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ABSTRACT

Training convolutional neural networks (CNNs) with a strict Lipschitz constraint
under the l2 norm is useful for provable adversarial robustness, interpretable gradi-
ents and stable training. While 1-Lipschitz CNNs can be designed by enforcing
a 1-Lipschitz constraint on each layer, training such networks requires each layer
to have an orthogonal Jacobian matrix (for all inputs) to prevent the gradients
from vanishing during backpropagation. A layer with this property is said to
be Gradient Norm Preserving (GNP). In this work, we introduce a procedure to
certify the robustness of 1-Lipschitz CNNs by relaxing the orthogonalization of
the last linear layer of the network that significantly advances the state of the art
for both standard and provable robust accuracies on CIFAR-100 (gains of 4.80%
and 4.71%, respectively). We further boost their robustness by introducing (i) a
novel Gradient Norm preserving activation function called the Householder acti-
vation function (that includes every GroupSort activation) and (ii) a certificate
regularization. On CIFAR-10, we achieve significant improvements over prior
works in provable robust accuracy (5.81%) with only a minor drop in standard
accuracy (−0.29%). Code for reproducing all experiments in the paper is available
at https://github.com/singlasahil14/SOC.

1 INTRODUCTION

Given a neural network f : Rd → Rk, the Lipschitz constant1 Lip(f) enforces an upper bound on
how much the output is allowed to change in proportion to a change in the input. Previous work has
demonstrated that a small Lipschitz constant is useful for improved adversarial robustness (Szegedy
et al., 2014; Cissé et al., 2017), generalization bounds (Bartlett et al., 2017; Long & Sedghi, 2020),
interpretable gradients (Tsipras et al., 2018) and Wasserstein distance estimation (Villani, 2008).
Lip(f) also upper bounds the increase in the norm of gradient during backpropagation and can thus
prevent gradient explosion during training, enabling us to train very deep networks (Xiao et al., 2018).
While heuristic methods to enforce Lipschitz constraints (Miyato et al., 2018; Gulrajani et al., 2017)
have achieved much practical success, they do not provably enforce a bound on Lip(f) globally and
it remains challenging to achieve similar results when Lip(f) is provably bounded.

Using the property: Lip(g ◦ h) ≤ Lip(g) Lip(h), the Lipschitz constant of the neural network can
be bounded by the product of the Lipschitz constant of all layers. While this allows us to construct
1-Lipschitz neural networks by constraining each layer to be 1-Lipschitz, Anil et al. (2018) identified
a key difficulty with this approach. Because a 1-Lipschitz layer can only reduce the norm of gradient
during backpropagation, backprop through each layer reduces the gradient norm, resulting in small
gradient values for layers closer to the input, making training slow and difficult. To address this
problem, they introduce Gradient Norm Preserving (GNP) architectures where each layer preserves
the gradient norm during backpropagation. This involves constraining the Jacobian of each linear
layer to be an orthogonal matrix and using a GNP activation function called GroupSort. GroupSort
activation function (Anil et al., 2018) first separates the vector of preactivations z ∈ Rm into groups
of pre-specified sizes, sorts each group in the descending order and then concatenates these sorted
groups. When the group size is 2, the resulting activation function is called MaxMin.

1Unless specified, we assume the Lipschitz constant under the l2 norm in this work.
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For 1-Lipschitz CNNs, the robustness certificate for a sample x from class l is computed as
Mf (x)/

√
2 whereMf (x) = fl(x)−maxi6=l fi(x). Naturally, larger values of fl(x) and smaller

values of maxj 6=l fj(x) will lead to larger certificates. This requires the last weight matrix in the
network, denoted by W ∈ Rk×m (k is the number of classes, m is the dimension of the penultimate
layer, m > k), to enforce the following constraints throughout training:

∀j, ‖Wj,:‖2 = 1, i 6= j, Wj,: ⊥Wi,:

where Wi,: denotes the ith row of W. Now suppose that for some input image with label l, we want
to update W to increase the logit for the lth class. Since ‖Wl,:‖2 is constrained to be 1, the logit can
only be increased by changing the direction of the vector Wl,:. Because the other rows {Wi,:, i 6= l}
are constrained to be orthogonal to Wl,:, this further requires an update for all the rows of W. Thus
during training, any update made to learn some class must necessitate the forgetting of information
relevant for the other classes. This can be particularly problematic when the number of classes k and
thus the number of orthogonality constraints per row (i.e., k − 1) is large (such as in CIFAR-100).

To address this limitation, we propose to keep the last weight layer of the network unchanged. But
then the resulting function is no longer 1-Lipschitz and the certificateMf (x)/

√
2 is not valid. Thus,

we introduce a new certification procedure that does not require the last weight layer of the network
W to be orthogonal. Our certificate is then given by the following equation:

min
i 6=l

fl(x)− fi(x)

‖Wl,: −Wi,:‖2

However, a limitation of using the above certificate is that because the weight layers are completely
unconstrained, larger norms of rows (i.e., ‖Wi,:‖) can result in larger values of ‖Wl,: −Wi,:‖2 and
thus smaller certificate values. To address this limitation, we normalize all rows to be of unit norm
before computing the logits. While this still requires all the rows to be of unit norm, their directions
are now allowed to change freely thus preventing the need to update other rows and forgetting of
learned information. We show that this provides significant improvements when the number of classes
is large. We call this procedure Last Layer Normalization (abbreviated as LLN). On CIFAR-100, this
significantly improves both the standard (> 3%) and provable robust accuracy (> 4% at ρ = 36/255)
across multiple 1-Lipschitz CNN architectures (Table 1). Here, ρ is the l2 attack radius.

Another limitation of existing 1-Lipschitz CNNs (Li et al., 2019b; Trockman & Kolter, 2021; Singla
& Feizi, 2021) is that their robustness guarantees do not scale properly with the l2 radius ρ. For
example, the provable robust accuracy of (Singla & Feizi, 2021) drops ∼ 30% at ρ = 108/255
compared to 36/255 on CIFAR-10 (Table 2). To address this limitation, we introduce a certificate
regularization denoted by CR (Section 5) that when used along with the Householder activation
results in significantly improved provable robust accuracy at larger radius values with minimal loss in
standard accuracy. On the CIFAR-10 dataset, we achieve significant improvements in the provable
robust accuracy for large ρ = 108/255 (min gain of +4.96%) across different architectures with
minimal loss in the standard accuracy (max drop of −0.56%). Results are in Table 2.

Additionally, we characterize the MaxMin activation function as a special case of the more general
Householder (HH) activations. Recall that given z ∈ Rm, the HH transformation is a linear function
reflecting z about the hyperplane vTx = 0 (‖v‖2 = 1), given by (I− 2vvT )z where I− 2vvT is
orthogonal because ‖v‖2 = 1. The Householder activation function σv is defined below:

σv(z) =

{
z, vT z > 0,

(I− 2vvT )z, vT z ≤ 0.
(1)

First, note that since z = (I − 2vvT )z along vT z = 0, σv is continuous. Moreover, the Jacobian
∇z σv is either I or I− 2vvT (both orthogonal) implying σv is GNP. Since these properties hold
∀ v : ‖v‖2 = 1, v can be learned during the training. In fact, we prove that any GNP piecewise linear
function that changes from Q1z to Q2z (Q1,Q2 are square orthogonal matrices) along vT z = 0
must satisfy Q2 = Q1

(
I− 2vvT

)
to be continuous (Theorem 1). Thus, this characterization proves

that every GroupSort activation is a special case of the more general Householder activation function
(example in Figure 1, discussion in Section 6).

In summary, in this paper, we make the following contributions:
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• We introduce a certification procedure without orthogonalizing the last linear layer called Last
Layer Normalization. This procedure significantly enhances the standard and provable robust
accuracy when the number of classes is large. Using the LipConvnet-15 network on CIFAR-100,
our modification achieves a gain of +4.71% in provable robust accuracy (at ρ = 36/255) with a
gain of +4.80% in standard accuracy (Table 1).

• We introduce a Certificate Regularizer that significantly advances the provable robust accuracy
with a small reduction in standard accuracy. Using LipConvnet-15 network on CIFAR-10, we
achieve +5.81% improvement in provable robust accuracy (at ρ = 108/255) with only a −0.29%
drop in standard accuracy over the existing methods (Table 2).

• We introduce a class of piecewise linear GNP activation functions called Householder or HH
activations. We show that the MaxMin activation is a special case of the HH activation for certain
settings. We prove that Householder transformations are necessary for any GNP piecewise linear
function to be continuous (Theorem 1).

2 RELATED WORK

Provably Lipschitz convolutional neural networks: The class of fully connected neural networks
(FCNs) which are Gradient Norm Preserving (GNP) and 1-Lipschitz were first introduced by Anil
et al. (2018). They orthogonalize weight matrices and use GroupSort as the activation function
to design each layer to be GNP. While there have been numerous works on enforcing Lipschitz
constraints on convolution layers (Cissé et al., 2017; Tsuzuku et al., 2018; Qian & Wegman, 2019;
Gouk et al., 2020; Sedghi et al., 2019), they either enforce loose Lipschitz bounds or are not scalable
to large networks. To ensure that the Lipschitz constraint on convolutional layers is tight, multiple
recent works try to construct convolution layers with an orthogonal Jacobian matrix (Li et al., 2019b;
Trockman & Kolter, 2021; Singla & Feizi, 2021). These approaches avoid the aforementioned issues
and allow the training of large, provably 1-Lipschitz CNNs while achieving impressive results.

Provable defenses against adversarial examples: A provably robust classifier is one for which
we can guarantee that the classifier’s prediction remains constant within some region around the
input. Most of the existing methods for provable robustness either bound the Lipschitz constant
of the neural network or the individual layers (Weng et al., 2018; Zhang et al., 2019; 2018; Wong
et al., 2018; Wong & Kolter, 2018; Raghunathan et al., 2018; Croce et al., 2019; Singh et al., 2018;
Singla & Feizi, 2020; Zhang et al., 2021; 2022; Wang et al., 2021; Huang et al., 2021). However,
these methods do not scale to large and practical networks on the ImageNet dataset (Deng et al.,
2009). To scale to such large networks, randomized smoothing (Liu et al., 2018; Cao & Gong,
2017; Lécuyer et al., 2018; Li et al., 2019a; Cohen et al., 2019; Salman et al., 2019; Levine et al.,
2019; Kumar et al., 2020a;b) has been proposed as a probabilistically certified defense. However,
certifying robustness with high probability requires generating a large number of noisy samples
leading to high inference-time computation. In contrast, the defense we propose is deterministic and
hence not comparable to randomized smoothing. While Levine & Feizi (2021) provide deterministic
robustness certificates using randomized smoothing, their certificates are in the l1 norm and not
directly applicable for the l2 threat model studied in this work. We discuss the differences between l1
and l2 certificates in Appendix Section C.

