constraints in R (but Zeyn og * 2,—i Will) unless o and /3 are real and
thus £1.
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Figure 6: The convergence path of z... when training modular addition using Adam optimizer (learning rate

0.05, weight decay 0.005). The final solution contains 2 order-6 (vak(s) ) and 1 order-4 (zgil) ) solutions. Note that
for z..., unlike Fig.[2] each order-6 solution contains a constant bias term to cancel out the artifacts of order-4
solution (Corollary [5). For each hidden node j, once a dominant frequency emerges, others fade away.

E Gradient Dynamics (Proof)

Let 7 = [Thykok, Tpkikak] € € C4° be a vector of all MPs, and J := g’z" 681/2\1 be the Jacobian matrix of
the mapping r = 7(z(W)) in which W is the collection of original weights. Note that when we take
derivatives with respect to  and apply chain rules, we treat r and its complex conjugate (e.g., 7kxk
and r_j 1 —; = Trik) as independent variables. Since we run the gradient descent on W, will such
(indirect) optimization leads to a descent of 7 towards the desired targets (Lemmal(T))? The following
lemma confirms that:

Lemma 7 (Dynamics of MPs). The dynamics of MPs satisfies 7 = —JJ*V .{, which has positive
inner product with the negative gradient direction —V ,.{.

Proof. By gradient descent of W, we have YW = —V,,/. By chain rule, we have:

W=-Vpl=—-JTV,.l=—JV,l (97)
Then the dynamics of 7 = 7(z(W)), as driven by the dynamics of W, is given by

P =JW=—-JJ*V,/ (98)

To show positive inner product, we have:
N =Vl TN = || TV 2 >0 (99)
O

Theorem 5 (The Occam’s Razer: Preference of low-order solutions). If z = y * 2’ and both z (of
order q) and z' are global optimal solutions, then there exists a path of zero loss connecting z and z'
in the space of Z,. As a result, lower-order solutions are preferred if trained with Lo regularization.

Proof. Letord(z) = g and ord(2’) = ¢’. Then ¢’|q. Since both z and 2z’ are global optimal. Since
Trgk 1S ring homomorphism, we know that rigx(2) = rrek (2 )rirs(y) = 1/2d = repe(2’) and
thus rir(y) = 1 forall k # 0.

Let the augmented identity e € Z, be e,,,,; = I(j = 0). Then 741 (e) = 1 for all k£ # 0.
We want to construct a path in Z,, the space of order-g solutions as follows:
Z(t) = g(t) * 2/, 0<t<i1 (100)

in which g(0) = e, g(1) = y, and 74, (g(t)) = 1 for any ¢. To see why this is possible, pick a
continuous family of trajectories g(t; \) with A € [0, 1] so that they satisfies

9(0; ) = e, g(L;A) =y, reee(9(t;0)) <1, Terk(9(t; 1)) > 1 (101)
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which can always be achieved by scaling some trajectory with a factor that depends on A. Then
by intermediate theorem, there exists A(t) so that rxx(9(t; A(¢))) = 1 for some k. Note that for
different frequency k and k', gk and 7y involves disjoint components of z so we could find
such a path for all £ # 0.

Therefore, for any monomial potential 7 included in MSE loss (Eqn. [3), we have

r(a) = riar) ={ s 0T, 1T (102)

and thus the entire trajectory 2(t) = g(t) * 2’ € Z, connecting z and e * 2/, which is 2’ in the space

of Z,, is also globally optimal.

To see why weight decay regularization leads to lower-order solution, we could simply compare the
¢ norm of z = y * 2’ and e * z’. At each frequency k, this reduces to the following optimization
problem:

min Y " a;[* + b7 + ;P st Y agbie; =1 (103)
J J

where a; 1= Yakj, bj := Ypr; and ¢; := ycx;. Since we know that arithmetic mean is no less than

geometric mean:
12 b.|2 12
|| +\_§\ + g ZW (104)

‘We have:

D ag P+ b2+l >3 Jajbie; P > 3 (105)
J J

The last inequality holds because (1) if any |a;b,c;| > 1, then it holds, (2) if all |a;b;jc;| < 1, then
since a” is a decreasing function fora <1, lajbje;|?/3 > >oilagbjes| =132 ajbje;| = 1.

