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Abstract

The analysis of variance (ANOVA) decomposition offers a
systematic method to understand the interaction effects that
contribute to a specific decision output. In this paper we intro-
duce Neural-ANOVA, an approach to decompose neural net-
works into glassbox models using the ANOVA decomposi-
tion. Our approach formulates a learning problem, which en-
ables rapid and closed-form evaluation of integrals over sub-
spaces that appear in the calculation of the ANOVA decompo-
sition. Finally, we conduct numerical experiments to illustrate
the advantages of enhanced interpretability and model valida-
tion by a decomposition of the learned interaction effects.

Introduction

Deploying machine learning models for regression or con-
trol tasks in industrial settings often entails meeting specific
certification requirements. These requirements can vary de-
pending on the application domain and the criticality of the
task, and may ultimately determine whether a particular ma-
chine learning model can be used. Ensuring compliance may
involve testing the model against a series of cases curated
by domain experts or conducting comprehensive evaluations
under adverse operating conditions to confirm that the model
accurately captures expected interaction effects.

In addition to certification, machine learning models in-
tended for industrial use must often satisfy robustness and
explainability criteria. A challenge in this context may be
handling missing data, which can arise from various issues
such as sensor failures, preprocessing errors, connectivity
problems, calibration faults, or data corruption during stor-
age. Addressing missing or corrupted data is particularly
problematic for industrial machine learning models operat-
ing at short cycle times (e.g., less than 1 ms). In such cases,
advanced imputation techniques can be too slow, and sim-
pler methods like mean or median imputation may not pro-
vide the necessary performance.

Another critical challenge involves ensuring transparency
and providing explanations for the decision-making pro-
cesses of Al systems. Techniques collectively referred to as
Explainable AI (XAI) aim to mitigate the ’black box” nature
of models like neural networks by elucidating the dependen-
cies that lead to specific decisions. Achieving XAl is espe-
cially crucial for control systems or neural process models,
where comprehending the decisions is essential.

The functional analysis of variance (ANOVA) decompo-
sition addresses these challenges by separating interaction
effects in order to gain deeper insights into the effects and
dependencies between input variables and output variable,
owing to its ability to decompose complex relationships into
lower-order effects. The ANOVA decomposition has proven
valuable in various industrial domains such as modeling of
batteries (Adachi et al. 2023) and fluid flows (Yang et al.
2012) .

A primary challenge in computing the ANOVA decom-
position arises from the need to evaluate higher-dimensional
integrals over subspaces of the input domain. Often, this
problem is addressed by numerical approximation tech-
niques or by restricting the approximation space to random-
forests (Hutter, Hoos, and Leyton-Brown 2014) or spline
functions (Potts and Schmischke 2021), for which efficient
integration techniques are available. However, each of the
latter introduces an error due to approximation, model bias
or admits limited expressivity for a given task.

In this study, we introduce a novel method for applying
the ANOVA decomposition based on standard neural net-
works, resulting in models that are more interpretable and
suitable for industrial machine learning applications. We re-
fer to these models as Neural-ANOVA models. Our key con-
tributions are as follows:

1. We introduce a novel learning formulation that enables
rapid and closed-form evaluation of integrals over sub-
spaces appearing in the ANOVA decomposition of neural
networks.

2. We demonstrate that Neural-ANOVA models include
Generalized Additive Models (GAMs) as a special
case, showing comparable performance across various
datasets. Our proposed framework supports diverse ac-
tivation functions and layer sizes, utilizing only nested
automatic differentiation and the sum of evaluations.

3. Through extensive evaluations on various regression
tasks, encompassing both synthetic test functions and
real-world industrial datasets, we show that Neural-
ANOVA models can outperform GAMs by incorporating
appropriate higher-order interactions.
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Figure 1: Neural-ANOVA decomposition. The original data is approximated by the mixed derivative of a neural network
(NN). A closed-form ANOVA decomposition is obtained by decomposing the trained NN into lower-dimensional subnetworks
NNs(zs). These subnetworks are derived through closed-form evaluation of integrals over subspaces.

