
Under review as a conference paper at ICLR 2023

SPRINT: SCALABLE SEMANTIC POLICY PRE-
TRAINING VIA LANGUAGE INSTRUCTION RELABELING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose SPRINT, a scalable offline policy pre-training approach based on nat-
ural language instructions. SPRINT pre-trains an agent’s policy to execute a di-
verse set of semantically meaningful skills that it can leverage to learn new tasks
faster. Prior work on offline pre-training required tedious manual definition of
pre-training tasks or learned semantically meaningless skills via random goal-
reaching. Instead, our approach SPRINT (Scalable Pre-training via Relabeling
Language INsTructions) leverages natural language instruction labels on offline
agent experience, collected at scale (e.g., via crowd-sourcing), to define a rich set
of tasks with minimal human effort. Furthermore, by using natural language to
define tasks, SPRINT can use large language models to automatically expand the
initial task set. As a result, we can learn an extensive collection of new skills
via offline RL during pre-training by relabeling and aggregating task instructions,
even across multiple trajectories. Experiments in ALFRED, a realistic house-
hold simulator, show that agents pre-trained with SPRINT learn new long-horizon
household tasks substantially faster than with previous pre-training approaches.

1 INTRODUCTION

When humans learn a new task, e.g., how to cook a new dish, we rely on a large repertoire of
previously learned skills, like “chopping vegetables” or “boiling pasta”, that make learning more
efficient. Improving learning efficiency is crucial for practical deployment of artificial agents; thus,
many works in reinforcement learning (RL) aim to equip agents with a similar set of skills. To
autonomously acquire such skills, recent works optimize for diverse agent behaviors (Eysenbach
et al., 2019; Sharma et al., 2020; Mendonca et al., 2021), imitate short action sequences (Lynch
et al., 2020; Pertsch et al., 2020), or reach randomly sampled goal states (Chebotar et al., 2021)
from pre-collected experience. However, such objectives may result in the agent learning skills that
are not semantically plausible in practice, e.g., “placing a knife in the microwave” or “half-closing
the microwave door.” To focus pre-training on plausible skills, one could instead manually curate a
set of pre-training tasks for the policy, but this requires tedious reward function design and does not
scale well beyond a few dozen tasks (Yu et al., 2019). Yet, defining a large set of pre-training tasks
is crucial: only a policy with a wide range of skills can accelerate learning on many downstream
tasks. How can we define a large set of meaningful pre-training tasks in a scalable manner?

In this paper, we propose to leverage natural language instructions to define a large number of
semantically meaningful tasks for policy pre-training. Natural language has recently been used
to allow humans to effectively interact with agents (Lynch & Sermanet, 2021) or to generate long-
horizon plans (Ahn et al., 2022). In the context of defining pre-training tasks, using natural language
has two important benefits: (1) language is a natural and expressive interface for humans to specify
tasks (in contrast to, e.g., numerical reward functions) as it is the primary way to communicate tasks
in our everyday lives. Thus, even non-experts can define tasks easily via language instructions.
(2) By specifying pre-training tasks via natural language, we can leverage the knowledge captured
in large language models to automatically generate more tasks through instruction relabeling.

To combine both benefits we introduce SPRINT (Scalable Pre-training via Relabeling Language
INsTructions), a scalable pre-training approach that equips policies with a repertoire of seman-
tically meaningful skills (see Figure 1 for an illustration). SPRINT has three core components:
(1) language-conditioned offline RL, (2) LLM-based skill aggregation and (3) cross-trajectory skill

1

Under review as a conference paper at ICLR 2023

“Put bread on table”

τ1

“Get mug from the fridge”

τ2

Agent Experience w/ Language Instructions

“Make coffee”

τ3

Target Task

Finetune

Human Instruction
Annotator

Policy

“Make breakfast”
“Pick up bread” “Place bread in the microwave”

“Put mug in coffee machine”“Get mug from shelf”

“Pick up bread and put it on the table”

LLM 
Relabeling

Relabeled Language Instructions

Cross-
Trajectory
Chaining

Cross-Trajectory Chained Instructions

2

3

1

Pre-train w/ 
language instructions

4

Figure 1: We propose SPRINT, a scalable approach for policy pre-training with semantic skills. We
assume access to an offline dataset of agent experience with natural language instruction labels of
the performed skills, e.g., provided by human annotators (1). We use the instructions to pre-train a
semantic skill policy via instruction-conditioned offline RL. To increase pre-training task diversity,
we automatically generate new instructions via (2) language-model-based instruction relabeling,
and (3) cross-trajectory skill chaining. We demonstrate that an agent pre-trained with SPRINT can
leverage the diverse set of learned semantic skills to finetune efficiently on unseen target tasks (4).

chaining. SPRINT assumes access to an offline dataset of state-action trajectories, each of which
performs one or more skills. We assume that the data has corresponding natural language instruction
labels for the performed skills, such as “place mug in coffee machine” or “press brew button”. Such
labels can be crowd-sourced from non-expert human annotators at scale. We use these annotations
as task instructions and train a policy with language-conditioned offline RL to solve them. Crucially,
SPRINT uses two techniques to expand this initial task set: firstly, we use a pre-trained large lan-
guage model to relabel the language instructions, thereby creating new tasks. For example, the tasks
“place mug in coffee machine” and “press brew button” can be combined into a new task: “make
coffee.” Secondly, we chain behaviors across multiple trajectories from the training data; starting
with a skill like “pick up bread” from one trajectory and ending with “place bread on table” from
another. This allows the policy to learn semantic skills completely unseen in the training data.

SPRINT trains a policy on the combined set of task instructions, thereby equipping the agent with a
policy that can execute a wide range of semantically meaningful skills. Our experiments demonstrate
that this allows for substantially more sample-efficient learning and better zero-shot execution of
new downstream tasks like “prepare breakfast” than prior pre-training approaches.

In summary, our contributions are threefold: (1) we propose SPRINT, which leverages natural lan-
guage instructions for scalable policy pre-training via instruction-conditioned offline RL, (2) we
expand the set of pre-training tasks via LLM-based skill relabeling and cross-trajectory chaining,
(3) we demonstrate that SPRINT enables agents to more efficiently learn long-horizon household
tasks in the ALFRED simulator (Shridhar et al., 2020) than prior pre-training approaches.

2 RELATED WORK

Language in RL. There is a long-standing interest in leveraging natural language during behavior
learning, e.g., to structure agent’s internal representations (Andreas et al., 2017b), to learn to interact
with text-based games (Narasimhan et al., 2015; Küttler et al., 2020), or guide long-horizon task
learning via recipe-like plans (Branavan et al., 2009; Andreas et al., 2017a). The recent progress

2

Under review as a conference paper at ICLR 2023

in training large, general-purpose language models has enabled approaches that directly generate
and execute such plans solely from a high-level task description (Huang et al., 2022a; Ahn et al.,
2022; Huang et al., 2022b). Others have shown how language in combination with vision inputs
can be used to learn state representations (Nair et al., 2022) or reward functions (Fan et al., 2022).
Finally, there is a rich body of work that explores using language as an intuitive agent interface
for humans: given a free-form natural language command they aim to train language-conditioned
policies that can execute the instruction in the environment (Lynch & Sermanet, 2021). In contrast,
our work aims to leverage language for task-agnostic agent pre-training. Instead of training a policy
to execute human language commands, we aim to equip an agent with a set of semantic skills that
improves the efficiency of reinforcement learning on downstream tasks. In a similar vein, Colas
et al. (2020) explored using language to define tasks for semantically meaningful exploration in RL,
but they required a hand-defined grammar for task instruction generation, while we leverage offline
data and large language models for automatic generation of new training tasks.

Pre-training Policies for RL. Developing policy pre-training approaches for faster downstream
learning has been investigated for many years (Ijspeert et al., 2002; Theodorou et al., 2010; Hester
et al., 2018). Recent advances in offline reinforcement learning (Levine et al., 2020) enabled ap-
proaches that can pre-train agents offline and effectively finetune them on online tasks (Peng et al.,
2019; Singh et al., 2020; Nair et al., 2020; Kostrikov et al., 2022). However, these approaches require
the pre-training data to have target-task reward annotations and the resulting pre-trained policies are
trained only to solve the target task. In contrast, meta-RL approaches pre-train on a range of tasks
and allow fast adaptation to unseen downstream tasks (Duan et al., 2016; Finn et al., 2017; Rakelly
et al., 2019; Nam et al., 2022), yet require tedious manual definition of pre-training tasks by experts,
making them less scalable. To avoid manual task design, other works have explored unsupervised
pre-training approaches based on behavior diversification (Achiam et al., 2018; Eysenbach et al.,
2019; Sharma et al., 2019) or extraction of behavior priors from offline agent experience (Pertsch
et al., 2020; Ajay et al., 2020; Singh et al., 2021). Closest to ours is the approach of Chebotar et al.
(2021), which performs unsupervised pre-training by learning to reach randomly sampled states
from offline agent experience. Yet, unsupervised pre-training approaches learn semantically mean-
ingless skills which, as we demonstrate in Section 5, lead to worse transfer to downstream tasks. In
contrast, we introduce a scalable pre-training approach based on natural language instructions that
equips agents with semantically meaningful skills and allows for efficient transfer to unseen tasks.