The minimizer is reached when |a;| = |b;| = |¢;|. Note that if a;b;c; has any complex phase or
negative, then in order to satisfy > ; a;bjc; = 1, objective function needs to be larger. So without
loss of generality, we could study a; = b; = ¢; = ; > 0 and the optimization problem becomes

minzgc?7 s.t.zu’c? =1, 2; >0 (106)
J J

which has a minimizer at the corners (1,0, .. .). This corresponds to a; = b; = ¢; = I(j = 0), which
is the augmented identity e € Z,. O

Theorem 6 (Infinite Width Limits at Initialization). Considering the modified loss of Eqn. Blwith only
the first two terms: Ly, := —2rpkk + Zklkz |7k ko ke 2 if the weights are i.i.d Gaussian and network
width ¢ — 400, then JJ* converge to diagonal and the dynamics of SPs is decoupled.

Proof. Let { := >k Vi Let’s compute the dynamics of MPs following Theorem 7= —JJ*V,L.

First it is clear that

ol o),
I ; T (k1 2 ) + 2Tk  kak (107)

So the (ky, ko, k) component of V,.£ only contains 7, j, .
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Then we compute H := JJ* and show that it is asymptotically diagonal. To see this, each component
of H,i.e., hklkgkg,k’lk;kg can be computed as the following:

Oy ok OTky kg ke,

Py kaks Kkt = ,;:j D2y Ozpmy (108)

= 1(k1 = k1) D iy iy jChs s (109)
j

+ 1(k2 = K5) Zakljdk’ljckgﬁkgj (110)
j

(ks = K5) Y akyjag jbe,ibiy (111)
j

where ax; 1= Zqkj, Dkj = Zbk; and cx;j = zck;. Then for component (kikoks, ki, kb, k%), if any
ky # Ky, for some p € {a,b,c}, then the corresponding 2y, j Zpk; ; has random phase for hidden
node j, and hg, k, k4 k) K4k, — 0 When ¢ — +o0.

Combining the two, we know that the dynamics of MPs is decoupled, that is, each 7, 1, evolves
independently over time. O

Ripple effects. While Theorem [6|only holds at initialization, the resulting decoupled MP dynamics,
e.g., drppr/dt = 1 — ry, that leads to 7 (t) = 1 — e~ %, already captures the rough shape of
the curve (Fig. [3]top right). To capture its fine structures (e.g., ripples before stabilization), we can
also model the dynamics of the diagonal element in JJ*. Consider a symmetric 1D case on a fixed
frequency k, where all diagonal ryx, = ro — r (Where 1o = 1/2d) and all off-diagonal rg, x,x = 7,
then

7= —Tgpk = K(rgks—r0) = —k1, k= a(ro—Trrk) — (1= )Tk, ko —Co = (2a—1)r—co (112)

where £ > 0 is the diagonal element of JJ* and « is a coefficient that characterizes the relative
strength of two negative gradient —V,,,, ¢ = ro — Tk, and —VTklkzkﬁ = —Tk,kok»> and co is the
gradient terms caused by asymmetry and/or other frequencies. This yields a second-order ODE that
has complex roots in the characteristic function when cy > 0.
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G={e9.9%9%
Cyclic group G = Cy

@
g Qe

X = {xo,x1, %2, X3} X" = {x4, %5}

Figure 7: An example case of group action on state set X', X’ can be partitioned into several disjointed
components, each is a transitive graph w.r.t the group actions in G.

