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Abstract

The next frontier of online advertising is revenue generation from LLM-generated
content. We consider a setting where advertisers aim to influence the responses
of an LLM, while platforms seek to maximize advertiser value and ensure user
satisfaction. The challenge is that advertisers’ preferences generally conflict with
those of the user, and advertisers may misreport their preferences. To address this,
we introduce MOSAIC, an auction mechanism that ensures that truthful reporting is
a dominant strategy for advertisers and that aligns the utility of each advertiser with
their contribution to social welfare. Importantly, the mechanism operates without
LLM fine-tuning or access to model weights and provably converges to the output
of the optimally fine-tuned LLM as computational resources increase. Additionally,
it can incorporate contextual information about advertisers, which significantly
improves social welfare. Via experiments with publicly available LLMs, we
show that MOSAIC leads to high advertiser value and platform revenue with
low computational costs. While our motivating application is online advertising,
our mechanism can be applied in any setting with monetary transfers, making
it a general-purpose solution for truthfully aggregating the preferences of self-
interested agents over LLM-generated replies.

1 Introduction

Large language models (LLMs) are becoming ubiquitous: as coding assistants, chat interfaces, and
even alternatives to search engines [Bommasani et al., 2022]. To ensure their usefulness, it is essential
to closely align LLM outputs with user preferences. However, in general, there may be multiple
interested parties who disagree on the desired behavior of the same LLM. This leads to the question
of how to generate LLM replies given multiple conflicting preferences.

The motivating application for our work is online advertising, the main source of revenue for large
tech companies such as Google, Meta, and X. For example, in 2023, Meta’s advertising revenue of
132 billion USD constituted more than 97% of its total revenue [Meta, 2024]. Ad auctions are the
workhorse mechanism to determine the placement and prices of commercial content [Varian, 2007,
Edelman et al., 2007]. LLM providers have begun integrating instant checkout capabilities into their
services [OpenAI, 2025], and they are also exploring how to incorporate ads into LLM-generated
content [Criddle, 2024]. Thus, new auction mechanisms are needed for this emerging setting.

We present a new auction mechanism for this problem, which we call MOSAIC (Mechanism for
Optimally Sampling and Aggregating LLM Outputs with Incentive Compatibility). The advertisers
are paying, not for some particular item or bundle, but rather to influence the output generated by an
LLM in a direction closer to their own preferences. Although MOSAIC could be of interest whenever
one has to aggregate the preferences of multiple self-interested agents over LLM behavior (as long as
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it is reasonable to charge payments), we see online advertising as the most natural setting of interest.
For this reason, we refer to participants in the mechanism as advertisers.

1.1 Problem setting

We consider a situation where a user queries an LLM with a specific question. We assume the
following: (i) There is a reference LLM that can produce useful replies to the user’s query, and (ii)
there are advertisers who want to influence the reply to the user. In our model, each advertiser is
represented via her own LLM or directly with a reward function, similar to the function used to
fine-tune LLMs in the Reinforcement Learning from Human Feedback pipeline [Azar et al., 2023].
For this reason, we refer to an advertiser’s value for a reply as her reward. The auctioneer’s task is,
given the user’s query and the advertisers’ preferences, to produce a reply that is useful for the user
while also generating high rewards for the advertisers.

1.2 Overview of Contributions

In this paper, we present MOSAIC, an auction mechanism designed to aggregate the preferences of
multiple self-interested advertisers over LLM-generated replies. The first challenge we address is that
MOSAIC must produce replies for which the advertisers receive high rewards, but without steering
the LLM’s behavior too far from that of the user-centric reference LLM. We address this by drawing
a strong connection to the RLHF objective (e.g., Ziegler et al. [2020]), equipping MOSAIC with a
hyperparameter that enables the auctioneer to balance between the usefulness of the produced reply
to the user and the advertisers in an interpretable and principled way (Section 3.1).

Second, leveraging an importance sampling-based technique, MOSAIC is the only mechanism in the
LLM mechanism design literature that both provably converges to the optimal distribution (Corol-
lary 4.1) and converges efficiently in practice (Section 6). Third, MOSAIC can incorporate contextual
information, similar to how sponsored search auctions utilize advertiser descriptions, accelerating
convergence and increasing value for advertisers and revenue for the auctioneer (Section 6.2).

Fourth, we address technical feasibility and practicality. We adopt the desiderata proposed by Dütting
et al. [2024], who argued that auctions must be compatible with existing LLM technology, only using
“information obtainable from current models” in a way that is “easy to integrate into the system”
and relying only on “easy manipulations of LLM output.” Furthermore, it must be computationally
feasible to run the auction repeatedly and with different advertiser preferences. In particular, we
cannot afford the expensive process of fine-tuning an LLM’s weights for each possible query. To
address this, we design MOSAIC to work by only post-processing multiple LLM outputs: it requires
only “API access”, not even viewing the model weights (Section 4.2).

Fifth, we address the fact that advertisers might have an interest in misreporting their preferences
(which include their LLMs), analogous to over-/under-bidding in traditional auctions. To address this
challenge, we employ an allocation rule compatible with Rochet payments [Rochet, 1987]. These
uniquely ensure that MOSAIC is strategyproof, i.e., that truthful reporting is a dominant strategy for
each advertiser, no matter what the others do (Theorem 5.1). Crucially, Rochet payments ensure that
MOSAIC remains strategyproof even if the mechanism has not fully converged to the optimal LLM.

Sixth, we introduce an offset to the Rochet payments to ensure that each advertiser’s utility is
proportional to her contribution to social welfare. This alignment is crucial for the long-term success
of the market, as it incentivizes the participation of only the most relevant advertisers.

Finally, we discuss individual rationality (IR), which guarantees that a participant is weakly better off
from participating in the mechanism. In Section 5.2, we discuss the unique properties of our setting
that make ex-post IR unattainable. However, in Section 5.3.1, we show that MOSAIC is “almost
ex-post IR” in a well-defined sense. In Section 6.2, we experimentally show that, MOSAIC is ex-ante
IR (i.e., advertisers are in expectation better off by participating).

In Section 6, we provide experimental results for the online advertising domain. We demonstrate that
MOSAIC quickly converges to the optimal LLM with low computational cost, generating significant
value for the advertisers and revenue for the auctioneer while also being useful to the user.
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2 Related Work

In their pioneering work, Dütting et al. [2024] introduced the field of mechanism design for LLMs,
proposing a sequential mechanism where the output sequence is generated token by token, and
advertisers bid for their LLM to produce the next token. This work laid the foundation for future
work in this area. However, several challenges hinder the adoption of their approach in the real world:
(i) Advertisers face the exposure problem: small changes in the generated sequence, such as the
addition of a word like "not," can completely alter its meaning. An advertiser might pay a significant
amount for the tokens generated up to a certain point, only for the continuation to unexpectedly negate
or distort her intended message.1 (ii) The mechanism is easily manipulable if the assumption that
advertisers cannot misreport their LLMs is dropped. (iii) For a given prompt, an advertiser’s spend
grows with the length of the generated sequence. MOSAIC addresses all of the above challenges.

Dubey et al. [2024] proposed a generalization of the position auction [Varian, 2007, Edelman et al.,
2007] to a setting where each advertiser is interested in having some specific text ad displayed
alongside the organic results. In their mechanism, an LLM module coupled with an auction module
work in tandem to merge the ads into a single ad summary in an incentive-compatible way.

Hajiaghayi et al. [2024] considered advertisers bidding in an auction to have their ads placed into
various portions of a retrieval-augmented generation (RAG) response. Their auction only allows
advertisers to report (and misreport) scalar values to influence the inclusion of non-misreportable
advertising texts in the combined output. This is in contrast to MOSAIC, which allows the aggregation
of full LLMs that advertisers may arbitrarily misreport.

In work that appeared after the initial version of this paper, Bergemann et al. [2024] study a mechanism
design problem where agents have both private types and signals, one motivation of which is to model
a generalization of our problem. For further discussion of related work, see Appendix A.

3 Framing Sequence Generation as a Mechanism Design Problem

3.1 Formal Model

A user issues a query x. There is a reference LLM πref that the auctioneer aims not to deviate from
too much (e.g., because it is responsible for providing useful replies to the user). Additionally, there
is a set N of n advertisers who have their own preferences for the reply (i.e., a token sequence) that
will be returned to the user. We use the terms sequence and reply interchangeably.

We let ri(x, y) denote advertiser i’s reward for reply y, given query x.2 Informally, the auctioneer’s
goal is to sample the final reply from a distribution that optimizes the advertisers’ expected rewards
without substantially diverging from πref. This is motivated by traditional online ad auctions, where
the implicit goal is to maximize advertiser value subject to ensuring a chosen level of usefulness to
the user (e.g., the balance between allocating search slots to ads and native content). In the context of
an LLM environment, the analogous notion of “usefulness to the user” is represented by the closeness
of the final distribution to πref. Formally, the goal is to choose π to maximize:

Ey∼π

[∑
i∈N

ri(x, y)

]
− τDKL(π(·|x)||πref(·|x)), (1)

where τ > 0 is a hyperparameter enabling the auctioneer to balance producing replies closer to the
reference LLM or with higher reward for the advertisers, and DKL is the Kullback-Leibler divergence.

This objective is analogous to the standard Reinforcement Learning from Human Feedback (RLHF)
approach [Ziegler et al., 2020], but replaces the human feedback reward function with the advertisers’
aggregate reward r(x, y) =

∑
i∈N ri(x, y). For an overview of RLHF, see Rafailov et al. [2023, §3].

1As an example, suppose advertiser A wins the bids for all the tokens in the sequence “Planning your next
vacation? For the cheapest flights book via...” However, she loses the bid for the crucial next token, her brand
name. She thus pays for the preceding tokens without benefiting from associating her brand with the message.

2In theory, an advertiser’s reward for a generated reply could also depend on user-specific information, but
we abstract that away. Equivalently, we assume that the advertisers provide user-specific reward functions.
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The optimal solution π∗
r to the optimization problem in (1) was derived by Peters and Schaal [2007]:

π∗
r (y|x) =

1

Z(x)
πref(y|x) exp

(
1

τ

∑
i∈N

ri(x, y)

)
, (2)

where Z(x) =
∑

y∈T∗ πref(y|x) exp
(
1
τ

∑
i∈N ri(x, y)

)
is the partition function.

The performance goal we seek to maximize is τ log πref(y|x) +
∑

i∈N ri(x, y); as it aggregates the
interests of both the user and all the advertisers, we refer to it as the social welfare of y.

Let R̂ be the set of all possible reports by the advertisers. A mechanism is defined as a pair (π, p).
The allocation rule π : R̂ → (T ∗ → ∆(T ∗)) maps any report profile r̂ = (r̂1, r̂2, . . . , r̂n) ∈ R̂ of the
advertisers’ rewards to an LLM πr̂, which in turn is a mapping from a user query x to a distribution
over token sequences δ(T ∗). We denote the LLM that the allocation rule π induces for reports r̂ as
πr̂, and the optimal LLM for those reports (i.e., the maximizer of Equation (1)) as π∗

r̂ . The payment
rule p : R̂ → Rn maps any report profile r̂ to a payment profile p(r̂), where pi(r̂) is the payment of
the i-th advertiser. We aim for strategyproof mechanisms, meaning that no advertiser has an incentive
to misreport her preferences:
Definition 3.1 (Strategyproof). A mechanism (π, p) is strategyproof if, for any advertiser i ∈ N , true
reward function ri, reported reward function r̂i, reported reward functions r̂−i by the other advertisers
and prompt x: Ey∼π(ri,r̂−i)

(·|x)[ri(x, y) − pi(ri, r̂−i)] ≥ Ey∼π(r̂i,r̂−i)
(·|x)[ri(x, y) − pi(r̂i, r̂−i)],

where ri(x, y)− pi(r̂i, r̂−i) is the utility of advertiser i for reply y when her payment is pi(r̂i, r̂−i).

3.2 The shortcomings of VCG in this setting

At first sight, it may seem that the Vickrey–Clarke–Groves (VCG) mechanism would be suitable for
our setting [Vickrey, 1961, Clarke, 1971, Groves, 1973]. VCG selects the outcome that maximizes the
sum of all agents’ values. This can be either a single optimal sequence for Equation (1) or the optimal
distribution of Equation (2). The VCG mechanism has a corresponding payment rule to incentivize
truthful reporting: it charges each agent her externality, the total reduction in value (respectively
expected value) for the other agents that her participation in the mechanism caused.

However, in our setting, VCG is not a viable option: VCG requires calculating the exact optimal solu-
tion to the optimization problem, which is intractable for choosing an LLM to maximize Equation (1)
and is even difficult for choosing a single optimal sequence. If a sub-optimal solution is chosen,
VCG’s strategyproofness is no longer guaranteed [Nisan and Ronen, 2007, 1999, Lehmann et al.,
2002]. We provide an intuitive example illustrating this failure for two advertisers in Appendix B.1.

