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Summary

Production optimization led by computing intelligence can greatly improve oilfield economic effectiveness. However, it is confronted
with huge computational challenge because of the expensive black-box objective function and the high-dimensional design variables.
Many low-fidelity methods based on simplified physical models or data-driven models have been proposed to reduce evaluation costs.
These methods can approximate the global fitness landscape to a certain extent, but it is difficult to ensure accuracy and correlation in
local areas. Multifidelity methods have been proposed to balance the advantages of the two, but most of the current methods rely on
complex computational models. Through a simple but efficient shortcut, our work aims to establish a novel production-optimization
framework using genetic transfer learning to accelerate convergence and improve the quality of optimal solution using results from dif-
ferent fidelities. Net present value (NPV) is a widely used standard to comprehensively evaluate the economic value of a strategy in pro-
duction optimization. On the basis of NPV, we first established a multifidelity optimization model that can synthesize the reference
information from high-fidelity tasks and the approximate results from low-fidelity tasks. Then, we introduce the concept of relative
fidelity as an indicator for quantifying the dynamic reliability of low-fidelity methods, and further propose a two-mode multifidelity
genetic transfer learning framework that balances computing resources for tasks with different fidelity levels. The multitasking mode
takes the elite solution as the transfer medium and forms a closed-loop feedback system through the information exchange between
low- and high-fidelity tasks in parallel. Sequential transfer mode, a one-way algorithm, transfers the elite solutions archived in the previ-
ous mode as the population to high-fidelity domain for further optimization. This framework is suitable for population-based optimiza-
tion algorithms with variable search direction and step size. The core work of this paper is to realize the framework by means of
differential evolution (DE), for which we propose the multifidelity transfer differential evolution (MTDE). Corresponding to multitask-
ing and sequential transfer in the framework, MTDE includes two modes, transfer based on base vector (b-transfer) and transfer based
on population (p-transfer). The b-transfer mode incorporates the unique advantages of DE into fidelity switching, whereas the p-transfer
mode adaptively conducts population for further high-fidelity local search. Finally, the production-optimization performance of MTDE
is validated with the egg model and two real field cases, in which the black-oil and streamline models are used to obtain high- and low-
fidelity results, respectively. We also compared the convergence curves and optimization results with the single-fidelity method and the
greedy multifidelity method. The results show that the proposed algorithm has a faster convergence rate and a higher-quality well-
control strategy. The adaptive capacity of p-transfer is also demonstrated in three distinct cases. At the end of the paper, we discuss the
generalization potential of the proposed framework.

Introduction

Production optimization is supposed to optimize an appropriate development strategy of well sets, including location, bottomhole pres-
sure, flow rates, and conversion scheme, to maximize the NPV or accumulative oil production (Zhang et al. 2020a, 2020b; Zhao et al.
2020c). It has become an indispensable process in oil/gasfield development in the context of continuous fluctuations in international oil
prices and declining production of many large oil fields. Moreover, with the technological developments of digital and smart fields, the
economic benefits achieved by production optimization are increasingly considerable.

However, because of the complexity of design variables and reservoir heterogeneity, production optimization is challenged by the
high dimensionality and multimodal of the optimization objective function (Zhao et al. 2020a, 2020b). Commercial numerical simula-
tors with full-scale reservoir models are often used to build correlations between well-control settings and oilfield-development out-
comes; nevertheless, it means that the gradient information required for optimization cannot be obtained from the packaged software.
Derivative-free stochastic global optimization algorithms such as genetic algorithm and particle-swarm optimization are frequently
applied to overcome this obstacle. Using stochastic and evolving operators, this kind of algorithm can search for the global optimum by
means of the objective-function value instead of calculating or approximating the gradient information. However, the run time of a
single simulation can take hours or even tens of hours as the scale of reservoir increases and, moreover, this time-consuming step needs
to be performed thousands of times during the global optimization process. Therefore, improving the speed of searching for the optimal
scheme has been thought of as an essential work in production optimization.

The black-box system derived from the finite-difference numerical-simulation method with the meshed reservoir model is the most
widely used evaluation scheme in production optimization. However, the high computational cost is a large impediment to fully assessing
the potential of feasible regions in a limited time. Many efforts have been made to improve the efficiency of simulations, including build-
ing simplified models or obtaining approximate results from substitute physical concepts that are easier to calculate, and these are known
as low-fidelity approaches. Several methods have been proposed to simplify the flow partial-differential equations of large-scale grids for
numerical simulation. At present, commercial numerical software generally integrates the grid-roughing module to simplify the scale of
solving partial-differential equations by generating a rough reservoir model. In addition, the streamline numerical-simulation method
based on implicit pressure/explicit saturation has become an efficient and reliable choice for waterflood optimization (Bratvedt et al. 1992;
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Crane et al. 2000). This method converts the fluid migration between grids in the standard finite-difference simulator into a 1D flow space
solution, thus saving several times of calculation time. This advantage is particularly significant in large-scale reservoir cases.

Another powerful low-fidelity approach is to build a data-driven proxy model instead of the numerical simulator. Using a trained
data-driven model for computation can save much more time. At present, the proxies, including engineering models and regression
models, have achieved remarkable results in the field of production optimization. On the one hand, the engineering model introduces the
physical theory or engineering information as the basis of the model and then adjusts the parameters through the training data to improve
the approximation performance of the model. The interwell numerical-simulation model (Zhao et al. 2016; Guo and Reynolds 2018,
2019) approximates the waterflood reservoir as a number of interwell units with transmissibility and control pore volume. It predicts pro-
duction performance by solving the mass-material-balance and front-tracking equation. The capacitance/resistance model (Yousef et al.
2006; Weber 2009) takes into account the effects of compressibility (capacitance) and transmissibility (resistance) to measure the fluctua-
tions between the indicators of injectors and the producers. The artificial neural network-discrete empirical interpolation method (Foroud
and Seifi 2016; Foroud et al. 2018) learns the nonlinear mapping of control parameters with pressure and saturation at points of interest
using the artificial neural network, and then constructs a flow dynamic system to replace the simulator for production optimization
through the discrete empirical interpolation method. On the other hand, the regression model is also a popular alternative, and uses
machine learning or statistical methods to directly establish the relationship between well-control parameters and NPV. This proxy
model generally works with evolutionary algorithms and learns online with iterative updates of the population (known as infilling)
(Yondo et al. 2018). Kriging, also known as the Gaussian process (Sacks et al. 1989), has been extensively used for decades because of
its ability to predict mean-squared error, but often requires dimension reduction when dealing with high-dimensional problems such as
production optimization (Chen et al. 2020a). Radial basis function (Broomhead and Lowe 1988; Chen et al. 2020b, 2021) and support-
vector regression (Drucker et al. 1997; Guo and Reynolds 2018) have more advantages in dealing with high-dimensional problems. Pre-
vious studies show that such methods have achieved remarkable results in production optimization. In addition, artificial neural networks
have the potential to replace numerical simulators because of their universal approximation ability (Foroud et al. 2014; Golzari et al.
2015; Teixeira and Secchi 2019). However, the applicability of different kinds of neural networks is still an open question.

Although the previous low-fidelity methods greatly improve the calculation efficiency of the objective function in the optimization
search, the quality of the final result cannot be guaranteed through the simplified system. Therefore, a tradeoff between speed and accu-
racy is required, which leads us to focus on multifidelity methods. For an engineering-optimization problem, when additional information
about the problem is available, the multifidelity approach is used to compensate for the shortcomings of the single-fidelity approach
(Forrester and Keane 2009). The main principle is to speed up the search by combining a large amount of cheap but inaccurate evaluation
information with a small amount of accurate but expensive evaluation information (de Baar and Roberts 2017). How to balance the call
frequency of tasks with different fidelities and make efficient use of high-fidelity information is the key to improving the computational
efficiency of the multifidelity method. In current research, the multifidelity technique of optimization has multiple meanings.