Related Work ANOVA Decomposition
Generalized and Neural Additive Models The functional ANOVA decomposition (Hoeffding and Rob-
Generalized Additive Models (GAMs) (Hastie 2017) are a bins 1948; Sobol 2001; Hooker 2004) is a statistical tech-
powerful and versatile approach for machine learning prob- nique for the dimension-wise decomposition of a square-
lems. They extend Generalized Linear Models (GLMs) by integrable function f : X* — R into a sum of lower-
incorporating non-linear relationships between features and dimensional functions fs according to
the target variable through flexible shape functions. GAMs
are ap;%licable to both reggression and clelljssiﬁcation tasks and (=) = Z fs(zs). @)
have been successfully used in various domains such as ScK
healthcare or finance (Hegselmann et al. 2020; Berg 2007). Here, each function fs only depends on a subset of variables
A key advantage of GAMs is their interpretability, which indexed by the set S C K and the sum ranges over all 2%
stems from their structure of univariate interactions subsets of £ := {1,..., K}.
K A specific construction and algorithm was proposed in
f(x) = fo+ Z fr(zr), €)) (Hooker 2004; Kuo et al. 2010), necessitating the compu-
i=k tation of several multidimensional integrals of the form

or including also bivariate interactions

K K K
@)= fo+ > fulwn) + DD fulee,z). () fs(xs) = /XK%S‘ flz) dzx\s — Z fu(zy), @)
k=1

k=1 1<k Uss

The influence of each feature on the prediction can be where first term represents an integral over a subset of vari-
comprehensively understood by visualizing its correspond- ables, while the second term subtracts all proper subsets in
ing shape functions. Various methods are available for fit- a manner similar to backfitting. The resulting computational
ting Generalized Additive Models (GAMs). One traditional algorithm is detailed in Alg. 1. Using this approach, one can
method is backfitting (Breiman and Friedman 1985), which demonstrate that all terms fs are orthogonal with respect
iteratively updates the components of the model by sequen- to the inner product (f,g) = [ f(z) - g(x) dz. Addition-
tially refitting them. Another common approach involves ally, this construction exhibits the favorable property that the
spline-based regression (Wahba 1990). More recently, sev- functional variance
eral machine learning approaches have been proposed that 2
leverage conventional gradient descent algorithms. Notably, o / 2 (x)dx — < / f dm) 5)
Neural Additive Models (NAMs) (Agarwal et al. 2021),
use neural networks to represent the shape functions and can be decomposed into the sum of individual component
are trained using standard stochastic gradient descent tech- variances
niques. However, the authors note some considerations
when using NAMs. Computationally, the optimization pro- 0% = Z O'?g = Z / f§ (zs)dzs. (6)
cess can be challenging and demands careful selection of hy- s S
perparameters and application of regularization techniques. Furthermore, it can be shown that the decomposition is
Furthermore, choosing the appropriate representation for minimal in the sense that no unnecessary terms are being in-
shape functions is crucial to avoid overfitting or underfitting troduced in the decomposition. To illustrate this minimality,
the data, necessitating careful consideration and experimen- consider a function f(z1,x2) = 221 where the ANOVA de-

tation. composition ensures that no unfavorable non-minimal terms



such as f(x1,22) = 21 — o2 + (21 + x2) are introduced
(Kuo et al. 2010).

The minimality property also allows to define meaningful
dimensionalities for a function. For instance, one such di-
mension can be described as the superposition dimension of
a function, defined as

f@) =3, fs(®s), @)
where the variance decomposes according to
2 _ 2
Zw\sczs 9s =9 ®)

In other words, if a function f has an effective superposition
dimension d, it implies that interactions involve no more
than d, variables. Furthermore, if a function has an effective
superposition dimension of 1, it indicates the existence of an
ideal regressor in the form of a Generalized Additive Model
(GAM).