4 The MOSAIC Mechanism: Allocation Rule

4.1 Convergence to Optimality, Advertiser Contexts and Importance Sampling

In this section, we introduce MOSAIC’s allocation rule. The high-level idea is as follows: first, a
set of M candidate replies is generated based on an LLM πgen. Then, the probability of returning
each candidate is re-weighted based on the advertisers’ reports and the reference LLM πref, so that
as M → ∞, the return probability of each reply converges to that under the optimal distribution
of Equation (2). This approach resembles importance sampling techniques that have been used in
various LLM training pipelines (e.g., Xie et al. [2023]). All proofs are deferred to Appendix B.
Corollary 4.1. For any reported reward functions r ∈ R and any LLM πgen such that πref is absolutely
continuous with respect to πgen, the MOSAIC policy πr,M (·|x) from Algorithm 1, using M candidate
replies, converges to an optimal solution for the platform’s objective (Equation (1)) as M → ∞.
Formally, limM→∞ πr,M (·|x) = π∗

r (·|x) ∈ argmaxπ∈∆(T∗) Ey∼π(·|x)[r(x, y)]− τDKL(π||πref).

Based on Corollary 4.1, MOSAIC converges to the optimal distribution for any LLM πgen, provided
that πref is absolutely continuous with respect to πgen. While πgen = πref is an intuitive choice,
it would result in impractically slow convergence rates. The reason is that advertisers have high
rewards for responses that explicitly mention their brands, but πref considers replies with mentions
of specific brands extremely unlikely. Consequently, generating candidate replies directly from πref
leads Algorithm 1 to sample from a set of low-reward candidates, hindering performance.
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Algorithm 1: Allocation Rule for MOSAIC
Input: User prompt x, reference LLM πref, LLM used for candidate reply generation πgen,

advertiser reward functions {ri}ni=1, number of candidate replies to generate M ,
reference LLM weight τ

Output: Reply y drawn according to the optimal distribution as defined in Equation (1) for the
aggregate reward function r(x, y) =

∑N
i=1 ri(x, y)

1 Sample yj ∼ πgen(·|x), 1 ≤ j ≤ M

2 Calculate r(x, yj) =
∑N

i=1 ri(x, yj), 1 ≤ j ≤ M

3 return y ∼ softmax
(

r(x,y1)
τ + log πref(y1|x)

πgen(y1|x) , . . . ,
r(x,yM )

τ + log πref(yM |x)
πgen(yM |x)

)

To address this challenge, we generate candidate sequences not from πref(·|x), but instead from
a context-aware LLM, πcon(·|x; c). The instance-specific context c is designed to bridge the gap
between the parts of the output space favored by πref and those valued by the advertisers.

We formalize this intuition in Appendix B.3, connecting MOSAIC’s allocation rule to an importance-
based sampling estimator for π∗

r and proving the following lemma:

Lemma 4.2. For any LLM πgen such that πref is absolutely continuous with re-
spect to πgen, the variance of πr,M (·|x) as an estimator of Ey∼π∗

r (·|x)[π
∗
r (y|x)] is

1
M

(∑
y∈Y

π∗
r (y|x)

4

πgen(y|x) −
(∑

y∈Y π∗
r (y|x)2

)2)
.

Applying Chebyshev’s inequality to the variance of Lemma 4.2, MOSAIC converges to π∗
r at a rate

of
√
M (Lemma B.3).3 However, this convergence rate also depends on π∗

r (y|x)
4

πgen(y|x) . Thus, generating
replies via an LLM closer to π∗

r reduces the estimator’s variance and improves convergence speed.

In our application of integrating advertisers’ interests into LLM outputs, ci is a context-specific
description of the i-th advertiser. These descriptions, supplied by the advertisers themselves, should
be easily verifiable and factually accurate, akin to “MusicMastery: offering online music lessons”, or
“InstaTune: selling musical instruments.”4 This approach is analogous to search engine optimization in
sponsored search advertising, where advertisers supply and potentially optimize their own descriptions
to influence how they are presented by the auction mechanism.

Our experiments in Section 6.2 demonstrate that using the context-aware LLM to generate candidate
replies achieves substantially higher rewards and utility for the advertisers, increased revenue for
the auctioneer, and faster convergence. In the rest of the paper, we refer to using the reference and
context-aware LLMs as the baseline and context-aware versions of our mechanism, respectively.

4.2 Practical Considerations

Input Methods and Black-Box Access to Advertiser LLMs. MOSAIC’s allocation and payment
rules do not depend on the advertisers’ full reward functions, but only on their rewards for the
candidate replies. Thus, MOSAIC requires only “API access” to the involved LLMs without fine-
tuning or access to their weights. Rafailov et al. [2023] established a mapping between an agent’s
LLM and her implicit reward function, allowing MOSAIC to use as inputs reply probabilities (i.e.,
LLM inference calls) instead of rewards. For more details, see Appendix C.2.

Static Setting and Incentive Implications. The number M of candidate replies considered by
MOSAIC is predetermined. Each advertiser observes all M candidate replies before submitting her
reports, resulting in a static rather than a dynamic setting (e.g., as in Dütting et al. [2024]), where
advertisers interact sequentially with evolving information, significantly complicating incentive
considerations. Theorem 5.1 ensures that truthful reporting is a dominant strategy for each advertiser.

3In Appendix B.4 we establish a more general result, showing that for any sequence y, its estimated
probability converges to the corresponding probability under π∗

r at a rate of 1/
√
M .

4A practical way of implementing πcon(·|x; c) given πref(·|x) is to augment the input x to the reference LLM
with the advertiser descriptions. In our example: “Try to mention 〈advertiser x〉, 〈advertiser x description〉.’
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Complexity. Generating a single candidate reply of length L tokens requires L forward passes
through πgen, as tokens are generated sequentially in an autoregressive manner. Evaluating each reply
processes the entire sequence in a single forward pass (and is compatible with efficient evaluation
methods, e.g. Li et al. [2024]). For M candidate replies and n advertisers, MOSAIC requires
M · (L+n+1) total forward passes. In contrast, Dütting et al. [2024] require L ·n forward passes, as
all n advertiser LLMs participate in generating each token. Section 6 shows that MOSAIC achieves
convergence with M = 20 candidate replies, reducing computational cost for large n.

Compatibility with Efficient Methods and Practical Costs. MOSAIC relies solely on LLM
forward passes, the core operation modern architectures are optimized for, enabling it to take full
advantage of existing optimizations for efficient generation. As a result, MOSAIC converges to the
optimal distribution with compute costs equivalent to just five LLM queries (Appendix D.8).

Parallelization and User-Perceived Latency. The generation and evaluation of each candidate
sequence are independent processes, allowing MOSAIC to be fully parallelized. In a fully parallelized
setting, the response time for a user query is comparable to directly querying a single LLM.

Inherent Competition. Unlike conventional auctions, MOSAIC ensures high baseline revenue even
in low-competition environments, as advertisers always compete against πref. Traditional auctions
rely on reserve prices to boost revenue, but a slight miscalibration above a critical threshold can result
in zero revenue. In contrast, MOSAIC uses a single tunable parameter, τ , and its revenue varies
smoothly and differentiably with τ (see the proof of Theorem 5.1). As a result, revenue optimization
in MOSAIC is significantly more robust to parameter tuning.

An “Autobidder” Perspective on the Mechanism. In practice, an advertiser might not have the
know-how to produce an LLM reflecting their preferences. In conventional online ad auctions,
two existing practices are used to solve a similar problem: platforms offer tools to help advertisers
improve ad quality, and they provide autobidders to help advertisers bid. The largest online advertising
platforms have the capacity to host and finetune LLMs, so they already have the infrastructure to offer
an “LLM autobidder.” Concretely, they could train an LLM for an advertiser, reflecting the advertiser’s
interests, and they could also provide inference. Even under this “autobidder” implementation, all
properties of our mechanism are preserved.

5 The MOSAIC Mechanism: Payment Rule

In this section, we first show how the allocation rule from Section 4 can be combined with an
appropriate payment rule so that the resulting mechanism is strategyproof (Section 5.1). Then, we
detail how auctions for LLM-generated content differ from standard auctions (Section 5.2). Taking
those differences into account, we create a payment offset, so that MOSAIC is both strategyproof and
social welfare-aligned (Section 5.3). We defer all proofs to Appendix C.

5.1 Strategyproofness through Cyclic Monotonicity

The allocation rule of Algorithm 1 satisfies cyclic monotonicity [Rockafellar, 1970, § 24]. Rochet
[1987] first proposed the use of cyclic monotonicity in mechanism design as a generalization of
monotonicity in single-parameter settings [Myerson, 1981]. For general settings, cyclic monotonicity
of the allocation rule is a sufficient and necessary condition for us to prove:

Theorem 5.1. The allocation rule of Algorithm 1 can be combined with a payment rule such that
for any advertiser i ∈ N and set of candidate replies {yj}Mj=1, reporting truthfully is a dominant
strategy. Advertiser i’s expected utility (up to a constant of integration C) under truthful reporting is:
Ũi(ri, r̂−i;πref , πgen) = C + τ log

(∑M
j=1 exp

(∑
k∈N\{i} r̂k(x,yj)+ri(x,yj)

τ

)
+ log

πref(yj |x)
πgen(yj |x)

)
.

Note that, based on Theorem 5.1, in MOSAIC it is always a dominant strategy for an advertiser to
report truthfully. Crucially, this is not the case for VCG, where truthful reporting would be optimal
only if the allocation rule had converged to the optimal distribution (Example 1).
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5.2 Differences from Standard Auction Settings

Auction mechanisms designed to sell items or ad slots typically rely on simplifying assumptions that
do not apply in a setting with LLM-generated content. Key differences include: (i) Non-Negative
Values: These mechanisms assume agents’ values are non-negative due to having zero value for the
empty bundle and free disposal. In contrast, in our setting, an advertiser’s reward can be negative based
on the discrepancy between her LLM and the reference LLM. (ii) Advertiser-Specific Allocations:
These mechanisms allocate different item bundles to different agents. Here, a single reply is produced
(iii) Zero Utility for Non-Participation: In most auction settings, not participating yields zero utility.
Here, non-participation can result in negative utility since the produced reply may be unfavorable to
non-participating advertisers.5 For details, see Appendix C.2.

5.3 Advertiser-specific Utility Offset

We now modify MOSAIC’s payment rule by adding a payment offset (and thus a utility offset):
C = −Ũi(0, r̂−i;πref , πcon). Informally, we additionally charge each advertiser her utility in
Theorem 5.1 if her reward for all candidate replies was zero. This offset maintains the key properties
of our mechanism (i.e., strategyproofness and convergence to the optimal distribution), while also
achieving two additional properties that are critical for the long-term success of a market for LLM
aggregation. The first is “Almost IR:” An advertiser with weakly positive reward for all candidate
replies has weakly positive expected utility for all reports by the other advertisers. The second is

“What you give is what you get:” an advertiser’s expected utility is monotone in how well-aligned her
exponentiated reward for the replies is with the interim allocation rule if she were to not participate.

5.3.1 “Almost Individually Rational”

Individual rationality is important to incentivize agents to participate in the mechanism. In Ap-
pendix C.3, we explain how the unique properties of our setting, namely lack of free disposal and
a common outcome for all agents, make the standard notion of individual rationality (i.e., weakly
positive utility from participation) unobtainable while converging to the optimal distribution and
maintaining strategyproofness. Then, we explain how, our payment offset achieves “almost IR:” In
Lemma C.1 we prove that the expected utility of an advertiser who has zero reward for all candidate
replies and bids truthfully is zero, i.e., advertisers that do not contribute to the social welfare (but
also do not detract from it) have zero utility. Similarly, in Lemma C.2 we prove that if an advertiser’s
reward for all candidate sequences is (weakly) positive, then her expected utility is (weakly) positive.

Remark 1. In Section 6, we experimentally show that our offset payment rule, coupled with our
context-aware allocation rule, results in both high expected rewards and positive utility for the
advertisers (i.e., ex-ante individual rationality), as well as significant revenue for the auctioneer.

5.3.2 “What you give is what you get”

Our allocation rule, which is the only one over a finite set of replies that converges to the optimal LLM,
is also the (sub)gradient of the utility to ensure truthfulness [Rochet, 1987]. Because the allocation
rule is the same for all advertisers, their utilities must also be the same, up to advertiser-specific
offsets, as indicated by Theorem 5.1. However, not all advertisers contribute equally to social welfare.
In Appendix C.4, we explain why implementing the mechanism without carefully designed offsets
would lead to free-riding. Specifically, if an advertiser’s expected utility is positive, even when her
relevance to the user query is low, it incentivizes her participation. This dilutes the utility for all
participants, discouraging more relevant advertisers from participating. As a result, the expected
rewards for advertisers decline, and the generated replies become less useful for users. To avoid
free-riding, it is crucial to align each advertiser’s utility with her contribution to social welfare.