For a given observed object/solution, precise measurement/evaluation (high fidelity) often requires high experimental/computational
costs, and if there is a relatively coarse approximation (low fidelity), it can be used as an additional information aid for high-fidelity
optimization. In this respect, cokriging (Kennedy and O’Hagan 2000), a geostatistical interpolation method with multisource inputs, is
most widely used at present (Forrester et al. 2007; Le Ravalec-Dupin 2012; Thenon et al. 2016; Zaytsev and Burnaev 2017). However,
as a kind of surrogate model with complex structure, the parameter training and correlation-matrix calculation in the construction pro-
cess of cokriging need to consume a considerable computational cost. In addition, the setting of hyperparameters affects the approxima-
tion performance of different problems, which implies an additional budget for sensitivity analysis.

For a definite evaluation criterion (objective function), the optimization algorithm adaptively adjusts the precision level of the
search pattern or approximation model (such as the sizes of the search grid or model training set) (Wang et al. 2016). Efficient alloca-
tion of computing resources at different stages of the search is achieved by fine modeling and searching only in potential regions. This
type of multifidelity technique is generally attached to surrogate-assisted optimization. However, the performance of such methods
depends on the accuracy of the fitness-landscape prediction of the model and is vulnerable to the “curse of uncertainty,” especially in
high-dimensional problems.

Without building additional models, this work tries to balance the advantages of the preceding two ideas. Therefore, we focus on
transfer learning to achieve this goal. Transfer learning mimics the human-learning behavior of using previous knowledge to solve new
problems more quickly. Differing from traditional machine learning from scratch, it can learn by way of some knowledge from source
tasks to solve target tasks that are related but not the same (Gupta et al. 2018). In this case, if effective information can be extracted
from the source task, the cost of solving the target task can be greatly reduced. For a certain problem, the inherent similarity between
the high- and low-fidelity domains provides the feasibility of performing the information transfer. At present, the multifidelity approach
has been applied in a multiform way in the field of transfer learning (Lim et al. 2008; Yuan et al. 2017). This work considers a shortcut,
transferring by means of the population of the optimization algorithm. Population-based algorithms generally serve as the optimizer for
production-optimization problems, which can generate a large number of available points of input/output data during the search process.
In recent years, genetic transfer designed for evolutionary algorithms has attracted extensive attention as a new direction of transfer
learning (Koçer and Arslan 2010; Neill et al. 2017; Iqbal et al. 2019). It takes individuals in population as the medium of transfer to
construct the relationships among populations of similar evolutionary tasks. Previous studies under genetic programming have shown
that the application of genetic transfer can improve the search performance significantly. However, these efforts focus on a “one-way
algorithm” (i.e., the sequential transfer of populations between similar tasks). The downside of this approach is that because this is a
one-time migration, only the final result of the source task is considered.

Therefore, this work attempts to establish a new multifidelity genetic transfer framework combining multitasking and sequential
transfer to adaptively select the transfer strategy at different search stages. In the context of multifidelity optimization, especially during
the exploration phase, we proposed an information-exchange mechanism with the two fidelity tasks in parallel, which is called the mul-
titasking mode. Then, aiming at the misdirection of the low-fidelity task in the local area, the concept of relative fidelity is introduced to
quantify the credibility of a low-fidelity result. The subsequent sequential transfer mode will choose an appropriate time according to
the relative fidelity to send the result of the multitasking mode to the high-fidelity task without any loss. The framework is implemented
by adjusting the parameters and search strategy of the optimization algorithm without the need to build an additional proxy model. The
multifidelity genetic transfer framework proposed in this paper applies to any population-based algorithm, such as evolutionary algo-
rithms or swarm-intelligence algorithms. It can also be extended to other expensive engineering problems, such as history matching and
uncertainty quantification when additional information can be obtained.

The core work of this paper is to practice the proposed framework through DE to obtain an efficient and robust multifidelity optimi-
zation algorithm, which is called MTDE. Corresponding to the multitasking and sequential transfer in the framework, MTDE has two
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modes, b-transfer and p-transfer, which perform different fidelity tasks with the media of basis vector and population, respectively. In
addition, four centralized mutation strategies under the multifidelity context are proposed to improve the local search capability of the
algorithm. For the b-transfer mode, a low-cost population-establishment method is presented for population transfer to the high-
fidelity domain.

The rest of this article is organized as follows. The Multifidelity Optimization Model section discusses the mathematical modeling
of production optimization under the background of multifidelity. Then we quantify the fidelity and present the multifidelity genetic
transfer framework. Third, the algorithm structure of MTDE is introduced. Furthermore, we test MTDE in three cases and analyze the
results. Finally, we discuss and summarize this work.

Multifidelity Optimization Model

The aim of production optimization is to obtain the most economical production scenario in the life cycle. NPV is generally used to
evaluate the benefit of a strategy, taking into account the cost of water injection and sewage treatment in the development process. The
design variable x is expressed as a d-dimensional vector, where d is the number of wells multiplied by the number of control timesteps.
The objective function f(x) can be normally formulated as

f ðxÞ ¼ NPVðxÞ ¼
XK

k¼1

Dtk roQo;k � rwpQwp;k � rwiQwi;k

ð1þ bÞtk
; ð1Þ

where x is an n-dimensional vector of design parameter in this optimization problem that represents well controls; K is the total number
of timesteps, and k is the current timestep index; Dtk is the length of the kth timestep (in days); and Qo,k, Qwp,k, and Qwi,k denote average
oil-production rate, water-production rate, and water-injection rate at the kth timestep, respectively; ro is the crude-oil revenue; rwp and
rwi are the cost of sewage treatment and water injection, respectively; b is the annual discount rate; and tk is the total development time
at the kth timestep (in years).

The mathematical assessment paradigm in Eq. 1 is commonly used in the field of production optimization, and the numerical simula-
tor usually serves for the calculation of the NPV function. We expect that the evaluation for the candidate solution x is as consistent
with the fact as possible. However, because the numerical simulation relies on assumptions and a theoretical model, the result inevitably
displays errors. To describe this phenomenon, the concept of fidelity is introduced. Fidelity mentioned in this paper is defined as the
accuracy of assessment for the quality of the candidate solution.

From the perspective of cost effectiveness, the idea of multifidelity constructs a model by integrating information from multiple
fidelity levels to improve the efficiency of optimization. In the context of multifidelity, optimization modeling involves search tasks in a
distinct fidelity domain. For simplicity, two fidelity levels are considered in this work. Herein, the optimization task based on the high-
fidelity method and that based on the low-fidelity method are labeled by Th and Tl, respectively, and their corresponding domains are
Dh and Dl. It needs to be noted that Th is the ultimate goal of multifidelity optimization, while Tl serves as a subsidiary of Th to obtain
candidate solutions. We assume fh is the objective function of the candidate solution evaluated by the high-fidelity method, whereas fl
represents the low-fidelity objective function. Hence the multifidelity optimization model in this structure can be expressed as

max
x2X�Rd

f ðxÞ; ð2Þ

f ðxÞ ¼ fhfx; argmax
x
½ f lðxÞ�g; ð3Þ

subject to CðxÞ � 0; ð4Þ

xlb � x � xub; ð5Þ

where f is the multifidelity objective function organized by fh, which includes two input modes: searching directly for feasible domain
of x and searching with the optimized results obtained by fl. Its realization will be discussed in the next section. Eqs. 4 and 5 represent
the nonlinear constraint C(x) and boundary of decision variables, respectively, which limits the range of feasible region X. In this work,
the nonlinear constraint is set in the numerical simulator.