3 PRELIMINARIES

Offline RL. Offline reinforcement learning (RL) methods assume access to datasets of trajectories
τ composed of ordered (s, a, s′, r) tuples of current state, action, next state, and reward labels,
from a Markov Decision Process M = (S,A, P,R, γ). S and A are state and action spaces.
P : S × A × S → R+ represents the transition probability distribution. R : S × A × S → R
denotes the reward function, and γ is the discount factor. These methods learn offline, with no
environment interactions, and aim to train a policy π(a|s) that maximizes the return per episode.
Temporal-difference (TD) learning methods also train a critic, Qπ(s, a), representing the discounted
future sum of rewards using policy π after taking action a from the state s (Sutton & Barto, 2018).

4 SPRINT: SCALABLE SEMANTIC POLICY PRE-TRAINING WITH
LANGUAGE INSTRUCTIONS

In this work, we propose SPRINT (Scalable Pre-training via Relabeling Language INsTructions), an
approach for pre-training a policy to solve a wide range of semantic skills in order to enable efficient
finetuning on unseen tasks. SPRINT has three core technical components which we will describe
in this section: (1) offline instruction-conditioned RL with crowd-sourced language instructions,
(2) language-model-based skill aggregation and (3) cross-trajectory skill chaining. But first, we will
detail the data we use for pre-training and give an intuitive overview of our approach.

Pre-training Data. Following prior work on agent pre-training, we assume access to a large of-
fline dataset D of agent experience (Gupta et al., 2019; Lynch et al., 2020; Pertsch et al., 2020;
Chebotar et al., 2021; Ebert et al., 2022; Pertsch et al., 2021). Such data can be collected at scale,

3

Under review as a conference paper at ICLR 2023

τ1
τ2

D

τ1DL

“Place mug in 
coffee machine”

“Press start 
button”

τ2
“Place mug in 

shelf”
“Clean mug 

in sink”

Hindsight Language

Annotation1

zA

“Place mug in 
coffee machine”

“Press start 
button”

zB

LLM 
Relabeling

̂z
“Make coffee”

Language Model 
Skill Aggregation2

τ1
“Place mug in 

coffee machine”
“Press start 

button”

τ2
“Place mug in 

shelf”
“Clean mug 

in sink”

̂z1
“Clean mug in sink. Place mug 

in coffee machine.”

Cross-Trajectory 
Skill Chaining3

̂z2

Figure 2: SPRINT overview. Left: Hindsight annotation of agent experience with language instruc-
tions is a scalable approach for defining pre-training tasks. We pre-train via instruction-conditioned
offline RL with a sparse goal-reaching reward (Section 4.1). Middle: We expand the set of pre-
training tasks by aggregating language instructions with an LLM and adding the relabeled trajecto-
ries back into the pre-training dataset (Section 4.2). Right: We perform cross-trajectory chaining of
skills to enable pre-training of skills that are unseen in the offline agent experience (Section 4.3).

e.g., from prior RL runs, via teleoperation, through autonomous agent exploration or any combi-
nation thereof. We further assume that the data contains natural language descriptions of the skills
performed by the agent, e.g., “put a mug in the coffee machine” or “push the brew button.” Such de-
scriptions can be collected at scale by non-experts by annotating sequences from our offline dataset
D in hindsight, e.g., via crowd-sourcing through platforms like Amazon Mechanical Turk (Lynch &
Sermanet, 2021; Shridhar et al., 2020). Given a randomly sampled sequence τ from the dataset D,
annotators can label sub-trajectories τ1 = [s0, a0, s1, . . .], τ2 = . . . with free-form language de-
scriptions z1, z2, . . . of the tasks performed in the respective sub-trajectories, for example:

τz̄ = [τz1 , τz2] = [[(sz10 , az10 , z1), ..., (s
z1
T , az1T , z1)]︸ ︷︷ ︸

“Put a mug in the coffee machine”

, [(sz20 , az20 , z2), ...]︸ ︷︷ ︸
“Push the brew button”

]. (1)

This results in a dataset DL = {τz̄1 , τz̄2 , . . . } of diverse trajectories with natural language descrip-
tions (see Figure 2, left).

Approach Overview. Our approach leverages skill descriptions in DL as instructions for the pol-
icy during pre-training: each description defines a task and the policy is rewarded for successfully
executing the instruction. Intuitively, the more diverse the set of language instructions during pre-
training, the more semantic skills the policy will learn and the more downstream tasks can it fine-
tune on efficiently. Thus, SPRINT introduces two approaches for increasing the diversity of the
pre-training instructions without additional human inputs. Firstly, SPRINT leverages pre-trained
language models to aggregate the human annotated instructions (Figure 2, middle). Secondly, we
propose an approach for cross-trajectory skill-chaining, that allows us to combine behaviors across
multiple training trajectories to generate completely unseen instructions (Figure 2, right). Both ap-
proaches expand the set of pre-training tasks, leading to more effective pre-training. Once the policy
is trained, we can transfer it to a new task for finetuning, either by providing a language descrip-
tion of the target task or by replacing the language input with a vector of trainable parameters and
finetuning it jointly on the target task, like prior work (Chebotar et al., 2021; Laskin et al., 2021).

4.1 INSTRUCTION-CONDITIONED OFFLINE RL

To pre-train our policy with the natural language instruction dataset DL, we take inspiration from
goal-conditioned RL approaches (introduced in Section 3): instead of conditioning the policy on
goal states and rewarding it for reaching these states, we condition our policy π(a|s, z) on language
instructions z from DL and provide a sparse reward to the agent for reaching the end-state sT of the

4

Under review as a conference paper at ICLR 2023

respective sub-trajectory. Formally, we define the reward as:

R(s, a, z) =

{
1, for s = szT
0, otherwise.

(2)

We train our policy π(a|s, z) and a critic Q(s, a, z) on this reward function with offline RL. In this
work, we use Implicit Q-Learning (Kostrikov et al., 2022) since we found it to be easy to tune.

4.2 LANGUAGE-MODEL-BASED INSTRUCTION AGGREGATION

LLM Prompt Example

Summarize the following steps.

1: Pick up the tomato slice.
2: Heat it up in the microwave.
Summary: Microwave a tomato slice.

1: [SKILL 1]
2: [SKILL 2]
...
Summary:

Figure 3: A shortened example of the
LLM prompt. Full prompt in Section B.

Large language models (LLMs), trained on massive cor-
pora of internet text data, have been shown to be effective
at performing a variety of tasks – from question answer-
ing to program synthesis – when prompted with relevant
text (Devlin et al., 2018; Brown et al., 2020; Wang & Ko-
matsuzaki, 2021; Rae et al., 2021; Hoffmann et al., 2022;
Zhang et al., 2022; Chowdhery et al., 2022). Here we
use LLMs to aggregate, i.e., paraphrase, the existing lan-
guage annotations in DL (see Figure 2, middle, for an il-
lustration). Given a trajectory that contains multiple sub-
trajectories, we can aggregate adjacent sub-trajectories
into a longer trajectory and relabel its natural language
annotation with a summary of the individual instructions
generated by the LLM, thereby generating a new higher-

level pre-training task that encompasses instructions from multiple sub-trajectories.1 We use a
simple summarization prompt to instruct the language model (see Figure 3 for an example, Sec-
tion B for the full prompt). Specifically, we aggregate with OPT-13B (Zhang et al., 2022), an
open-source 13 billion parameter LLM comparable with the second-largest GPT-3 text completion
model, text-curie-001 (Brown et al., 2020).2 Like before, the reward for this new aggregated
sub-trajectory is 1 at the last transition and 0 otherwise. Taking Eq. 1 as an example, we prompt
the LLM to summarize the two skills (z1 : “Put a mug in the coffee machine,” z2 : “Push the brew
button”), resulting in a new semantic annotation ẑ1:2 describing both skills (e.g., “Make coffee”). We
then add the new trajectory back to our dataset DL. Using this technique, we generate new language
annotations for all

(
N
2

)
tuples of consecutive sub-trajectories in our dataset. In practice, this allows

us to increase the number of pre-training task instructions by 2.5x without additional human effort.