Lemma 5.2. For the offset C = −Ũi(0, r̂−i;πref , πcon) advertiser i’s expected utility under truthful

reporting is Ui(ri, r̂−i;πref , πcon) = τ log
(∑M

j=1 exp
(

ri(x,yj)
τ

)
πr̂−i

(yj | x)
)
.

5While we focus on the most general model that includes negative rewards, MOSAIC maintains all its desir-
able properties discussed in Sections 4 and 5 under the assumption that all advertiser rewards are nonnegative.
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User query

What are effective ways to learn a musical instrument online?

Advertisers

- MusicMastery: offering online music lessons and virtual tutoring
- InstaTune: selling musical instruments and learning aids

Context-Aware Mechanism Output

Effective ways to learn a musical instrument online include:
1. Online music lessons: Platforms like MusicMastery offer one-on-one virtual tutoring, group classes, and pre-recorded lessons. These
lessons can be tailored to your skill level and learning style.
2. Interactive learning tools: InstaTune offers a range of interactive learning tools, such as apps, software, and games, that make learning
fun and engaging.. . .

Baseline Mechanism Output

- Practice consistently and regularly: Consistent practice is essential to learning any musical instrument, and it’s even more important when
learning online. Set aside a specific time each day or week to practice, and make sure to stick to it.
- Find a good teacher or mentor: While it’s possible to learn some things on your own, working with a good teacher or mentor can help you
improve faster and avoid developing bad habits. . . .

Figure 1: Comparison of context-aware and baseline mechanism outputs using 10 candidate replies.

In words, Lemma 5.2 shows that each advertiser’s expected utility is monotone in how well aligned
her exponentiated reward function is with MOSAIC’s induced LLM πr̂−i (i.e., the optimal LLM for
the reports r̂−i that would have been obtained had advertiser i not participated).
Remark 2. In Section 6.2, we experimentally show that the offset of Section 5.3 induces a strong
positive correlation between an advertiser’s contribution to social welfare and her expected utility
gain from participating. Moreover, for the tested distribution of instances, MOSAIC satisfies ex-ante
IR.

6 Experiments

In this section, we evaluate MOSAIC’s performance on its flagship application of online advertising.

6.1 Experiment Setup

We create synthetic instances, each comprising a user query (e.g., “How to learn a musical instrument
online?”) and two advertisers (e.g., “MusicMastery, offering online music lessons”). This matches
the setup of Dütting et al. [2024] while highlighting MOSAIC’S performance and revenue, even in
low competition scenarios. We use Llama-2-7b-chat-hf [Touvron et al., 2023] as the base architecture
for all LLMs. In Appendices D.6 and D.10 we extend our analysis to settings with more advertisers
and alternative architectures, observing similarly strong results. See Appendix D for details.

6.2 Experimental Results

In this section, we evaluate MOSAIC’s overall effectiveness, assessing both its allocation and payment
rules. We first focus on how well the allocation rule generates value for advertisers and converges
to the optimal distribution, comparing the baseline and context-aware versions. Figure 1 illustrates
how the context-aware mechanism enhances response relevance for advertisers. Notably, only the
context-aware mechanism successfully incorporates advertisers into the replies.

In Figure 2a, we plot the log probability of the replies returned by MOSAIC with respect to the
optimal distribution (Equation (2)) against the number M of candidate replies generated. We
compare the context-aware version of MOSAIC to the baseline version to evaluate the effectiveness
of incorporating contextual information. Note that baseline MOSAIC is the strongest applicable
benchmark, as it is the only other tractable mechanism for this problem in the literature that converges
to the optimal distribution (for a detailed discussion, please see Appendix D.2).

To assess MOSAIC’s convergence, we estimate the log probability of sampling a single reply from
the optimal distribution.6 We observe that for both the context-aware and baseline versions of

6The closed-form solution of Equation (2) allows us to evaluate the probability of sentences with respect to
the optimal solution, but it does not enable us to sample from that distribution, which would require using RL to
train the optimal LLM on the advertisers’ aggregate reward function, which is computationally infeasible for
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Figure 2: Reply log probability, total advertiser normalized reward, and revenue as a function of the
number of candidate replies generated using πref and πcon. Averages over 1250 runs with 95% CIs.

MOSAIC, the log probability of the returned reply scales rapidly with the number of candidate
replies. This aligns with our analysis in Section 4, where we proved that both versions converge to the
optimal distribution. We also observe that incorporating context significantly accelerates convergence.
Notably, the context-aware version of MOSAIC achieves higher log probability with respect to the
optimal distribution with four candidate replies than the baseline version with 20. Additionally, with
only 20 candidate replies, the context-aware mechanism can almost match our estimate of the log
probability of sampling from the optimal distribution. In Appendix D.4, we further demonstrate that
the usefulness to the user also scales rapidly with the number of candidate replies.

In Figure 2b, we plot the total expected reward for advertisers against the number of candidate replies
generated, with the expectation over the distribution of the returned reply from the set of candidate
replies. To make the plot more interpretable, we normalize each advertiser’s expected reward by
her expected reward had she not participated. Specifically, we plot ri,norm(x) =

∑
j∈M ri(x, yj) ·

πr(yj |x)−
∑

j∈M ri(x, y−i,j) · πr−i(y−i,j |x), where y−i are the candidate replies that would have
been generated if advertiser i had not participated, and πr−i

MOSAIC’s allocation rule in that case.7
We compare MOSAIC’s two versions, highlighting the value of incorporating context.

Figure 2b demonstrates that our context-aware mechanism significantly boosts advertiser rewards,
with benefits scaling rapidly with the number of candidate replies. In contrast, the baseline version
fails to improve advertiser rewards and may even cause a slight decrease: generating more replies
adds marginal positive reward to the reference LLM (see Appendix D.4), but does so at the expense of
advertisers. In summary, MOSAIC’s support for context-aware LLMs allows it to quickly converge
to the optimal distribution and generate substantial rewards for advertisers. In an ablation study
(Appendix D.7), we demonstrate that MOSAIC maintains strong performance across all key metrics
even under significantly reduced contextual input.

In Appendix D.8 we provide a detailed experimental evaluation of MOSAIC’s compute requirements,
showing how it requires the compute cost of just five LLM queries to converge, and discuss how it
can be fully parallelized so that the user-perceived latency is the same as a single LLM query.

Next, we examine the impact of our payment rule from Section 5. In Figure 2c, we plot the
auctioneer’s revenue for both the context-aware and baseline versions of MOSAIC. Our payment
rule in combination with the context-aware allocation rule yields revenue that scales rapidly with
the number of candidate replies. Moreover, comparing the advertisers’ total payment with their
normalized reward in Figure 2b, we see that for the context-aware mechanism, our payment rule
converts much of the advertisers’ surplus into revenue, while also ensuring positive advertiser utility.

These results align with our theoretical analysis. In Section 5.3.1, we showed that an advertiser
with positive rewards for candidate replies—as in the context-aware mechanism—achieves positive
expected utility, and in Section 5.3.2 we introduced the “what you give is what you get” property. In

the number of problem instances we test. Instead, we generate replies from πref and evaluate them based on the
induced probabilities of πref, for which πref is the optimal LLM. This serves as a proxy for the log probabilities
we should expect if we were to draw replies from the optimally fine-tuned model for each query.

7To reduce computational costs, we estimate an advertiser’s reward for not participating based on her expected
reward over the already generated replies in which her brand is not mentioned by name, motivated by the fact
that if she does not participate, her brand will not be mentioned.
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Appendix D.5 we show that, for both versions of our mechanism, the payment offset increases the
advertisers’ expected utility, and makes the relationship between an advertiser’s contribution to social
welfare and utility significantly more linear and positively correlated. Concretely, our offset increases
the Pearson correlation between advertiser utility and reward from 0.4 to 0.8.

7 Discussion

The motivation for our paper is one particularly common way in which users interact with LLMs:
using them as search tools with a single query. This use of LLMs is a close cousin to ordinary search,
and most of the existing considerations for sponsored search also apply. For example, the platform
would need to vet participating advertisers as well as the content they want to generate, and the
platform would also need to visually distinguish advertiser-influenced parts of the response.

We have made several design choices in our problem setting. While these are completely standard
in mechanism design, and we think they also make sense in the application we envision, they still
represent a limitation in the scope of our work. Below, we discuss those design choices in more depth,
and take the opportunity to consider broader impacts and possible directions for future work.

The first such design choice is the platform’s objective in Equation (1). This objective corresponds to
a “utilitarian” concept of social welfare. This is the most common objective in mechanism design,
and indeed, all large online ad platforms maximize for this objective. However, a platform might
reasonably focus on other objectives, for example, revenue or egalitarian fairness. As long as a
closed-form solution for the platform’s objective can be derived and the corresponding allocation rule
satisfies cyclic monotonicity, our mechanism is also applicable for that objective.

A second design choice is our focus on a single-query, static mechanism design setting. Handling
multi-query LLM interactions involving lengthy conversations would include a much larger range
of usage patterns. Determining where and how advertising could be appropriate (e.g., in product
searches) and where it might be inappropriate (e.g., in emotionally challenging conversations) would
require careful consideration. Additionally, this would involve dynamic mechanism design. In
Section 2, we explain some limitations of the specific dynamic mechanism proposed by Dütting
et al. [2024] for this problem. However, to a large extent, these issues are inherent to any dynamic
mechanism and not unique to that paper; overcoming them is an important direction for future work.

Finally, we have made the design choice of equating the usefulness of a reply to the user with the
likelihood of that reply given by the reference LLM, and we have equated an advertiser’s value for a
reply with the induced reward of that reply by their LLM. Regarding the first choice, we argue that
it is reasonable to assume that the platform wants its results to be as high-quality as possible. The
second choice corresponds to the standard assumption in mechanism design that participants know
their type for any possible outcome. But in practice, it may not be realistic for advertisers to train
their LLMs and run inference on potentially private user data. In Section 4.2, we have discussed an
autobidder perspective on the mechanism that addresses both of these challenges.

8 Conclusion

We have introduced MOSAIC, a novel auction mechanism for aggregating preferences over LLM
outputs. MOSAIC provably converges to the theoretically optimal distribution and it also facilitates a
principled method for balancing participants’ expected rewards with the divergence from a reference
LLM. Thus, our mechanism is particularly well-suited for online advertising, allowing the integration
of advertiser LLMs with a reference LLM responsible for generating user-centric replies.

Our payment rule removes any incentive to misreport preferences, achieving the central mechanism
design goal of strategyproofness. While ex-post IR is incompatible with strategyproofness in our
setting, we experimentally show that our mechanism is ex-ante individually rational and “almost
individually rational” in a certain sense. Furthermore, it ensures that each participant’s utility gain is
proportionate to her contribution to social welfare, an essential alignment property in this setting.

Experimentally, we have demonstrated that by incorporating contextual information, MOSAIC’s
outputs rapidly converge to the optimal distribution, generating significant value for the advertisers
while also effectively recapturing a considerable portion of this value as revenue. These findings
demonstrate the practical efficacy and potential of our approach in realistic settings.
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A Further related work

Feizi et al. [2024] presented an abstract design for an LLM advertising system and detailed a number
of research challenges that would have to be overcome in the course of implementation. Conitzer et al.
[2024] drew connections between computational social choice and LLM alignment. Fish et al. [2023]
presented work in the opposite direction: how can LLMs be used to solve problems in social choice?
Harris et al. [2024] studied Bayesian persuasion in an abstract setting where a “simulator” (for
example, a realistic LLM) of the agent is available. Werner et al. [2024] gave preliminary empirical
evidence that LLM-generated content can influence consumers. Banchio et al. [2025] discuss running
auctions where the allocative decision involves placing ads in a multi-turn conversation after up-front
bidding.

In work that appeared after the initial version of this paper, Bergemann et al. [2024] considers a
setting where bidders have both private types reflecting their preferences and private signals reflecting
information about a world state (for example, user interests). When applied to LLM auctions, they
identify their setting as a generalization of ours, where the signals known to the advertisers may
actually improve the output for the user, and where deviations from the reference LLM may be
measured by arbitrary distance functions. They analyze conditions under which a welfare maximizing
mechanism can be implemented truthfully (eliciting both types and signals) in posterior equilibrium,
but do not consider practical implementations of their mechanism.

B Details from Section 4

In this section, we present all omitted theorems and proofs from Section 4.

B.1 An Example Where VCG Is Not Strategyproof in This Setting

In Example 1, we present a simple example illustrating that the VCG mechanism is not strategyproof
when the allocation rule cannot fully converge to the optimal LLM based on the advertisers’ reports.
Example 1. Suppose there are two advertisers, A and B, and five possible replies:

• two replies that mention both advertisers,

• one reply that mentions only A,

• one reply that mentions only B,

• and one reply that mentions neither advertiser.