Multifidelity Genetic Transfer

To construct a multifidelity framework using an evolutionary algorithm, a direct approach is considered. For a candidate solution x pro-
duced by evolutionary operators (e.g., crossover, mutation), it will be first evaluated by the low-fidelity objective function fl. If this can-
didate solution is fitter than the currently known low-fidelity optimum, it will be recorded as the low-fidelity optimum xlbest. However,
the low-fidelity results are not entirely reliable. It is necessary to call the high-fidelity objective function fh to guarantee the optimality
in the high-fidelity domain. Only in this case will this solution be saved as the new high-fidelity optimum xhbest. This strategy is called
greedy multifidelity, which has been tested to be an effective method to filter out low-fidelity error interference, as shown later in
the paper.

However, calling a high-fidelity function is a time-consuming process, and in particular, assigning computational resources to a low-
fidelity task is a more efficient option for those phases where the low-fidelity function is sufficiently credible. Therefore, the purpose of
this work is to reduce expensive high-fidelity function calls and to make full use of accurate high-fidelity information feedback to guide
searches in the low-fidelity domain.

Using the multifidelity optimization model introduced previously, this section introduces a multifidelity genetic transfer learning
framework for global optimization algorithms. First, a fidelity evaluation index, which changes dynamically with the optimization
search process, is introduced, and two genetic transfer modes are proposed according to the index. Also note that this section only intro-
duces the general transfer framework, and the implementation of the particular optimization algorithm will be presented later in
this paper.

Fidelity Evaluation Indices. The effect of fidelity on optimization is our primary concern. The high-fidelity objective function fh and
the low-fidelity objective function fl are descriptions of the same problem at different levels of fidelity. The high-fidelity objective
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function with fine model has accurate approximation performance, while the low-fidelity objective function with rough model has the
advantage of high-speed calculation. However, this does not mean that the low-fidelity objective function has a smoother fitness land-
scape. Both should have a consistent trend from the global perspective, or else the low-fidelity objective function provides little value
for optimization. The error of the low-fidelity objective function is usually expressed as the false optimum and the deflected optimum.
To illustrate this error, Fig. 1 shows a simple example. x1h and x1l represent the same local optimum. This kind of local optimum deviat-
ing from the true position is defined as deflected optimum. The optimum x2 of the low-fidelity function does not correspond to any
high-fidelity optimum, in which case it is defined as the false optimum. Therefore, we make a reasonable assumption that the low-
fidelity method has good effectiveness in the global search process in the early stage, but when the latter converges to the local area, the
accuracy of the low-fidelity method is greatly reduced.

Considering this characteristic, the principle of multifidelity is that, on the premise of ensuring sufficient accuracy of the evaluation,
we hope to propose a balanced strategy that mainly calls the low-fidelity objective function with low calculation cost but only calls the
high-fidelity objective function when necessary. This requires a decision using the fidelity requirements of the model and method in the
optimization search process. For this principle, two evaluation indices of fidelity, absolute fidelity and relative fidelity, are proposed to
assist decision making. The former serves for sorting fidelity levels, while the latter is used to evaluate the dynamic reliability of low-
fidelity methods in the search process.

Absolute fidelity is inversely related to the difference/distance between the simulation results and the reality. It is usually a priori
knowledge, depending on the quality of the model or the principle of the simulation method (e.g., the fidelity of the mesh-coarsening
model is lower than that of the initial case, and the fidelity of the capacitance/resistance method is lower than that of the finite-
difference method).

The difference between low- and high-fidelity models is usually reflected in the details of local scale. Nonetheless, the upward/
downward trend in the global perspective is sufficiently reliable. To quantify the dynamic reliability of the low-fidelity method in the
optimization process from global to local refinement, the concept of relative fidelity is introduced. Relative fidelity Rf is defined as the
difference/distance between the result from the used low-fidelity method and that from the assessment on fidelity at the reference level,
which can be expressed by the person correlation coefficient of the fl and fh evaluation results according to sampling points over a
period of time. For visual illustration, 10 generated sample points are selected from the early and late optimization stages of Case 1,
which is tested later. As shown in Figs. 2a and 2b, the correlation coefficient showed significant differences in distinct optimization
stages. Therefore, the relative fidelity is expressed as

Rf ¼
covðFn

h;F
n
l Þ

rn
h � rn

l

; ð6Þ

where Fn
h ¼ ½Fh1;Fh2;…;Fhn� is the fitness label vector of latest n sampling points evaluated by fh; likewise, Fn

l ¼ ½Fl1;Fl2;…;Fln� is
evaluated by fl, and rn

h; r
n
l are their standard deviations. Rf will act as a key signal of reliability for the next mode switch. According to

the property of the correlation coefficients, jRf j 2 0; 1½ � increases with the increase of the correlation between the results of fl and fh.
A positive value represents a positive correlation between fl and fh, or vice versa. The low-fidelity method makes sense for optimization
only when Rf is greater than 0.

Multifidelity Genetic Transfer Framework. Aiming at the phenomenon of relative fidelity, the previously mentioned greedy multifi-
delity method is improved to the multifidelity method using genetic transfer learning. It mainly relies on low-fidelity tasks and can
choose the right time to dock high-fidelity tasks. Moreover, it can also extract guidance information from the obtained results to
promote convergence.

Transfer learning tries to reduce the cost of solving the target task by constituting a priori knowledge from the solving experience of
repeated tasks or tasks with similar domains. The emphasis is how to identify and extract effective information from the source task.
Transfer effectiveness is related to the proportion of the overlap between distinct domains, which clearly indicates the great potential of
transfer learning for multifidelity optimization. If we consider a low-fidelity task Tl as a source task and a high-fidelity task Th as a
target task, the correlation between the corresponding domains Dl and Dh is significant for the same problem.

Population-based metaheuristic algorithms are widely favored in solving black-box problems such as production optimization
because of their nonderivative character. This family of algorithms based on the theory of biomimetic swarm intelligence attach search
paradigms to the individuals (or genetic materials) updated with iterations. The maturity of the individuals leads to convergence. The
decisive role of genetic material in the search process and its independence from the algorithm provides feasibility and effectiveness for
genetic transfer learning.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f

fh
fl

xx1l x1h x2

Fig. 1—Simple case of the fitness landscape of low- and high-fidelity functions.
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One of the most widely used ideas in genetic transfer is to locate the target task population to the dominant region by the transfer-
ence of elite individuals according to the knowledge obtained from source task. This work further develops this approach in the context
of multifidelity. According to the principles mentioned previously, the proposed multifidelity transfer-learning structure in this work
includes two modes, including multitasking and sequential transfer (shown in Fig. 3), responding to the aforementioned relative
fidelity Rf.

Multitasking constructs a continuous information-exchange mechanism, including elite solution transmission from Tl to Th and feed-
back guidance from Th to Tl. It is appropriate for the early stage of multifidelity optimization, when the Rf of the low-fidelity method is
still sufficient. In this mode, low- and high-fidelity tasks are parallel in space and serial in time. The memory spaces of tasks with differ-
ent fidelity levels are independent of each other. Tl with a lower computational cost is used to evaluate the solution in the current popu-
lation when Th is dormant; Th is activated only when a fitter solution is found by Tl.

To be specific, we adopt the global search beginning with Tl; that is, fl is taken as the basis to evaluate the new solutions generated
by the random operator rather than fh. If and only if the Tl finds a new minimum point, this elite solution will be transferred to the Th for
verification. The result of Th will serve as a feedback signal to guide the following search direction of Tl by adjusting the search step
size or introducing the local optimization algorithm. In this way, the convergence of Tl is accelerated to make up for the running time of
Th. According to our case study, the acceleration effect of transfer optimization is more prominent than the computational cost of Th.
Meanwhile, each elite solution with dual labels generated by fl and fh will be archived into the individual pool as the material for
subsequent optimization.