4.3 CROSS-TRAJECTORY CHAINING

Agents trained with offline RL can combine behaviors from multiple trajectories via value propa-
gation, i.e., “stitch” them (Levine et al., 2020). For example, if trajectory (A) shows cleaning the
mug in the sink and then placing it on the shelf, while trajectory (B) starts with placing the mug in
the coffee machine, offline RL algorithms are able to learn to clean the mug in the sink and then
place it in the coffee machine (see Figure 2, right). In our case of instruction-conditioned offline
RL, enabling such stitching behavior requires special care. Due to the different language instruction
conditionings for the critic Q(s, a, zA) and Q(s, a, zB), values do not naturally propagate from tra-
jectory (B) back to trajectory (A). Instead, we must actively add “chaining examples” to our training
dataset (Chebotar et al., 2021). For this, we randomly sample a sub-trajectory τzA = [s0:t, a0:t, zA]
from the training dataset DL, e.g., part of trajectory (A), and replace its language instruction with
the instruction zB from another trajectory τzB , e.g., “place mug in coffee machine.” Note that we do
not need to sample the full trajectory (A). Instead, st can be any state from trajectory (A) from which
we try to execute skill (B). Crucially, we cannot use the same reward function as before: since the
last state st of the sampled sub-trajectory, e.g., a mug in the sink, does not solve the instruction zB ,
“put mug in coffee machine,” we cannot set its reward to 1. Which reward should we use instead?

Let’s recap that when using temporal-difference (TD) learning (Sutton & Barto, 2018), Q functions
for the sparse reward definition from Equation 2 intuitively represent a value that is proportional to

1Other relabeling operations, such as splitting an instruction into lower-level instructions, can also be per-
formed by the LLM. However, such operations require grounding the LLM to the agent’s observations to
determine sub-trajectory split points. We leave investigating this to future work.

2See appendix, Sections E.1 and E.2 for example aggregated skills and comparisons of different LLMs.

5

Under review as a conference paper at ICLR 2023

the probability of reaching the goal at time T (Eysenbach et al., 2022; Chebotar et al., 2021):

Qπ(st, at, z) = E

[∑
t′=t

γt′R(st′ , at′ , z)

]
= E

[
γT−t

1 [sT = gz]
]
∝ Pπ(sT = gz|st, at). (3)

Similarly, we want Q(s, a, zB) to represent the probability of reaching the goal gzB , the mug being
in the coffee machine, from state s. Thus, we need to set the reward of the last state st in the sampled
sub-trajectory to the probability of reaching the goal gzB from st, i.e., Q(st, at, zB):

R(s, a, zB) =

{
Q(s, a, zB), for s = sT
0, otherwise.

(4)

Finally, we can apply the skill aggregation approach from Section 4.2 in the cross-trajectory case.
Instead of sampling two sub-trajectories from the same training trajectory as in skill aggregation,
we can now sample τzA and τzB from different training trajectories and chain them together. The
aggregate instruction ẑ implies that the agent first finishes skill (A) and then finishes skill (B), e.g.,
“clean the coffee mug and place it in the coffee machine.” Thus, following the logic above, we need
to set the reward for the final state in trajectory (B), sTB

, to 1 since it solves the task ẑ, and the
reward in the final state of trajectory (A), sTA

, to the probability of solving skill (B) from there:

R(s, a, ẑ) =


1, for s = sTB

Q(s, a, zB), for s = sTA

0, otherwise.
(5)

Note that here, unlike in Section 4.2, we do not construct a combined trajectory from τzA , τzB , as
we do not know the states and actions required to transition from the last state of (A) to states in
(B). See appendix Section C.4 for a more detailed discussion on chaining. To generate the aggregate
instruction ẑ we can use the LLM summarization from Section 4.2. Yet, in practice we found
the resulting summaries are often meaningless, since randomly paired instructions from different
trajectories can rarely be summarized meaningfully. Instead, we saw better performance by simply
concatenating the natural language instructions from τA and τB . Finally, since Q changes over the
course of training, we compute the rewards in Eqs. 4 and 5 online during training. We perform
relabeling of trajectories at equal proportions for both rewards.

5 EXPERIMENTS

In our experiments, we investigate how well an agent pre-trained with SPRINT performs on unseen,
semantically meaningful tasks. Specifically, we are interested in answering the following questions:
(1) Does pre-training with SPRINT lead to more efficient finetuning on unseen target tasks than
previous pre-training approaches? (2) Can agents pre-trained with SPRINT execute unseen language
instructions zero-shot? (3) Does pre-training with semantic skills lead to better generalization to
unseen environments than unsupervised pre-training approaches?

5.1 EXPERIMENTAL SETUP

ALFRED Benchmark. We choose the ALFRED benchmark (Shridhar et al., 2020) for evaluation
(see Figure 4), since in contrast to existing multi-task RL environments (Yu et al., 2019), it allows us
to test our pre-trained agents on semantically meaningful, long-horizon tasks in a realistic household
setting. Additionally, ALFRED provides a dataset of 6.6k episodes of offline agent experience with
crowd-sourced natural language instruction annotations (e.g., “pick up the dirty mug”, “wash it in
the sink”, . . . , see Figure 4). The observation space in ALFRED consists of 300 × 300 egocentric
RGB observations and the action space consists of 12 discrete action choices (e.g. turn left, look
up, pick up object), along with 82 discrete object types (Pashevich et al., 2021). We leverage 73k
natural language instructions and their associated observation-action trajectories from the dataset for
pre-training. For more environment and dataset details, see Section D.

Evaluation Tasks. We create a set of 100 varied-horizon evaluation tasks (EVAL 100), by sampling
sequences of 1 to 7 instructions from the ALFRED dataset and asking human annotators to provide a
high-level language instruction that describes the sequence. For example, the 5-instruction sequence

6

Under review as a conference paper at ICLR 2023

Eval_100 Overall0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Nu
m

be
r o

f C
om

ple
te

d
Su

bt
as

ks

1 2 3 4 5 6 7 8
Task Length (Number of Subtasks)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 T
as

k C
om

ple
te

d EVAL_100 EVAL_CHAINAM ET L-BC SPRINT

Figure 5: Zero shot evaluation performance on the EVAL 100 and EVAL CHAIN task sets. The left
figure plots the overall number of completed subtasks on EVAL 100 (i.e., average return), with our
method in green. The right figure plots the proportion of task completed (number of subtasks suc-
cessfully executed divided by task length), split by task length, in both the task sets. See appendix,
Table 3 for exact numerical results.

“pick up the knife”, “slice the potato”, “put the knife in the fridge”, “pick up a potato slice”, “put
the slice in the fridge” was summarized as “Cut and refrigerate the potato on the counter” (for more
examples, see appendix, Section D.2). The task is solved if an agent completes all 5 instructions, in
order, conditioned on the human task description. We ensure that EVAL 100 has an equal distribution
of length 1, 2, 3, 4, and 5+ tasks (20 of each category). Additionally, we create a set of 20 evaluation
commands that test the agent’s long-horizon chaining capabilities (EVAL CHAIN): we withhold
trajectories and instruction summaries of sequences with 7 to 8 instructions from the ALFRED
dataset, making sure that the respective skill chains are not present in any single training trajectory.
Thus, the agent needs to learn to chain behaviors across multiple trajectories to solve these tasks.
Finally, to test environment generalization capabilities, we also create a set of 10 tasks in household
floor plans not seen in any trajectory in the training dataset (EVAL UNSEEN), consisting in equal
parts of 1 to 5-instruction sequences.

1

2 3

4
5 6

"walk to the coffee
maker on the right"

"wash the mug in the sink"
"put the clean mug
in the coffee maker"

"pick up the mug and go
back to the coffee maker"

"pick up the dirty mug
from the coffee maker" "turn and walk to the sink"

visual navigation

visual navigation
memory

object interaction
state changes

visual navigationobject interaction

object interaction

Goal: "Rinse off a mug and place it in the coffee maker"

t 0= t 10= t 21=

t 50=t 27= t 36=

Figure 4: ALFRED. Figure drawn
from Shridhar et al. (2020), with permission.

Comparisons. We compare SPRINT against com-
mon policy pre-training approaches: behavioral
cloning and offline goal-conditioned RL. Specifi-
cally, we compare to the following prior works:

• Language-conditioned BC (L-BC) (Jang
et al., 2021; Lynch & Sermanet, 2021): Be-
havior cloning (BC) conditioned on the in-
dividual ALFRED language instructions.

• Episodic Transformers (ET) (Pashevich
et al., 2021): A transformer BC architecture
that conditions on full sequences of lan-
guage instructions—SOTA on certain AL-
FRED tasks.

• Actionable Models (AM) (Chebotar et al.,
2021): Goal-conditioned offline RL with
randomly sampled goal observations from the ALFRED training set.