The truncation dimension is another meaningful quantity
that is said to hold with dimension d; if there exists a set of
truncation variables 7 with |/C\ 7| = d; such that

F@) =3 oy fs(@s); ©)

with
2 _ 2
g SgIC\TUS =0 (10)

Using the truncation dimension, we can identify sets of rel-
evant and irrelevant variables. Additionally, we can use the
truncated sum (9) to approximate the function if the vari-
ables in the set 7 are unavailable, e.g., due to sensor cor-
ruption or processing errors. However, in such scenarios,
we should not expect a perfect approximation, meaning the
equalities in (9, 10) will not hold.

Various methods for numerically approximating the
ANOVA decomposition have been introduced in the lit-
erature. These methods include approaches based on ran-
dom forests (Hutter, Hoos, and Leyton-Brown 2014) and
orthonormal systems utilizing polynomial or Fourier ba-
sis functions (Potts and Schmischke 2021). Each approach
incorporates different model-specific approximation tech-
niques for evaluating the integral (4). The effectiveness of
these approximation schemes can be constrained by the ex-
pressivity of the chosen model or the maximum order of in-
teractions that can be efficiently included in the numerical
approximation process.

Moreover, integrating a numerical approximation scheme
into the training loop of a machine learning model is chal-
lenging. This difficulty arises from the need to balance the
number of required evaluations with the acceptable level
of approximation error. For example, (Owen 2023) report
needing approximately ten thousand function evaluations
to achieve an acceptable approximation error in a five-
dimensional setting using quasi-Monte Carlo integration.

Automatic Integration

Analytical integration is generally considered more chal-
lenging than differentiation. Various strategies for exact in-
tegration include variable substitution, integration by parts,

Input: f € L5([0, 1]%)

Output: functions { fs}sc, variances {05}?9g K

f(D _ka diE ap _0

for S C K, S#@)do
fs(zs) fXK s flx )de\S*Zugs fu(zu);
Us = fx\sw fs(SUS) dzs;

end
= [yx [P (@) dz — ([ f( dm) =Y sck 08

Algorithm 1: ANOVA decomposition of f proposed by
(Kuo et al. 2010).

and partial fractions. Closed-form solutions for general an-
tiderivatives, i.e., indefinite integrals, are limited to a small
class of functions and often involve complex algorithms
such as the Risch algorithm (Risch 1969). Numerical inte-
gration methods, including Riemann sums, quadratures, and
Monte Carlo methods (Owen 2023), are commonly used in
practice. These methods typically require a tradeoff between
the number of samples and accuracy.

Neural networks, being universal function approximators,
can also be utilized for analytical integration within the
framework of automatic integration (Lindell, Martel, and
Wetzstein 2021). This technique involves training a neural
network to approximate the antiderivative so that integrals
can be obtained by evaluating the trained network at the
boundary points of the integration domain. The approach
relies on taking derivatives of the neural network, applied
repeatedly to all input coordinates and subsequently used to
fit the training data. Using this method enables the compu-
tation of any definite D-dimensional integral using 2% eval-
uations of a neural network. It has inspired a range of ap-
plications, such as neural radiance fields (Gao et al. 2022),
tomography (Riickert et al. 2022), pathloss prediction (Lim-
mer, Alba, and Michailow 2023) and neural point processes
(Zhou and Yu 2024).

Neural ANOVA Decomposition

In this section, we present our main contribution, which pro-
vides a rapid and closed-form evaluation of integrals over
subspaces of the type given by (4) in the ANOVA decompo-
sition, utilizing neural networks.

Bivariate Example

We begin by demonstrating the fundamental process of
automatic integration using a sample bivariate function,
f(x1,x2), to emphasize the differences in the training ap-
proach. Conventional neural network training typically in-
volves minimizing a loss function of the form

Z¢>( 2, 287y — NN(8, 2{” x2>))7 (11)

where ¢ denotes an appropriate loss function, such as the
absolute error or squared error.