Sequential transfer is the seamless continuation of multitasking. In the late convergence stage of the Tl, when the Rf reduces to the
threshold (0 in this work), we believe that the fl is no longer credible. Hence Tl is terminated, and Th will start by organizing a new pop-
ulation, all or part of which are from the sorted individual pool. All the elite solutions in the pool with labels are from fh; thus, there is
no additional training cost for sequential transfer. It is worth noting that sequential transfer is started adaptively according to Rf and is
not a necessary step; it might not be triggered if the fl maintains a good performance of reliability.
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Fig. 2—Correlation coefficients in the distinct stages of optimization: (a) early stage; (b) late stage.
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Fig. 3—Multifidelity genetic transfer framework.
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MTDE

Differential Evolution (DE). We first review its classic form. DE (Storn and Price 1997; Das and Suganthan 2011), known for its sim-
plicity and robustness, is a population-based global optimization algorithm by means of parallel direct search. Similar to other evolu-
tionary algorithms, DE employs mutation, crossover, and selection operators. It introduces randomness into the algorithm mainly
through a mutation operator using weighted difference to search in the feasible domain. Using the unique mutation strategies of DE, we
propose an efficient global optimization algorithm: MTDE. Applying the multitasking and sequential transfer described previously to
DE, two transfer modes are set for MTDE, including b-transfer based on basis vector and p-transfer based on population.

The population fxgN ¼ fx
g
1; x

g
2;…; xg

Ng containing N individuals (candidate solutions) is organized for MTDE, where g is the current
generation. For a d-dimensional problem, the current individual is xg

i ¼ ½x
g
i1; x

g
i2;…; xg

id�; i 2 ½1;N� . The iterative optimization process of
MTDE includes three classical operators, which we will discuss in the following paragraphs.

Mutation adds up the basis vector (also called the target vector) and the differential variation to obtain the mutant vector. Diversity
of mutation strategies is one of the highlights of DE. According to the mode of the basis vector, the commonly used strategies include
“rand” type and “best” type, and the proposed MTDE refers to both of them. For each individual xg

i in the population, create a corre-
sponding mutant vector vg

i ¼ ½v
g
i1; v

g
i2;…; vg

id�; i 2 ½1;N� according to DE/rand/1,

vg
i ¼ xg

r1 þMu � ðxg
r2 � xg

r3Þ; ð7Þ

and DE/best/1,

vg
i ¼ xg

best þMu � ðxg
r1 � xg

r2Þ; ð8Þ

where xg
best is the current best individual, and r1, r2, r3 [ [1,N] are random integer indices that are different from each other and also the

current index i. At the gth generation, the population of mutant vectors is denoted as fvgNP ¼ fv
g
1; v

g
2;…; vg

Ng. Mu is the amplification
factor controlling the proportion of differential variation, and its adaptive adjustment according to search stage will be discussed later.
In this work, the adaptive mutation strategy and amplification factor constitute the core content of feedback from Th to Tl

in multitasking.
Crossover is another operator with randomness, and is used to generate the trial vector ug

i ¼ ½u
g
i1; u

g
i2;…; ug

id�; i 2 ½1;N� by

ug
ij ¼

vg
ij

xg
ij

if randð0; 1Þ � rc or j ¼ jrand

otherwise;

(
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð9Þ

where rc is the crossover rate and jrand is a random index [ [1,d]. The population of trial vectors at the gth generation is denoted
asfugN ¼ fu

g
1; u

g
2;…; ug

Ng.
Selection is the last operator to update the population by deciding whether to keep xg

i or ug
i for the next generation gþ1, which can

be expressed as

xgþ1
i ¼

ug
i

xg
i

if flðug
i Þ < flðxg

i Þ
otherwise:

(
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð10Þ

In the selection operator of standard DE, the fitness value is taken as the judgment condition of the update, and the objective function
is called to calculate each individual in the population and the corresponding test vector. Because this process involves a large amount
of computation, we prefer to use the Tl to generate the fitness label of candidate solutions for updating the population, and only generate
the high-fidelity fitness label for the key individuals determined by the principles discussed later.

MTDE adopts the preceding three traditional operators and adjusts the mutation strategy dynamically and parameter adaptively.
According to the reliability of the used low-fidelity method, the algorithm is divided into two stages: b-transfer of multitasking and
p-transfer of sequential transfer. The overall flow chart is shown in Fig. 4 and the pseudocode of MTDE is shown in the appendix.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Fig. 4—Flow chart of MTDE.
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B-Transfer Mode. The proposed b-transfer corresponds to the aforementioned multitasking mode, which is a transfer strategy carried
by the basis vector of differential mutation. To minimize the frequency of high-fidelity function calls, MTDE applies Tl to the selection
operator and only uses Th to assist the construction of mutation operators. The mode of b-transfer refers to the idea of a memetic algorithm
that combines the global search based on population with the heuristic local search based on individual. For the structural and functional
characteristics of differential mutation operator, it can be realized through the dynamic adjustment of mutation strategy and amplification
factor according to Eqs. 7 and 8. This mode uses the guideline with mutation-selection closed-loop feedback to alternate Tl with Th.

The switch of mutation strategies with different basis vectors is one of the guiding approaches of b-transfer. The basis vector occu-
pies a larger proportion in the mutation vector than differential variation. Therefore, the choice of basis vector determines the search
pattern of the algorithm. The basis vector of the “rand” strategy is randomly selected. Thus the generated mutation vector shows
remarkable diversity, which means that the algorithm has better performance of exploration. It can avoid falling into a local optimum
prematurely, but the convergence speed is slow. Consequently, it is suitable for global search in the early stage of optimization. On the
contrary, the basis vector of the “best” strategy is the current best solution, so that all the mutation vectors of the population will be
established with the best basis vector as the center. At this time, the algorithm has a strong ability of exploitation, and it is easier to
search in the neighborhood for the current best solution. However, for multimodal problems such as production optimization, it is easy
to fall into a local optimum, so it is more suitable for local search in the late stage of optimization.

Adjusting the amplification factor Mu is another guiding approach of b-transfer. Mu controls the search step size of the algorithm.
A smaller Mu produces less disturbance, so it is easier to find a better solution near the basis vector. In this case, the algorithm has
strong local search ability, but might fall into a local optimum. The increase of Mu means a larger step size, which makes the algorithm
strong in global search but slow in convergence.

The preceding features enlighten us to adjust the mutation strategy and amplification factor adaptively for the different stages of the
search process. Hence, to accelerate the convergence speed and ensure the quality of results, b-transfer follows three principles:

• A: In the exploration stage (the early stage), the strategy with strong global search capability is adopted to locate the current opti-
mal solution to the potential region as far as possible.

• B: In the exploitation stage (the later stage of search), the current strategy should be closer to local search, with fine search near
the current optimal solution.

• C: Considering the stall limit for the exploitation stage as well, the search strategy will be changed to try to escape from the
local optimum.

Each of these principles reflects a search state, and correspondingly, there are three switching situations: location (Principles A/B),
dispersion (Principles B/C), and relocation (Principles C/B). A feedback mechanism based on real-time monitoring of dynamic perfor-
mance is presented for this. The “rand” strategy with increasing Mu and the “best” strategy with decreasing Mu are respectively
regarded as global and local search strategies in the b-transfer mode.