We implement all methods with the same architecture and hyperparameters where possible, and pre-
train them for the same number of steps with the same language tokens.. For more implementation
details, see appendix Section C. All results reported are means and standard deviations over 3 seeds.

5.1.1 SPRINT SOLVES LONG-HORIZON TASKS ZERO-SHOT

We first test the effectiveness of SPRINT’s pre-training by analyzing zero-shot performance across
the 100 tasks in the EVAL 100 evaluation set. We report results in Figure 5 (left). Our approach,
SPRINT, achieves 3x higher zero-shot task performance than prior pre-training approaches AM

7

Under review as a conference paper at ICLR 2023

and L-BC. Even though ET is designed for ALFRED evaluations and benefits from a transformer
architecture, SPRINT still outperforms it by 1.5x. To better understand the differences between the
methods, we report the breakdown of returns by length of the evaluation task in Figure 5, right. We
find that L-BC achieves good performance on short-horizon tasks. However, on long-horizon tasks,
SPRINT achieves much higher returns, since it can leverage the language-model to automatically
generate longer-horizon pre-training tasks. In contrast, standard L-BC approaches train only on
the human-provided, shorter-horizon annotations and thus cannot zero-shot perform long-horizon
tasks. This trend holds even when evaluating with detailed step-by-step instructions (see appendix
Section E.3). Similar to our approach, AM trains to reach long-horizon goals during pre-training
but the results in Figure 5, right, show that AM’s pre-training with goal-state conditioning is less
effective than our language-conditioned pre-training.

To evaluate the pre-training approaches’ ability to perform unseen skill sequences, we evaluate zero-
shot performance on the EVAL CHAIN task set in Figure 5. Unsurprisingly, both L-BC and AM
largely fail to generate returns on these long-horizon tasks. ET does slightly better as it is trained
to attend to long-horizon instruction sequences, but it still performs poorly on these tasks as it
cannot generalize to the higher-level human-written task descriptions. In contrast, SPRINT can solve
unseen long-horizon tasks with up to 8 subtasks (see Figure 7 for an example trajectory, appendix
Section E.5 for more qualitative comparisons). This shows that, with the help of cross-trajectory
chaining, SPRINT is able to go beyond the skills in the training data and execute unseen tasks.

5.1.2 SPRINT AGENTS FINETUNE EFFECTIVELY IN UNSEEN ENVIRONMENTS

0k 20k 40k 60k
Environment Steps (1k)

0.0

0.2

0.4

0.6

Av
er

ag
e

Re
tu

rn
EVAL_UNSEEN Average Return vs Env Steps

SPRINT
AM
L-BC

Figure 6: Finetuning results on floorplans not
seen during pre-training.

To test downstream task performance, we finetune
the pre-trained agents on the EVAL UNSEEN task
set in unseen household floor plans. To implement
finetuning for SPRINT and AM, we condition the
policy on a language instruction or goal image from
the target task respectively and then run IQL with
online data collection. For L-BC, we first pre-train
a language-conditioned Q-function with IQL on the
pre-training dataset and then finetune policy and Q-
function with online IQL. We do not finetune ET as
it is a transformer architecture that is nontrivial to
implement for RL.

We report finetuning results in Figure 6, with qual-
itative examples in appendix, Section E.5. Our approach, SPRINT, is able to achieve 2x higher
downstream task return than the best prior work. Specifically, we find L-BC converges quickly to
a low return as it is not pre-trained for longer horizon tasks. Meanwhile, AM struggles to transfer
the learned skills to the new environment, possibly since the goal states from the new environment
are unseen. In contrast, our method’s pre-training with language conditioning allows for effective
transfer even to unseen environments since the semantics of the tasks transfer well: the language
description “place cup in coffee machine” transfers to many environments while the goal image for
the same task might look very different. Thus, pre-training with semantic language instructions can
enable better transfer for learning tasks in new environments than pre-training to reach goal states.

5.1.3 ABLATION STUDIES

We verify the effectiveness of the components of our approach, with the following ablations:

• SPRINT w/o chain: removes cross-trajectory chaining (Section 4.3), instead trains only
on within-trajectory human-provided and LLM-aggregated tasks

• SPRINT w/o LLM-agg: additionally removes the LLM aggregation (Section 4.2), thus
trains offline RL agent only on the human-provided task annotations.

We report zero-shot evaluation results in Table 1. The results show the importance of the different
components of our approach. Without cross-trajectory chaining, performance drops by ∼20-30%.
Interestingly, we find that performance also degrades on the EVAL 100 task set, indicating that
cross-trajectory chaining can improve performance even on long-horizon tasks in the training set.

8

Under review as a conference paper at ICLR 2023

Task: “Warm up a piece of apple”

“Pick up apple” “Place apple 
on table” “Pick up knife” “Slice apple” “Place knife 

on table”
“Pick up 

apple slice”

“Heat apple slice in the microwave and take it back out” “Place apple slice on the table”

Figure 7: Example task execution of our pre-trained SPRINT agent for the task “Warm up a piece
of apple”. Successful execution of this task requires solving 8 subtasks in sequence and a total of
50 steps. This exact sequence of subtasks was never observed in the training data. SPRINT leverages
cross-trajectory stitching and LLM aggregation to learn how to execute unseen tasks.

Table 1: EVAL 100 and EVAL CHAIN returns.

EVAL 100 EVAL CHAIN

SPRINT (ours) 1.27 ± 0.13 2.59 ± 0.66

SPRINT w/o chain 0.91 ± 0.03 2.04 ± 0.04

SPRINT w/o LLM-agg 0.38 ± 0.05 0.10 ± 0.04

We observe an even larger performance
loss when removing the language model
aggregation of pre-training tasks: the re-
sulting agent is solely trained on the
shorter horizon human task annotations,
and thus struggles to solve long-horizon
evaluation tasks, similar to the L-BC ap-
proach in Section 5.1.1. We provide the
per-task-length breakdown of the ablation performances in appendix, Section E.4. This section also
presents additional ablation experiments that use simple concatenation instead of LLM summariza-
tion for task aggregation, resulting in the same longer-horizon pre-training trajectories but different
task labels, further supporting the importance of the usage of LLMs in our pre-training approach.

6 DISCUSSION, LIMITATIONS, AND FUTURE WORK

In this paper, we presented SPRINT, an approach for scalable agent pre-training with offline
instruction-conditioned RL. We demonstrated how we can leverage easy-to-collect natural language
instructions on offline agent experience for effective pre-training. Further, we introduced approaches
for using pre-trained large language models and cross-trajectory skill chaining to automatically
expand the set of pre-training tasks. In our experimental evaluations on the ALFRED household
task benchmark (Shridhar et al., 2020) we demonstrated that SPRINT pre-training allows for sub-
stantially more efficient finetuning on downstream tasks in unseen environments than prior works.
SPRINT represents a step towards scalable approaches for pre-training agents with a set of seman-
tically meaningful skills.

Naturally, pre-training with semantic skills will be most effective on long-horizon, semantically
meaningful tasks. Many of the common RL benchmarks like MetaWorld (Yu et al., 2019) and
D4RL (Fu et al., 2020) do not evaluate agents on semantically meaningful or long-horizon tasks
and thus we do not expect our method to show significant pre-training benefits there. However,
with the recent trend towards evaluating agents on more realistic, semantically meaningful tasks,
like BEHAVIOR (Srivastava et al., 2022) or MineDojo (Fan et al., 2022), we believe semantic pre-
training approaches like SPRINT will be beneficial. Another limitation of our current approach is
that SPRINT can only leverage language-annotated data. While we can collect such annotations
at scale via crowd-sourcing, there will always be a lot of agent experience data without language
annotations. Investigating approaches that can combine language-annotated and un-annotated data
for effective pre-training is an interesting direction for future work.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option discovery
algorithms. arXiv, 2018.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine
Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey,
Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee,
Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka
Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander
Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and Andy
Zeng. Do as i can and not as i say: Grounding language in robotic affordances. In arXiv preprint
arXiv:2204.01691, 2022.

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. Opal: Offline prim-
itive discovery for accelerating offline reinforcement learning. arXiv preprint arXiv:2010.13611,
2020.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with
policy sketches. In International Conference on Machine Learning, 2017a.

Jacob Andreas, Dan Klein, and Sergey Levine. Learning with latent language. In North American
Chapter of the Association for Computational Linguistics, 2017b.

Satchuthananthavale RK Branavan, Harr Chen, Luke Zettlemoyer, and Regina Barzilay. Reinforce-
ment learning for mapping instructions to actions. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language
Processing of the AFNLP, pp. 82–90, 2009.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jacob Varley, Alex
Irpan, Benjamin Eysenbach, Ryan C Julian, Chelsea Finn, and Sergey Levine. Actionable mod-
els: Unsupervised offline reinforcement learning of robotic skills. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp. 1518–1528. PMLR, 18–24 Jul 2021.
URL https://proceedings.mlr.press/v139/chebotar21a.html.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways,
2022. URL https://arxiv.org/abs/2204.02311.