3 PROBLEM SETUP AND NOTATION

For a vector v, vj denotes its jth element. For a matrix A, Aj,: and A:,k denote the jth row and kth
column respectively. Both Aj,: and A:,k are assumed to be column vectors (thus Aj,: is the transpose
of jth row of A). Aj,k denotes the element in jth row and kth column of A. A:j,:k denotes the
matrix containing the first j rows and k columns of A. The same rules are directly extended to higher
order tensors. I denotes the identity matrix, R to denote the field of real numbers. For θ ∈ R, J+(θ)
and J−(θ) denote the orthogonal matrices with determinants +1 and −1 defined as follows:

J+(θ) =

[
cos θ sin θ
− sin θ cos θ

]
J−(θ) =

[
cos θ sin θ
sin θ − cos θ

]
(2)

We construct a 1-Lipschitz neural network, f : Rd → Rk (d is the input dimension, k is the
number of classes) by composing 1-Lipschitz convolution layers and GNP activation functions.
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To certify robustness for some input x with prediction l, we first define the margin of prediction:
Mf (x) = max (0, fl(x)−maxi 6=l fi(x)) where fi(x) is the logit for class i and l is the correct
label. Using Theorem 7 in Li et al. (2019b), we can derive the robustness certificate (in the l2 norm)
asMf (x)/

√
2. Thus, the l2 distance of x to the decision boundary is lower bounded byMf (x)/

√
2:

min
i 6=l

min
fi(x∗)=fl(x∗)

‖x∗ − x‖2 ≥
Mf (x)√

2
(3)

We often use the abbreviation fi − fj : RD → R to denote the function so that:

(fi − fj) (x) = fi(x)− fj(x), ∀ x ∈ RD

Our goal is to train the neural network f to achieve the maximum possible provably robust accuracy
while also simultaneously improving (or maintaining) standard accuracy.

4 LAST LAYER NORMALIZATION

To ensure that the network is 1-Lipschitz so that the certificate in equation (3) is valid, existing
1-Lipschitz neural networks require the weight matrices of all the linear layers of the network to be
orthogonal. For the weight matrix in the last layer of the network (that maps the penultimate layer
neurons to the logits), W ∈ Rk×m (k is the number of classes, m is the dimension of the penultimate
layer, m > k), this enforces the following constraints on each row Wi,: ∈ Rm:

∀j, ‖Wj,:‖2 = 1, ∀i 6= j, Wj,: ⊥Wi,: (4)
Now suppose that for some input x with label l, we want to update W to increase the logit for the
lth class. Since ‖Wl,:‖2 is constrained to be 1, the gradient update can only change the direction of
the vector Wl,:. But now, because the other rows {Wi,:, i 6= l} are constrained to be orthogonal to
Wl,:, this further requires an update for all the rows of W. This has the negative effect that during
training, any update made to learn some class must necessitate the forgetting of information relevant
for the other classes. This can be particularly problematic when the number of classes k is large (such
as in CIFAR-100) and thus the number of orthogonality constraints per row i.e. k − 1 is large.

To address this limitation, first observe that the neural network from the input layer to the penultimate
layer (i.e excluding the last linear layer) is 1-Lipschitz. Let g : Rd → Rm be this function so that
f(x) = Wg(x) + b. This equation suggests that even if W is not orthogonal, the Lipschitz constant
of the function fl − fi, can be computed by multiplying the Lipschitz constant of g (which is 1) and
that of (Wl,: −Wi,:) (which is ‖Wl,: −Wi,:‖2). The robustness certificate can then be computed
asMf (x)/‖Wl,: −Wi,:‖2. This procedure leads to the following proposition:
Proposition 1. Given 1-Lipschitz continuous function g : Rd → Rm and W ∈ Rk×m, b ∈ Rk (k
is the number of classes), construct a new function f : Rd → Rk defined as: f(x) = Wg(x) + b.
Let fl(x) > maxi 6=l fi(x). The robustness certificate (under the l2 norm) is given by:

min
i 6=l

min
fl(x∗)=fi(x∗)

‖x∗ − x‖2 ≥ min
i 6=l

fl(x)− fi(x)

‖Wl,: −Wi,:‖2

Proof is in Appendix Section A.1.

However, in our experiments, we found that using this procedure directly i.e without any constraint
on the weight matrix W often results in large norms of row vectors ‖Wi,:‖2, and thus large values
of ‖Wl,: −Wi,:‖2 and smaller certificates (Theorem 1). To address this problem, we normalize all
rows of the matrix to be of unit norm before computing the logits so that for the input x, the logit
gi(x) can be computed as follows:

gi(x) =
(Wi,:)

T
f(x)

‖Wi,:‖2
+ bi

The robustness certificate can then be computed as follows:

min
i6=l

gl(x)− gi(x)

‖W(n)
l,: −W

(n)
i,: ‖2

, where ∀j, W
(n)
j,: =

Wj,:

‖Wj,:‖2
, gj(x) =

(
W

(n)
j,:

)T
f(x) + bj

While each row Wi,: is still constrained to be of unit norm, unlike with orthogonality constraints
(equation (4)), their directions are allowed to change freely. This provides significant improvements
when the number of classes is large. We call this procedure Last Layer Normalization (LLN).
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(a) Case 1: z1 sin(θ/2)− z2 cos(θ/2) > 0 (b) Case 2: z1 sin(θ/2)− z2 cos(θ/2) ≤ 0

Figure 1: Illustration of the Householder activation, σθ. In each colored region, σθ is linear. The
Jacobian is I when (z1, z2) lies in the pink region (Case 1) and I− 2vvT in the other region (Case 2)
where v = [sin(θ/2) − cos(θ/2)]

T . Both of these matrices are orthogonal implying σθ is GNP.

5 CERTIFICATE REGULARIZATION

A limitation of using cross entropy loss for training 1-Lipschitz CNNs is that it is not explicitly
designed to maximize the marginMf (x) and thus, the robustness certificate. That is, once the cross
entropy loss becomes small, the gradients will no longer try to further increase the marginMf (x)
even though the network may have the capacity to learn bigger margins.

To address this limitation, we can simply subtract the certificate i.e −Mf (x)/
√

2 from the usual
cross entropy loss function during training. Observe that we subtract the certificate because we want to
maximize the certificate values while minimizing the cross entropy loss. However, in our experiments
we found that this regularization term excessively penalizes the network for the misclassified examples
and as a result, the certificate values for the correctly classified inputs are not large. Thus, we propose
to use the following regularized loss function during training:

min
Ω

E(x,l)∼D

[
` (fΩ(x), l)− γ relu

(
Mf (x)√

2

)]
(5)

In the above equation, fΩ denotes the 1-Lipschitz neural network parametrized by Ω, fΩ(x) denotes
the logits for the input x, ` (fΩ(x), l) is the cross entropy loss for input x with label l and γ > 0 is
the regularization coefficient for maximizing the certificate. We have the minus sign in front of the
regularization term γ relu(Mf (x)/

√
2) because we want to maximize the certificate while minimizing

the cross entropy loss. For wrongly classified inputs,Mf (x)/
√

2 < 0 =⇒ relu(Mf (x)/
√

2) = 0.
This ensures that the optimization tries to increase the certificates only for the correctly classified
inputs. We call the above mentioned procedure Certificate Regularization (abbreviated as CR).

6 HOUSEHOLDER ACTIVATION FUNCTIONS

Recall that given z ∈ Rm, the Householder (HH) transformation reflects z about the hyperplane
vTx = 0 where ‖v‖2 = 1. The linear transformation is given by the equation (I− 2vvT )z where
I− 2vvT is orthogonal because ‖v‖2 = 1. Now, consider the nonlinear function σv defined below:

Definition 1. (Householder Activation of Order 1) The activation function σv : Rm → Rm, applied
on z ∈ Rm, is called the m-dimensional Householder Activation of Order 1:

σv(z) =

{
z, vT z > 0,

(I− 2vvT )z, vT z ≤ 0.
(6)

Since σv is linear when vT z > 0 or vT z < 0, it is also continuous in both cases. At the hyperplane
separating the two cases (i.e., vT z = 0) we have: (I − 2vvT )z = z − 2(vT z)v = z (both linear
functions are equal). Thus, σv is continuous ∀ z ∈ Rm. Moreover, the Jacobian is either I or
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I− 2vvT which are both square orthogonal matrices. Thus, σv is also GNP and 1-Lipschitz. Since
these properties hold for all v satisfying ‖v‖2 = 1, v can be made a learnable parameter.

While the above arguments suggest that HH transformations are sufficient to ensure such functions
are continuous, we also prove that they are necessary. That is, we prove that if a GNP piecewise
linear function g : Rm → Rm transitions between different linear functions Q1z and Q2z (in an
open set S ⊂ Rm) along a hyperplane vT z = 0 (where ‖v‖2 = 1), then g is continuous in S if
and only if Q2 = Q1(I− 2vvT ). This theoretical result provides a general principle for designing
piecewise linear GNP activation functions. The formal result is stated in the following Theorem:
Theorem 1. Given an open set S ⊂ Rm, orthogonal square matrices Q1 6= Q2, and vector v ∈ Rm
(‖v‖2 = 1) such that S ∩ {z : vT z = 0} 6= ∅, the function g defined as follows:

g(z) =

{
Q1z, z ∈ S,vT z > 0,

Q2z, z ∈ S,vT z ≤ 0
(7)

is continuous in S if and only if Q2 = Q1(I− 2vvT ).

Proof of Theorem 1 is in Appendix A.2. Note that since the matrix I− 2vvT has determinant −1,
the above theorem necessitates that det(Q1) = −det(Q2) i.e the determinant of the Jacobian must
change sign whenever the Jacobian of a piecewise linear GNP activation function changes.