In initialization, each individual in the initial population fxgN is evaluated by fl to obtain the corresponding low-fidelity label Fl. The
fh is then called to evaluate the best individual in the initial population to obtain its high-fidelity label Fh. This individual with Fh will
be archived in an independent storage space, the individual pool fpoolgt, in which all the candidates labeled by the fh will be stored
throughout b-transfer. Eq. 11 describes how the individual pool is initialized.

pool1  ½xm�; fhðxm�Þ�; m� ¼ argmax
xi2fxgN

½flðxiÞ�: ð11Þ

Exploration starts with initialization, which corresponds to Principle A and tries to locate the optimal solution of the current popula-
tion to the region near the global optimum rather than a local one. This stage is implemented through iterations of the “rand” strategy
with a deterministic constant, which can be assigned as a hyperparameter, or adaptively determined by the introduced guidance bound-
ary parameter km, denoted as

km ¼
Tmax

Tini

� �
þ d; ð12Þ

where Tmax is the maximum time, Tini is the time taken by initialization, and d is the dimension of design variables. As the threshold of
iteration, km will be used multiple times in the proposed MTDE. In the adaptive strategy, the maximum iteration number of the explora-
tion stage is set to double km. The “rand” mutation strategy with a fixed amplification factor Mu0 is executed throughout the exploration
stage. Meanwhile, the individual pool is updated through the Th. Assuming that the parameter t* is the update times of the optimal solu-
tion (including initialization), there are t* pairs of individuals with Fh in the fpoolgt*. Eq. 13 shows the updating of the individual pool
in the b-transfer process.

poolt�  ½um� ; fhðum� Þ�; m� ¼ argmax
ui2fugN[poolt��1

½ f lðuiÞ�: ð13Þ

At the end of the exploration stage, the individual in the pool with the best high-fidelity fitness value will serve as the basis vector
for the “best” strategy in the exploitation stage, namely location (Principles A/B).

The exploitation stage, occupying most of the b-transfer running time, proceeds after the exploration, in which Tl is guided by the
result of Th to alternate between dispersion (Principles B/C) and relocation (Principles C/B). In this stage, Tl is still used by the selection
operator to update the population, whereas Th is used to update the basis vectors in the “best” strategy. First, according to Principle B,
the exploitation stage begins with the local search according to the “best” strategy, with a basis vector of the best individual.

Considering the basis vectors assisted by multifidelity information, four optional “best” strategies are proposed in Eqs. 14 through
17. For gth generation,
MTDE/hbest/1,

vg
i ¼ xg

hbest þMu � ðxg
r1 � xg

r2Þ; ð14Þ

MTDE/lbest/1,

vg
i ¼ xg

lbest þMu � ðxg
r1 � xg

r2Þ; ð15Þ
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MTDE/pbest/1,

vg
i ¼

xg
lbest þMu � ðxg

r1 � xg
r2Þ rrand < R

xg
hbest þMu � ðxg

r1 � xg
r2Þ rrand � R;

(
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð16Þ

MTDE/rbest/1,

vg
i ¼ ½Rf � xg

hbest þ ðRf � 1Þ � xg
hbest� þMu � ðxg

r1 � xg
r2Þ; ð17Þ

where xlbest and xhbest are the optimal solutions obtained Tl and Th, respectively; Rf is relative fidelity, and rrand [ [0,1] is a random
number. Fig. 5 visually shows the search characteristics of the four best strategies. The “hbest” strategy shown in Fig. 5a considers only
high-fidelity results when determining the basis vectors, which can filter the influence of false optimal points but will also miss deflected
optimal points. Instead, the “lbest” strategy searches near the best advantage found by all the low-fidelity tasks, as shown in Fig. 5b.
Because the Tl is updated more frequently, this strategy can result in a more active population. Considered together, the other two strat-
egies make decisions according to relative fidelity. The “pbest” strategy shown in Fig. 5c adopts a random pointer to keep the selection
probability of the basis vector consistent with relative fidelity. In this case, if the low-fidelity method is more reliable, the basis vector
will be more inclined to choose the low-fidelity best solution. The “rbest” strategy shown in Fig. 5d is a similar approach, which selects
a balance point in space.

The local search launched around the tth optimal solution is denoted as bestt. The stall count k, recording the stall generations of
bestt, is introduced to monitor the healthiness of search, which is set to 0 at the beginning of bestt. If the new optimal solution is not
obtained in the current iteration under bestt (the selection operator with Tl does not update the population, or the new optimal solution
found by Tl does not pass the verification by Th), let k / kþ 1.

When k> km, we conclude that the algorithm falls into a local optimal. According to Principle C, b-transfer stops bestt and changes
the mutation strategy to “rand” for global search, until a new optimal point is found, namely dispersion (Principles B/C). In addition,
k still counts in this case.

If and only if an optimal solution reducing the value of the high-fidelity function is found, set k / 0.
We assume that the current optimal solution lies in a potential region. According to Principle B, this individual becomes the basis

vector to start the local search process of besttþ1, namely relocation (Principles C/B).
Besides the switch of variation strategy mentioned previously, feedback control of Th is also reflected in the dynamic regulation of

the amplification factor. Here, we introduce the hyperbolic tangent function that is widely used in machine learning,

tanhðxÞ ¼ ex � e�x

ex þ e�x
; ð18Þ

where tanh is an odd function with the range between –1 and 1, and the steepness of landscape decreases as the absolute value of input
increases. Based on this property, it serves as the guidance of amplification factor regulation by Th task, which is dominated by the stall
count k. To combine the influence of the amplification factor on search with the characteristics of different mutation strategies,
we assigned the part of the tanh on the left side of the x-axis to the “rand” strategy and the part on the right side of the x-axis to the
“best” strategy.

flag ¼
0

1

“best” strategy

“rand” strategy:

�
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð19Þ
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Fig. 5—Characteristics of the four best strategies with multifidelity information. (a) MTDE/hbest/1, (b) MTDE/l best/1, (c) MTDE/pbest/1,
(d) MTDE/rbest/1.
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The amplification factor is dynamically adjusted according to

Mu ¼ Mu0 þ ð�1Þflagþ1 � b � tanh 3 � k� km � flag

km

� �
; ð20Þ

where Mu0 is the initial amplification factor and b is the variation range of the amplification factor. The fraction in tanh is the distance
between stall count and the guide boundary parameter km, and the constant 3 is used to balance the effective interval of the function.
For the “best” strategy, the fraction, which can be regarded as the normalized k, increases gradually from 0, leading to a decrease in the
amplification factor Mu as the stall algebra increases. This will lead the algorithm to reduce the size of the search step if it fails to
improve the current best solution. As for the “rand” strategy, because k begins with km, this initial value needs to be subtracted first. On
the contrary, Mu will increase with stall generations, and therefore, the algorithm will increase its ability to escape from the local opti-
mum through a larger disturbance. In this way, the amplification factor Mu can be dynamically valued between (Mu – b, Muþ b)
according to the current requirement observed from the feedback derived from Th.

The b-transfer will alternate between dispersal (Principles B/C) and relocation (Principles C/B) in the exploitation stage according
to this closed-loop feedback mechanism until the transfer criteria or stop criteria are met, and then the algorithm will start the p-transfer
mode or deliver the final output result accordingly.

P-Transfer Mode. Normally, fl might not meet the accuracy requirement in the whole optimization process. Especially in the late
stage of convergence, the errors of the low-fidelity method will interfere with the search direction of the algorithm. Sequential transfer
will be triggered according to the dynamic variation of relative fidelity Rf. In this mode, we will transfer the multifidelity optimization
process from the multitasking mode that uses both Tl and Th to the search with Th only. Because the population is taken as the transfer
medium, here we call this mode p-transfer. Unlike the alternative tasks mode of b-transfer, the task switch of p-transfer is a sequential
and irreversible one-way algorithm.

In p-transfer, because the objective function used for the selection operator has been changed from fl to fh, the results of multitasking
need to be transferred to Th by establishing a new population. To reduce the cost of transfer, the individual pool fpoolgt established in
b-transfer is used as the resource of p-transfer, because the samples within are all labeled with fh. Therefore, if all the individuals in the
new population are from p-transfer, the cost of initialization with the high-fidelity function is eliminated, which is otherwise computa-
tionally expensive. If the current capacity of the individual pool is less than the population size of p-transfer, the population should be
supplemented by random sampling.