Cédric Colas, Tristan Karch, Nicolas Lair, Jean-Michel Dussoux, Clément Moulin-Frier, Peter
Dominey, and Pierre-Yves Oudeyer. Language as a cognitive tool to imagine goals in curios-
ity driven exploration. Advances in Neural Information Processing Systems, 2020.

10

https://arxiv.org/abs/2005.14165
https://proceedings.mlr.press/v139/chebotar21a.html
https://arxiv.org/abs/2204.02311

Under review as a conference paper at ICLR 2023

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2018. URL https://arxiv.org/
abs/1810.04805.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RL 2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis, Kostas
Daniilidis, Chelsea Finn, and Sergey Levine. Bridge data: Boosting generalization of robotic
skills with cross-domain datasets. In RSS, 2022.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In ICLR, 2019.

Benjamin Eysenbach, Tianjun Zhang, Ruslan Salakhutdinov, and Sergey Levine. Contrastive learn-
ing as goal-conditioned reinforcement learning, 2022. URL https://arxiv.org/abs/
2206.07568.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. arXiv preprint arXiv: Arxiv-2206.08853, 2022.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. ICML, 2017.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. CoRL, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition, 2016.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning from demonstrations. In
Association for the Advancement of Artificial Intelligence, 2018.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/
2203.15556.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as
zero-shot planners: Extracting actionable knowledge for embodied agents. arXiv preprint
arXiv:2201.07207, 2022a.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda
Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning
through planning with language models. In arXiv preprint arXiv:2207.05608, 2022b.

Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Movement imitation with nonlinear dynamical
systems in humanoid robots. In Proceedings 2002 IEEE International Conference on Robotics
and Automation (Cat. No. 02CH37292), volume 2, pp. 1398–1403. IEEE, 2002.

11

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2206.07568
https://arxiv.org/abs/2206.07568
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556

Under review as a conference paper at ICLR 2023

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
and Chelsea Finn. BC-z: Zero-shot task generalization with robotic imitation learning. In 5th
Annual Conference on Robot Learning, 2021. URL https://openreview.net/forum?
id=8kbp23tSGYv.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=68n2s9ZJWF8.

Heinrich Küttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Selvatici, Edward
Grefenstette, and Tim Rocktäschel. The nethack learning environment, 2020. URL https:
//arxiv.org/abs/2006.13760.

Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang, Lerrel
Pinto, and Pieter Abbeel. Urlb: Unsupervised reinforcement learning benchmark. NeurIPS, 2021.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Corey Lynch and Pierre Sermanet. Language conditioned imitation learning over unstructured data.
Robotics: Science and Systems, 2021. URL https://arxiv.org/abs/2005.07648.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. Learning latent plans from play. In CoRL, 2020.

Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Discover-
ing and achieving goals via world models, 2021.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A uni-
versal visual representation for robot manipulation, 2022. URL https://arxiv.org/abs/
2203.12601.

Taewook Nam, Shao-Hua Sun, Karl Pertsch, Sung Ju Hwang, and Joseph J. Lim. Skill-based meta-
reinforcement learning. In International Conference on Learning Representations (ICLR), 2022.

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. Language understanding for text-
based games using deep reinforcement learning. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pp. 1–11, Lisbon, Portugal, September
2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1001. URL https:
//aclanthology.org/D15-1001.

Alexander Pashevich, Cordelia Schmid, and Chen Sun. Episodic Transformer for Vision-and-
Language Navigation. In ICCV, 2021.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning, 2019. URL https://arxiv.org/
abs/1910.00177.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. FiLM: Visual
Reasoning with a General Conditioning Layer. In Association for the Advancement of Artificial
Intelligence, 2018.

Karl Pertsch, Youngwoon Lee, and Joseph J. Lim. Accelerating reinforcement learning with learned
skill priors. In CoRL, 2020.

Karl Pertsch, Youngwoon Lee, Yue Wu, and Joseph J. Lim. Demonstration-guided reinforcement
learning with learned skills. In CoRL, 2021.

12

https://openreview.net/forum?id=8kbp23tSGYv
https://openreview.net/forum?id=8kbp23tSGYv
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8
https://arxiv.org/abs/2006.13760
https://arxiv.org/abs/2006.13760
https://arxiv.org/abs/2005.07648
https://arxiv.org/abs/2203.12601
https://arxiv.org/abs/2203.12601
https://aclanthology.org/D15-1001
https://aclanthology.org/D15-1001
https://arxiv.org/abs/1910.00177
https://arxiv.org/abs/1910.00177

Under review as a conference paper at ICLR 2023

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan,
Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks,
Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron
Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu,
Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen
Simonyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna Kun-
coro, Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur Men-
sch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux,
Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d’Autume, Yu-
jia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas, Au-
relia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake Hechtman, Laura Weidinger,
Iason Gabriel, William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol
Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu,
and Geoffrey Irving. Scaling language models: Methods, analysis & insights from training go-
pher, 2021. URL https://arxiv.org/abs/2112.11446.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In ICML, 2019.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL https://arxiv.
org/abs/1908.10084.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. arXiv, abs/1907.01657, 2019.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. ICLR, 2020.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. ALFRED: A Benchmark for Interpreting Grounded Instruc-
tions for Everyday Tasks. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2020. URL https://arxiv.org/abs/1912.01734.

Avi Singh, Albert Yu, Jonathan Yang, Jesse Zhang, Aviral Kumar, and Sergey Levine. Cog: Con-
necting new skills to past experience with offline reinforcement learning. Conference on Robot
Learning, november 2020.

Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine. Parrot:
Data-driven behavioral priors for reinforcement learning. ICLR, 2021.

Sanjana Srivastava, Chengshu Li, Michael Lingelbach, Roberto Martı́n-Martı́n, Fei Xia, Kent Elliott
Vainio, Zheng Lian, Cem Gokmen, Shyamal Buch, Karen Liu, et al. Behavior: Benchmark for
everyday household activities in virtual, interactive, and ecological environments. In Conference
on Robot Learning, pp. 477–490. PMLR, 2022.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. Reinforcement learning of motor skills in
high dimensions: A path integral approach. In 2010 IEEE International Conference on Robotics
and Automation, pp. 2397–2403. IEEE, 2010.

Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language
Model. https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning,
2019.

13

https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1912.01734
https://github.com/kingoflolz/mesh-transformer-jax

Under review as a conference paper at ICLR 2023

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer,
Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettle-
moyer. Opt: Open pre-trained transformer language models, 2022. URL https://arxiv.
org/abs/2205.01068.

14

https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068

Under review as a conference paper at ICLR 2023

APPENDIX

Table of Contents
A SPRINT Pseudocode 16

B Large Language Model Prompt 16

C Baselines and Implementation 17
C.1 Language-conditioned Behavior Cloning . 19

C.2 Episodic Transformers . 19

C.3 Actionable Models (AM) . 19

C.4 SPRINT . 20

D Dataset and Environment Details 21
D.1 Dataset Details . 21

D.2 Evaluation Tasks . 23

E Extended Experiments, Results, and Analysis 27
E.1 LLM Summary Examples . 27

E.2 Comparing Summaries from Different LLMs 29

E.3 Step by Step Zero-shot evaluations . 29

E.4 Extended Ablation Study . 30

E.5 Qualitative Comparison Results . 30

15

Under review as a conference paper at ICLR 2023

A SPRINT PSEUDOCODE

Algorithm 1 SPRINT Algorithm

Require: Dataset DL w/ language instruction labels, LLM
1: AGGREGATESKILLS(DL, LLM) ▷ Automated LLM skill relabeling (Sec. 4.2)
2: while not converged do
3: τz ← DL: Sample an annotated skill (sub-)trajectory
4: Train offline RL on τz
5:
6: τ chain

z ←CROSSCHAINSKILLS(DL) ▷ Cross-trajectory skill chaining (Sec. 4.3)
7: Train offline RL on τ chain

z

8:
9: τagg1 , τagg2 ← CROSSAGGREGATESKILLS(DL, LLM) ▷ Cross-traj. aggregation (Sec. 4.3)

10: Train offline RL on τagg1 , τagg2
11: end while
12:
13: procedure AGGREGATESKILLS(DL, LLM)
14: for composite trajectory τz̄ in DL do
15: Separate τz̄ into language annotated sub-trajectories [τz1 , ..., τzN]
16: for all adjacent sub-trajectories

[
τzi ...τzj

]
do

17: Assign name from LLM: LLM(zi...zj) = ẑi:j
18: τẑi:j ← Concat

[
τzi , ..., τzj

]
and relabel with ẑi:j

19: T ← length of τẑi:j
20: R(sT , aT , ẑi:j) = 1 ▷ Label last reward with 1 (Eq. 2).
21: DL = DL ∪

{
τẑi:j

}
22: end for
23: end for
24: end procedure
25:
26: procedure CROSSCHAINSKILLS(DL)
27: Sample random (sub)trajectories τz1 , τz2 ∼ DL

28: Sample random endpoint j in τz1
29: τ chain

z2 ← [(s0, a0, 0, z2) , ..., (sj , aj , Q
π(sj , aj , z2), z2)] ▷ Relabel reward w/ Eq. 4.