Recall that for the MaxMin activation function, MaxMin(z1, z2) = (z1, z2) if z1 > z2 and (z2, z1)
otherwise. Thus, the Jacobian of MaxMin for z1 > z2 case is I = J+(0) while for z1 ≤ z2 is
J−(π/2). Using Theorem 1, we can easily prove that MaxMin is a special case of the more general
Householder activation functions where the Jacobian J−(π/2) is replaced with J−(θ) and the
conditions z1 > z2 are replaced with z1 sin(θ/2) > z2 cos(θ/2) (similarly for ≤). The construction
of Householder activations in 2 dimensions, denoted by σθ, is given in the following corollary:
Corollary 1. The function σθ : R2 → R2 defined as

σθ (z1, z2) =


[
1 0

0 1

] [
z1

z2

]
if z1 sin (θ/2)− z2 cos (θ/2) > 0[

cos θ sin θ

sin θ − cos θ

] [
z1

z2

]
if z1 sin (θ/2)− z2 cos (θ/2) ≤ 0

(8)

is continuous and is called 2D Householder Activation of Order 1.

The two cases are demonstrated in Figure 1a and Figure 1b, respectively. Since σθ is continuous, GNP
and 1-Lipschitz ∀ θ ∈ R, θ is a learnable parameter. For θ = π/2 in equation (8), σθ is equivalent to
MaxMin. Thus, σθ is at least as expressive as MaxMin.

A major limitation of using σv (equation (6)) directly is that it has only 2 linear regions and is thus
limited in its expressive power. In contrast, MaxMin first divides the preactivation z ∈ Rm (assuming
m is divisible by 2) into m/2 groups of size 2 each. Since each group has 2 linear regions, we get
2m/2 linear regions from the m/2 groups. Thus, to increase the expressive power, we similarly divide
z into m/2 groups of size 2 each and apply the 2-dimensional Householder activation function of
Order 1 (σθ) to each group resulting in 2m/2 linear regions (same as MaxMin).

To apply σθ to the output of a convolution layer z ∈ Rm×n×n (m is the number of channels and
n×n is the spatial size), we first split z into 2 tensors along the channel dimension giving the tensors:
z:m/2,:,: and zm/2:,:,:. Each of these tensors is of size m/2× n× n giving n2m/2 groups. We use
the same θ for each pair of channels (irrespective of spatial location) resulting in m/2 learnable
parameters. We initialize each θ = π/2 so that σθ is equivalent to MaxMin at initialization.

7 EXPERIMENTS

Our goal is to evaluate the effectiveness of the three changes proposed in this work: (a) Last Layer
Normalization, (b) Certificate regularization and (c) Householder activation functions. We perform
experiments under the setting of provably robust image classification on CIFAR-10 and CIFAR-100
datasets using the same 1-Lipschitz CNN architectures used by Singla & Feizi (2021) (LipConvnet-5,
10, 15, . . . , 40) due to their superior performance over the prior works. We compare with the three
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orthogonal convolution layers in the literature: SOC (Singla & Feizi, 2021), BCOP (Li et al., 2019b)
and Cayley (Trockman & Kolter, 2021) using MaxMin as the activation function.

We use SOC with MaxMin as the primary baseline for comparison in the maintext due to their superior
performance over the prior works (BCOP, Cayley). Results using BCOP and Cayley convolutions are
given in Appendix Sections H and I for completeness. We use the same implementations for these
convolution layers as given in their respective github repositories. We compare the provable robust
accuracy using 3 different values of the l2 perturbation radius ρ = 36/255, 72/255, 108/255. In
both Tables 1 and 2, for all networks, we use SOC as the convolution layer. Using SOC, we achieve
the same bound on the approximation error of an orthogonal Jacobian as achieved in Singla & Feizi
(2021) i.e. 2.42× 10−6 across all convolution layers in all networks. Thus, even for the network with
40 layers, this results in maximum Lipschitz constant of (1 + 2.42× 10−6)40 = 1.000097 ≤ 1.0001.
Thus, the Lipschitz constant across all our networks is bounded by 1.0001. The symbol HH (in
Tables 1, 2) is for the 2D Householder Activation of order 1 or σθ (defined in equation (8)).

All experiments were performed using 1 NVIDIA GeForce RTX 2080 Ti GPU. All networks were
trained for 200 epochs with initial learning rate of 0.1, dropped by a factor of 0.1 after 100 and 150
epochs. For Certificate Regularization (or CR), we set the parameter γ = 0.5.

7.1 RESULTS ON CIFAR-100

In Table 1, for each architecture, the row "SOC + MaxMin" uses the MaxMin activation, "+ LLN"
adds Last Layer Normalization (uses MaxMin), "+ HH" replaces MaxMin with σθ (also uses LLN)
, "+ CR" also adds Certificate Regularization with γ = 0.1 (uses both σθ and LLN). The column,
"Increase (Standard)" denotes the increase in standard accuracy relative to "SOC + MaxMin".

By adding LLN (the row "+ LLN"), we observe gains in standard (min gain of 1.10%) and provable
robust accuracy (min gain of 1.71% at ρ = 36/255) across all the LipConvnet architectures (gains
relative to "SOC + MaxMin"). These gains are smallest for the LipConvnet-40 network with the
maximum depth. However, replacing MaxMin with the σθ activation further improves the standard
(min gain of 3.65%) and provable robust accuracy (min gain of 4.46% at ρ = 36/255) across
all networks (again relative to "SOC + MaxMin"). We observe that replacing MaxMin with σθ
significantly improves the performance of the deeper LipConvnet-35, 40 networks.

Adding CR further improves the provable robust accuracy while only slightly reducing the standard
accuracy. Because LLN significantly improves the standard accuracy, we compare the standard
accuracy numbers between rows "+ CR" and "+ LLN" to evaluate the drop due to CR. We observe
a small drop in standard accuracy (−0.04%,−0.11%) only for LipConvnet-5 and LipConvnet-15
networks. For the other networks, the standard accuracy actually increases.

7.2 RESULTS ON CIFAR-10

In Table 2, for each architecture, the row "SOC + MaxMin" uses the MaxMin activation, the row "+
HH" uses σθ activation (replacing MaxMin) and the row "+ CR" also adds Certificate Regularization
with γ = 0.1 (again using σθ as the activation). Due to the small number of classes in CIFAR-10, we
do not observe significant gains using Last Layer Normalization or LLN (Appendix Table 10). Thus,
we do not include LLN for any of the results in Table 2. The column, "Increase (108/255)" denotes
the increase in provable robust accuracy with ρ = 108/255 relative to "SOC + MaxMin".

For LipConvnet-25, 30, 35, 40 architectures, we observe gains in both the standard and provable
robust accuracy by replacing MaxMin with the HH activation (i.e σθ). Similar to what we observe
for CIFAR-100 in Table 1, the gains in provable robust accuracy (ρ = 108/255) are significantly
higher for deeper networks: LipConvnet-35 (3.65%) and LipConvnet-40 (4.35%) with decent gains
in standard accuracy (1.71 and 1.61% respectively).

Again similar to CIFAR-100, adding CR further boosts the provable robust accuracy while slightly
reducing the standard accuracy. Comparing "+ CR" with "SOC + MaxMin", we observe small
drops in standard accuracy for LipConvnet-5, 10, . . . , 30 networks (max. drop of −0.56%), and
gains for LipConvnet-35 (+0.52%) and LipConvnet-40 (+0.96%). For provable robust accuracy
(ρ = 108/255), we observe very significant gains of > 4.96% for all networks and > 8% for the
deeper LipConvnet-35, 40 networks.
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Architecture Methods Standard
Accuracy

Provable Robust Acc. (ρ =) Increase
36/255 72/255 108/255 (Standard)

LipConvnet-5

SOC + MaxMin 42.71% 27.86% 17.45% 9.99% _
+ LLN 45.86% 31.93% 21.17% 13.21% +3.15%
+ HH 46.36% 32.64% 21.19% 13.12% +3.65%
+ CR 45.82% 32.99% 22.48% 14.79% +3.11%

LipConvnet-10

SOC + MaxMin 43.72% 29.39% 18.56% 11.16% _
+ LLN 46.88% 33.32% 22.08% 13.87% +3.16%
+ HH 47.96% 34.30% 22.35% 14.48% +4.24%
+ CR 47.07% 34.53% 23.50% 15.66% +3.35%

LipConvnet-15

SOC + MaxMin 42.92% 28.81% 17.93% 10.73% _
+ LLN 47.72% 33.52% 21.89% 13.76% +4.80%
+ HH 47.72% 33.97% 22.45% 13.81% +4.80%
+ CR 47.61% 34.54% 23.16% 15.09% +4.69%

LipConvnet-20

SOC + MaxMin 43.06% 29.34% 18.66% 11.20% _
+ LLN 46.86% 33.48% 22.14% 14.10% +3.80%
+ HH 47.71% 34.22% 22.93% 14.57% +4.65%
+ CR 47.84% 34.77% 23.70% 15.84% +4.78%

LipConvnet-25

SOC + MaxMin 43.37% 28.59% 18.18% 10.85% _
+ LLN 46.32% 32.87% 21.53% 13.86% +2.95%
+ HH 47.70% 34.00% 22.67% 14.57% +4.33%
+ CR 46.87% 34.09% 23.41% 15.61% +3.50%

LipConvnet-30

SOC + MaxMin 42.87% 28.74% 18.47% 11.21% _
+ LLN 46.18% 32.82% 21.52% 13.52% +3.31%
+ HH 46.80% 33.72% 22.70% 14.31% +3.93%
+ CR 46.92% 34.17% 23.21% 15.84% +4.05%

LipConvnet-35

SOC + MaxMin 42.42% 28.34% 18.10% 10.96% _
+ LLN 45.22% 32.10% 21.28% 13.25% +2.80%
+ HH 46.21% 32.80% 21.55% 14.13% +3.79%
+ CR 46.88% 33.64% 23.34% 15.73% +4.46%

LipConvnet-40

SOC + MaxMin 41.84% 28.00% 17.40% 10.28% _
+ LLN 42.94% 29.71% 19.30% 11.99% +1.10%
+ HH 45.84% 32.79% 21.98% 14.07% +4.00%
+ CR 45.03% 32.57% 22.37% 14.76% +3.19%

Table 1: Results for provable robustness against adversarial examples on the CIFAR-100 dataset.
Results with BCOP and Cayley convolutions are in Appendix Tables 13 and 14.