After the previous search process, we assume that the population has converged to a worthy region, so best/1/bin strategy is used for
further search with Th. It should be noted that the p-transfer is triggered adaptively; as a result, this mode is not necessary for all cases.
If the accuracy of low-fidelity method still meets the requirement, p-transfer will not start; instead, we will maintain the b-transfer
mode with lower computational cost, seeking to increase the potential to find the global optimum through more search attempts.

Therefore, appropriate transfer criteria are required to accurately select the transfer time. At the end of each iteration of b-transfer,
the relative fidelity Rf will be checked according to Eq. 6 using the latest n optimal solutions. We assume that if Rf satisfies the require-
ments, the landscape of fl is still consistent with fh. On the contrary, when the relative fidelity is less than the set threshold, p-transfer is
considered to be triggered. It is worth noting that Th with few iterations have little value for optimization, so the remaining computa-
tional resource should also be considered before transfer. Criterion 1 is used to consider the preceding principles,

Rf � e0 && Tres > Tf 	 ðN� þ NÞ;

where the threshold e0 is the lowest allowable relative fidelity, which is set to 0 in this work. Tres is the rest allowed time for optimiza-
tion. Tf is the cost of a single run of fh. N is the population size and N* is the number of new sampling points—not within fpoolgt—for
the transfer population. The symbol && represents logical AND.

However, relying only on the relative fidelity as the p-transfer condition cannot handle the situation that the Tl has already converged
to a local optimum. Thus we set Criterion 2, taking into account the stall count k,

k � kM;

where the threshold kM is the maximum allowable stall count. A small threshold can result in an inadequate search in b-transfer; con-
versely, the computational cost will be wasted in local optimal with a large threshold. We recommend setting kM ¼ 4	km.

Considering relative fidelity Rf and stall count k, we set the transfer criteria for p-transfer as Criterion 1 or Criterion 2.

Case Study

In this section, the proposed MTDE is applied to three production optimization cases of waterflood reservoirs. Meanwhile, using high-
and low-fidelity numerical simulation, we test the cases with the same parameter setting to compare the advantages of the multifidelity
method. To further demonstrate the improvement of the proposed multifidelity genetic transfer method, we also use an aforementioned
greedy multifidelity control group, which does not involve transfer optimization, and the additional high-fidelity information only acts
as a filter. All schemes are derived from DE. For distinguishing purposes, the test schemes with high- and low-fidelity functions are
denoted as H-DE and L-DE, respectively. The DE algorithm under greedy multifidelity framework is called GMDE. The parameter set-
tings of the four schemes of controlled trial are shown in Table 1. The initial population is generated by Latin hypercube sampling
(LHS) (McKay et al. 2000), and each set of comparison tests controls the same initial population. Five independent runs are performed
for each set of tests.

Without loss of generality, the evaluations of candidate solutions involved in optimization are performed using EclipseSM Reservoir
Simulation Software (Schlumberger Limited, Sugar Land, Texas, USA). The results of different fidelity are generated by means of two
optional numerical-simulation models contained in the software: the black-oil and streamline models. The black-oil model can obtain
the exact numerical solution by the fully implicit finite-difference method, which is considered to be totally stable and robust. Assuming
the simulation results are close enough to the real production, they serve as the high-fidelity results for reference in the case study. The
streamline model based on implicit pressure/explicit saturation also establishes pressure equations in the grid system, while the differ-
ence lies in the calculation of saturation. The numerical simulation based on the streamline model can establish the streamline field
according to the equipotential surface of one-time pressure calculation. The fluid moves along streamlines in the direction of the

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DOI: 10.2118/205013-PA Date: 28-January-21 Stage: Page: 9 Total Pages: 22

ID: jaganm Time: 11:18 I Path: s:/J###/Vol00000/200203/Comp/APPFile/SA-SPE-J###200203

2021 SPE Journal 9

D
ow

nloaded from
 http://onepetro.org/SJ/article-pdf/doi/10.2118/205013-PA/2410162/spe-205013-pa.pdf/1 by C

hina U
niversity of Petroleum

 (East C
hina) user on 09 M

ay 2021



pressure gradient rather than between the grids, which can reduce the simulation model to a series of 1D streamline simulations.
Although the simplification results in a loss of accuracy, the simulation based on the streamline model can significantly reduce the com-
putational cost and is therefore used to obtain low-fidelity results in the case study.

In addition, because the evaluation times of high- and low-fidelity objective functions differ greatly, the number of iterations cannot
measure the cost of different schemes. Therefore, a fairer way is considered (i.e., setting the stop criteria as the maximum running time
and comparing the quality of optimal solution obtained by each scheme in the limited computational budget).

Case 1: Egg Model. The egg model (Jansen et al. 2014) is a seven-layer channelized reservoir model with 25,200 grids (18,553 active
grids). Typical properties of reservoir model are shown in Table 2. The permeability-field distribution is shown in Fig. 6, where the
black spots represent the well locations. The reservoir consists of four production wells at constant pressure, and bottomhole-pressure
target is set as 395 bar. Eight injection wells located around and in the center are controlled by surface flow targets, which will be
design variables for production optimization. For each injection well, the allowable upper bound is 79.5 m3/d and the lower bound is
zero. The well-control strategy is from the start time of production. The 10-year production cycle is divided into five timesteps. There-
fore, the dimension of the optimization problem is 8	 5¼ 40. In the NPV formula, we set the oil revenue as 50 USD/m3, the water-
injection cost as 3 USD/m3, and the water-production cost as 4 USD/m3. Discount rates are not taken into account.

Scheme Name Optimization Algorithm Fidelity Level Mu / Mu0 rc N

H-DE DE/rand/1/bin high- 0.6 0.5 25

L-DE DE/rand/1/bin low- 0.6 0.5 25

GMDE GMDE/rand/1/bin multi- 0.6 0.5 25

MTDE MTDE/pbest/1/bin multi- 0.6 0.5 25

Table 1—Settings of the four schemes for case study.

Properties Value

Model size 60	6	7

Depth 4000 m

Porosity 0.2

Connate water saturation 0.1

Density of oil 900 kg/m3

Initial pressure 400 bar

Viscosity of oil 2 cp

Oil formation volume factor 1 m3/std m3

Oil compressibility 1.0	10�5 bar�1

Table 2—Properties of egg model.

76.5 1,807.7 3,538.3 5,269.1 7,000.0

Permeability (md)

Fig. 6—Permeability field of egg model.
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In this test case, the computational budget of optimization is 28,800 seconds. Fig. 7 shows the convergence curve of each scheme in
the egg model. It should be noted that the ordinate shows the NPV value obtained by the high-fidelity objective function. Therefore, for
L-DE, which does not involve the high-fidelity objective function in optimization, its convergence curve is obtained by calculating the
high-fidelity function value of all its historical optimum, and this process, as a subsequent data processing, is not included in the cost.
From Fig. 7, we can see that H-DE has the worst result because it allows the least number of iterations within a certain time. L-DE and
MTDE converge fast in the early stage. However, the curve of L-DE oscillates in the late stage and ends with a value worse than the his-
torical optimum. This is because the relative fidelity of the low-fidelity method decreases rapidly in the late stage of convergence, so
that the search is deceived by the false optimum. On the contrary, GMDE converges more slowly in the early stage because of the addi-
tional high-fidelity cost, but the improvement is achieved by filtering the false optimum with high-fidelity information. The proposed
MTDE has the best convergence performance. We can observe the rapid rise of curve in the b-transfer stage guided by high fidelity.
After a short stall in the middle stage (around 10,000 seconds), a great improvement was made again, which was attributed to the
p-transfer mode. After the convergence in the low-fidelity domain, p-transfer will establish a new population based on the individual
pool and continue to search in the high-fidelity domain, which is not available in other schemes. All schemes are repeated five times to
ensure the results are reliable, and the distribution of these results can be seen in Fig. 8. All the results from MTDE are better than
those from the others. The important intermediate parameters of MTDE are listed in Table 3.