F Extending CoGS to Group Action Prediction

While in this work we mainly focus on Abelian group, CoGS can be extended to more general group
action prediction: given a group element g € G and the current state x € X, the goal is to predict
gxr € X, i.e., the next state after action g. Such tasks include modular addition/multiplication in
which the group acts on itself (i.e., X = (), and also includes the transition function in reinforcement
learning (Sutton, 2018) and world modeling (Garrido et al.,|2024)), in which an action changes the
current state to a new one.

Setup. Consider a state space X’ and group action G x X — X where g € (G is a group element
acting on a state x € X to get an update state gx € X. It satisfies two axioms (1) the group identity
maps everything to itself: ex = x, and (2) the group action is compatible with group multiplication:
g(hx) = (gh)x forany g,h € Gand x € X.

Equipped with the group action, the state space now can be decoupled into a disjoint of transitive
components.

Definition 9 (Transitive group action). A group action is transitive, if for any x1,x5 € X, there
exists g € G so that gx1 = .

Since the group action is compatible with multiplication, X under G will be partitioned into disjoint
components X = | J; &; and we can analyze each component separately (Fig. .

Transitive Group Action. For each transitive component X (dropping [ for brevity), under certain
conditions, we could define a state multiplication operation (a formal definition in Def. in
Appendix) so that for any group action gz € X, there is an associated state 2’ € X so that 2’ -z = gx.
Furthermore, under the multiplication, X itself becomes a group:

Theorem 7 (X = G/Gy,). If the group stabilizer G, := {g|gro = xo} is a normal subgroup of G,
then X is isomorphic fo the quotient group G /G, and thus forms a group.

Moreover, we can prove that for any group element g € G, there exists = (p(g) € X so that for
any state z’, the group action gz’ is the same as the state multiplication z’ - z. Therefore, for group
action prediction tasks, we have (note the difference compared to Eqn. [TT):

w; = UG (P()WL."G + WJL’G) + UXWj,X (113)

where w}[ ¢ € RI¥1 is the “in-graph” component of G, Wj:G € RIG! is the “out-of-graph” component

of G, and Py € RIGIXIXl “lifts” from X to G using ¢, i.e., (Py)ge = 1 for g € Lal((ﬂ), and

wj%G 1 Pow‘jle. Since any g just behaves like ¢o(g) when acting on X, our framework can be

applied to characterize the learning of WL-' - Intuitively, we only learn representation of G’s element

“module” its kernel G, since element in the kernel is indistinguishable from each other.

On the other hand, the behavior of ijG will be influenced by g acting on other graphs, and the final
learned representation of a group element g is the direct sum of them.
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G Detailed explanation of Sec.[F]

Matrix Representation. Each group element g can be represented by a matrix R, i.e., its matrix
representation, so that it respects the group multiplication (i.e., homomorphism): Ry, = Ry R, for
any group elements g, h € G.

The dimension of such a representation may differ widely. Some representation can be 1-dimensional
(e.g., for Abelian group), while others can be infinitely dimensional. The permutation representation
R, € R™4 maps a one-hot representation e, € R of an object X’ into its image e, € RY, also
a one-hot representation. Intuitively, (R,) ;% = 1 means that it maps the k-th element into the j-th
element.

Lemma 8 (Structure of R,). Forany g € G, R, is a permutation matrix.

Lemma 9 (Summation of Ry). If the group action is transitive, then ) e Ry = %llT.

G.1 Transitive Case

To construct the multiplication operation on X', we first pick reference point zo € X, and establish a
mapping ¢o : G — X 19(g) = gxo. Note that ¢ is not necessarily a bijection; in fact we have:

Lemma 10 (Co-set Mapping o). There is a bijection between {15 ()} zex and co-sets [G : G,]
of group stabilizer G, := {g € G|gxo = xo}, which is a subgroup of G fixing x.

Lemma 11 (Uniqueness of Multiplication Mapping). If G, is a normal subgroup, then for all
g1 € Lal(ICl) and gs € Lal((L'Q), all g192G 5, correspond to the same coset.