In the proposed method, we aim to fit samples of a
given function f(x1,x2) while simultaneously calculating



integrals over the input domain. The work (Lindell, Mar-
tel, and Wetzstein 2021) suggests training a neural network
NN(0, z1,x2) by differentiating the network with respect
to all its input coordinates, specifically evaluating its mixed
partial derivative. The training process involves minimizing
a loss function defined as

o d d @) @)
Zqﬁ( Jcl , Ty ) — . dLQNN(07x1 , Xy ))
(12)

To ensure computational  efficiency, the term
dm Jas 4 NN(@,21,22) can be compiled just-in-time
and evaluated during the training process using standard
techniques in automatic differentiation.

After successful optimization, the optimized neural net-
work parameters, denoted as 8”, are obtained. Integrals can
then be computed by evaluating the neural network at the
corner points of the integration domain, [I1, u1] X [l2, ua] ac-
cording to

/ [z, 22) deidy (13)

l1 l2

ZNN(O,ll,lg) —NN(O,’U,l,lg) (14)
— NN(O l1, UQ) + NN(B, U1, UQ)

=NN(0, 21, 25| (15)

z1,22€(l1,ur) X (l2,u2)”

High-dimensional Generalization

Next, we present the generalization of automatic integration
to calculate higher-dimensional integrals that appear in Alg.
1 for a function comprising K input features and one target
output, i.e., [ : REX — R. To this end, the neural network
NNp () : RE — R is trained using the loss

Z(b x) _i . LNN(G w(7))). (16)

dl’l dlK

Then, we can establish the following relation between (i)
the trained neural network, (ii) the general anti-derivative
(integral) and (iii) the definite anti-derivative (integral) by
using the fundamental theorem of calculus (Mutze 2004) ac-
cording to

@) = - 2 NN(a) (17
g
[ @)z = NN(@) (1)
g
| f@yia - S (CNN@), (19)

.’Be(ll,ul)X-NX(lKﬂLK)

where s denotes the multiplicity of lower bounds in the eval-
uated expression.

Using this relation, we can verify that integration over a
single variables (e.g. 1) can be obtained for instance in the

3-dimensional case by

“ d d
f(x1,22,23)dz1 = ———NN(z)

20
diEQ d(L’g ( )

z1E€(l1,u1)

Iy

and integrals over a subset of two variables (e.g. x2,x3) can
be obtained by

d
/f(xl,xg,xg)dmgdajg = —NN(x)
d{,Cl

x2,23€(l2,u2) X (I3,u3)

2y

Summary of Algorithm

We now present the main result of this paper: a compu-
tational algorithm designed to train a neural network, de-
noted as NN, which allows for a closed-form decomposition
into lower-dimensional subnetworks NNs. This method is
termed Neural-ANOVA and summarized in Alg. 2.

In Alg. 2, the following steps are performed in order to
calculate the required integrals of the ANOVA decomposi-
tion as a signed sum of multiple evaluations of the trained
model and the functional transformation of differentiation.
First, the model is trained using the loss function specified
in (16) where the model is differentiated w.r.t. all input vari-
ables. Second, we compute the integral over the subspace
spanned by the variables s (cf. (4)) according to

Is(xzs) = /CNN(cc)d:cSc = —NN(x)

®se€(0,1)15°]

. 'S
- stce(o,l)\scw <(_1) deNN(fE)) (22)

Here, the sign exponent s denotes the multiplicity of lower
bounds in the evaluated expression and S¢ := IC\S the com-
plement of S over the full index set K. In other words, in (22)
the trained model is first differentiated w.r.t. the variables in
the active-set S and then evaluated at the 2/S°! corner points
of the inactive-set S¢ that are to be integrated over so that
the result is a function of only the variables xs. Lastly, the
Neural-ANOVA component NNg is obtained by using the
integral calculated in (22) and subtracting the components
of all proper subsets

NNs(zs) = / x)dzse — Y  NNy(my). (23)

Uucs

The complete resulting algorithm to obtain Neural-
ANOVA is provided in Alg. 2 where all the neural network
terms can be calculated fast and in closed-form at runtime
and the variances 02, o3 can be obtained offline by standard
numerical methods such as Monte Carlo approximation.