We also analyze the quality of the optimal solution from the perspective of oilfield production and development. The final optimal
well-control strategy from each test scheme is shown in Fig. 9, where the initial value is the best individual of the initial population gen-
erated by LHS. Fig. 10 shows the effect of each scheme in terms of water control and oil stabilization. It can be seen that the strategy
obtained by MTDE achieves higher oil production through less injection volume. The remaining oil distribution of the first layer of the
model is shown in Fig. 11.
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Intermediate Parameters Mean Value

Cost of a single run of Fl 6.10 seconds

Cost of a single run of Fh 221.11 seconds

Frequency of Tl 2,992

Frequency of Th in b-transfer 33

Frequency of Th in p-transfer 149.2

Fitness of initial population 2.00	107

Fitness of b-transfer result 2.09	107

Fitness of p-transfer result 2.10	107

Table 3—Intermediate parameters of MTDE in egg model.
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Case 2: Unconformity Reservoir Model. The reservoir model is built under the condition of unconformable strata, with a total of
19 layers, and an inactive layer is set in every other layer. History matching has been performed using the observed data of oil-
production rate, water-production rate, and water cut. The model contains 59,295 grids, of which 37,091 grids are active. The per-
meability distribution is shown in Fig. 12. The model includes eight injection wells and 15 production wells controlled by surface flow
targets that are set as design variables. For the injectors, the upper bound of the water-injection rate is 150 m3/d and the lower bound is
zero. For the producers, the upper bound of the fluid-producing rate is 80 m3/d and the lower bound is zero. Low formation pressure
will lead to dissolved gas release, so we set an additional constraint, the bottomhole-pressure lower bound at 80 bar. The reservoir has
been in production for 457 days and the injection/production strategy for the next 5 years is required, which is divided into five time-
steps. Therefore, the dimension of the optimization problem is (8þ 15)	 5¼ 115. In the calculation of NPV, we set the oil revenue as
50 USD/m3, the water-injection cost as 3 USD/m3, and the water-production cost as 4 USD/m3 according to the actual situation, and set
the discount rate as 0%. Typical properties of reservoir model are shown in Table 4.

(a) Initial value (b) H-DE (c) L-DE

(e) MTDE(d) GMDE
Oil Saturation 

0.2007 0.3755 0.5503 0.7252 0.9000

Fig. 11—Remaining oil distribution of the first layer of the egg model by LHS, H-DE, L-DE, GMDE, and MTDE.

Permeability (md)

0 1,625 3,250 4,875 6,500

Fig. 12—Permeability field of unconformity reservoir model.

Properties Value

Model size 55	51	19

Depth 1278.5 m

Connate water saturation 0.208

Density of oil 957 kg/m3

Initial pressure 135 bar

Transmissibility 20 cp-res m3/d/bar

Table 4—Properties of the unconformity reservoir model.
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The maximum optimization time of this test case is 50,000 seconds. The convergence curves of the four schemes are shown in
Fig. 13. H-DE performs the worst because it iterates slowly. For the schemes working with low fidelity, lower computational cost
means that more attempts can be made within the feasible region. The performance of these three algorithms is similar in the early
stage of search, but the L-DE method oscillates violently after convergence. Each update of L-DE comes from a new optimum found
by the low-fidelity task, but in fact, as can be seen from the convergence curve, these are false optimums. GMDE is not affected by this
error thanks to the auxiliary high-fidelity task. MTDE, by contrast, makes better use of additional high-fidelity information. With the
help of the transfer-feedback mechanism, MTDE accurately locates the potential region in the high-fidelity domain and thus obtains the
best results. The distribution of results of each scheme is shown in Fig. 14. The important intermediate parameters of MTDE are shown
in Table 5.

We also evaluate the attractiveness of each optimal solution obtained by the schemes. Fig. 15 reveals these optimal well-control
strategies. The effects of water control and oil stabilization of each scheme are shown in Fig. 16. The proposed MTDE significantly
increased cumulative oil production, and both water injection and water production were lower than GMDE, which was second in oil
production. A typical layer of the model is selected to show the oil-saturation distribution (Fig. 17) after the completion of each strat-
egy. It can be observed that MTDE achieves a higher recovery percentage in many regions.

Case 3: Edgewater-Reservoir Model. The test case is an edgewater-reservoir model with 33 layers. History matching has been per-
formed using the observed data of oil-production rate, water-production rate, and water cut. The model contains 374,616 grids, of
which 199,822 grids are active. The permeability-field distribution is shown in Fig. 18. The reservoir involved seven injection wells
and 14 production wells that are controlled by surface flow targets, all of which needed to be optimized. For the injectors, the upper
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Fig. 13—NPV vs. run time by H-DE, L-DE, GMDE, and MTDE for unconformity reservoir model.
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bound of the water-injection rate is 300 m3/d and the lower bound is zero. For the producers, the upper bound of the fluid producing
rate is 150 m3/d and the lower bound is zero. Meanwhile, the bottomhole-pressure lower bound for the production well is 190 bar. Pro-
duction optimization starts from scratch to plan the injection-production strategy for the next 4 years with 1 timestep/yr. Therefore, the
dimension of the optimization problem is (7þ 14)	 4¼ 84. In the calculation of NPV, we set the oil revenue as 80 USD/m3, the water-
injection cost as 5 USD/m3, and the water-production cost as 5 USD/m3, according to the actual situation, and assume that the discount
rate is zero. Typical properties of reservoir model are shown in Table 6.

The time limit of this test case is 86,400 seconds. The convergence curves of the four schemes are shown in Fig. 19. Because the
high-fidelity objective function in this case is extremely expensive, H-DE shows a distinct disadvantage. Compared with L-DE and
GMDE, MTDE has the high-fidelity information feedback under the b-transfer mode, which provides faster convergence speed and
stronger global search capability. It is worth mentioning that by observing the change of relative fidelity during search, the low-fidelity
objective function in this case presents high credibility. According to the adaptive transfer criteria, MTDE does not perform p-transfer
in this case, and thus avoids expensive high-fidelity numerical simulation. As for MGDE, there is no advantage over L-DE because of
the additional computing overhead of the multifidelity task. The distributions of the results of five tests for each scheme are shown in
Fig. 20. All the solutions generated by MTDE have significant advantages. The important intermediate parameters of MTDE are shown
in Table 7.

Furthermore, we discuss the optimal well-control strategy generated by each scheme. Fig. 21 shows the optimal well control
obtained by each scheme. Fig. 22 compares the water-control and oil-stabilization effects of each scheme. We can observe that the
injection/production strategy from MTDE can produce the maximum amount of oil with relatively little water injection and water pro-
duction. In the exploitation process, the strategy keeps a low water content. The pressure field and oil-saturation distribution of each
strategy are shown in Fig. 23 (edgewater area not shown). MTDE generates a uniform displacement, and this strategy is consistent with
the production demand.