Definition 10 (The multiplication operator on X). When Gy, is a normal subgroup, we define
multiplication on X: X X X +— X to be 122 = 10(9192Gx,) for 1 = g1xo and T2 = gaXo.
Under this definition, x is the identity element.

Lemma 12. Ifg € 1" (z), then for any x' € X, g2’ = a2’

This means that in terms of group action, the group element g is indistinguishable to z on X'.

G.2 General group action

In this case, 1?4 can be decomposed into a direct sum of smaller matrices, and all our analysis applies
to each of these small matrices.

In the main text, to simplify the notation, we assume that the group action is transitive, i.e., for any
y,y €Y, there exists g € G so that gy = y’. In the following we will show that for general group
actions, the conclusion still follows.

Group orbit. Forany x € X, Let G -y := {gylg € G} C Y be its orbit.

Lemma 13. For y,y’ € G, either G -y = G -y (two orbits collapse) or G -yN G -y # 0 (two
orbits are disjoint). Therefore, orbits form a partition of X.

Let X/G := {G - y|z € X} be the collection of all orbits. The following lemma tells that the matrix
representation 12, can be decomposed into a direct sum (i.e., block diagonal matrix) on each orbit.

Lemma 14 (Direct sum decomposition of Ry).

R,= P RY (114)
Y'eY/G
and each R;ﬂ e RY'IXIY'l is a permutation matrix with Zg R;ﬂ = ||$,“ 117,

Proof. By the definition of group orbits, the group action g is closed within each Y”. Therefore, R,
is a direct sum (i.e., block-diagonal).

For each element z € X, let’s check its destination under G. It is clear that if two group elements
g, h € G maps X to the same destination, then

gy=hy <= y=g 'hy <= g 'he G, < h=4gG, (115)
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where G, is the stabilizer of X', a subgroup of G. Therefore, g and h map X’ to the same destination,
if and only if they are from the same coset of G,,. Therefore, each entry of 9 R};/ on the column X

equals to the size of cosets of G, which is |Gy| Furthermore, for y1,y2 € Y, since they belong to
the same orbit, there exists g so that gy; = y» and thus for any ¢’ € G, we have

Jy=y1 = gdyi =g =y2 < 99’9 2=y = gg'g " €G,, (116)

So there exists bijection between G, and G,,. This means that |G, | is constant for any € X’ and
thus all elementsin ) R};l are equal to |G|/|Y”| (i.e., the number of the group elements that send

X out to various destinations in Y, divided by the possible distinct destinations |Y”|, results in the
number of times each destination gets hit).

H Proofs for the content in Appendix

Lemma 8 (Structure of R,). For any g € G, R, is a permutation matrix.

Proof. Since every element needs to have a destination, every column of R, sums to 1, i.e., lTRg =
17. Then we prove that the mapping y — gy is a bijection. Suppose there exists y;, y2 so that
gy1 = gyo. Therefore by compatibility we have:

9 gy) =9 gy2) = (' = (9792 = eyi=eys = y1=y> (117

So any g is a bijective mapping on X. Since every element of R, is either 0 or 1, R, is a permutation
matrix. O

Lemma 9 (Summation of Ry). If the group action is transitive, then ) e Ry = %IIT.

Proof. Simply apply Lemma [14]and notice that for transitive group action, X/G = {Y'}. O

Lemma 10 (Co-set Mapping o). There is a bijection between {15 ()} zex and co-sets [G : G,]
of group stabilizer G, := {g € G|gxo = xo}, which is a subgroup of G fixing x.

Proof. First we have
w(g) =wh) = gyo=hyo <= yo=9 ‘hyy <= g 'he Gy, <= hegG,, (118)

So for any y = gyo, all elements in Lal(y) are also in gG'y, and vice versa. The bijection is:

' (y) ¢ 9Gyy,  fory = gyo (119)

or equivalently,
y < w0(9Gy,) (120
O

Lemma 12. Ifg € 1, (x), then for any x' € X, g’ = 22’

Proof. For g € Lal((ﬂ), we have gzg = z. For any 2’ = hx, we have:
gx" = ghxo = (gh)zo (121)

On the other hand, by definition, za’ := 1o(ghG4,) = (gh)zg. So for any 2/, gz’ = za’. O
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Figure 8: Distribution of solutions with hidden size ¢ = 256.