One approach to calculate the mixed partial derivative in
(16) supported by standard automatic differentiation frame-
works is to apply nested differentiation. While the imple-
mentation of this approach is straight forward e.g. in the
automatic differentiation framework JAX (Bradbury et al.
2018), it requires traversing the original computation graph
multiple times which may result in redundant computations
as was noted in (Hoffmann 2016; Bettencourt, Johnson, and



Input: Sampled function f(z) € L2([0,1]%)
Output: Nets {NNs } scx, variances {05} 5
Obtain 0* by training f(x) ~ %NN@(Q})
NNj = Y4 .0y (—1)"NNg (@)
op:=0
for SC K, S+#0Ddo
4!s!

NNs(zs) :== ENN(w)‘msce(O,l)K*‘s‘

— Yucs NNu(zu) 05 = [ 1315 NN5(2s) das
end

K

o? = f[oyl]K(flTwNN)Q(sc) dx — NNj = YosckOE

Algorithm 2: Neural-ANOVA decomposition of f,
adapted from (Kuo et al. 2010).

Duvenaud 2019). We highlight that also more sophisticated
methods for calculating the mixed partial derivative exist
compared to the nested approach such as Taylor series ap-
proximation, which was shown to admit favorable runtime
properties for calculating higher-order derivatives (Betten-
court, Johnson, and Duvenaud 2019). In this paper, we chose
to retain the nested approach approach as we observe satis-
factory runtime and numerical stability up to moderate di-
mension K < 10.

Numerical Example
This section presents a concise numerical example for a
common test-function from sensitivity analysis, namely the
3-dimensional Ishigami-function

f(x) = sin(x1) 4 asin®(xy) + bad sin(x), (24)

witha =7,b=0.1.

We normalize the input and output domain and present
the generated data for 3 = 0 in Fig. 1. The loss function for
training the neural network is defined as

1(6) = 3 (Flar,a0) - —o

2
- B dxldedeNN(xl,xg,x;;D '
(25)
Next, we find the terms of the Neural-ANOVA decomposi-
tion using the trained network according to
NNy = NN(u1, ug, ug) — NN(uq,la, us) (26)
— NN(l1, ug, ug) + NN(I1, I, uz) — NN(uq, ug, l3)
+ NN(ug, lo,l3) + NN(l1, ug,l3) — NN(ly, s, l3)

d
NNl(.’)Sl) = TNN(xl, 1‘2,.’1,'3) — NNQ)
L1 z2,23€(l2,us) X (I3,u3)
(27)
d d
NNl,Q('rlva) == 77NN(I171‘2;‘T3)
d$1 dmg z3€(ls,us)

— NNQ) — NN1 (xl) — NN2 (l‘g) (28)

s {1 {2r 8 {12} {13} {23}

Ref. 0314 0.442 0.0 0.0 0.244 0.0
Est. 0305 0439 6e—9 1le—10 0.256 8e—9

Table 1: True sensitivities and numerical estimates calcu-
lated using N-ANOVA for the Ishigami function.
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Figure 2: (a-c) Plots of NNgs(zs) for S = {1}, {2}, {1, 3},
and (d) sensitivities o s for the Ishigami function.

Finally, we can evaluate and illustrate the decomposed
function (cf. Fig. 2) and obtain sensitivities using a Monte
Carlo estimate according to Alg. 2. We see in Tab. 1 that the
sensitivities match well with their closed form expressions
(Sobol and Levitan 1999).

Experiments

This section presents the results of numerical experiments
performed on simulation functions from the field of sensi-
tivity analysis and real-world industrial applications.

For sensitivity analysis, we use sampled data of the sim-
ulation functions Ishigami, OTL Circuit and Piston from
the UQTestFuns-library (Wicaksono and Hecht 2023). The
training, validation and testing data is generated by evaluat-
ing the function using the default sampling distributions and
min-max scaling of input and output domain to [0, 1]. The
primary objective of these experiments is to evaluate the ex-
pressive power and generalization capabilities of mixed par-
tial derivative networks with different activation functions.
The study also examines function properties such as super-
position and truncation dimensions.