Intermediate Parameters Mean Value

Cost of a single run of Fl 20.33 seconds

Cost of a single run of Fh 593.48 seconds

Frequency of Tl 1,501.8

Frequency of Th in b-transfer 27.2

Frequency of Th in p-transfer 28.4

Fitness of initial population 2.12	107

Fitness of b-transfer result 2.29	107

Fitness of p-transfer result 2.31	107

Table 5—Intermediate parameters of MTDE in the unconformity reservoir model.
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Fig. 15—Optimal rate target well controls provided by LHS, H-DE, L-DE, GMDE, and MTDE for unconformity reservoir model.
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Fig. 16—Results of optimum control provided by LHS, H-DE, L-DE, GMDE, and MTDE for unconformity reservoir model: (a) cumula-
tive oil production vs. time, (b) cumulative water production vs. time, and (c) cumulative water injection vs. time.
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Fig. 17—Remaining oil distribution of the first layer of unconformity reservoir model by LHS, H-DE, L-DE, GMDE, and MTDE.
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Fig. 18—Permeability field of edgewater-reservoir model.
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Properties Value

Model size 132	86	33

Depth 2165.8 m

Connate water saturation 0.3

Density of oil 931 kg/m3

Initial pressure 225 bar

Table 6—Properties of edgewater-reservoir model.
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Intermediate Parameters Mean Value

Cost of a single run of Fl 84.64 seconds

Cost of a single run of Fh 1,234.29 seconds

Frequency of Tl 854.75

Frequency of Th in b-transfer 35

Frequency of Th in p-transfer 0

Fitness of initial population 7.59	106

Fitness of b-transfer result 1.15	107

Fitness of p-transfer result –

Table 7—Intermediate parameters of MTDE in edgewater-

reservoir model.
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Fig. 21—Optimal rate target well controls provided by LHS, H-DE, L-DE, GMDE, and MTDE for edgewater-reservoir model.
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Fig. 22—Results of optimum control provided by LHS, H-DE, L-DE, GMDE, and MTDE for edgewater-reservoir model: (a) cumulative
oil production vs. time, (b) cumulative water production vs. time, and (c) cumulative water injection vs. time.
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Discussion and Conclusions

In this work, we first introduce the optimization model in the context of multifidelity. Using this, a genetic transfer multifidelity optimi-
zation framework is constructed. Without loss of generality, differential evolution is chosen as the optimization algorithm for the frame-
work. It is worth noting that any population-based algorithm that can adjust the step size and search direction can be used in the
proposed framework (for example, global best, individual best, and learning factor in particle-swarm optimization). Therefore, the pro-
posed framework can be further extended to the classical evolutionary algorithms and swarm-intelligence algorithms and also their
improved versions. In addition, only two levels of fidelity are covered in this paper for simplicity, and both low- and high-fidelity infor-
mation come from commercial numerical simulators. Our next step is to consider integrating the data-driven model mentioned in the
Introduction section into a multifidelity optimization framework in place of a numerical simulator. Computing resources will further be
saved in a proactive way to obtain inexpensive, low-fidelity information. Compared with the existing surrogate-assisted optimization
algorithms, establishing a generalized genetic transfer framework is considered; this is suitable for any form of a data-driven model and
population-based optimization algorithm. Moreover, because of the separation of low- and high-fidelity tasks in storage space, and the
large difference in their evaluation time, paralleling multiple low-fidelity tasks and a high-fidelity task also has the potential to improve
the computational efficiency of the framework.

The proposed MTDE algorithm consists of two modes. The b-transfer mode establishes an efficient multifidelity information-
feedback mechanism. The p-transfer mode migrates population from the individual pool adaptively according to the relative fidelity
information. We test MTDE in three production-optimization cases and compare it with the results from low-fidelity, high-fidelity, and
greedy multifidelity methods. MTDE shows excellent performance in convergence speed and global search capability and generates the
most-attractive well-control strategy.

Nomenclature

b ¼ annual discount rate
Dh ¼ high-fidelity domain
Dl ¼ low-fidelity domain
fh ¼ high-fidelity objective function
fl ¼ low-fidelity objective function

Fh ¼ fitness label evaluated by fh
Fl ¼ fitness label evaluated by fl
k ¼ current timestep index
K ¼ total number of timesteps

Mu ¼ amplification factor
N ¼ population size

fpoolg ¼ individual pool
Qo,k ¼ oil-production rate, m3/d

Qwi,k ¼ water-injection rate, m3/d
Qwp,k ¼ water-production rate, m3/d

rc ¼ crossover rate
ro ¼ crude-oil revenue, USD/m3

rwi ¼ cost of water injection, USD/m3

rwp ¼ cost of sewage treatment, USD/m3

Rf ¼ relative fidelity
tk ¼ total development time at kth timestep, year
Tl ¼ low-fidelity task
Th ¼ high-fidelity task

Tini ¼ initialization time, seconds
Tmax ¼ maximum time, seconds
Tres ¼ rest allowed time, seconds

ui
g ¼ trial vector

vi
g ¼ mutant vector

0 0.1776 0.3553 0.5329 0.7105

Oil Saturation 

(a) Initial Value (b) H-DE (c) L-DE

(e) MTDE(d) GMDE

Fig. 23—Remaining oil distribution of the first layer of edgewater-reservoir model by LHS, H-DE, L-DE, GMDE, and MTDE.
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xhbest ¼ high-fidelity optimum

xlb ¼ lower boundary
xlbest ¼ low-fidelity optimum

xub ¼ upper boundary
Dtk ¼ length of kth timestep, days
e0 ¼ lowest allowable relative fidelity
k ¼ stall count

km ¼ guidance boundary parameter
kM ¼ maximum allowable stall count

Superscript

g ¼ generation

Subscripts

h ¼ high-fidelity method
i ¼ index of current individual
l ¼ low-fidelity method
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Appendix A—Pseudocode of MTDE

Algorithm MTDE

Input population size N, initial amplification factor Mu0, crossover rate rc, maximum time Tmax, lower boundary xlb, upper boundary xub

Output xhbest, Fhbest

1 Sampling population fxgN using LHS(NP, xlb, xub)

2 / *** start b-transfer mode *** /

2-1 Initialization

Initialize population fxgN using fl and individual pool fpoolg1 using Eq. 11;

get Flbest ¼ fl(xlbest) and Fhbest ¼ fh(xhbest);

calculate km using Eq. 12; c ¼ N;

While the computational budgets Tmax have not exhausted do

For i¼1 to N do

Table A-1—Pseudocode of MTDE.
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Algorithm MTDE

2-2 / *** adaptive strategy (a part) *** /

If c<2*kmþN do Exploration (Principle A): flag¼1 , Mu ¼ Mu0;

Else if c =¼ 2*km þ N do Exploitation (Principle B): flag¼0 , k ¼ 0;

Else do

If k< km do Exploitation (Principle B): flag¼0;

Else do Exploitation (Principle C): flag¼1; End if

calculate Mu using Eq. 20

End if

2-3 / *** Mutation and crossover *** /

If flag¼0 do get mutation vector vi
g using Eqs. 14 through 17; End if

If flag¼1 do get mutation vector vi
g using Eq. 7; End if

Get crossover vector ui
g according to Eq. 9;

Check the constraints

2-4 / *** adaptive strategy (b part) *** /

Get Fl ¼ fl(ui
g); c¼ cþ1;

If Fl<Flbest do

Flbest ¼ Fl; get Fh ¼ fh(ui
g); update fpoolgt;

If Fh<Fhbest do

Fhbest ¼ Fh, xhbest ¼ ui
g; k ¼ 0; update Rf;

Else do k ¼ k þ 1; End if

Else do k ¼ k þ 1; End if

2-5 / *** Selection *** /

Update xi
g according to Eq. 10;

Check transfer criteria, start p-transfer if satisfied;

Check stop criteria, output xhbest and Fhbest if satisfied;

End for

End while

/ *** end b-transfer mode *** /

3 / *** start p-transfer mode *** /

Construct transfer population fxgN by sorted fpoolgt , and

If t<N do infill rest part of fxgN using LHS(N, xlb, xub) and initialize; End if

While the computational budgets Tmax have not exhausted do

For i¼1 to N do

mutation using Eq. 8; crossover using Eq. 9; selection using Eq. 10;

Check stop criteria, output xhbest and Fhbest if satisfied;

End for

End while

/ *** end p-transfer mode *** /

Table A-1 (continued)—Pseudocode of MTDE.
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