30: return τ chain
z2

31: end procedure
32:
33: procedure CROSSAGGREGATESKILLS(DL, LLM)
34: Sample random (sub)trajectories τz1 , τz2 ∼ DL with lengths T1, T2

35: Assign new name : ẑ = “{z1}.{z2}”
36: τagg1 ← [(s0, a0, 0, ẑ) , ..., (sT1 , aT1 , Q

π(sT , aT |z2), ẑ)] ▷ Relabel reward w/ Eq. 5
37: τagg2 ← [(s0, a0, 0, ẑ) , ..., (sT2 , aT2 , 1, ẑ)] ▷ Relabel reward w/ Eq. 5.
38: return τagg1 , τagg2
39: end procedure

B LARGE LANGUAGE MODEL PROMPT

We list the full large language model summarization prompt in Figure 8. The examples in the
prompt are fixed for all summarization queries. These examples are selected from the ALFRED
validation dataset (which is not otherwise used in our work) at random: We spell out the primitive
skill annotations in the “Task Steps:” part of each prompt example. Then, the “Summary” for each of
these is the high-level, human-written annotation for that trajectory from ALFRED. We repeatedly
sampled these trajectories until each example mentioned a different object to prevent biasing the
LLM towards certain types of objects.

We note that the “Look at the vase under the light” example is important to make the LLM give
reasonable summaries for similar tasks in ALFRED where the agent picks something up and turns
on a light. This is because most of the human labels for turning on the lamp do not mention the
object in the previous step, making it difficult for the LLM to realize that the task has to do with
looking at the held object under a lamp.

16

Under review as a conference paper at ICLR 2023

Instructions: summarize the following ordered steps describing common household tasks.

Task Steps: 1: Pick up the smaller knife on the counter to the left of the stove. 2: Slice the
tomato with the smaller knife. 3: Put the knife in the sink. 4: Pick up a slice of tomato from
the countertop. 5: Heat up the slice of tomato in the microwave, removing it afterwards.
Summary: Microwave the tomato slice after slicing it with the smaller knife on the counter.

Task Steps: 1: Pick up the vase. 2: Turn on the lamp.
Summary: Look at the vase under the light.

Task Steps: 1: Grab the pencil off of the desk. 2: Put the pencil in the bowl. 3: Grab the
container off of the desk. 4: Put the container down at the back of the desk.
Summary: Put a bowl with a pencil in it on the desk.

Task Steps: 1: Pick up the bar of soap from the back of the toilet. 2: Put the bar of soap in to
the sink, turn on the faucet to rinse off the soap, pick up the soap out of the sink. 3: Put the
soap in the cabinet under the sink and on the left.
Summary: Put a rinsed bar of soap in the cabinet under the sink.

Task Steps: 1: [SKILL 1]. 2: [SKILL 2]. 3: [SKILL 3]. ... N: [SKILL N].
Summary:

Figure 8: The full prompt that we use for summarization. Following the suggestions of Ahn et al.
(2022) for prompt design, we explicitly number each step. The LLM completion task begins after
“Summary:”. For brevity, we omit the new line characters between all numbered steps.

C BASELINES AND IMPLEMENTATION

We implement IQL (Kostrikov et al., 2022) as the base offline RL algorithm for all goal-conditioned
offline RL pretraining baselines and ablations due to its strong offline and finetuning performance
on a variety of dense and sparse reward environments. At a high level, IQL trains on in-distribution
(s, a, s′, r, a′) tuples from the dataset rather than sampling a policy for a′ to ensure that the Q and
value functions represent accurate estimated returns constrained to actions in the dataset. The value
function is trained with an expectile regression loss controlled by a hyperparameter τ , where τ = 0.5
results in standard mean squared error loss and τ → 1 approximates the max operator, resulting in a
more optimistic value function that can better “stitch” together trajectories to obtain distant reward
in sparse reward settings. The IQL policy is trained to maximize the following objective:

eβ(Q(s,a)−V (s)) log π(a|s),
which performs advantage-weighted regression (Peng et al., 2019) with an inverse temperature term
β. In practice, the exponential advantage term is limited to a maximum value to avoid numerical
overflow issues. We detail shared training and implementation details below, with method-specific
information and hyperparameters in the following subsections.

Observation space. The state space of the ALFRED environment consists of 300 × 300 RGB
images. Following the baseline method in ALFRED (Shridhar et al., 2020), we preprocess these
images by sending them through a frozen ResNet-18 encoder (He et al., 2016) pretrained on Ima-
geNet (Deng et al., 2009). This results in a 512× 7× 7 feature map that we use as the observation
input to all networks. Furthermore, as ALFRED is a partially observable, egocentric navigation en-
vironment, we concatenate the last 5 frames as the full observation, resulting in an observation that
is of the shape (512 ∗ 5)× 7× 7.

Action space. The agent chooses from 12 discrete low-level actions. There are 5 navigation ac-
tions: MoveAhead, RotateRight, RotateLeft, LookUp, and LookDown and 7 interaction
actions: Pickup, Put, Open, Close, ToggleOn, ToggleOff, and Slice. For interaction
actions the agent additionally selects one of 82 object types to interact with, as defined by Pashevich
et al. (2021). In total, the action space consists of 5 + 7 ∗ 82 = 579 discrete action choices. Note
that this action space definition is different from the action space in Shridhar et al. (2020), which

17

Under review as a conference paper at ICLR 2023

used a pixel-wise mask output to determine the object to interact with. In contrast to Shridhar et al.
(2020) we aim to train agents with reinforcement learning instead of imitation learning and found
the discrete action parametrization more amenable to RL training than dense mask outputs. For all
methods, due to the large discrete action space, we perform some basic action masking to prevent
agents from taking actions that are not possible. For example, we do not allow the agent to Close
objects that aren’t closeable nor can they ToggleOn objects that can’t be turned on.

Language embedding. We embed language instructions with the all-mpnet-base-v2
pretrained sentence embedding language model from the SentenceTransformers python pack-
age (Reimers & Gurevych, 2019). This produces a 768-dimensional language embedding which
is used as input for language-conditioned policy and critic functions, as detailed below.

Policy and critic networks. We train a discrete policies with two output heads of size 12 and 82 for
the action and interaction object outputs respectively. Critic networks are conditioned on both the
observation and the discrete action output of the policy. In all policy and critic networks, we process
the ResNet feature observation inputs with 4 convolutional layers. In networks with language input,
we flatten the output of the convolutional layers and concatenate the observation features with the
768-dim language embedding, before passing the concatenated image-language features through
a series of fully connected layers. Additionally, we use FiLM (Perez et al., 2018) to condition
convolutional layers on the language embeddings.

Pre-training hyperparameters. A hyperparameter search was performed first on the language-
conditioned BC-baseline to optimize for training accuracy. These hyperparameters were carried
over to the IQL implementation, and another search for IQL-specific hyperpameters were performed
on a baseline IQL policy conditioned on semantic instructions. With these parameters fixed, we
performed one more hyperparameter search specific to Actionable Models but for the final imple-
mentation of SPRINT we re-used the same hyperparameters and only selected SPRINT-specific
parameters heuristically. Hyperparameters for each method are detailed in a separate table. Shared
hyperparameters for all methods (where applicable) are listed below:

Param Value

Batch Size 1024
Training Batches 140k
Learning Rate 2e-3
Optimizer AdamW
Dropout Rate 0.2
Weight Decay 0.05
Discount γ 0.98
Q Update Polyak Averaging Coefficient 0.005
Q-Network Discrete Action Embedding Size 48
Q-Network Discrete Object Selection Action Embedding Size 24
Policy and Q Update Period Once every training iteration
Batch Norm True
Nonlinearity ReLU
IQL Advantage Clipping [0, 100]
IQL Advantage Inverse Temperature β 10
IQL Quantile τ 0.9

Finetuning details and hyperparameters. We perform finetuning experiments for Language-
conditioned BC, Actionable Models, and SPRINT. For all models, we finetune the model on only
newly collected task data by running online IQL (without any of the chaining or aggregation steps).
Each method is finetuned on every task in the EVAL UNSEEN task set individually; that is, we
pre-train once and then finetune ten times, once for every task in the task set. We then average re-
turns over all tasks, then report metrics averaged over all random seeds. For each task, we define a
maximum rollout time horizon of 2 timesteps per environment action required by the expert planner.