8 CONCLUSION

In this work, we introduce a procedure to certify robustness of 1-Lipschitz convolutional neural
networks without orthogonalizing of the last linear layer of the network. Additionally, we introduce a
certificate regularization that significantly improves the provable robust accuracy for these models at
higher l2 radii. Finally, we introduce a class of GNP activation functions called Householder (or HH)
activations and prove that the Jacobian of any Gradient Norm Preserving (GNP) piecewise linear
function is only allowed to change via Householder transformations for the function to be continuous
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Architecture Methods Standard
Accuracy

Provable Robust Acc. (ρ =) Increase
36/255 72/255 108/255 (108/255)

LipConvnet-5
SOC + MaxMin 75.78% 59.18% 42.01% 27.09% _

+ HH 76.30% 60.12% 43.20% 27.39% +0.30%
+ CR 75.31% 60.37% 45.62% 32.38% +5.29%

LipConvnet-10
SOC + MaxMin 76.45% 60.86% 44.15% 29.15% _

+ HH 76.86% 61.52% 44.91% 29.90% +0.75%
+ CR 76.23% 62.57% 47.70% 34.15% +5.00%

LipConvnet-15
SOC + MaxMin 76.68% 61.36% 44.28% 29.66% _

+ HH 77.41% 61.92% 45.60% 31.10% +1.44%
+ CR 76.39% 62.96% 48.47% 35.47% +5.81%

LipConvnet-20
SOC + MaxMin 76.90% 61.87% 45.79% 31.08% _

+ HH 76.99% 61.76% 45.59% 30.99% -0.09%
+ CR 76.34% 62.63% 48.69% 36.04% +4.96%

LipConvnet-25
SOC + MaxMin 75.24% 60.17% 43.55% 28.60% _

+ HH 76.37% 61.50% 44.72% 29.83% +1.23%
+ CR 75.21% 61.98% 47.93% 34.92% +6.32%

LipConvnet-30
SOC + MaxMin 74.51% 59.06% 42.46% 28.05% _

+ HH 75.25% 59.90% 43.85% 29.35% +1.30%
+ CR 74.23% 60.64% 46.51% 34.08% +6.03%

LipConvnet-35
SOC + MaxMin 73.73% 58.50% 41.75% 27.20% _

+ HH 75.44% 61.05% 45.38% 30.85% +3.65%
+ CR 74.25% 61.30% 47.60% 35.21% +8.01%

LipConvnet-40
SOC + MaxMin 71.63% 54.39% 37.92% 24.13% _

+ HH 73.24% 58.12% 42.24% 28.48% +4.35%
+ CR 72.59% 59.04% 44.92% 32.87% +8.74%

Table 2: Results for provable robustness against adversarial examples on the CIFAR-10 dataset.
Results with BCOP and Cayley convolutions are in Appendix Tables 7 and 8.

which provides a general principle for designing piecewise linear GNP functions. These ideas lead to
improved deterministic `2 robustness certificates on CIFAR-10 and CIFAR-100.
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A PROOFS

A.1 PROOF OF PROPOSITION 1

Proof. We proceed by computing the Lipschitz constant of the function fl − fi.
The gradient of the function: fl − fi at x can be computed using the chain rule:

∇x (fl − fi) = (Wl,: −Wi,:)
T ∇xg

Since g is given to be 1-Lipschitz, the Lipschitz constant of fl − fi can be computed using the above
equation as follows:

‖∇x (fl − fi) ‖2 ≤ ‖ (Wl,: −Wi,:)
T

(∇xg) ‖2
‖∇x (fl − fi) ‖2 ≤ ‖Wl,: −Wi,:‖2‖∇xg‖2 ≤ ‖Wl,: −Wi,:‖2

Thus, the distance of x to the decision boundary fl − fi = 0, is lower bounded by:

min
fl(x∗)=fi(x∗)

‖x∗ − x‖2 ≥
fl(x)− fi(x)

‖Wl,: −Wi,:‖2
Thus, the distance to decision boundary across all classes i 6= l is lower bounded by:

min
i 6=l

min
fl(x∗)=fi(x∗)

‖x∗ − x‖2 ≥ min
i 6=l

fl(x)− fi(x)

‖Wl,: −Wi,:‖2

A.2 PROOF OF THEOREM 1

Proof. We first prove that if Q2 = (I− 2vvT )Q1, then the function g is continuous.
First, observe that for vT z > 0, g(z) = Q1z which is continuous.
Similarly, for vT z < 0, g(z) = Q2z which is again continuous.
This proves that the function g is continuous when vT z > 0 or vT z < 0.
Thus, to prove continuity ∀ z ∈ S, we must prove that:

Q1z = Q2z ∀ z : vT z = 0 (9)

Since Q2 = Q1(I− 2vvT ), we have:

Q2 −Q1 = −2Q1vv
T

(Q2 −Q1) z = −2
(
Q1vv

T
)
z = −2Q1v

(
vT z

)
The above equation directly proves (9).

Now, we prove the other direction i.e if g is continuous in S then, Q2 = Q1(I− 2vvT ).
Since g is continuous for all z : vT z = 0, we have:

Q2z = Q1z ∀ z : vT z = 0

(Q2 −Q1) z = 0 ∀ z : vT z = 0

Since z ∈ Rm, we know that the set of vectors: {z : vT z = 0} spans a m− 1 dimensional subspace.
Thus, the null space of Q2 −Q1 is of size m− 1.
This in turn implies that Q2 −Q1 is a rank one matrix given by the following equation:

Q2 −Q1 = uvT (10)

where the vector u remains to be determined.
Since Q1 and Q2 are orthogonal matrices, we have the following set of equations:

QT
2 Q2 =

(
Q1 + uvT

)T (
Q1 + uvT

)
(11)

Q2Q
T
2 =

(
Q1 + uvT

) (
Q1 + uvT

)T
(12)
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We first simplify equation (11):

QT
2 Q2 =

(
QT

1 + vuT
) (

Q1 + uvT
)

I = I + v
(
QT

1 u
)T

+
(
QT

1 u
)
vT +

(
uTu

)
vvT

0 = v
(
QT

1 u
)T

+
(
QT

1 u
)
vT +

(
uTu

)
vvT

−
(
uTu

)
vvT = v

(
uTQ1

)
+
(
QT

1 u
)
vT

Right multiplying both sides by v and using ‖v‖2 = 1, we get:

−
(
uTu

)
v =

(
uTQ1v

)
v + QT

1 u

QT
1 u = −

(
uTu + uTQ1v

)
v = λv

u = λQ1v, where λ = −
(
uTu + uTQ1v

)
(13)

Substituting u using equation (13) in equation (10), we get:

Q2 −Q1 = λQ1vv
T

Q2 = Q1

(
I + λvvT

)
Since QT

2 Q2 = I, we have:

QT
2 Q2 =

(
Q1

(
I + λvvT

))T
Q1

(
I + λvvT

)
QT

2 Q2 =
(
I + λvvT

)
QT

1 Q1

(
I + λvvT

)
I =

(
I + λvvT

) (
I + λvvT

)
I = I + 2λvvT + λ2vvT

=⇒ λ = 0 or λ = −2

Since λ = 0 would imply Q1 = Q2 which is not allowed by the assumption of the Theorem that
Q1 6= Q2.
λ = −2 is the only possibility allowed.
This proves the other direction i.e:

Q2 = Q1

(
I− 2vvT

)

A.3 PROOF OF COROLLARY 1

Proof. Subsitute Q1,v as follows in Theorem 1.

Q1 =

[
1 0
0 1

]
v =

[
+ sin (θ/2)
− cos (θ/2)

]
Q2 = I− 2vvT

Q2 =

[
1 0
0 1

]
− 2

[
sin (θ/2)
− cos (θ/2)

]
[sin (θ/2) − cos (θ/2)]

Q2 =

[
1 0
0 1

]
− 2

[
sin2 (θ/2) − sin (θ/2) cos (θ/2)

− sin (θ/2) cos (θ/2) cos2 (θ/2)

]
Q2 =

[
1− 2 sin2 (θ/2) 2 sin (θ/2) cos (θ/2)

2 sin (θ/2) cos (θ/2) 1 + 2 cos2 (θ/2)

]
Q2 =

[
cos(θ) sin(θ)
sin(θ) − cos(θ)

]
Theorem 1 then directly implies the corollary.
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A.4 PROOF OF THEOREM 2

Theorem 2. Given: 0 ≤ θ0 < θ1 · · · < θ2n = 2π + θ0 such that
∑n−1
i=0 (θ2i+1 − θ2i) = π and

αi = 2
∑i
j=0 θi−j(−1)j , The function σΘ : R2 → R2 is continuous, GNP and 1-Lipschitz where

Θ = [θ0, θ1, . . . , θ2n−1] (also called 2D Householder Activation of order n):

σΘ(z1, z2) =

[
cosαi sinαi

(−1)i sinαi (−1)i+1 cosαi

] [
z1

z2

]
θi ≤ ϕ < θi+1 (14)

where ϕ ∈ [θ0, θ2n = 2π + θ0) and cos(ϕ) = z1/
√
z2

1 + z2
2 , sin(ϕ) = z2/

√
z2

1 + z2
2 .

Proof. We are given the following:
n−1∑
i=0

(θ2i+1 − θ2i) = π, αi = 2

i∑
j=0

θi−j(−1)j (15)

Note that by definition (equation (14)), the function is linear for θi < ϕ < θi+1 and hence
continuous.
Furthermore, since ϕ ∈ [θ0, θ2n), we proceed to prove continuity for the following two cases:
Case 1: θi − ε < ϕ < θi + ε, ε > 0, i ≥ 1
Case 2: θ0 < ϕ < θ0 + ε, θ2n − ε < ϕ < θ2n, ε > 0

Proof for Case 1:
Using equation (14), we know that σΘ realizes different linear functions for θi − ε < ϕ < θi and
θi < ϕ < θi + ε.
Thus, for σΘ to be continuous, we require that the two linear functions be the same at the boundary
i.e ϕ = θi.
We first write the input (z1, z2) in terms of shifted polar coordinates i.e: (r cos(ϕ), r sin(ϕ)) where
r =

√
z2

1 + z2
2 and cosϕ = z1/

√
z2

1 + z2
2 , sinϕ = z2/

√
z2

1 + z2
2 , ϕ ∈ [θ0, θ0 + 2π)

Thus, the function for θi − ε < ϕ < θi is given by:

σΘ (r cosϕ, r sinϕ) =

[
cosαi−1 sinαi−1

(−1)i−1 sinαi−1 (−1)i cosαi−1

] [
r cosϕ
r sinϕ

]
(16)

Similarly, the function for θi < ϕ < θi + ε is given by:

σΘ (r cosϕ, r sinϕ) =

[
cosαi sinαi

(−1)i sinαi (−1)i+1 cosαi

] [
r cosϕ
r sinϕ

]
(17)