The advertisers’ rewards for each reply are shown in Table 1:

Outcome rA rB
{A,B}1 0.9 0.9
{A,B}2 0.4 0.4
{A} 1.0 0.0
{B} 0.0 0.5
∅ 0.0 0.0

Table 1: Advertiser rewards for different replies.

Assume that τ = 0, so that the optimal LLM would deterministically select {A,B}1, maximizing
total advertiser reward. However, suppose that the allocation rule cannot converge to this reply—for
instance, because RLHF is used to train the aggregate LLM πr̂ and the process is noisy. Instead,
when aiming for {A,B}1, the resulting LLM π produces {A,B}2.8

Under truthful reports, advertiser A’s utility would be

uA = rA({A,B}2) + rB({A,B}2)− rB({B}) = 0.4.

8Alternatively, one could interpret this setup as a setting where the mechanism cannot converge to replies
mentioning both advertisers, perhaps due to optimization difficulties, but can converge to replies mentioning
only one advertiser.
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However, if advertiser A misreports by declaring r̂A({A,B}1) = 0.0, the mechanism would instead
converge to an LLM that always returns {A}. In that case, A’s utility would be

uA = rA({A}) + rB({A})− rB({B}) = 0.5.

Thus, advertiser A would be incentivized to misreport her preferences, illustrating how VCG payments
cannot ensure strategyproofness when the allocation chosen may be suboptimal.

B.2 Proving that MOSAIC converges to the target distribution in the limit

Theorem B.1. Let πr,M (y|x) be the probability of sampling output sequence y for input sequence x

according to Algorithm 1, where M is the number of candidate sequences generated and r̂ ∈ R̂ is
the advertisers’ reported reward functions. For any LLM πgen such that πref is absolutely continuous
with respect to πgen, the policy induced by MOSAIC approaches the following limit:

lim
M→∞

πr̂,M (y|x) = πref(y|x)
exp(r̂(x, y)/τ)

Ey′∼πref(·|x)[exp(r̂(x, y
′)/τ)]

(3)

Theorem B.1 Proof. Let πr̂,M (y|x, {yj}Mj=1) be the probability of returning output sequence y for
input sequence x according to Algorithm 1 conditioned on the set of generated candidate sequences
being {yj}Mj=1. Additionally, let πcon({yj}Mj=1|x; c) be the probability of the context-aware model
πcon generating the candidate sequences {yj}Mj=1, given the context c and the user query x.

First, note that we can write the density of πr̂,M as follows:

πr̂,M (y|x) =
∑

{yj}M
j=1∈Y M

πr̂,M (y|x, {yj}Mj=1)πcon({yj}Mj=1|x; c)

= E{yj}M
j=1∼πcon(·|x;c)

[
πr̂,M (y|x, {yj}Mj=1)

]
= E{yj}M

j=1∼πcon(·|x;c)

∑
j

I {yj = y}
exp

(
r̂(x,yj)

τ + log
πref(yj |x)

πcon(yj |x;c)

)
∑

ζ∈{yj}M
j=1

exp
(

r̂(x,ζ)
τ + log πref(ζ|x)

πcon(ζ|x;c)

)


= E{yj}M
j=1∼πcon(·|x;c)

∑
j

I {yj = y}
πref(yj |x)

πcon(yj |x;c) exp
(

r̂(x,yj)
τ

)
∑

ζ∈{yj}M
j=1

πref(ζ|x)
πcon(ζ|x;c) exp

(
r̂(x,ζ)

τ

)


= E{yj}M
j=1∼πcon(·|x;c)

 ∑
j I {yj = y}∑

ζ∈{yj}M
j=1

πref(ζ|x)
πcon(ζ|x;c) exp

(
r̂(x,ζ)

τ

)
 πref(y|x)
πcon(y|x; c)

exp

(
r̂(x, y)

τ

)

= E{yj}M
j=1∼πcon(·|x;c)

 1
M

∑
j I {yj = y}

1
M

∑
ζ∈{yj}M

j=1

πref(ζ|x)
πcon(ζ|x;c) exp

(
r̂(x,ζ)

τ

)
 πref(y|x)
πcon(y|x; c)

exp

(
r̂(x, y)

τ

)
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Taking the limit as M → ∞ and using the Law of Large Numbers (the sequences are i.i.d.):

lim
M→∞

πr̂,M (y|x) = lim
M→∞

E{yj}M
j=1∼πcon(·|x;c)

 πcon(y|x; c)

Eζ∼πcon(·|x)

[
exp

(
r̂(x,ζ)

τ

)
πref(ζ|x)

πcon(ζ|x;c)

]
 πref(y|x)
πcon(y|x; c)

exp

(
r̂(x, y)

τ

)

= πcon(y|x; c)
1

Eζ∼πcon(·|x)

[
exp

(
r̂(x,ζ)

τ

)
πref(ζ|x)
πcon(ζ|x)

] πref(y|x)
πcon(y|x; c)

exp

(
r̂(x, y)

τ

)

= πref(y|x)
1∑

ζ∈Y πcon(ζ|x) exp
(

r̂(x,ζ)
τ

)
πref(ζ|x)

πcon(ζ|x;c)

exp

(
r̂(x, y)

τ

)

= πref(y|x)
1∑

ζ∈Y πref(ζ|x) exp
(

r̂(x,ζ)
τ

) exp

(
r̂(x, y)

τ

)

= πref(y|x)
1

Eζ∼πref(·|x) [exp(r̂(x, ζ)/τ)]
exp

(
r̂(x, y)

τ

)

Corollary 4.1 Proof. The proof follows directly from Theorem B.1 and Appendix A.1 in Rafailov
et al. [2023].

B.3 Formal Connection To Importance Sampling

Given truthful reports by the advertisers, there is a strong connection between our allocation rule
and importance sampling. The optimal LLM for the platform’s objective π∗

r can be interpreted as
the target distribution that our allocation rule is trying to simulate. The aim of our allocation rule
is to return a reply as similar as possible to a reply drawn from the optimal LLM π∗

r . This can be
interpreted as drawing a reply from π∗

r and then evaluating it with respect to the same function, i.e.,
our allocation rule is trying to estimate Ey∼π∗

r (·|x)[π
∗
r (y|x)]. The LLM πgen that we use to generate

the candidate replies (either the reference LLM or the context-aware LLM) can be interpreted as the
proposal distribution πprop(·|x) used to generate samples. We are interested in how well, with respect
to the target probability π∗

r (·|x), a sample y from our estimator using M candidate replies matches a
sample drawn from the target distribution π∗

r (·|x). In this section, we will analytically show how the
quality of the proposal distribution πprop = πgen affects the quality of that estimator.

First, in Lemma B.2 we establish the variance of our estimator:
Lemma B.2. For any LLM πgen such that πref is absolutely continuous with respect to πgen, the
variance of the policy πr,M (·|x) as an estimator for Ey∼π∗

r (·|x)[π
∗
r (y|x)] is

Var(µ̂IS) =
1

M

∑
y∈Y

π∗
r (y|x)4

πgen(y|x)
−

∑
y∈Y

π∗
r (y|x)2

2
 . (4)

Proof. Let y1, y2, . . . , yM be the M generated candidate replies drawn from the proposal distribution
πprop(·|x). Conditioned on those candidate replies, the importance sampling estimator for the expected
value of the function π∗

r (y|x) under the target distribution π∗
r (y|x) is

µ̂IS =
1

M

M∑
j=1

π∗
r (yj |x) · w(xj)

=
1

M

M∑
j=1

π∗
r (yj |x) ·

π∗
r (yj |x)

πprop(yj |x)

=
1

M

M∑
j=1

π∗
r (yj |x)2

πprop(yj |x)
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Taking expectation over the generated candidate replies y1, . . . , yM :

E[µ̂IS] = Ey1,...,yM∼πprop(·|x)

 1

M

M∑
j=1

π∗
r (yj |x)2

πprop(yj |x)


=

1

M

m∑
j=1

Eyj∼πprop(·|x)

[
π∗
r (yj |x)2

πprop(yj |x)

]

= Ey∼πprop(·|x)

[
π∗
r (y|x)2

πprop(y|x)

]
=
∑
y∈Y

π∗
r (y|x)2

πprop(y|x)
πprop(y|x)

=
∑
y∈Y

π∗
r (y|x)2 (5)

Thus, our estimator is unbiased, as expected. The variance of the estimator µ̂IS is given by:

Var(µ̂IS) = E[µ̂2
IS]− E[µ̂IS]

2 (6)

For the term µ̂2
IS we have:

µ̂2
IS =

 1

M

M∑
j=1

π∗
r (yj |x)2

πprop(yj |x)


=

1

M2

M∑
j=1

M∑
j′=1

π∗
r (yj |x)2

πprop(yj |x)
· π∗

r (yj′ |x)2

πprop(yj′ |x)

Taking the expectation Eπprop(·|x)[·]:

E[µ̂2
IS] =

1

M2

M∑
j=1

M∑
j′=1

Eπprop(·|x)

[
π∗
r (yj |x)2

πprop(yj |x)
· π∗

r (yj′ |x)2

πprop(yj′ |x)

]

=
1

M2

 M∑
j=1

Eπprop(·|x)

[
π∗
r (yj |x)4

πprop(yj |x)2

]
+
∑
j ̸=j′

Eπprop(·|x)

[
π∗
r (yj |x)2

πprop(yj |x)

]
=

1

M2

M
∑
y∈Y

π∗
r (y|x)4

πprop(y|x)
+M(M − 1)

∑
y∈Y

π∗
r (y|x)2

2


=
1

M

∑
y∈Y

π∗
r (y|x)4

πprop(y|x)
+

M − 1

M

∑
y∈Y

π∗
r (y|x)2

2

(7)

The final expression for the variance of the importance sampling estimator with M samples can be
computed by substituting Equations (5) and (7) in Equation (6):

Var(µ̂IS) =
1

M

∑
y∈Y

π∗
r (y|x)4

πprop(y|x)
+

M − 1

M

∑
y∈Y

π∗
r (y|x)2

2

−

∑
y∈Y

π∗
r (y|x)2

2

=
1

M

∑
y∈Y

π∗
r (y|x)4

πprop(y|x)
−

∑
y∈Y

π∗
r (y|x)2

2
 (8)
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Lemma B.2 reveals two important details about our estimator. First, the variance of the estimator
is inversely proportional to the number of candidate replies generated M . Thus, as M increases
the variance decreases and our estimator becomes more stable in simulating the target distribution
π∗
r (·|x). Second, the closer that the proposal distribution πprop(·|x) is to the target distribution, the

smaller the term
∑

y∈Y
π∗
r (y|x)

4

πprop(y|x) will be, which reduces the variance of our estimator.

Lemma B.3 establishes how a smaller variance leads to faster convergence:
Lemma B.3. Let µtrue = Ey∼π∗

r (·|x)
[
π∗
r (y | x)

]
, and µ̂IS be the importance sampling estimator as

in Lemma B.2 using M = O
(

1
δε2

∑
y∈Y

π∗
r (y|x)

4

πprop(y|x)

)
candidate replies. Then, for any LLM πgen such

that πref is absolutely continuous with respect to πgen, we have that |µ̂IS − µtrue| < ε with probability
at least 1− δ.

Proof. Let µ̂IS be the importance-weighted estimator whose variance is given by Lemma B.2 as

Var
(
µ̂IS
)

=
1

M

(∑
y∈Y

π∗
r (y | x)4

πprop(y | x)
−
(∑
y∈Y

π∗
r (y | x)2

)2)
.

We have already shown in Lemma B.2 that the estimator is unbiased. By Chebyshev’s inequality, for
any ε > 0,

Pr
[∣∣µ̂IS − µtrue

∣∣ ≥ ε
]

≤ Var(µ̂IS)

ε2
=

1

M · ε2
(∑
y∈Y

π∗
r (y | x)4

πprop(y | x)
−
(∑
y∈Y

π∗
r (y | x)2

)2)
where µtrue = Ey∼π∗

r (·|x)
[
π∗
r (y | x)

]
=
∑

y∈Y π∗
r (y|x)2.

Setting Pr[|µ̂IS − µtrue| ≥ ε] < δ and solving for M yields:

M =
1

δ ε2

(∑
y∈Y

π∗
r (y | x)4

πprop(y | x)
−

(∑
y∈Y

π∗
r (y | x)2

)2)
= O

 1

δε2

∑
y∈Y

π∗
r (y | x)4

πprop(y | x)

 .

Based on Lemma B.3, our allocation rule converges to the quantity is is trying to approximate at a
rate of

√
M .

B.4 Bounding the Total Variation Distance

In Appendix B.2 we proved that MOSAIC converges in the limit to the theoretically optimal distribu-
tion for the platform’s objective. Then, in Appendix B.3 we showed how MOSAIC’s allocation rule
relates to importance sampling, and what that implies for the similarity of MOSAIC’s output to that
of the optimal distribution π∗

r Now we will also show that MOSAIC’s probability estimates for any
possible sequence converge to that of π∗

r at a rate of
√
M

Theorem B.4. Let Y be the domain consisting of all sequences in a finite token vocabulary T of
length up to L. Hence |Y| < ∞. Assume 0 ≤ w(y) ≤ C for all y ∈ Y , where

w(y) =
π∗
r (y | x)

πprop(y | x)
.