When not specified, finetuning parameters are identical to pre-training parameters. Finetuning hy-
perparameters are specified below:

18

Under review as a conference paper at ICLR 2023

Param Value

Dropout Rate 0
Initial Rollouts 50
Training to Env Step Ratio 0.5
ϵ in ϵ-greedy action sampling 0.25: annealed down to 0.05
Parallel Rollout Samplers 4

C.1 LANGUAGE-CONDITIONED BEHAVIOR CLONING

Our language-conditioned behavior cloning (L-BC) comparison method is inspired by and replicates
BC-Zero (Jang et al., 2021) and LangLfP (Lynch & Sermanet, 2021). BC-Zero performs FiLM-
conditioned semantic imitation learning (Perez et al., 2018) and both BC-Zero and LangLfP have an
additional image/video-language alignment objective. In BC-Zero, their video alignment objective
aligns language embeddings with videos of humans performing tasks related to those the BC-Zero
robot agent trains on. LangLfP’s image-language alignment objective allows their policy to accept
both image and natural language goals as input due to only having a subset of their data labeled with
hindsight language labels. As we don’t have human videos of these tasks and our entire dataset is
labeled with language labels, we do not add a video or image alignment objective.

Therefore, we implement L-BC by using the same architecture as described above with just a single
policy network that trains to maximize the log-likelihood of actions in the dataset. As our entire
dataset consists of expert trajectories, this baseline ideally learns optimal actions for the instructions.

Hyperparameters for the L-BC baseline are identical to the shared parameters above, where appli-
cable.

C.2 EPISODIC TRANSFORMERS

Episodic Transformers (ET) (Pashevich et al., 2021) trains a transformer architecture on full
sequences of ALFRED instructions with a behavior cloning objective. This is currently state
of the art in the “Seen Path-Length Weighted Success Rate” evaluation metric on the ALFRED
leaderboard. We used the ET implementation from the official code repository and used the
pre-tuned hyperparameters.

For fair comparison, we make a few modifications to make it as close as possible to SPRINT and
the baselines: 1) we train it on the same dataset as all baselines, so we do not generate new synthetic
training data like Pashevich et al. (2021) does in the original implementation, 2) we encode visual
frames with a Resnet-18 instead of Resnet-50 backbone, 3) we use a context window of 5 frames
just like for other policies, 4) we remove the high-level goal specification from the input text tokens
as we do not assume access to those, and 5) we train the model for longer to match the number of
training steps for all methods.

C.3 ACTIONABLE MODELS (AM)

Actionable Models (Chebotar et al., 2021) pretrains a goal-conditioned Q function conditioned on
randomly sampled image goals and also performs a goal-chaining procedure very similar to our
semantic skill chaining procedure. We implement AM by modifying the base IQL policy and critic
networks to take in image goals instead of natural language embeddings as goals. These goals are
provided in the same way as the observations, i.e., as a concatenated stack of 5 frames (the last 5
frames in the trajectory) processed by a frozen ResNet-18. Therefore, goals are the same shape as
observations: (512 ∗ 5)× 7× 7.

To allow for fair comparison between our approach and AM, we implement AM with the same
powerful offline RL algorithm, IQL (Kostrikov et al., 2022), used in our method. IQL ensures that
the policy does not choose out-of-distribution actions by using advantage-weighted regression on
in-distribution actions for policy extraction. With this, we found the conservative auxiliary loss AM
adds to push down Q-values for out-of-distribution actions to be unnecessary and even hurtful to its
overall performance, so we omit this additional loss term.

19

Under review as a conference paper at ICLR 2023

We also pre-train AM on the same long-horizon trajectories as those generated by SPRINT during
LLM-based skill aggregation. This ensures a fair comparison in terms of the types and lengths of
tasks seen during pre-training.

Finally, after consulting the authors of AM, we tried varying maximum trajectory lengths when
sampling random goals. We found that allowing random goals to be sampled from anywhere within a
trajectory resulted in the best zero-shot evaluation performance for AM, so our numbers are reported
with this implementation detail.

C.4 SPRINT

The implementation details of SPRINT follow from the discussion about implementing IQL at the
top of this section. The key differences are in (1) language model skill aggregation and (2) cross-
trajectory skill chaining, detailed below.

LLM Skill Aggregation. We perform LLM skill aggregation fully offline by iterating through
every ALFRED trajectory and aggregating sequences of adjacent primitive skill sub-trajectories.
Assuming a trajectory with N primitive skills, we select all

(
N
2

)
pairs of start and end skills and

aggregate all instructions from start to end with the LLM. With 73k original language-annotated
trajectories, this procedure allows us to generate an additional 110k aggregated trajectories. We
then add these trajectories to the original dataset and train on the entire set.

Cross-trajectory skill chaining implementation. We perform cross-trajectory skill chaining in-
batch. Instead of sampling a second trajectory to perform chaining on, we simply permute the batch
indicies to generate a set of randomly sampled second trajectories. Then, we perform a second
loss function update, in addition to the original update on the sampled trajectories, with equal loss
weighting, to apply the skill-chaining update. We apply both chaining procedures from Eq. 4 and
Eq. 5 in-batch with equal weight. Empirically, we found that cross-trajectory skill chaining works
slightly better with the on-policy Value function obtained through IQL, therefore we use state values
at the chaining targets instead of state-action Q-values.

SPRINT-specific hyperparameters follow:

Param Value

Large Language Model for Relabeling OPT-13B (Zhang et al., 2022)
LLM Token Filtering Top-p1 0.9

LLM Token Sampling Temperature 0.8

1At each token generation step, only the highest probability tokens with total probability mass that add up
to the top-p are considered.

Cross-trajectory chaining extended discussion. When performing cross-trajectory chaining,
particularly using Eq. 5, special care must be taken to preserve the dynamics of the original MDP.
When chaining together two trajectories τA and τB , we concatenate the two sentences of each
trajectory together and relabel their rewards with Eq. 5. The new language annotation used to chain
together these trajectories is the concatenation of the two sentences, implying that the agent finishes
skill (A) and then skill (B). However, we cannot concatenate the two trajectories together into one
longer trajectory, as doing so would imply that the agent can instantaneously jump from the last
state of skill (A) to the first state of skill (B), which may not be possible. Therefore, we instead treat
the relabeled trajectories at separate trajectories with the same language annotation (lines 36 and 37
of Algorithm 1).

However, this introduces two possible complications: 1) Language annotations differing in
structure from those in the original dataset, and 2) Possible instruction ambiguity:

20

Under review as a conference paper at ICLR 2023

1. Language annotations differing in structure. Language annotations produced by the
chaining procedure will result in annotations that implicitly skip certain steps. For example,
when chaining skill (A), “make the bed,” and skill (B), “make a cup of coffee,” the resulting
chained annotation will be “Make the bed. Make a cup of coffee.” However to perform skill
(B) the agent needs to first move to the kitchen from the bedroom to make the cup of coffee,
which is skipped in this annotation. LLM-based skill aggregation (Section 4.2) helps
bridge this gap by summarizing long-horizon sequences while skipping certain implied
steps. For example, one real LLM summary (listed in Figure 14) summarized the sequence:
“1: Pick up the plaid pillow that is on the left end of the couch. 2: Place the pillow on
the ottoman” into the instruction “Place a plaid pillow on the ottoman,” which skipped
the step of picking up the pillow as it is implied that you must do so before placing the
pillow down. Using the LLM augments our original dataset such that, in ALFRED, we
have 2.5X more data after performing offline skill aggregation. Therefore after performing
LLM aggregation, there are many examples of similar instructions to those used for chained
trajectories that imply certain steps without mentioning them explicitly.

2. Instruction ambiguity. When chaining trajectories, there will be some ambiguity intro-
duced as we do not have intermediate instructions for going from the last state of A to
the initial state of B (obtaining these instructions requires additional human effort). This
ambiguity is only present in the states of trajectory A, as in trajectory B we presume that
the instructions for trajectory A are finished and the agent then can just follow the instruc-
tions relevant for trajectory B. We believe that the effects of the ambiguity on pre-training
performance depends greatly on the given dataset. In complex and diverse environments
like ALFRED, hindsight-labeled annotations will contain details specific to certain scenes,
resolving this ambiguity. In ALFRED, the annotations usually contain information about
the specific objects that the agent must interact with or locations that the agent must go to.
For example, annotations for rinsing mugs typically are of the form “clean the MUG in
the sink,” or annotations for picking up a candle will often say something like “pick up the
YELLOW CANDLE on the COUNTER,” highlighting specific details regarding what the
agent is supposed to do to complete the trajectory.