The difference in the function values at the boundary i.e ϕ = θi, obtained by subtracting equations
(17) and (16) is given as follows:[

cosαi sinαi
(−1)i sinαi (−1)i+1 cosαi

] [
r cos θi
r sin θi

]
−
[

cosαi−1 sinαi−1

(−1)i−1 sinαi−1 (−1)i cosαi−1

] [
r cos θi
r sin θi

]
= r

[
cosαi − cosαi−1 sinαi − sinαi−1

(−1)i sinαi − (−1)i−1 sinαi−1 (−1)i+1 cosαi − (−1)i cosαi−1

] [
cos θi
sin θi

]
= r

[
cosαi − cosαi−1 sinαi − sinαi−1

(−1)i(sinαi + sinαi−1) (−1)i+1(cosαi + cosαi−1)

] [
cos θi
sin θi

]
Using sum-to-product trigonometric identities, the above equals:

= r

 2 sin
(
αi−1−αi

2

)
sin
(
αi−1+αi

2

)
2 sin

(
αi−αi−1

2

)
cos
(
αi+αi−1

2

)
2(−1)i sin

(
αi+αi−1

2

)
cos
(
αi−αi−1

2

)
2(−1)i+1 cos

(
αi−1−αi

2

)
cos
(
αi−1+αi

2

)[cos θi
sin θi

]

= 2r

 sin
(
αi−1−αi

2

)
sin
(
αi−1+αi

2

)
− sin

(
αi−1−αi

2

)
cos
(
αi+αi−1

2

)
(−1)i sin

(
αi+αi−1

2

)
cos
(
αi−αi−1

2

)
(−1)i+1 cos

(
αi−1−αi

2

)
cos
(
αi−1+αi

2

)[cos θi
sin θi

]

= 2r

 sin
(
αi−1−αi

2

)
(−1)i cos

(
αi−1−αi

2

)[sin(αi−1+αi

2

)
− cos

(
αi−1+αi

2

)] [
cos θi
sin θi

]
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Using equation (15), we directly have: αi = 2θi − αi−1. Thus, the above equation reduces to:

= 2r

[
sin (θi − αi)

(−1)i cos (θi − αi)

]
[sin (θi) − cos (θi)]

[
cos θi
sin θi

]
=

[
0.
0.

]
Hence, the linear functions given by equations (16) and (17) are equal at ϕ = θi. This proves that the
function is continuous for Case 1.

Proof for Case 2:
Using equation (14), we know that σΘ realizes different linear functions for θ0 < ϕ < θ0 + ε and
θ2n − ε < ϕ < θ2n.
Thus, for σΘ to be continuous, we require that the two linear functions be the same at the boundary
i.e ϕ = θ0.
As before, we first write the input (z1, z2) in terms of shifted polar coordinates i.e:
(r cos(ϕ), r sin(ϕ)).
Thus, the function for θ0 < ϕ < θ0 + ε is given by:

σΘ (r cosϕ, r sinϕ) =

[
cosα0 sinα0

sinα0 − cosα0

] [
r cosϕ
r sinϕ

]
(18)

Similarly, the function for θ2n − ε < φ < θ2n is given by:

σΘ (r cosϕ, r sinϕ) =

[
cosα2n−1 sinα2n−1

(−1)i sinα2n−1 (−1)i+1 cosα2n−1

] [
r cosϕ
r sinϕ

]
(19)

Using equation (15), α2n−1 is given as follows:

α2n−1 = 2

2n−1∑
i=0

θ2n−1−i(−1)i = 2

n−1∑
i=0

(θ2i+1 − θ2i) = 2π

Thus, equation (19) reduces to:

σΘ (r cosϕ, r sinϕ) =

[
1 0
0 1

] [
r cosϕ
r sinϕ

]
(20)

The difference in the function values at the boundary i.e ϕ = θ0, obtained by subtracting equations
(20) and (18) is given as follows:[

1 0
0 1

] [
r cos θ0

r sin θ0

]
−
[
cosα0 sinα0

sinα0 − cosα0

] [
r cos θ0

r sin θ0

]
= r

[
1− cosα0 − sinα0

− sinα0 1 + cosα0

] [
cos θ0

sin θ0

]
Using the trigonometric identities: 1 − cos(θ) = 2 sin2(θ/2), 1 + cos(θ) = 2 cos2(θ/2) and
sin(θ) = 2 sin(θ/2) cos(θ/2), we have:

= r

[
2 sin2(α0

2 ) −2 sin(α0

2 ) cos(α0

2 )
−2 sin(α0

2 ) cos(α0

2 ) 2 cos2(α0

2 )

] [
cos θ0

sin θ0

]
= 2r

[
sin(α0

2 )
− cos(α0

2 )

] [
sin(α0

2 ) − cos(α0

2 )
] [cos θ0

sin θ0

]
Using equation (15), we have: α0 = 2θ0. Thus, the above equation reduces to:

= 2r

[
sin(θ0)
− cos(θ0)

]
[sin(θ0) − cos(θ0)]

[
cos θ0

sin θ0

]
=

[
0.
0.

]
Hence, the linear functions given by equations (18) and (20) are equal at ϕ = θ0.
This proves that the function is continuous for Case 2.
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B SELECTION OF γ USING CROSS VALIDATION

Using 5000 held out samples from CIFAR-10, we tested 6 different values of γ shown in Table 3 and
selected γ = 0.5 because it resulted in less than 0.5% decrease in standard accuracy while 4.96%
increase in provably robust accuracy. We used the LipConvnet-5 network with the 2D Householder
activation function of order 2 i.e σθ.

Architecture γ
Standard
Accuracy

Provable Robust Acc. (ρ =) Increase
36/255 72/255 108/255 (108/255)

LipConvnet-5

0. 75.82% 59.66% 42.78% 26.92% _
0.10 75.58% 59.74% 42.94% 28.04% +0.94%
0.25 75.54% 60.22% 43.98% 29.50% +2.58%
0.50 75.30% 60.08% 45.36% 31.88% +4.96%
0.75 74.14% 60.36% 46.08% 33.44% +6.52%
1.00 73.86% 60.30% 46.80% 34.60% +7.68%

Table 3: Results for provable robustness against adversarial examples on the CIFAR-10 dataset for
cross validation using 5000 held out samples from the training set.

C DIFFERENCES BETWEEN l1 AND l2 CERTIFICATE

By the equivalence of norms, we have the following result:

x ∈ Rd,
1√
d
‖x‖1 ≤ ‖x‖2 ≤

√
d‖x‖1 (21)

Let us assume that we have an l1 certificate for the input x so that the prediction of a neural network
remains constant in a region of l1 radius ρ1 around the input x i.e:

‖x∗ − x‖1 ≤ ρ1 (22)

We want to compute the l2 certificate implied by the certificate given in equation (22). Let ρ2 be the
l2 certificate so that:

‖x∗ − x‖2 ≤ ρ2 =⇒ ‖x∗ − x‖1 ≤ ρ1

Using equation (21), we have the following set of equations:

‖x∗ − x‖2 ≤ ρ2 =⇒ 1√
d
‖x∗ − x‖1 ≤ ρ2 =⇒ ‖x∗ − x‖1 ≤

√
dρ2

Using equation (22), we have the following:
√
dρ2 ≤ ρ1 =⇒ ρ2 ≤

ρ1√
d

Hence, the l2 norm certificate induced by the l1 norm certificate can be significantly smaller for high
dimensional inputs. Using the l1 certificate used in Levine & Feizi (2021) i.e ρ1 = 4 and d = 32

√
3

for CIFAR-10 and CIFAR-100, we get an implied certificate of ρ2 = 4/(32
√

3) = 0.07225. In
contrast, in this work we study l2 robustness for much higher certificate values i.e 36/255 = 0.14118.

D RESULTS USING REVISED LIPSCHITZ CONSTANTS

In Tables 4 and 5, we show results where the Lipschitz constant was computed using product of
Lipschitz constant of all layers. The Lipschitz constant of each layer was computed using direct power
iteration on the linear layer (using 50 iterations) and not using the approximation bound provided in
Singla & Feizi (2021).
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Architecture Methods Standard
Accuracy

Provable Robust Acc. (ρ =) Increase
36/255 72/255 108/255 (Standard)

LipConvnet-5

SOC + MaxMin 42.71% 27.86% 17.45% 9.99% _
+ LLN 45.86% 31.93% 21.17% 13.21% +3.15%
+ HH 46.36% 32.64% 21.19% 13.12% +3.65%
+ CR 45.82% 32.99% 22.48% 14.79% +3.11%

LipConvnet-10

SOC + MaxMin 43.72% 29.39% 18.56% 11.16% _
+ LLN 46.88% 33.32% 22.08% 13.87% +3.16%
+ HH 47.96% 34.30% 22.35% 14.48% +4.24%
+ CR 47.07% 34.53% 23.50% 15.66% +3.35%

LipConvnet-15

SOC + MaxMin 42.92% 28.81% 17.93% 10.73% _
+ LLN 47.72% 33.52% 21.89% 13.76% +4.80%
+ HH 47.72% 33.97% 22.45% 13.81% +4.80%
+ CR 47.61% 34.54% 23.16% 15.09% +4.69%

LipConvnet-20

SOC + MaxMin 43.06% 29.34% 18.66% 11.20% _
+ LLN 46.86% 33.48% 22.14% 14.10% +3.80%
+ HH 47.71% 34.22% 22.93% 14.57% +4.65%
+ CR 47.84% 34.77% 23.70% 15.83% +4.78%

LipConvnet-25

SOC + MaxMin 43.37% 28.59% 18.17% 10.85% _
+ LLN 46.32% 32.87% 21.53% 13.86% +2.95%
+ HH 47.70% 34.00% 22.67% 14.57% +4.33%
+ CR 46.87% 34.09% 23.41% 15.61% +3.50%

LipConvnet-30

SOC + MaxMin 42.87% 28.74% 18.47% 11.20% _
+ LLN 46.18% 32.82% 21.52% 13.52% +3.31%
+ HH 46.80% 33.72% 22.70% 14.31% +3.93%
+ CR 46.92% 34.17% 23.21% 15.84% +4.05%

LipConvnet-35

SOC + MaxMin 42.42% 28.34% 18.10% 10.96% _
+ LLN 45.22% 32.10% 21.28% 13.25% +2.80%
+ HH 46.21% 32.80% 21.55% 14.13% +3.79%
+ CR 46.88% 33.64% 23.34% 15.73% +4.46%