Consider M i.i.d. draws y1, . . . , yM ∼ πprop(· | x) and define the self-normalized importance-
sampled distribution induced by Algorithm 1:

π̂r,M (y | x) =

M∑
j=1

w(yj)1{yj = y}

M∑
j=1

w(yj)

.
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Then, for any ε > 0 and δ > 0, if M = O
(

C2·|Y|2
ε2 ln

(
|Y|
δ

))
, with probability at least 1 − δ

(over the random draws), the Total Variation distance between π̂M (· | x) and π∗
r (· | x) satisfies

dTV

(
π̂M , π∗

r

)
≤ ε.

Proof. First, we will show that for any M ∈ N, MOSAIC is an unbiased estimator of π∗
r .

For each fixed y ∈ Y , define X
(y)
j := w(yj)1{yj = y} to be a random variable that equals w(yj)

if the j − th draw from the proposal distribution is y. Intuitively, this is a weighted indicator for
whether the j-th draw is equal to y.

For any y ∈ Y , the expected value of this indicator, with the expectation taken over the draw of
yj ∼ πprop

E
[
X

(y)
j

]
=
∑
z∈Y

w(z)1{z = y}πprop(z) = w(y)πprop(y) = πr(y).

Thus, Q̂M ({y}) = 1
M

∑M
j=1 X

(y)
j is an unbiased estimator of π∗

r (y | x).

Similarly, Q̂M (Y) = 1
M

∑M
j=1 w(yj) is an unbiased estimator of 1 (since E[w(yj)] = 1) (assuming

that π∗
r is the optimal policy, i.e., a normalized LLM so that the probabilities sum up to one).

The self-normalized distribution can be written as

π̂r,M (y | x) =
Q̂M ({y})
Q̂M (Y)

.

Hoeffding’s inequality for bounded random variables tells us that for any ε′ > 0:

Pr
[∣∣Q̂M ({y})− π∗

r (y | x)
∣∣ ≥ ε′

]
≤ 2 exp

(
− 2M ε′

2

C2

)
.

For each y ∈ Y , we have the same deviation event, so by a union bound over all y ∈ Y:

Pr
[
∃ y ∈ Y :

∣∣Q̂M ({y})−π∗
r (y | x)

∣∣ ≥ ε′
]

≤
∑
y∈Y

2 exp
(
− 2Mε′

2

C2

)
= 2 |Y| exp

(
−2Mε′

2

C2

)
≤ δ1.

Thus, using M = O
(

C2

ε′2
ln
(

|Y|
δ1

))
candidate replies, with probability at least 1− δ1 over the draw

of those replies, we have simultaneously for all y ∈ Y , |Q̂M ({y})− π∗
r (y | x)| ≤ ε′.

By a similar argument, applying Hoeffding’s inequality to Q̂M (Y), which is an unbiased estimator of
1:

Pr
[∣∣Q̂M (Y)− 1

∣∣ ≥ ε′
]

≤ 2 exp
(
− 2M ε′

2

C2

)
.

Hence, with high probability 1− δ2, Q̂M (Y) is also within ±ε of 1. A union bound over both events
(all y ∈ Y plus Q̂M (Y)) yields a final event E′

ε with probability 1− (δ1 + δ2) on which:

Q̂M ({y}) ∈ [π∗
r (y)− ε′, π∗

r (y) + ε′], Q̂M (Y) ∈ [1− ε′, 1 + ε′], ∀ y ∈ Y.

On this good event Eε′ , for each y ∈ Y:

π̂M (y|x) =
Q̂M ({y})
Q̂M (Y)

∈
[
π∗
r (y|x)− ε′

1 + ε
,
π∗
r (y|x) + ε′

1− ε′

]
Recall the total variation (TV) distance between two discrete distributions P and Q on Y is

dTV(P, Q) =
1

2

∑
y∈Y

∣∣P (y)−Q(y)
∣∣.
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We aim to show that on the event E′
ε (which holds with probability at least 1− (δ1+ δ2)), the quantity∑
y∈Y

∣∣π̂M (y|x) − π∗
r (y|x)

∣∣
is at most O(ε′).

On Eε′ , we have, for each y ∈ Y ,

π̂M (y|x) =
Q̂M ({y})
Q̂M (Y)

∈
[
π∗
r (y|x)− ε′

1 + ε′
,

π∗
r (y|x) + ε′

1− ε′

]
.

Thus:

π̂M (y|x)− π∗
r (y|x) ∈

[
−ε′π∗

r (y|x)
1 + ε′

− ε′

1 + ε′
,

ε′π∗
r (y|x)

1− ε′
+

ε′

1− ε′

]
(9)

∈
[
− 2ε

1 + ε
,

2ε

1− ε

]
(10)

Thus, conditioned on the good event Eε′ , we have |π̂M (y)− π∗
r (y)

∣∣ = O(ε′) by a Taylor expansion
for small ε′.

Therefore, on the event E′
ε,

dTV

(
π̂M , π∗

r

)
=

1

2

∑
y∈Y

∣∣π̂M (y)− π∗
r (y)

∣∣ ≤ 1

2

∑
y∈Y

O(ε′) = O
(
|Y| · ε′

)
.

Setting ε′ = ε
|Y| to achieve the target error ε concludes the proof.
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C Details from Section 5

In this section, we present all omitted details from Section 5.

C.1 Omitted Proofs from Section 5.1

Theorem 5.1 Proof. Let r̂i = (r̂i(x, y1), . . . , r̂i(x, yM )) be the reward reports of advertiser i for
the M generated candidate sequences. Then, for MOSAIC’s allocation rule, holding the candidate
sequences and the reports of all other advertisers fixed, the probability of returning each of the M
candidate sequences as a function of i’s reports is:

π(ri; β⃗−i) = softmax
(ri
τ

+ β−i

)
, (11)

where β−i,j =
∑

k∈N\{i} r̂k(x,yj)

τ + log
πref(yj |x)

πcon(yj |x;c) . Importantly β−i is an M -dimensional vector that
does not depend on advertiser i’s reports.

We would like to equip π(·,β−i) with a payment rule p(·;β−i) so that the resulting mechanism
(π(·,β−i), p(·;β−i)) will be strategyproof. This requires that π(·,β−i) have a property known as
cyclic monotonicity. Equivalently, π(·,β−i) must be the (sub)gradient of advertiser i’s utility for
bidding truthfully in the mechanism U(ri;β−i), and that utility function must be convex [Frongillo
and Kash, 2021, Rochet, 1987, Myerson, 1981].

It is easy to verify that for the function class:

UC(ri;β−i) = τ log

 M∑
j=1

exp

(
ri(x, yj)

τ
+ β−i,j

)+ C, C ∈ R (12)

the allocation rule π(ri;β−i) is a gradient of UC(ri;β−i). Additionally, UC(ri;β−i) is convex in
ri: the exponential function ex is (strictly) convex, because its second derivative is positive. The
transformation ri(x,yj)

τ + β−i,j is an affine transformation of ri(x, yj), and affine transformations
preserve convexity. Finally, it is well-known that the LogSumExp function is convex.

Thus, for any β−i and for any set of generated candidate sequences, reporting truthfully maximizes
advertiser i’s expected utility, with the expectation taken over the draw of the final sequence from the
set of candidate sequences. Adopting the quasi-linear utility model, advertiser i’s payment is:

UC(ri;β−i) = π(ri;β−i) · ri − p(ri;β−i)

p(ri;β−i) = π(ri;β−i) · ri − UC(ri;β−i)

p(ri;β−i) = π(ri;β−i) · ri − τ log

 M∑
j=1

exp

(
ri(x, yj)

τ
+ β−i,j

)− C, C ∈ R (13)
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C.2 Differences from Standard Auction Settings

Standard auction environments typically rely on a set of assumptions that simplify mechanism design;
however, these assumptions do not apply to auctions for LLM-generated content. In this section, we
detail these assumptions and discuss why they are inapplicable in our context.

First, in a standard auction setting, it is common to assume that the agents’ valuation functions
satisfy free disposal, i.e., vi(S) ≥ vi(S

′) ∀S ⊇ S′, S, S′ ⊇ I. The interpretation of free disposal
is that an agent can discard any items she is allocated that she is not interested in. Free disposal
combined with the fact that an agent has zero value for the empty bundle mean that her value for any
outcome is weakly positive. Second, in most auction environments, the allocation rule is different for
different agents: each agent will get allocated her own bundle of items, and we can assume that she is
indifferent to the allocation of items to the other agents.

As detailed in Rafailov et al. [2023], assuming that an agent’s LLM πi was trained to maximize
her reward function (and regularized with respect to its KL divergence from some reference LLM,
which we assume to be the same as the auctioneer’s reference LLM), there is a one-to-many mapping
between an advertiser’s optimal LLM, and her implicit reward function. That mapping is:

ri(x, y) = τi log
πi(y|x)
πref(y|x)

+ logZi(x) (14)

where Zi(x) is a prompt-dependent constant, and τi is the regularization hyperparameter of advertiser
i, similar to the one in Equation (1). All functions in the class defined in Equation (14) are equivalent,
in the sense that they induce exactly the same LLM [Rafailov et al., 2023]. This has two implications:
First, unlike standard auction environments, an agent’s reward can go negative – there is nothing
equivalent to the free disposal property. Setting Zi(x) to zero (which is equivalent to normalizing
the induced probabilities by the LLM [Rafailov et al., 2023]), the agent’s reward is negative for any
sequence for which her LLM assigns a lower probability than πref.

Second, especially in the online advertising application, an agent’s expected utility for not participat-
ing in the auction is negative: if advertiser i does not participate in the auction, her payment is zero,
but her expected value for the outcome is

π(0;β−i) · ri = π(β−i) · ri (15)

The other advertisers have very low rewards for the sequences that mention advertiser i: assuming
their LLMs have been properly trained, they will evaluate all sequences that explicitly mention a
different, possibly competing brand, as unlikely. Thus, based on Equation (14) the corresponding
advertisers have very low rewards for those sequences and conversely, advertiser i has low rewards for
the sequences that the other advertisers have high rewards for. But based on Equation (2), if advertiser
i does not participate in the auction, π(0;β−i) will assign high probabilities to sequences for which
i has low rewards for. Thus, Equation (15) implies that, unlike standard auction environments, the
advertiser’s expected reward and utility for not participating in the mechanism is negative.
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C.3 Our mechanism is “almost individually rational”

First, we explain why the standard notion of individual rationality (i.e., weakly positive utility from
participation in the mechanism) encountered in most auction settings is impossible to achieve in this
domain while converging to the optimal distribution and maintaining incentive compatibility. Then,
we explain how, with our payment offset, our mechanism is “almost IR:” In Lemma C.1 we prove
that the ex-interim utility of an advertiser who has zero reward for all candidate sequences and bids
truthfully is deterministically zero, i.e., advertisers that do not contribute to the social welfare (but also
do not detract from it) have zero utility. Similarly, in Lemma C.2 we prove that if an agent’s reward
for all candidate sequences is (weakly) positive, then her ex-interim utility is (weakly) positive.

Why is individual rationality (IR) impossible? Individual rationality (IR) stipulates that an agent
gains more utility by participating and bidding truthfully in a mechanism than by not participating
at all. Typically, if an agent’s utility for non-participation is zero, participating should yield weakly
positive utility. However, this simplification does not apply in our setting.

As discussed in Section 5.2, advertiser i’s reward for any sequence y can be arbitrarily negative
(Equation (14)). The same is true for the utility from truthful participation, as outlined in Equation (12).
To ensure a positive utility for every advertiser in our mechanism, an offset would need to be infinitely
large or dependent on advertiser i’s reports. But then the mechanism’s allocation rule would no
longer be the gradient of advertiser i’s utility with respect to her reports, which would destroy
strategyproofness [Frongillo and Kash, 2021, Rochet, 1987, Myerson, 1981].

It is important to note that this challenge is inherent not just to our mechanism but to any mechanism
in this setting that operates with a fixed set of sequences, aims to approximate the optimal distribution,
and maintains strategyproofness. Under these conditions, the only allocation rule that approximates
the theoretically optimal distribution (Equation (2)) is that of our mechanism. However, this uniquely
determines the advertisers’ utilities, up to a constant factor, as described in Equation (12) [Frongillo
and Kash, 2021, Rochet, 1987, Myerson, 1981].

Lemma C.1. For the payment offset C = −τ log
(∑M

j=1 exp (β−i,j)
)

if advertiser i’s reward for all

candidate sequences is zero, then her ex-interim utility is deterministically zero, for all β−i ∈ R̂−i.