As industrial datasets we consider Airfoil Self-Noise
(ASN), Combined Cycle Power Plant (CCP) and Concrete
Compressive Strength (CCS) datasets (Asuncion, Newman
et al. 2007). We provide an overview of the considered
datasets in Tab. 2. In all cases the data is split into 60/20/20
ratio for training, validation, and, testing, respectively.

We use JAX (Bradbury et al. 2018) to implement
both Neural-ANOVA and an MLP baseline. The MLP



serves as benchmark for evaluating the expressive power
and noise robustness of different architectures. We ex-
periment with the following standard architectures: (i)
3 layers with 32 neurons and sigmoid activation, and
ablations with (ii) {8,16,32,48} hidden neurons and
{sigmoid, relu, swish, rep} activation where rep denotes
the rectified polynomial function. The default architecture
serves as the model for mixed partial derivative training in
the N-ANOVA approach (16) for the simulation functions
ISH, CIR and PST and the MLP approach on all datasets.
For the ASN, CCP, and CCS datasets, we observe, simi-
lar to (Agarwal et al. 2021), the necessity of regularization
due to the limited number of data points. For N-ANOVA,
our empirical findings indicate that a two-layer architecture
with rep activation, 16 neurons and {2-weight regulariza-
tion provides satisfactory results for ASN and CCP, but led
to a small number of divergent runs, which were excluded
from the analysis. This issue could potentially be mitigated
through more advanced hyperparameter tuning or by em-
ploying methods based on cloning the trained baseline MLP.

We also report results for Neural Additive Models
(NAMs), which consist of three layers with 32 neurons and
relu activation, following the JAX implementation' to main-
tain consistency with the experimental setup. In Tab. 3, we
present a comparison of training time between N-ANOVA
and a standard MLP and compare the model sizes of all
three approaches in terms of trainable parameters. This con-
firms that the N-ANOVA model has an identical parameter
count to the MLP and the NAM architecture typically con-
tains more parameters due to the K independent feature net-
works. Tab. 4 shows the impact of truncating variables on
the Ishigami dataset to analyze the effect of reducing input
variables, such as in scenarios with missing values.

In Tab. 5, we report the root MSE (RMSE) and standard
error on the test set, based on 10 runs with different random
seeds. The trainings utilize validation early stopping and are
obtained using the adam and bfgs optimizers. We find that
MLP and N-ANOVA, (all interactions) as well as NAM
and N-ANOVA (univariate interactions) perform similarly
on the simulation functions. For datasets with a small sample
count, NAMs demonstrate slightly superior generalization in
the univariate setting. This performance can be matched by
N-ANOVA, where bivariate interactions are included. How-
ever, N-ANOVA shows performance deterioration for small
sample sizes, specifically for 1030 samples in the largest di-
mension K = 8 of the CCS dataset. These results suggest
the potential for developing mixed partial derivative archi-
tectures that generalize better in future research.

For the Airfoil dataset, we also depict the shape functions
of the N-ANOVA approach and the estimated sensitivities in
Fig. 3 where we see that the model assigns a strong impact
to a small number of interactions.

Finally, Fig. 4 illustrates ablation studies on the stabil-
ity of different models and under varying levels of additive
noise. The results indicate that the mixed partial derivative
networks within the N-ANOVA framework exhibit similar
scaling and robustness behavior to a standard MLP archi-

"https://github.com/Habush/nam_jax

tecture where the error level is slightly higher for the N-
ANOVA networks. Notably, N-ANOVA models utilizing the
relu activation function demonstrate a significant loss in ex-
pressive power when subjected to differentiation and the rep
activation shows promising robustness to higher noise lev-
els.

Dataset features  samples
Ishigami (ISH) 3 10000
OTL Circuit (CIR) 6 10000
Piston (PST) 7 10000
Airfoil Self-Noise (ASN) 5 1503
Combined Cycle Power Plant (CCP) 4 9568
Concrete Compressive Strength (CCS) 8 1030

Table 2: Dataset overview.