LipConvnet-40

SOC + MaxMin 41.84% 28.00% 17.40% 10.28% _
+ LLN 42.94% 29.71% 19.30% 11.99% +1.10%
+ HH 45.84% 32.79% 21.98% 14.07% +4.00%
+ CR 45.03% 32.56% 22.37% 14.76% +3.19%

Table 4: Results for provable robustness against adversarial examples on the CIFAR-100 dataset. For
all networks in this table, the maximum deviation of the Lipschitz constant from 1 was measured to
be 2.4609× 10−5. The values shown in red were reduced by 0.01% from the corresponding values
in Table 1 due to the correction in Lipschitz constant. All other values remained unchanged.
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Architecture Methods Standard
Accuracy

Provable Robust Acc. (ρ =) Increase
36/255 72/255 108/255 (108/255)

LipConvnet-5
SOC + MaxMin 75.78% 59.18% 42.01% 27.09% _

+ HH 76.30% 60.12% 43.20% 27.39% +0.30%
+ CR 75.31% 60.37% 45.62% 32.38% +5.29%

LipConvnet-10
SOC + MaxMin 76.45% 60.86% 44.15% 29.15% _

+ HH 76.86% 61.52% 44.91% 29.90% +0.75%
+ CR 76.23% 62.57% 47.70% 34.15% +5.00%

LipConvnet-15
SOC + MaxMin 76.68% 61.36% 44.27% 29.66% _

+ HH 77.41% 61.92% 45.60% 31.10% +1.44%
+ CR 76.39% 62.96% 48.47% 35.47% +5.81%

LipConvnet-20
SOC + MaxMin 76.90% 61.87% 45.79% 31.08% _

+ HH 76.99% 61.76% 45.59% 30.99% -0.09%
+ CR 76.34% 62.63% 48.68% 36.04% +4.96%

LipConvnet-25
SOC + MaxMin 75.24% 60.17% 43.54% 28.60% _

+ HH 76.37% 61.50% 44.72% 29.83% +1.23%
+ CR 75.21% 61.98% 47.93% 34.92% +6.32%

LipConvnet-30
SOC + MaxMin 74.51% 59.06% 42.46% 28.04% _

+ HH 75.25% 59.90% 43.85% 29.35% +1.30%
+ CR 74.23% 60.64% 46.51% 34.08% +6.04%

LipConvnet-35
SOC + MaxMin 73.73% 58.50% 41.75% 27.20% _

+ HH 75.44% 61.05% 45.38% 30.85% +3.65%
+ CR 74.25% 61.30% 47.60% 35.21% +8.01%

LipConvnet-40
SOC + MaxMin 71.63% 54.39% 37.92% 24.13% _

+ HH 73.24% 58.12% 42.23% 28.48% +4.35%
+ CR 72.59% 59.04% 44.92% 32.87% +8.74%

Table 5: Results for provable robustness against adversarial examples on the CIFAR-10 dataset. For
all networks in this table, the maximum deviation of the Lipschitz constant from 1 was measured to
be 2.2072× 10−5. The values shown in red were reduced by 0.01% from the corresponding values
in Table 2 due to the correction in Lipschitz constant. All other values remained unchanged.

20



Published as a conference paper at ICLR 2022

(a) The output of σθ always lies in the pink
region. Applying σφ on this where φ 6= θ +
2nπ, n ∈ Z further divides this region into
two linear regions (light and original pink).

(b) In each colored region, the function is linear with the
Jacobian mentioned. For the function to be continuous,
we must have θ3 − θ2 + θ1 − θ0 = π. Thus, any 3 of
{θ0, θ1, θ2, θ3} can be chosen as learnable parameters.

Figure 2: Constructing Higher Order Householder activations (J+ and J− defined in equation (2))

E VERIFICATION THAT σθ(z1, z2) ALWAYS LIES ON ONE SIDE OF THE
HYPERPLANE

Consider the case: z1 sin (θ/2)− z2 cos (θ/2) > 0
In this case σθ(z1, z2) = (z1, z2) and the result follows directly.
Consider the other case: z1 sin (θ/2)− z2 cos (θ/2) ≤ 0[

a1

a2

]
=

[
cos θ sin θ
sin θ − cos θ

] [
z1

z2

]
=

[
z1 cos θ + z2 sin θ
z1 sin θ − z2 cos θ

]
a1 sin (θ/2)− a2 cos (θ/2) = (z1 cos θ + z2 sin θ) sin (θ/2)− (z1 sin θ − z2 cos θ) cos (θ/2)

= z1 (cos θ sin (θ/2)− sin θ cos (θ/2)) + z2 (sin θ sin (θ/2) + cos θ cos (θ/2))

= −z1 sin (θ/2) + z2 cos (θ/2)

Since z1 sin (θ/2)− z2 cos (θ/2) ≤ 0, we have −z1 sin (θ/2) + z2 cos (θ/2) ≥ 0.

F HIGHER ORDER HOUSEHOLDER ACTIVATION FUNCTIONS

We know that MaxMin(z1, z2) = (max(z1, z2), min(z1, z2)) where z1, z2 ∈ R. Because
max(z1, z2) > min(z1, z2), applying MaxMin again gives the same result i.e MaxMin◦MaxMin =
MaxMin. Now consider the function σθ (discussed in the maintext, given below for convenience):

σθ (z1, z2) =


[
1 0

0 1

] [
z1

z2

]
if z1 sin (θ/2)− z2 cos (θ/2) > 0[

cos θ sin θ

sin θ − cos θ

] [
z1

z2

]
if z1 sin (θ/2)− z2 cos (θ/2) ≤ 0

From Figure 1, we observe that if (u1, u2) = σθ(z1, z2), then (u1, u2) always lies on the right side
of the hyperplane (pink colored region). In other words, u1 sin (θ/2) − u2 cos (θ/2) > 0 ∀ z1, z2

(proof in Appendix E). This further implies that σθ ◦ σθ = σθ.

However from Figure 2a in the maintext, we observe that if we use a different angle φ where
φ 6= θ + 2nπ for some n ∈ Z, then σφ(u1, u2) 6= (u1, u2) for all (u1, u2) in the pink colored region
(u1 sin (θ/2) − u2 cos (θ/2) > 0). This motivates us to construct the function σ(n) : R2 → R2

defined as follows:

σ(n) = σθ ◦ σθ ◦ σθ . . . ◦ σθ︸ ︷︷ ︸
n times, θ’s can be different

(23)

Clearly, σ(n) has a larger number of linear regions than σθ and thus expected to have more expressive
power. However, a drawback of using σ(n) is that it requires a sequential application of σθ which can
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be expensive if the number of iterations n is large. To address this limitation, first observe that σθ re-
alizes the same linear function for (z1, z2) and (cz1, cz2) when c > 0 i.e∇(z1,z2) σθ = ∇(cz1,cz2) σθ.
Since σθ is piecewise linear, σθ(cz1, cz2) = cσθ(z1, z2). Thus, the input of the next function in
the iteration is scaled by c as well and its linear function (or the Jacobian) remains unchanged. By
induction, same holds for all the subsequent iterations. By chain rule, the Jacobian of composition
of functions is equal to the product of Jacobian of each individual function. Since the Jacobian
of each function is unchanged on scaling by c > 0, the Jacobian ∇(z1,z2) σ

(n) also remains un-
changed: ∇(z1,z2) σ

(n) = ∇(cz1,cz2) σ
(n). This suggests that it is possible to determine the Jacobian

∇(z1,z2) σ
(n) for the input (z1, z2) by first converting to the polar coordinates (

√
z2

1 + z2
2 , ϕ) and

then using the phase angle ϕ alone (where cos(ϕ) = z1/
√
z2

1 + z2
2 , sin(ϕ) = z2/

√
z2

1 + z2
2).

This motivates us to construct another GNP piecewise linear activation that only depends on the
phase of the input but unlike σθ, it is allowed to have more than 2 linear regions without requiring a
sequential application. This construction is given in the following theorem (example in Figure 2b):

Theorem 2. Given: 0 ≤ θ0 < θ1 · · · < θ2n = 2π + θ0 such that
∑n−1
i=0 (θ2i+1 − θ2i) = π and

αi = 2
∑i
j=0 θi−j(−1)j , The function σΘ : R2 → R2 is continuous, GNP and 1-Lipschitz where

Θ = [θ0, θ1, . . . , θ2n−1] (also called Householder Activation of order n in 2 dimensions):

σΘ(z1, z2) =

[
cosαi sinαi

(−1)i sinαi (−1)i+1 cosαi

] [
z1

z2

]
θi ≤ ϕ < θi+1

where ϕ ∈ [θ0, θ2n = 2π + θ0) and cos(ϕ) = z1/
√
z2

1 + z2
2 , sin(ϕ) = z2/

√
z2

1 + z2
2 .

Using the definition of αi, α2n−1 can be computed as follows:

α2n−1 = 2

2n−1∑
j=0

θ2n−1−j(−1)j = 2

n−1∑
j=0

(θ2n−1−2j − θ2n−2−2j) = 2

n−1∑
j=0

(θ2j+1 − θ2j) = 2π

σΘ(z1, z2) =

[
cosα2n−1 sinα2n−1

− sinα2n−1 cosα2n−1

] [
z1

z2

]
= (z1, z2) θ2n−1 ≤ ϕ < θ2n(= θ0 + 2π)

By continuity, σΘ(z1, z2) = (z1, z2) for ϕ = θ0. Thus if we set θ0 = 0, σΘ is fixed to be identity
when ϕ = 0 (or z2 = 0). However, a learnable θ0 offers the flexibility of choosing arbitrary intervals
around the ϕ = θ0 to be the identity function (while of course allowing θ0 = 0). Since we can choose
any interval of 2π for the phase angle, we choose ϕ ∈ [θ0, θ2n = θ0 + 2π) instead of the usual
[0, 2π) to allow this possibility. We call (

√
z2

1 + z2
2 , ϕ), the shifted polar coordinates.

Additionally, we make the following observations about Theorem 2. First, by construction σΘ has 2n

linear regions. Second, since
∑n−1
i=0 (θ2i+1− θ2i) = π, the sum of angles subtended by linear regions

with determinant −1 equals π. This in turn implies that sum of angles subtended by linear regions
with determinant +1 must also equal π. Third, again using

∑n−1
j=0 (θ2j+1 − θ2j) = π, we know that

only 2n− 1 of the 2n parameters in [θ0, θ1, θ2, . . . , θ2n−1] can be chosen independently implying
that σΘ has 2n− 1 learnable parameters. In contrast, σ(n) has only n learnable parameters. Fourth,
when n = 1, σΘ reduces to the original σθ activation.