Lemma C.1 Proof. First, note that for all β−i ∈ R̂−i, advertiser i’s expected reward for the outcome
is zero, as π(ri;β−i) · ri = π(ri;β−i) · 0 = 0. Additionally, advertiser i’s reward for the realized
outcome will deterministically be zero, as her reward for all generated candidate sequences is zero.
Finally, note that by setting ri = 0 in Equation (13) with the offset C set as in Section 5.3, we have
that the advertiser i’s payment is also deterministically zero. Thus, an advertiser with zero reward
for all generated candidate sequences who reports her rewards truthfully has deterministically zero
reward for the final outcome and zero payments, and her utility is also deterministically zero.

Lemma C.2. For the payment offset C = −τ log
(∑M

j=1 exp (β−i,j)
)

if advertiser i’s reward for

all candidate sequences is positive, then her ex-interim utility is positive, for all reports β−i ∈ R̂−i.

Proof. Lemma C.1 establishes that when advertiser i’s reward for all candidate sequences is zero, her
utility for truthfully bidding in the mechanism, denoted as U(0;β−i), is zero for all possible reports
of the other advertisers β−i ∈ R̂−i.

Furthermore, Theorem 5.1 shows that the mechanism’s allocation rule corresponds to the gradient of
advertiser i’s utility when bidding truthfully. Because the allocation rule is non-negative, the gradient
of advertiser i’s utility for bidding truthfully is also non-negative.

Thus, if advertiser i’s rewards for all candidate sequences are weakly positive, and considering the
non-negative gradient of her utility, her ex-interim utility under truthful bidding must be positive,
irrespective of the other advertisers’ reports β−i.
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Corollary C.3. For the payment offset C = −τ log
(∑M

j=1 exp (β−i,j)
)

if the distribution πcon only
generates candidate sequences for which advertiser i’s reward is positive, then the ex-ante expected
utility of the advertiser is positive.

Corollary C.3 Proof. This follows immediately from the fact the the fact that the ex-ante utility of
the advertiser is the expectation of her ex-interim utility with respect to her reward for the generated
sequences, and the fact that the second quantity is positive whenever the reward of the advertiser for
all candidate sequences is positive from Lemma C.2.

C.4 “What you give is what you get”

As we explained in Section 5.3.2, our allocation rule, which is the only one over a finite set of replies
that converges to the optimal LLM, is also the (sub)gradient of the utility to ensure truthfulness
(Rochet, 1987). Because the allocation rule is the same for all advertisers, their utilities must also be
the same, up to advertiser-specific offsets, as indicated by Equation (16):

UC(ri;β−i) = τ log

 M∑
j=1

exp

(
1

τ

∑
k∈N

rk(x, yj)

)
+ log

πref(yj |x)
πcon(yj |x; c)

+ C, C ∈ R (16)

However, not all advertisers contribute equally to the social welfare of the final outcome. Because of
this, implementing the mechanism without a carefully-designed offset would lead to free-riding: as
long as an agent’s utility in Equation (16) is positive, she would be incentivized to participate, even
if the user query was completely unrelated to her business, because the mechanism would ensure
that she received, on expectation, the same (positive) expected utility from doing so as any other
participating advertiser.9

Incentivizing unrelated advertisers to participate would have adverse effects. First, the better-
performing context-aware mechanism would create candidate sequences with worse rewards for all
advertisers, because its context would be “diluted” from advertisers unrelated to the user query. In
our running example for the query “How to learn music online?”, imagine adding “Try to mention
‘EasySwitch’, a comprehensive VPN service” to the context of the context-aware LLM πcon(·|x; c).
Additionally, for both versions of the mechanism, following the discussion in Section 5.2, the
advertisers for whom the user query is unrelated are more likely to have negative rewards for the
generated sequences as their LLMs will deem the candidate sequences more unlikely than the
reference LLM. Thus, based on their utility according to Theorem 5.1, their participation in the
mechanism will lead to a reduction of the total sum of rewards of the generated sequences for the
advertisers, which will indirectly reduce the expected utility of all advertisers, making the mechanism
less attractive for the user-query-relevant advertisers.

To summarize, all advertisers receiving the same utility would incentivize advertisers for whom the
user query is unrelated to participate in the auction. This would in turn reduce everyone’s expected
utility, potentially reducing the incentive for the user-query-relevant advertisers to participate, and
lead to sequences with worse expected rewards for the advertisers and usefulness for the user.10 Thus,
in the application of auctions for aggregating advertisers’ preferences over LLM-generated outputs,
advertisers with higher contribution to social welfare also receiving proportionally higher utility by
the mechanism is important for the long-term success of the mechanism in practice.

9We can assume that advertisers can estimate their expected utility from participation using historical data
from past auctions, analogously to how they can estimate their utility for participating in sponsored search
auctions.

10If we interpret the KL divergence between the distribution induced by the reference LLM and the LLM that
generated the candidate sequences as a measure of their expected usefulness for the user.
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D Details from Section 6

D.1 Detailed Experiment Setup

All synthetic instances are provided in Appendix E. We use Llama-2-7b-chat-hf as the reference
LLM [Touvron et al., 2023], which uses the Llama Community License. The context-aware LLM is
created as described in Footnote 4.

Following Rafailov et al. [2023], the advertisers’ reward functions are defined as ri(x, y) =

log πi(y|x)
πref(y|x) . For the auctioneer’s objective, we set τ = 1 in Equation (1), balancing advertisers’

rewards and divergence from the reference LLM.

We use 50 user queries and test each query on 25 different random seeds, resulting in 1,250 instances.
Following Li et al. [2024], Rozière et al. [2024], we sample from all LLMs using a temperature of
0.8 and top-p 0.95.

We create a set of synthetic instances to test our mechanism. Each instance consists of a user query,
e.g. “How do I bake cookies?” and a list of advertisers. Each advertiser is defined by an “advertiser
name”, e.g. “KitchenFix” and an advertiser description, e.g., “producing kitchen appliances.”11 The
reference LLM πref responsible for generating replies that are useful for the user is Llama-2-7b-chat-hf
[Touvron et al., 2023]. In Appendix D.10, we replicate these experiments using Google’s flan-t5-large
model [Chung et al., 2022], observing qualitatively very similar results. Following Dütting et al.
[2024], we create the advertisers’ LLMs by adding advertising instructions to the reference LLM. The
advertisers’ LLMs are created using the same reference LLM, and adding the instruction: “Answer
the question advertising 〈advertiser〉, 〈advertiser description〉.” The context aware LLM is created
using the same reference LLM, and adding the instruction: “Answer the query. Try to mention
〈advertiser 1〉, who 〈advertiser description 1〉 and 〈advertiser 2〉, who 〈advertiser description 2〉.”

Following [Rafailov et al., 2023] the reward function of advertiser i is set to ri(x, y) = log πi(y|x)
πref(y|x) ,

where πi is advertiser i’s LLM, i.e., we set τi = 1, Zi(x) = 1 for all advertisers and for all user
prompts in Equation (14).12 For the auctioneer’s objective as defined in Equation (1) we set τ = 1,
balancing between the advertisers’ expected rewards for the generated sequences and the sequences’
divergence from the reference LLM responsible for generating useful replies for the user. Thus, the
optimal policy according to Equation (2) becomes:

π∗
r (y|x) =

1

Z(x)
πref(y|x) exp

(∑
i∈N

ri(x, y)

)
(17)

Following Li et al. [2024], Rozière et al. [2024] we sample from the LLM generating the sequences
(either πref or πcon) with temperature 0.8 and top-p 0.95. We use 50 user queries, each with two
interested advertisers. To increase the statistical significance of our results, we test each user query
on 25 different random seeds, effectively resulting in 1250 individual instances. The seed affects
both the generation of the candidate sequences, and the randomized sampling of the final sequence
from the candidate sequences. We will make all of our code and set of synthetic instances publicly
available.

All experiments were conducted on a compute cluster running Ubuntu 20.04.6 LTS with AMD EPYC
processors with 48 cores and 1512GB RAM and Nvidia A100 GPUs and Python 3.12.1.

D.2 Choice of baselines

There are no other mechanisms in the literature for aggregating multiple LLMs to compare against.
The only other mechanism that aggregates multiple LLMs is Dütting et al. [2024], which is not
strategy-proof and does not converge to the platform’s objective. The only other potential comparison
is VCG, which, as explained in Section 3.2, is not applicable since it does not align with the
platform’s objective. Hence, the best baseline for comparison is naive MOSAIC, which we consider

11Following Dütting et al. [2024], we use fictitious brand names to avoid the model using any existing ad.
12Note that we cannot estimate the true value of Zi(x). However, it is a query-dependent constant. Given that

our experiments focus on the reward difference of different sequences for the same query, this is a non-issue.

25



a strong benchmark given that it provably converges to the platform’s optimal distribution based on
Corollary 4.1.

D.3 Comparison of baseline and context-aware mechanism outputs

To provide some intuition of how the context-aware mechanism improves the relevance of generated
responses for the advertisers, we present a side-by-side comparison of outputs from both mechanisms
for a specific query in Table 2. Note that only the context-aware mechanism is able to incorporate the
advertisers into the reply to the user’s query.

User query
What are effective ways to learn a musical instrument online?

Advertisers
- MusicMastery: offering online music lessons and virtual tutoring
- InstaTune: selling musical instruments and learning aids

Context-Aware Mechanism Output
Effective ways to learn a musical instrument online include:
1. Online music lessons: Platforms like MusicMastery offer one-on-one virtual tutoring, group
classes, and pre-recorded lessons. These lessons can be tailored to your skill level and learning
style.
2. Interactive learning tools: InstaTune offers a range of interactive learning tools, such as apps,
software, and games, that make learning fun and engaging.
3. Practice with technology: Utilize digital tools like metronomes, tuners, and recording software
to practice and track your progress.
4. Collaborate with other musicians: Join online communities, forums, and social media groups to
connect with other musicians and learn from their experiences. . . .

Baseline Mechanism Output
- Practice consistently and regularly: Consistent practice is essential to learning any musical
instrument, and it’s even more important when learning online. Set aside a specific time each day
or week to practice, and make sure to stick to it.
- Find a good teacher or mentor: While it’s possible to learn some things on your own, working
with a good teacher or mentor can help you improve faster and avoid developing bad habits. Look
for someone who is experienced and knowledgeable in the type of music you want to learn.
- Use technology to your advantage: There are many online tools and resources available that can
help you learn an instrument. These include video lessons, online tutorials, and apps that can help
you practice and track your progress. . . .

Table 2: Comparison of context-aware and baseline mechanism outputs using 10 candidate sequences.
Advertisers highlighted in bold, outputs truncated to conserve space.

D.4 Experimental Evaluation of the Usefulness to the User

In this section, we experimentally evaluate the usefulness of the replies returned by MOSAIC from
the user’s perspective.

In Figure 3, we plot the log probability of the replies returned by MOSAIC with respect to the optimal
LLM for the user (i.e., the reference LLM) as a function of the number of candidate replies generated.
We compare the context-aware version of MOSAIC to a baseline version. To benchmark our results,
we also compare against sampling a single reply directly from the optimal distribution for this task,
which is the reference LLM itself.

The results in Figure 3 show that for the context-aware version of our mechanism, the log probability
of the replies relative to the reference LLM increases rapidly as the number of candidate replies
grows. This demonstrates that by generating more replies, the context-aware version of MOSAIC is
able to produce replies with substantial value for the user. By comparison, the usefulness to the user
that the baseline version is able to achieve does not scale with more generated replies.
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Figure 3: Reply log probability with respect to the reference LLM as a function of the number of
replies generated using πref and πcon.

However, there remains a gap between the log probability of those replies and the benchmark set by
the reference LLM. This discrepancy arises because the platform optimizes a different objective: the
expected advertiser rewards combined with the KL divergence from the reference LLM. By increasing
the weight τ that the platform places on the reference LLM, this gap between the context-aware
version of MOSAIC and the user’s optimal benchmark will close.

D.5 Comprehensive Experimental Evaluation of the Offset from Section 5.3
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(a) Sequences generated using πcon
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(b) Sequences generated using πref

Figure 4: Comparison of total advertiser utility gain from participation with, and without the payment
offset, as a function of the number of candidate sequences generated using πref and πcon. Averaged
over 1250 runs including 95% CIs.

In this section, we provide a comprehensive experimental evaluation of the payment offset introduced
in Section 5.3. Figure 4 explores the effectiveness of the payment offset introduced in Section 5.3
in ensuring that our mechanism is ex-ante IR, i.e., advertisers have positive expected utility gains
from participating. To that end, we compare the advertiser utility gain from participation with and
without the payment offset, as a function of the number of candidate sequences generated by the
context-aware (Figure 4a) and baseline (Figure 4b) versions of our mechanism.