I Additional Experiments

Algorithm to extract factorization from gradient descent solutions. Given the solutions obtained
by gradient descent using Adam optimizer, we first compute the corresponding z via the Fourier
transform (that is, Eqn. [L1). Here z = [z,;] is a 3-by-d-by-q tensor. Here d = |G| and q is the
number of hidden nodes in the 2-layer neural networks.

Then for each frequency &, we extract the salient components of z by thresholding with a universal
threshold (e.g. 0.05). The number of salient components (e.g., 6 or 4) is the order of the per-frequency
solution.

Suppose we now get z(¥) for frequency k, which is a 3-by-6 (and thus an order-6) solution. Then we

enumerate all possible permutation of 6 hidden nodes (6! = 720 possibilities) to find one permutation

7 5o that || zppr(.) — z;k) ® z H is minimized, following ring multiplication defined in Def. |5} Note

that for each permutation, we also need to consider whether 1 := =[-1,—1,1] can be applied to each
hidden node j (1 is also defined in Tbl. ' This is because both z; + 23 and z; + 1% z9 have
exactly the same values on all sum potentials (SPs) we consider, due to the fact that r(1) = 1 for any
r € Rg U R. U Ry U R,. Therefore we call 1 “pseudo-1".

()®z()||1s

minimized, since the component c is invariant to the pseudo-1 transformation 1, and then for those
eligible 7, we search whether 1 should be applied when considering p € {a, b}.

For search efficiency, we therefore first consider the permutation 7 so that ||zdw( )=z

Once we find such z; and z5, we convert them into their canonical forms z; and Z5 (Def. B[) to
eliminate any possible multiplicative term y so that z; = y * 2Z;. We then compare the canonical
forms (up to complex conjugate) with various order-3 and order-2 partial solutions constructed by
CoGS, as detailed in Sec.[5| If their distance is below a certain threshold (e.g., < 10% of the norm
after normalizing both 2; and 25), then a match is detected.
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Figure 9: Distribution of solutions with hidden size ¢ = 512.
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d=23, wd=1e-05

d=23, wd=5e-05

d=23, wd=0.0001

d=23, wd=0.0002

0 5 10
Solution order

d=23, wd=0.0005

|
20 204 201 20
104
0 0 0 0
d=71, wd=1e-05 d=71, wd=5e-05 d=71, wd=0.0001 d=71, wd=0.0002 d=71, wd=0.0005
I
9 1001 1004 1001 Vo
S5 501 100 [
S 50 4 504 50 4 .
[
0 0 0 0 0- S
d=127, wd=1e-05 d=127, wd=5e-05 d=127, wd=0.0001 d=127, wd=0.0002 d=127, wd=0.0005
| . . .
100 4
g \ 200 [ 200 v 200 1 .
] | [ [ [
g 501 o . o
[ [ [
0-+— ™ 0- 0- L ™ 0- L1 ™ 0- L ™
0 5 10 0 5 10 o 5 10 0 5 10 0 5 10
Solution order Solution order Solution order Solution order Solution order
Figure 11: Distribution of solutions with hidden size ¢ = 2048.
i ‘zv=i*zE i i 2y=i*Zsyn, a8
= | —n/4 4 - :
60 [ =3nm/4 —n/ /! 34| 1] —2n3 i 8 -
8
b 6
§ 40 6
“ 20 4 !
2 2
0 0 0
-3 -2 -1 0 1 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2
Angle of & Angle of v Angle of @ and B
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descent solutions identified by CoGS. While any value of these parameters makes a global solution, gradient

descent dynamics has a particular preference in picking them during optimization.
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