MLP N-ANOVA NAM

training time  121.3 857.6 ="
parameters 1345 1345 11544

Table 3: Comparison of avg. training time in seconds and
number of trainable parameters for the Piston dataset.
(* excluded due to different training framework)

T (y  {2r {3y {12} {13} {23}

N-ANOVA\7+ 009 0.14 0.05 0.17 0.09 0.15
MLP\ 7 0.09 024 0.06 026 0.09 0.25

Table 4: Comparison of truncating variables for N-ANOVA
using truncated sum (9) and MLP using replacement by
mean on Ishigami dataset (RMSE over 10 seeds).

Conclusion

In this paper, we present an efficient method for comput-
ing the functional ANOVA decomposition using neural net-
works to quantify learned interaction effects across multi-
ple datasets. We derive a novel learning problem focused on
computing integrals over subspaces essential to the ANOVA
decomposition and demonstrate how this algorithm can de-
compose a network by fitting the mixed partial derivative
to the training data. Our approach is empirically validated
on various test functions from uncertainty quantification and
real-world industrial datasets, confirming the accuracy of the
functional decomposition. We also show that the Neural-
ANOVA approach can specialize to obtain a generalized ad-
ditive model. The method provides a principled way to an-
alyze interaction effects, offering deeper insights into train-
ing results and the implications of using a specific trained
model, allowing domain experts to certify particular use
cases. Further research may address more taylored architec-
tures that maintain higher expressive power or generaliza-
tion under differentiation. Our implementation will be made
available with the paper.



| MLP | N-ANOVAs N-ANOVA; N-ANOVA; N-ANOVA> N-ANOVA; | NAM

ISH 1.7E-04 1.2E-04 1.2E-04 1.2E-04 1.2E-04 5.06E-02 5.08E-02
+0.5E-04 +0.2E-04 +0.2E-04 +0.2E-04 +0.2E-04 +0.04E-02 +0.05E-02
CIR 5.8E-05 1.3E-04 1.1E-04 1.0E-04 1.1E-04 1.59E-02 1.61E-02
+1.5E-05 +0.3E-04 +0.2E-04 +0.2E-04 +0.2E-04 +0.01E-02 +0.02E-02
PST 5.2E-05 1.65E-04 2.52E-04 2.96E-03 1.62E-02 3.94E-02 3.86E-02
+0.8E-05 +0.2E-04 +0.07E-04 +0.05E-03 +0.03E-02 +0.04E-02 +0.06E-02
ASN 4.4E-02 | 9.0E-02 9.0E-02 1.00E-01 1.19E-01 1.67E-01 1.23E-01
+0.2E-02 +0.3E-02 +0.3E-02 +0.09E-01 +0.07E-01 +0.07E-01 +0.02E-01
cCp 5.33E-02 | 5.73E-02 5.73E-02 5.74E-02 5.77E-02 5.95E-02 5.68E-02
+0.08E-02 +0.05E-02 +0.05E-02 +0.05E-02 +0.05E-02 +0.06E-02 +0.06E-02
ccs 7.4E-02 1.03E-01 1.03E-01 1.04E-01 1.06E-01 1.51E-01 7.1E-02
+0.2E-02 +0.06E-01 +0.06E-01 +0.06E-01 +0.06E-01 +0.2E-01 +0.2E-02

Table 5: Performance comparison of proposed N-ANOVA,, with varying superposition dimension ds, Neural Additive Model
(NAM) (Agarwal et al. 2021) (i.e., ds = 1) and Multi-Layer Perceptron (MLP) (d; = K). The error is shown as RMSE on
holdout set (lower is better).
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Figure 3: Plots of (a)-(e) NN (xy), (f)-(1) NNs(xs), (j) sensitivities os for the Airfoil dataset.
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Figure 4: Ablation on (a)-(b) training and testing error for varying number of hidden layer neurons and (c)-(d) for varying level
of additive training noise and varying activation functions on the Piston dataset.
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