In Figure 4a we observe that for the context-aware version of our mechanism, adding the payment
offset introduced of Section 5.3 to the payment rule is enough to ensure positive expected utility
for the advertisers (conditioned on the fact that they are related to the user’s query), i.e., make the
mechanism ex-ante IR. Notably, without the payment offset, advertisers have very negative expected
utility from participating in the mechanism.

In Figure 4b we observe that for the baseline version of our mechanism, adding the payment
offset introduced of Section 5.3 to the payment rule causes a very large increase in the advertisers’
expected utility, but it is still not enough to ensure positive expected utility for the advertisers. To
conclude, Figure 4 demonstrates that the offset introduced in Section 5.3 causes a large increase in
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the advertisers’ expected utility, which in case of the context-aware version of the mechanism, is also
enough to make the mechanism ex-ante IR.
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(a) With the payment offset.
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(b) Without the payment offset.

Figure 5: Comparative scatter plots of advertiser reward and utility gain from participation, with and
without the payment offset of Section 5.3 for candidate sequences generated by the context-aware
LLM πgen. We additionally show a linear regressor fit to that data, its slope and its R2.
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(a) With the payment offset.
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(b) Without the payment offset.

Figure 6: Comparative scatter plots of advertiser reward and utility gain from participation, with and
without the payment offset of Section 5.3 for candidate sequences generated by the reference πref.
We additionally show a linear regressor fit to that data, its slope and its R2.

Figures 5 and 6 explore the effectiveness of the payment offset introduced in Section 5.3 in aligning an
advertiser’s utility with her contribution to the social welfare. In Figure 5 we compare the scatter plots
of the advertiser reward and utility gain from participation in the mechanism, with and without the
payment offset introduced in Section 5.3 for candidate sequences generated using the context-aware
LLM πref. Additionally, for both subfigures, we show a linear regressor fitted to the data, as well as
its slope and coefficient of determination. Comparing the two subfigures, it is immediately obvious
that adding the offset to the payments makes the relationship between advertiser reward and utility
gain far more linear. This is confirmed by the coefficient of determination of the linear regressors
fit to each dataset. The coefficient of determination of the linear regressor is far larger when we use
the offset. Without the payment offset, the coefficient of determination is almost 0, indicating that,
without our payment offset, reward gain is not a predictive measure of an agent’s utility. Additionally,
the slope of the linear regressor is also higher for the scatter plot with the payment offset.

In Figure 6 we make the same comparison, but for candidate sequences generated using the reference
LLM πref. The results are now even more pronounced. In Figure 6a we observe the relationship
between advertiser utility and reward gain with our payment offset is almost perfectly linear, as
suggested by the linear regressor fitted to the data having a slope of 1.00 and an extremely high
coefficient of determination of 0.96, indicating that it can almost perfectly fit the data. Without our
payment offset however, in Figure 6b we can see that the relationship between the two metrics is
again both less linear, and less positively correlated, as the slope of the linear regressor is 0.5 and its
coefficient of determination is only 0.19.

To conclude, in all cases tested, the use of the advertiser-specific offset introduced in Section 5.3
increases an advertiser’s expected utility, makes the relationship between an advertiser’s contribution
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Figure 7: Pearson correlation between advertiser normalized utility and reward.

to social welfare and her utility both more linear and more positively correlated, and, for the context-
aware version of our mechanism, can ensure positive expected utility for the advertisers.

D.6 Experiments in Settings with Many Advertisers

In this section, we test MOSAIC’s performance in settings with n = 5 and n = 10 advertisers,
compared to the results of Section 6 where the number of advertisers was set to 2. To maintain the
same balance between advertisers and the usefulness to the user as in the experiments of the main
paper, we set τ = n/2.13 We use the same 50 user queries, but now each query has five and ten
advertisers, and test each query on 20 different random seeds, resulting in 1000 instances.

In Figures 8a to 8j, we present the log probability of the returned reply with respect to the optimal
LLM for the platform’s objective π∗

r and the reference LLM πref, the total advertiser value and reward
gain from participating in MOSAIC and the platform’s revenue. All plots are with respect to the
number of candidate replies (i.e., LLM queries) that MOSAIC used. We compare MOSAIC’s baseline
and context-aware versions.

First, in Figures 8a and 8b we observe that the context-aware version of MOSAIC quickly converges
to the platform’s objective. By comparison, MOSAIC’s naive version fails to do so. It is noteworthy
that for very low numbers of candidate replies, the naive version of the mechanism performs better
than the context-aware version. That is because in these experiments, more weight is placed towards
the reference LLM, as we have set a higher τ value. However, the superior convergence rate of the
context-aware version of the mechanism recovers that difference very quickly. At the same time,
Figures 8c and 8d show that the context-aware version of the mechanism produces sequences that
closely match the distribution of the reference LLM, thus maintaining the usefulness to the user.

Finally, the context-aware version of MOSAIC is able to generate significant value (Figures 8e and 8f)
and utility (Figures 8g and 8h) for the advertisers, while also recapturing a significant portion as
revenue for the platform (Figures 8i and 8j).

Taken together, similar to our results in the main paper, we have shown that even with a large number
of advertisers, MOSAIC quickly converges to the theoretically optimal distribution, generating
significant value and utility for the advertisers and revenue for the platform, while also maintaining
its usefulness to the user.

13Note that in the main experiments of Section 6 we had n = 2 and τ = 1
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(a) Log probability w.r.t. π∗
r for 5 advertisers.
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(b) Log probability w.r.t. π∗
r for 10 advertisers.
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(c) Log probability w.r.t. πref for 5 advertisers.
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(d) Log probability w.r.t. πref for 10 advertisers.
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(e) Advertiser value gain for 5 advertisers.
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(f) Advertiser value gain for 10 advertisers.
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(g) Advertiser utility gain for 5 advertisers.
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(h) Advertiser utility gain for 10 advertisers.
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(i) Revenue for 5 advertisers.
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(j) Revenue for 10 advertisers.

Figure 8: Comparison of results for 5 advertisers (left) and 10 advertisers (right). Each row corre-
sponds to a specific metric: log probability with respect to the optimal LLM π∗

r , the reference LLM
πref, advertiser value and utility gain, and revenue. Shown are averages over 1000 instances including
95% CIs.
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D.7 Comprehensive Experimental Evaluation of Context
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(a) Total Advertiser Reward Gain
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(b) Revenue
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(c) Total Advertiser Utility Gain
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Figure 9: Total advertiser normalized reward, revenue, total advertiser utility gain and reference LLM
log probability as functions of the number of candidate replies generated for various levels of context.
Averages over 700 runs with 95% CIs.

In this section, we experimentally evaluate MOSAIC’s performance under varying levels of context c.
Specifically, we test four levels of context:

• Strong: the context-aware LLM πcon(· | x; c) has access to both the advertisers’ names and
their descriptions;

• Weak: πcon(· | x; c) has access only to the advertisers’ names;

• Weaker: πcon(· | x; c) is given neither names nor descriptions, and is simply instructed to
“try to promote related brands”;

• No context: corresponds to omitting context entirely.

Using “strong” context corresponds to the context-aware version of MOSAIC evaluated in Section 6,
while “no context” corresponds to the baseline version.

For each level of context, we replicate the experiments from Section 6 using the same set of test
instances. To reduce computational costs, we evaluate only 700 instances for the strong, weak, and
weaker context levels. For the no context setting, we reuse the results from the 1250 instances
reported in Section 6.

In Figure 9, we plot, for each context level, the total advertiser normalized reward and utility gain from
participation, log probability of the reply under the optimal LLM (Equation (2)), and the platform’s
revenue, all as functions of the number of candidate replies generated.

In Figure 9a, we observe that for all context levels except “no context,” the total advertiser reward
increases rapidly with the number of generated replies. Comparing these results with the total
advertiser utility gain in Figure 9c reveals an interesting insight: even under the weak context setting,
where the context-aware LLM is provided only with advertiser brand names, MOSAIC generates
substantial utility for advertisers, which also scales quickly with the number of candidate replies.
Notably, the utility gains under strong and weak contexts using twenty candidate replies are nearly
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identical. As the level of context increases beyond the weak setting, the additional social welfare
generated by MOSAIC is largely recaptured as revenue for the platform, as shown in Figure 9b.

Finally, in Figure 9d, we observe that as the level of context increases, the reference LLM log
probability is initially lower for small numbers of candidate replies but quickly matches across all
context levels (except no context) as the number of candidates increases. This shows that MOSAIC’s
allocation rule (Algorithm 1) is powerful enough that the gains in advertiser value and platform
revenue enabled by richer context do not come at the expense of user utility.

To conclude, MOSAIC delivers substantial advertiser utility and platform revenue even with minimal
contextual information. As the level of context increases, both advertiser value and platform revenue
grow significantly, without compromising the usefulness of responses to the user.

D.8 Compute Experiments

In this section, we experimentally evaluate MOSAIC’s computational requirements. Using the setup
described in Section 6.1, we measure the total wall time required by MOSAIC on a single A100 GPU,
focusing on the number of candidate replies generated for evaluation. This total time includes:

1. Generating candidate replies using the context-aware LLM.
2. Evaluating these replies with the advertisers’ LLMs implemented as discussed in Section 6.1.
3. Calculating the Rochet payments, as detailed in Section 5. In practice the time to calculate

payments is negligible (under 10 milliseconds), and need not increase user-perceived latency
because they can be calculated after showing outputs to the user.

Figure 10 presents the total time taken by MOSAIC, which includes both the generation and evaluation
of candidate replies. These components are further broken down in Figures 11 and 12, respectively.

As previously demonstrated in Section 6 and Appendix D.6, MOSAIC converges to the optimal
distribution using only 20 candidate replies, regardless of the number of advertisers. In Figure 11,
we observe that generating 10 and 20 candidate replies on a single A100 GPU takes 30.5 and 60.5
seconds, respectively. This represents a 2.5- and 5-fold increase over the 12.0 seconds required to
generate a single reply from the same LLM, i.e., the latency perceived by the user when directly
querying the LLM.

To reduce user-perceived latency, MOSAIC can parallelize candidate generation across multiple
GPUs. For example, distributing the generation of 20 replies across two GPUs (each generating 10
replies) reduces the total time to 30.5 seconds, assuming efficient evaluation techniques as outlined in
Section 4.2. This approach results in MOSAIC requiring approximately 5 times the compute time of
generating a single reply to converge, but with a perceived latency to the user of only 2.5 times that of
directly querying an LLM (of the same architecture and similar size). Although our experiments were
run on a single GPU, note that MOSAIC can always be parallelized further so that the user-perceived
latency is the same as directly querying a single LLM, as explained in Section 4.2.
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Figure 10: MOSAIC total wall time (seconds) as a function of the number of candidate replies
generated using πcon. Shown are averages over 50 instances including 95% CIs.
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Figure 11: MOSAIC generation time as a function of the number of candidate replies generated using
πcon. Shown are averages over 50 instances including 95% CIs.

1 2 5 10 15 20 30
Candidate Replies Generated

0

10

20

30

40

50

Ev
al

ua
tio

n 
Ti

m
e 

(in
 se

co
nd

s)

Figure 12: MOSAIC evaluation time as a function of the number of candidate replies. Shown are
averages over 50 instances including 95 % CIs.
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Figure 13: Fraction of advertisers mentioned in the output reply as a function of the number of
candidate replies. Shown are averages over 1250 runs including 95% CIs.

D.9 Conflicts between advertisers

The output of MOSAIC is a single text response to the user. In trying to reflect the interests of
multiple advertisers, there is a risk of a single response being incoherent, just mentioning as many
advertisers as possible without being a good promotion for any of them. However, the platform’s
objective, which takes into account both advertiser utility and usefulness for the user, should account
for this: if advertisers are happy to be cross-promoted, those outcomes should be more likely, but
incoherent advertisements or those that simultaneously promote competitors should be less likely.

In Figure 13 we show the fraction of advertisers mentioned by the context-aware version of MOSAIC
as a function of the candidate number of replies used. We observe that initially, the fraction of
advertisers mentioned is very high, but drops significantly once the mechanism has converged.
The reason is precisely the fact that mentioning more advertisers in this case would cause either a
significant drop in advertiser utility, or a drop in the usefulness of the reply to the user. By placing
more weight towards the advertisers (i.e., decreasing the value of τ in Equation (1)), the platform can
increase the number of advertisers shown when the mechanism has converged.

34



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Candidate Replies Generated

0

50

100

150

200

To
ta

l A
dv

er
tis

er
 R

ew
ar

d 
Ga

in

Using con( |x)
Using ref( |x)

(a) Advertiser value gain.
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(b) Advertiser utility gain.

Figure 14: Advertiser gains as a function of the number of candidate replies generated using πref and
πcon for the flan-t5-large model. Shown are averages over 1250 instances including 95% CIs.
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(a) Revenue.
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(b) Reply log probability w.r.t. the reference LLM.

Figure 15: Revenue and reply log probability as a function of the number of candidate replies
generated using πref and πcon for the flan-t5-large model. Shown are averages over 1250 instances
including 95% CIs.