Because every function of the form σ(n) (equation (23)) can have potentially 2n linear regions, while
σΘ has only 2n linear regions, σΘ cannot express every function of the form σ(n). The primary
benefit of using σΘ is that it can be easily applied by first determining the angle ϕ (using shifted
polar coordinates), the region [θi, θi+1) to which ϕ belongs and the Jacobian for this region. This
requires 1 multiplication with the Jacobian instead of n required for σ(n).

G EXTENSION TO HIGHER DIMENSIONS

We introduced Householder activation function of Order 1 in m dimensions in maintext Definition 1.
However, it suffers from the limitation that it has only 2 linear regions thus limiting its expressive
power. The construction given in Appendix Section F allows more than 2 linear regions but is valid
only for 2 dimensional inputs. This motivates us to construct Householder activations that depend on
all the m components of input z ∈ Rm, (m ≥ 3) while allowing for more than 2 linear regions.
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A straightforward way of constructing such an activation function is to apply an orthogonal matrix
Q ∈ Rm×m, followed by dividing the output Qz into groups of size 2 each and then applying σθ to
each group. However, since 1-Lipschitz neural networks involve multiplication with an orthogonal
weight matrix followed by GNP activation anyway, this construction is trivial because it does not
lead to additional gains in expressive power over using 2 dimensional σΘ activation functions.

Recall that the function σv is given by the following equation:

σv(z) =

{
z, vT z > 0,

(I− 2vvT )z, vT z ≤ 0.
(24)

By a similar analysis as for the 2-dimensional case (Figure 2 in maintext), a repeated application of
σv leads to increased number of linear regions and thus higher expressive power. This motivates us
to construct the function σ(m,n) : Rm → Rm by applying the function σv (equation (24)) n times
iteratively with different learnable parameter v at each iteration:

σ(m,n) = σv ◦ σv ◦ σv . . . ◦ σv︸ ︷︷ ︸
n times, v’s can be different

Since σv realizes the same linear function for both the inputs z and cz i.e ∇z σv = ∇cz σv when
c > 0, σ(m,n) satisfies this property as well. This suggests that it is possible to determine the Jacobian
of σ(m,n) for the given input z by projecting z onto a unit sphere: z/‖z‖2. Moreover, we want our
constructed function to have at least 2n linear regions while requiring k iterations of σv where k is
independent of n. This motivates the following open question:
Open Problem. Can non-trivial order-n (n > 1) householder activation functions with 2n linear
regions be constructed for m dimensional input (m > 2) using k iterations of σv where k is
independent of n (but may depend on m)?

H ADDITIONAL RESULTS ON CIFAR-10

The rows "BCOP", "Cayley" and "SOC (baseline)" all use the MaxMin activation function. "SOC
+ HH" replaces MaxMin with 2D Householder activation of order 1 (σθ), "+ CR" adds Certificate
Regularization (CR) with γ = 0.1 (while using σθ as the activation function).

In Table 9, the row "SOC + HH(2)" uses Householder activation of order 2 (σΘ defined in Theorem
2), "+ CR" adds Certificate Regularization (CR) with γ = 0.1 (while using the HH activation of order
2 i.e σΘ as the activation function).

None of the results in Tables 7, 8 and 9 include Last Layer Normalization (LLN).
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Architecture Running times (seconds)
MaxMin HH

LipConvnet-5 3.7864 3.86
LipConvnet-10 5.3677 5.6014
LipConvnet-15 7.234 7.3503
LipConvnet-20 9.536 9.3753
LipConvnet-25 11.0512 11.2692
LipConvnet-30 12.5135 13.6866
LipConvnet-35 14.5539 15.0921
LipConvnet-40 17.1907 17.1928

Table 6: Inference times for various networks on the complete test dataset of CIFAR-10 with 10000
samples. None of these networks include Last Layer Normalization (LLN).

Architecture Methods Standard
Accuracy

Provable Robust Acc. (ρ =) Increase
36/255 72/255 108/255 (108/255)

LipConvnet-5

BCOP 74.25% 58.01% 40.34% 25.21% -1.88%
Cayley 72.37% 55.92% 38.65% 24.27% -2.82%
SOC (baseline) 75.78% 59.18% 42.01% 27.09% (+0%)
SOC + HH 76.30% 60.12% 43.20% 27.39% +0.30%

+ CR 75.31% 60.37% 45.62% 32.38% +5.29%

LipConvnet-10

BCOP 74.47% 58.48% 40.77% 26.16% -2.99%
Cayley 74.30% 57.99% 40.75% 25.93% -3.22%
SOC (baseline) 76.45% 60.86% 44.15% 29.15% (+0%)
SOC + HH 76.86% 61.52% 44.91% 29.90% +0.75%

+ CR 76.23% 62.57% 47.70% 34.15% +5.00%

LipConvnet-15

BCOP 73.86% 57.39% 39.33% 24.86% -4.80%
Cayley 71.92% 54.55% 37.67% 23.50% -6.16%
SOC (baseline) 76.68% 61.36% 44.28% 29.66% (+0%)
SOC + HH 77.41% 61.92% 45.60% 31.10% +1.44%

+ CR 76.39% 62.96% 48.47% 35.47% +5.81%

LipConvnet-20

BCOP 69.84% 52.10% 34.75% 21.09% -9.99%
Cayley 68.87% 51.88% 35.56% 21.72% -9.36%
SOC (baseline) 76.90% 61.87% 45.79% 31.08% (+0%)
SOC + HH 76.99% 61.76% 45.59% 30.99% -0.09%

+ CR 76.34% 62.63% 48.69% 36.04% +4.96%

Table 7: Results for provable robustness on the CIFAR-10 dataset using shallow networks.
None of these results include Last Layer Normalization (LLN).
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Architecture Methods Standard
Accuracy

Provable Robust Acc. (ρ =) Increase
36/255 72/255 108/255 (108/255)

LipConvnet-25

BCOP 68.47% 49.92% 31.99% 18.62% -9.98%
Cayley 64.00% 45.55% 29.24% 16.99% -11.61%
SOC (baseline) 75.24% 60.17% 43.55% 28.60% (+0%)
SOC + HH 76.37% 61.50% 44.72% 29.83% +1.23%

+ CR 75.21% 61.98% 47.93% 34.92% +6.32%

LipConvnet-30

BCOP 64.11% 43.39% 25.02% 12.15% -15.90%
Cayley 58.83% 38.68% 22.07% 10.68% -17.37%
SOC (baseline) 74.51% 59.06% 42.46% 28.05% (+0%)
SOC + HH 75.25% 59.90% 43.85% 29.35% +1.30%

+ CR 74.23% 60.64% 46.51% 34.08% +6.03%

LipConvnet-35

BCOP 63.05% 41.71% 23.30% 11.36% -15.84%
Cayley 53.55% 32.37% 16.18% 6.33% -20.87%
SOC (baseline) 73.73% 58.50% 41.75% 27.20% (+0%)
SOC + HH 75.44% 61.05% 45.38% 30.85% +3.65%

+ CR 74.25% 61.30% 47.60% 35.21% +8.01%

LipConvnet-40

BCOP 60.17% 38.86% 21.20% 9.08% -15.05%
Cayley 51.26% 27.90% 12.06% 3.81% -20.32%
SOC (baseline) 71.63% 54.39% 37.92% 24.13% (+0%)
SOC + HH 73.24% 58.12% 42.24% 28.48% +4.35%

+ CR 72.59% 59.04% 44.92% 32.87% +8.74%

Table 8: Results for provable robustness against adversarial examples on the CIFAR-10 dataset.
None of these results include Last Layer Normalization (LLN).
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Architecture Methods Standard
Accuracy

Provable Robust Acc. (ρ =) Increase
36/255 72/255 108/255 (108/255)

LipConvnet-5
SOC + HH(2) 75.85% 59.66% 42.68% 27.44% +0.35%

+ CR 74.85% 60.56% 44.96% 31.98% +4.59%

LipConvnet-10
SOC + HH(2) 76.80% 61.44% 44.91% 29.70% +0.55%

+ CR 76.30% 62.11% 47.85% 34.49% +5.34%

LipConvnet-15
SOC + HH(2) 77.41% 62.21% 45.11% 30.49% +0.83%

+ CR 75.73% 62.21% 47.92% 35.26% +5.60%

LipConvnet-20
SOC + HH(2) 76.69% 61.58% 45.39% 30.89% -0.19%

+ CR 75.72% 62.61% 48.30% 35.29% +4.21%

LipConvnet-25
SOC + HH(2) 76.12% 61.24% 44.81% 29.63% +1.03%

+ CR 75.38% 61.94% 47.67% 34.22% +5.62%

LipConvnet-30
SOC + HH(2) 75.09% 60.01% 44.22% 29.39% +1.34%

+ CR 74.88% 61.23% 46.63% 34.02% +5.97%

LipConvnet-35
SOC + HH(2) 73.93% 58.61% 42.29% 28.47% +1.27%

+ CR 74.14% 60.72% 46.67% 34.64% +7.44%

LipConvnet-40
SOC + HH(2) 70.90% 54.96% 38.94% 24.90% +0.77%

+ CR 72.28% 57.67% 43.00% 30.66% +6.53%

Table 9: Results for provable robustness on CIFAR-10 using HH activation of Order 2 (σΘ).
Increase (108/255) is calculated with respect to SOC baseline (from Tables 7, 8).
None of these results include Last Layer Normalization (LLN).

Architecture Methods Standard
Accuracy

Provable Robust Acc. (ρ =) Increase
(36/255) (72/255) (108/255) (Standard)

LipConvnet-5
SOC (no LLN) 75.78% 59.18% 42.01% 27.09% (+0%)
SOC + LLN 75.78% 59.58% 42.45% 27.20% +0.00%

LipConvnet-10
SOC (no LLN) 76.45% 60.86% 44.15% 29.15% (+0%)
SOC + LLN 76.69% 61.08% 44.04% 29.19% +0.24%

LipConvnet-15
SOC (no LLN) 76.68% 61.36% 44.28% 29.66% (+0%)
SOC + LLN 76.84% 61.94% 45.51% 30.28% +0.16%

LipConvnet-20
SOC (no LLN) 77.05% 61.87% 45.79% 31.08% (+0%)
SOC + LLN 76.71% 61.44% 44.92% 30.19% -0.34%

LipConvnet-25
SOC (no LLN) 75.24% 60.17% 43.55% 28.60% (+0%)
SOC + LLN 76.54% 61.21% 44.18% 29.47% +1.30%

LipConvnet-30
SOC (no LLN) 74.51% 59.06% 42.46% 28.05% (+0%)
SOC + LLN 74.26% 58.97% 41.82% 26.93% -0.25%

LipConvnet-35
SOC (no LLN) 73.73% 58.50% 41.75% 27.20% (+0%)
SOC + LLN 74.32% 59.05% 42.34% 28.14% +0.59%

LipConvnet-40
SOC (no LLN) 71.63% 54.39% 37.92% 24.13% (+0%)
SOC + LLN 74.03% 58.27% 41.75% 27.12% +2.40%

Table 10: Results for provable robustness on the CIFAR-10 dataset with and without LLN
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I ADDITIONAL RESULTS ON CIFAR-100

All results in Tables 13, 14 and 15 include Last Layer Normalization (LLN).