D.10 Testing with additional language models

In this section, we test MOSAIC’s performance using Google’s flan-t5-large model [Chung et al.,
2022], which uses the Apache 2.0 License.

We repeat exactly the same procedure as detailed in Section 6.1, but using flan-t5-large as the basis
for both πgen, the advertisers’ LLMs, and the reference LLM. We use the same 50 user queries, each
with two advertisers, and test each query on 10 different random seeds, resulting in 500 instances.

In Figure 14a to Figure 15b, we present the total advertiser value gain, reward gain from participating
in MOSAIC, platform revenue, and the usefulness of the returned reply to users as functions of the
number of candidate replies generated.

Consistent with the main paper’s results using Llama-2-7b-chat-hf [Touvron et al., 2023], the context-
aware version of MOSAIC demonstrates significant value and utility generation for advertisers and
successfully captures a substantial portion as platform revenue. In contrast, though, the naive version
of MOSAIC fails to generate value or utility for advertisers, resulting in negligible revenue for the
platform. Similar to the results of the main paper, despite both mechanisms converging in the limit to
the platform’s objective, as shown in Corollary 4.1, their performance for a computationally tractable
number of generated replies diverges.

Similar to the findings in the main paper, the naive version retains the reference LLM’s usefulness to
the user (which is optimal for the task), while the context-aware version prioritizes the platform’s
objective, leading to lower user usefulness. Overall, our results using flan-t5-large agree closely
with those obtained using Llama-2-7b-chat-hf, demonstrating consistency across models. The main
difference is that the context-aware mechanism is even more important when using flan-t5-large.
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E Expanded text of prompts

Table 3: Table of user prompts with corresponding advertisers and their descriptions. Only the first
two advertisers are shown for each query; the full prompts are available in the code supplement.

User Query 1
Learning to play the guitar.
Advertisers
- StrumMaster: selling guitars, tuners, and learning materials for beginners
- Chordify: offering online guitar lessons and interactive practice tools

User Query 2
Best skin care routine for dry skin.
Advertisers
- HydraSkin: providing moisturizers and serums for dry skin
- GlowEssentials: selling natural and organic skin care products

User Query 3
Improving productivity while working from home.
Advertisers
- SpaceMakers: offering ergonomic furniture and home office setups
- FocusApp: providing productivity apps and time management tools

User Query 4
Starting a small online business.
Advertisers
- EcomLaunch: offering e-commerce platform solutions and web design services
- MarketMover: providing digital marketing services and SEO optimization

User Query 5
Healthy meal planning on a budget.
Advertisers
- BudgetBites: selling affordable meal kits and recipe books
- NutriSaver: offering discounts on healthy groceries and food delivery services

User Query 6
Mastering digital photography.
Advertisers
- PixelPro: selling cameras, lenses, and photography accessories
- EditCraft: offering photo editing software and online tutorials

User Query 7
Effective ways to reduce household energy use.
Advertisers
- EcoSave: offering energy-efficient home appliances and lighting solutions
- InsulaTech: providing home insulation and energy audit services

User Query 8
Finding the perfect hiking trails.
Advertisers
- TrailFinder: offering a mobile app with detailed maps and trail reviews
- GearUp: selling outdoor gear and apparel for hiking enthusiasts

User Query 9
Building a personal brand on social media.
Advertisers
- BrandBuilder: offering personal branding courses and social media strategy consultations
- VisualizeMe: providing graphic design services for social media content

User Query 10
Learning a new language effectively.
Advertisers
- LingoLeap: offering online language learning courses and tutoring
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- SpeakEasy: providing language learning apps with speech recognition technology

User Query 11
Staying fit without a gym.
Advertisers
- HomeFit: selling home workout equipment and fitness accessories
- MoveIt: offering online fitness classes and personal training sessions

User Query 12
Eco-friendly travel options.
Advertisers
- GreenPath: offering eco-friendly travel packages and sustainable tourism experiences
- EcoStay: providing listings for green hotels and accommodations

User Query 13
Mastering the art of cooking steak.
Advertisers
- GrillMaster: selling premium grills and barbecue accessories
- SteakPerfection: offering online cooking classes focused on meat preparation

User Query 14
Creating a successful YouTube channel.
Advertisers
- VidGrowth: offering video production courses and YouTube growth strategies
- ChannelDesign: providing custom YouTube channel art and video thumbnails

User Query 15
Decorating your home on a budget.
Advertisers
- DecorDeals: selling affordable home decor and furniture
- StyleSavvy: offering interior design consultations and budget-friendly decorating tips

User Query 16
Managing stress and anxiety.
Advertisers
- CalmSpace: offering mindfulness apps and stress reduction tools
- WellnessWave: providing online therapy sessions and mental health resources

User Query 17
How can I make my home more energy efficient?
Advertisers
- EcoWise: offering smart home energy solutions and solar panels
- GreenInsulate: providing eco-friendly insulation materials and installation services

User Query 18
What are the best strategies for investing in the stock market?
Advertisers
- InvestSmart: offering investment advice and financial planning services
- StockGenius: providing an AI-powered stock market analysis tool

User Query 19
How can I improve my mental health?
Advertisers
- MindBalance: offering mental health apps and mindfulness courses
- SerenityNow: providing online counseling and therapy sessions

User Query 20
Where can I find organic and sustainable clothing?
Advertisers
- EcoWear: selling sustainable and organic clothing options
- GreenThreads: offering eco-friendly fabrics and fair-trade fashion

User Query 21
How do I start a vegetable garden in my backyard?
Advertisers
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- GardenGuru: selling gardening tools, seeds, and starter kits
- PlantPerfect: offering online gardening courses and personalized garden planning

User Query 22
What are the best tools for remote team collaboration?
Advertisers
- TeamSync: offering collaboration software and project management tools
- ConnectSuite: providing video conferencing solutions and team communication platforms

User Query 23
How can I learn to cook healthy meals quickly?
Advertisers
- QuickChef: offering quick and healthy cooking classes online
- NutriFast: selling kitchen gadgets and appliances for healthy cooking

User Query 24
What are the best ways to save for retirement?
Advertisers
- FutureFund: offering retirement planning and investment services
- PensionPlus: providing personalized financial advice for retirement savings

User Query 25
How can I decorate my apartment on a minimalist budget?
Advertisers
- MinimalSpace: selling minimalist furniture and decor
- SimplicityDesigns: offering interior design consultation for minimalist living spaces

User Query 26
What are the best practices for data security in small businesses?
Advertisers
- SecureIT: offering cybersecurity solutions for small businesses
- DataGuard: providing data protection services and training

User Query 27
How can I reduce my carbon footprint with daily habits?
Advertisers
- EcoHabits: offering products and tips for sustainable living
- GreenStep: providing carbon offset subscriptions and eco-friendly lifestyle goods

User Query 28
What are effective ways to learn a musical instrument online?
Advertisers
- MusicMastery: offering online music lessons and virtual tutoring
- InstaTune: selling musical instruments and learning aids

User Query 29
How can I keep my pets healthy and happy?
Advertisers
- PetWell: offering pet health insurance and wellness products
- HappyPaws: selling organic pet food and eco-friendly toys

User Query 30
What’s the best way to start learning coding from scratch?
Advertisers
- CodeBegin: offering coding bootcamps and online tutorials for beginners
- DevPath: providing interactive coding courses and learning platforms

User Query 31
How to find affordable eco-friendly travel destinations?
Advertisers
- GreenTraveler: offering eco-friendly travel guides and affordable green vacation packages
- EcoTripAdvisor: providing reviews and bookings for sustainable travel options

User Query 32
What are the best ways to improve indoor air quality?
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Advertisers
- AirPure: selling air purifiers and natural air freshening solutions
- BreatheEasy: offering indoor plant subscriptions and ventilation solutions

User Query 33
How to make my own natural beauty products?
Advertisers
- NatureGlow: offering DIY beauty product kits and organic ingredients
- EcoBeauty: selling guides and supplies for creating homemade natural cosmetics

User Query 34
What are the best techniques for effective online teaching?
Advertisers
- EduTech: offering online teaching tools and educational technology solutions
- TeachMaster: providing courses on online pedagogy and digital classroom management

User Query 35
How to create a successful podcast from home?
Advertisers
- PodCastify: offering podcast creation courses and audio equipment
- SoundWave: selling podcast editing software and hosting services

User Query 36
What are the most effective ways to market a small business locally?
Advertisers
- LocalBoost: offering local SEO services and marketing strategies for small businesses
- MarketTown: providing targeted advertising solutions and local business networking opportunities

User Query 37
How can I optimize my home office for productivity?
Advertisers
- WorkZen: offering ergonomic office furniture and productivity tools
- SpaceCraft: providing home office design services and organization solutions

User Query 38
What are the best platforms for freelance writers to find work?
Advertisers
- WriteFreely: offering a job board and resources for freelance writers
- ContentConnect: providing a platform to connect writers with businesses

User Query 39
How to get started with meditation and mindfulness?
Advertisers
- MindfulStart: offering guided meditation apps and mindfulness training
- ZenSpace: selling meditation cushions and mindfulness journals

User Query 40
Where can I find unique handmade gifts?
Advertisers
- CraftCorner: selling handmade gifts and artisan crafts
- MakerMarket: offering a marketplace for unique handmade items from local artists

User Query 41
How can I improve my credit score quickly?
Advertisers
- CreditBoost: offering credit monitoring services and financial advice
- ScoreSurge: providing tools and tips for improving your credit score

User Query 42
What are the best apps for tracking fitness and nutrition?
Advertisers
- FitTrack: offering comprehensive fitness and nutrition tracking apps
- NutriSync: selling personalized nutrition plans and diet tracking tools

User Query 43
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How to plan an environmentally friendly wedding?
Advertisers
- GreenBride: offering eco-friendly wedding planning services and supplies
- EcoWed: providing sustainable wedding attire and decor

User Query 44
What are the safest ways to travel during a pandemic?
Advertisers
- SafeJourney: offering travel safety kits and pandemic travel advice
- HealthTravel: providing information on safe destinations and travel insurance

User Query 45
How can I learn DIY home repairs and improvements?
Advertisers
- FixItYourself: offering online courses and tutorials for home repair
- DIYHome: selling DIY home improvement tools and kits

User Query 46
What are the best resources for starting a plant-based diet?
Advertisers
- PlantEats: offering guides and meal plans for starting a plant-based diet
- VeggieVibe: selling plant-based cookbooks and kitchen gadgets

User Query 47
Tips for running a marathon.
Advertisers
- RunFastGear: specializing in high-performance running shoes
- HydraFuel: offering electrolyte drinks and energy bars for athletes

User Query 48
Best practices for organic gardening.
Advertisers
- GreenThumb Solutions: providing organic fertilizers and pest control products
- EcoGrow: selling heirloom seeds and sustainable gardening tools

User Query 49
How to improve home WiFi?
Advertisers
- SignalBoost: which offers advanced WiFi routers and extenders
- NetWizard: providing network optimization services and support

User Query 50
Ways to save on travel.
Advertisers
- BudgetJourneys: specializing in affordable travel packages and deals
- StayLocal: offering discounts on boutique hotels and unique accommodations
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction make theoretical claims, which we prove, and
describe the experiments we ran.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We clearly state the (quite weak) assumptions required for our key mecha-
nism design properties to hold in Section 4 and Section 5. We describe the scope of the
experiments (multiple language models, ablation on aspects of the mechanism, etc.) in
Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All proofs (e.g., of strategyproofness, convergence rates, etc. in Sections 4 and
5) have their assumptions clearly stated and discussed.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All relevant prompts, the list of fictitious advertisers, and hyperparameters
required for running the experiments are included.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our generated data and code are included in the supplemental material.
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• The answer NA means that paper does not include experiments requiring code.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: As in question 4, all relevant hyperparameters are included. We also clearly
describe how we estimated performance metrics to compare performance under different
conditions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report 95% CIs (over experiment runs) around our key performance metrics
(revenue, advertiser welfare gain, etc.) in Section 6 and in all relevant appendices.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the compute nodes used in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There are no human subjects or sensitive data. The primary contribution of our
paper is mechanism design theory as well as proof of concept experiments. Negative social
impacts of our work are unlikely. See also checklist item 10.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our paper is primarily fundamental research, consisting of theoretical results
and proof of concept experiments, so there is no direct societal impact. Our experiments
(Section 6) do consider shifts in welfare between advertisers, the user, and the platform.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We don’t train any new models nor does any of our released code have a high
risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: For the open-source LLMs we use in our experiments, creators are credited,
the terms of use are respected, and the licenses named (Appendix D).
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We don’t release any new assets other than the code and synthetic data required
to reproduce the experiments.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We don’t have any human subjects experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We don’t have any human subjects experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The entire paper, especially the experiments section, describes our usage of
LLMs, and we mention them even in the title.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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