The rows "BCOP", "Cayley" and "SOC (baseline)" all use the MaxMin activation function. "SOC
+ HH" replaces MaxMin with 2D Householder activation of order 1 (σθ), "+ CR" adds Certificate
Regularization (CR) with γ = 0.1 (while using σθ as the activation function).

In Table 15, the row "SOC + HH(2)" uses Householder activation of order 2 (σΘ defined in Theorem
2), "+ CR" adds Certificate Regularization (CR) with γ = 0.1 (while using the HH activation of order
2 i.e σΘ as the activation function).

Architecture Methods Standard
Accuracy

Provable Robust Acc. (ρ =) Increase
36/255 72/255 108/255 (Standard)

LipConvnet-5

SOC + MaxMin 42.71% 27.86% 17.45% 9.99% _
+ LLN 45.86% 31.93% 21.17% 13.21% +3.15%
+ HH 46.36% 32.64% 21.19% 13.12% +3.65%
+ CR 45.82% 32.99% 22.48% 14.79% +3.11%

LipConvnet-10

SOC + MaxMin 43.72% 29.39% 18.56% 11.16% _
+ LLN 46.88% 33.32% 22.08% 13.87% +3.16%
+ HH 47.96% 34.30% 22.35% 14.48% +4.24%
+ CR 47.07% 34.53% 23.50% 15.66% +3.35%

Table 11: Results for provable robustness against adversarial examples on the CIFAR-100 dataset.

Architecture Running times (in seconds)
MaxMin (no LLN) MaxMin (LLN) HH (LLN)

LipConvnet-5 3.7568 3.5002 3.6673
LipConvnet-10 5.3714 5.5482 5.5533
LipConvnet-15 7.3092 7.2595 7.3127
LipConvnet-20 9.005 9.2043 9.308
LipConvnet-25 10.9321 10.7868 11.726
LipConvnet-30 12.3198 13.2168 13.6275
LipConvnet-35 14.427 14.575 15.7069
LipConvnet-40 16.0911 16.2535 17.1015

Table 12: Inference times for various networks on the CIFAR-100 test dataset. Similar to CIFAR-10
(in Table 6), these numbers are for the whole test dataset with 10000 samples.
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Architecture Methods Standard
Accuracy

Provable Robust Acc. (ρ =) Increase
36/255 72/255 108/255 (108/255)

LipConvnet-5

BCOP 46.31% 31.55% 20.34% 12.52% -0.69%
Cayley 44.61% 31.01% 19.84% 12.43% -0.78%
SOC (baseline) 45.86% 31.93% 21.17% 13.21% (+0%)
SOC + HH 46.36% 32.64% 21.19% 13.12% -0.09%

+ CR 45.82% 32.99% 22.48% 14.79% +1.58%

LipConvnet-10

BCOP 45.36% 31.71% 20.48% 12.40% -1.47%
Cayley 45.79% 31.91% 20.69% 12.78% -1.09%
SOC (baseline) 46.88% 33.32% 22.08% 13.87% (+0%)
SOC + HH 47.96% 34.30% 22.35% 14.48% +0.61%

+ CR 47.07% 34.53% 23.50% 15.66% +1.79%

LipConvnet-15

BCOP 43.70% 30.11% 19.85% 12.29% -1.47%
Cayley 45.05% 31.60% 20.32% 12.93% -0.83%
SOC (baseline) 47.72% 33.52% 21.89% 13.76% (+0%)
SOC + HH 47.72% 33.97% 22.45% 13.81% +0.05%

+ CR 47.61% 34.54% 23.16% 15.09% +1.33%

LipConvnet-20

BCOP 39.77% 27.20% 17.44% 10.49% -3.61%
Cayley 39.68% 26.93% 17.06% 10.48% -3.62%
SOC (baseline) 46.86% 33.48% 22.14% 14.10% (+0%)
SOC + HH 47.71% 34.22% 22.93% 14.57% +0.47%

+ CR 47.84% 34.77% 23.70% 15.84% +1.74%

Table 13: Results for provable robustness on the CIFAR-100 dataset using shallow networks.
All of these results include Last Layer Normalization (LLN).
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Architecture Methods Standard
Accuracy

Provable Robust Acc. (ρ =) Increase
36/255 72/255 108/255 (108/255)

LipConvnet-25

BCOP 34.15% 21.57% 13.52% 7.97% -5.89%
Cayley 33.93% 21.93% 13.68% 8.19% -5.67%
SOC (baseline) 46.32% 32.87% 21.53% 13.86% (+0%)
SOC + HH 47.70% 34.00% 22.67% 14.57% +0.71%

+ CR 46.87% 34.09% 23.41% 15.61% +1.75%

LipConvnet-30

BCOP 29.73% 18.69% 10.80% 6% -7.52%
Cayley 28.67% 18.05% 10.43% 6.09% -7.43%
SOC (baseline) 46.18% 32.82% 21.52% 13.52% (+0%)
SOC + HH 46.80% 33.72% 22.70% 14.31% +0.79%

+ CR 46.92% 34.17% 23.21% 15.84% +2.32%

LipConvnet-35

BCOP 25.65% 14.88% 8.47% 4.30% -8.95%
Cayley 27.75% 16.37% 9.52% 5.40% -7.85%
SOC (baseline) 45.22% 32.10% 21.28% 13.25% (+0%)
SOC + HH 46.21% 32.80% 21.55% 14.13% +0.88%

+ CR 46.88% 33.64% 23.34% 15.73% +2.48%

LipConvnet-40

BCOP 30.66% 18.68% 10.46% 5.92% -6.07%
Cayley 25.54% 14.91% 8.37% 4.40% -7.59%
SOC (baseline) 42.94% 29.71% 19.30% 11.99% (+0%)
SOC + HH 45.84% 32.79% 21.98% 14.07% +2.08%

+ CR 45.03% 32.57% 22.37% 14.76% +2.77%

Table 14: Results for provable robustness on the CIFAR-100 dataset using deeper networks.
All of these results include Last Layer Normalization (LLN).

29



Published as a conference paper at ICLR 2022

Architecture Methods Standard
Accuracy

Provable Robust Acc. (ρ =) Increase
36/255 72/255 108/255 (108/255)

LipConvnet-5
SOC + HH(2) 46.61% 32.50% 21.34% 13.22% +0.01%

+ CR 46.69% 33.22% 22.34% 14.30% +1.09%

LipConvnet-10
SOC + HH(2) 47.47% 33.32% 21.84% 13.75% -0.01%

+ CR 47.53% 34.52% 23.06% 15.07% +1.31%

LipConvnet-15
SOC + HH(2) 47.19% 33.67% 22.36% 13.78% -0.09%

+ CR 47.22% 34.04% 22.98% 15.28% +1.41%

LipConvnet-20
SOC + HH(2) 47.86% 33.93% 22.44% 14.41% +0.31%

+ CR 47.54% 34.32% 23.53% 15.54% +1.44%

LipConvnet-25
SOC + HH(2) 47.86% 33.97% 22.78% 14.59% +0.73%

+ CR 47.50% 34.38% 23.92% 15.92% +2.06%

LipConvnet-30
SOC + HH(2) 46.23% 32.64% 21.95% 14.00% +0.48%

+ CR 46.36% 33.20% 22.70% 14.85% +1.33%

LipConvnet-35
SOC + HH(2) 46.06% 32.35% 21.33% 13.65% +0.40%

+ CR 45.78% 33.24% 22.39% 14.78% +1.53%

LipConvnet-40
SOC + HH(2) 43.81% 30.59% 20.08% 12.56% +0.57%

+ CR 45.61% 32.50% 22.36% 14.84% +2.85%

Table 15: Results for provable robustness on CIFAR-100 using HH activation of Order 2 (σΘ).
Increase (108/255) is calculated with respect to SOC baseline (from Tables 13, 14).
All of these results include Last Layer Normalization (LLN).

Architecture Methods Standard
Accuracy

Provable Robust Acc. (ρ =) Increase
(36/255) (72/255) (108/255) (Standard)

LipConvnet-5
SOC (no LLN) 42.71% 27.86% 17.45% 9.99% (+0%)
SOC + LLN 45.86% 31.93% 21.17% 13.21% +3.15%

LipConvnet-10
SOC (no LLN) 43.72% 29.39% 18.56% 11.16% (+0%)
SOC + LLN 46.88% 33.32% 22.08% 13.87% +3.16%

LipConvnet-15
SOC (no LLN) 42.92% 28.81% 17.93% 10.73% (+0%)
SOC + LLN 47.72% 33.52% 21.89% 13.76% +4.80%

LipConvnet-20
SOC (no LLN) 43.06% 29.34% 18.66% 11.20% (+0%)
SOC + LLN 46.86% 33.48% 22.14% 14.10% +3.80%

LipConvnet-25
SOC (no LLN) 43.37% 28.59% 18.18% 10.85% (+0%)
SOC + LLN 46.32% 32.87% 21.53% 13.86% +2.95%

LipConvnet-30
SOC (no LLN) 42.87% 28.74% 18.47% 11.21% (+0%)
SOC + LLN 46.18% 32.82% 21.52% 13.52% +3.31%

LipConvnet-35
SOC (no LLN) 42.42% 28.34% 18.10% 10.96% (+0%)
SOC + LLN 45.22% 32.10% 21.28% 13.25% +2.80%

LipConvnet-40
SOC (no LLN) 41.84% 28.00% 17.40% 10.28% (+0%)
SOC + LLN 42.94% 29.71% 19.30% 11.99% +1.10%

Table 16: Results for provable robustness on the CIFAR-100 dataset with and without LLN
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