D DATASET AND ENVIRONMENT DETAILS

D.1 DATASET DETAILS

For training and evaluation we leverage the ALFRED benchmark and dataset (Shridhar et al., 2020).
The ALFRED training dataset contains ∼6.6k trajectories collected by an optimal planner following
a set of 7 high-level tasks with randomly sampled objects (e.g., pick up an object and heat it). Each
trajectory has at least three crowd-sourced sets of language instruction annotations. Each trajectory
consists of a sequence of 3-19 individually annotated skills (see Figure 9, left). This results in a total
of 141k language-annotated skill trajectories.

However, nearly half of the language instructions in the ALFRED dataset are navigation skill in-
structions like “turn left, then look up and walk to the counter on the right”. To get a more balanced
skill annotation dataset, we merge all navigation skills with the skill that immediately follows them,
using only the annotation of the next skill. After this processing step, the resulting dataset contains
73k language-annotated primitive skill trajectories. After we merge the navigation skills, the aver-
age number of skills in each trajectory is 3.5 skills per trajectory (Figure 9, middle), and the average
number of actions in each skill is 14.3 (Figure 9, right).

21

Under review as a conference paper at ICLR 2023

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Number of Skills

0

250

500

750

1000

1250

1500

1750

2000

N
um

be
r o

f T
ra

je
ct

or
ie

s

(a) Skills per trajectory in the origi-
nal ALFRED dataset.

2 3 4 5 6 7 8 9 10
Number of Skills

0

250

500

750

1000

1250

1500

1750

2000

N
um

be
r o

f T
ra

je
ct

or
ie

s

(b) Skills per trajectory in the
merged dataset.

0 10 20 30 40 50 60 70
Number of Actions

0

200

400

600

800

1000

1200

1400

N
um

be
r o

f S
ki

lls

(c) Actions per skill in the merged
dataset.

Figure 9: Left: distribution of the number of skills in each trajectory in the original ALFRED
dataset. Middle: distribution of skills per trajectory in the “merged” dataset with merged navigation
skills. Right: distribution of number of actions per skill in the “merged” dataset.

22

Under review as a conference paper at ICLR 2023

D.2 EVALUATION TASKS

Figure 10: Data collection jupyter notebook page. Note that there is a “Skip” button so that human
annotators can skip an instruction sequence if they do not feel it is semantically meaningful or easy
to summarize.

We evaluate agents through zero-shot policy evaluation and finetuning on three sets of evaluation
tasks in the ALFRED environment: (1) EVAL 100 to measure the ability of pre-trained agents to
execute semantically meaningful instructions at varied levels of abstraction, (2) EVAL CHAIN to
measure the ability of agents to chain behaviors across multiple trajectories to solve long tasks, and
(3) EVAL UNSEEN to evaluate generalization performance when finetuning to unseen household
floor plans.

Collecting evaluation task data. The ALFRED dataset provides high-level language annotations
for each of the trajectories in the dataset. We could use these annotations as unseen task-instructions
to evaluate our agents. However, we found that the different skills are not equally distributed across
trajectories of different skill lengths, e.g., most 2-skill trajectories perform pick-and-place tasks
while tasks involving heating skills only appear in length 7+ trajectories. To allow evaluation with
a less biased skill distribution, we create the EVAL 100 task set by randomly choosing a trajectory
from the ALFRED dataset and then randomly sampling a subsequence of skills of a certain length
from this trajectory. To obtain a high-level language instruction that summarizes this new subse-
quence, we crowd-source labels from human annotators. For labeling, each annotator is presented

23

Under review as a conference paper at ICLR 2023

with a remotely hosted Jupyter notebook interface (see Figure 10). Whenever we by chance sample
a full ALFRED trajectory for annotation, we directly used the existing high-level annotation from
the ALFRED dataset. We annotate 80 trajectories with human annotators and combine them with 20
randomly sampled single-skill trajectories, resulting in a total of 100 evaluation tasks (see Figure 11
for example instructions). This results in 20 tasks of length 1 skills, 20 tasks of length 2 skills, 20
tasks of length 3 skills, 20 tasks of length 4 skills, and 20 tasks of lengths 5+ (5-7) skills.

For EVAL CHAIN, we randomly sampled 20 full trajectories from the ALFRED dataset that had
sequences of 7 or 8 skills (10 of length 7, 10 of length 8) and removed these trajectories from the
post-LLM aggregated training dataset. We did not remove any of the LLM-aggregated trajectories
made up of subsequences of skills within that trajectory. This allows AM and SPRINT to perform
skill chaining to solve these tasks by ensuring that there were valid sequences of skills to chain
together to be able to solve these removed tasks. For example, assume a (shortened for clarity)
sampled skill sequence is “pick up apple,” then “put apple in microwave”, then “slice the apple.”
Then, either Actionable Models or SPRINT can chain together the sub-trajectory associated with
“pick up apple” then “put apple in microwave” with the “slice the apple” sub-trajectory to solve this
task. These trajectories all had annotations from ALFRED annotators, so we used those annotations
directly (see Figure 13 for example instructions).

Finally, for EVAL UNSEEN, we collected a set of 10 full-length trajectories from the ALFRED
“valid-unseen” dataset consisting of validation tasks in unseen floor plans. We collected 2 of each
length from 1 through 5 for a total of 10 tasks by sampling random full-length trajectories from
this dataset, with the exception of length 1 tasks (we just sample random skills to create length 1
tasks). As these are full trajectories, they already have human annotations from ALFRED, which
we directly use as the task description (see Figure 12 for example instructions).

We list additional details about the tasks in each evaluation set in Table 2.

Table 2: Evaluation Task Specifics. Note that the “number of env actions per task” corresponds to
the number of environment actions the ALFRED expert planner required to complete that task.

EVAL 100 EVAL CHAIN EVAL Unseen

Number of Tasks 100 20 10

Task Lengths (# primitive skills) [1, 2, 3, 4, 5, 6, 7] [7, 8] [1, 2, 3, 4, 5]

Min Number of Env Actions per Task 1 34 2

Avg Number of Env Actions per Task 39.1 60.9 46.6

Max Number of Env Actions per Task 113 104 124

Finally, we display 5 randomly sampled tasks, along with their human annotations, from each of our
task sets in Figures 11, 12, and 13.

Online finetuning environment setup. During online-finetuning we initialize the agent in the
same house floor plan as the trajectory the task was extracted from to ensure executability. During
finetuning, we give each episode a time horizon of 2x the number of environment actions needed by
the expert planner to solve the task. We give sparse rewards for each skill solved by the agent during
the episode. Therefore for length 1 tasks, the agent can only be rewarded once before the episode
ends, while for length 5 tasks, the episode terminates on the fifth reward signal. We give a reward
of 1

num total skills for each skill the agent successfully executes so that the return sums to 1. We found
that this helped to finetune all comparison methods more stably, possibly due to the fact that giving
larger rewards (e.g., 1 for each skill) results in out-of-distribution critic values (when compared to
pre-training) that de-stabilize online reinforcement learning.

24

Under review as a conference paper at ICLR 2023

Skills to Summarize: 1: Grab the knife on the counter. 2: Place the knife in the sink then turn
the faucet on so water fills the sink. Turn the faucet off and pick up the knife again. 3: Place
the knife on the table to the left of the wooden bowl.
Annotator Summary: Wash the knife from the counter, put in on the table.

Skills to Summarize: 1: Pick up the blue book closest to your and the phone from the bed. 2:
Turn on the lamp to take a look at the book in the light.
Annotator Summary: Examine the book by the light of a lamp.

Skills to Summarize: 1: Pick up yellow candle on counter. 2: Open cabinet, put candle in
cabinet, close cabinet 3: Pick up yellow candle from toilet.
Annotator Summary: Move the candle from the sink to the cabinet under the sink, close it and
and then pick the candle from the top of the toilet in front of you.

Skills to Summarize: 1: Pick the pot on the left side up from the stove. 2: Set the bowl and
knife on the table next to the tomato.
Annotator Summary: Put the bowl with the knife in it next to the tomato.

Skills to Summarize: 1: Pick up the pen that’s in front of you that’s under the mug. 2: Put the
pencil in the mug that was above it. 3: Pick up the mug with the pencil in it.
Annotator Summary: Put the pen into the mug and pick up the mug.

Figure 11: Randomly sampled, human language instruction annotations from the EVAL 100 task
set.

Skills to Summarize: 1: Pick up the lettuce on the counter. 2: Chill the lettuce in the fridge. 3:
Put the chilled lettuce on the counter, in front of the bread.
Annotator Summary: Put chilled lettuce on the counter.

Skills to Summarize: 1: Pick up an egg from off of the kitchen counter. 2: Open the fridge, put
the egg in to chill for a few seconds and then take it back out. 3: Place the cold egg in the sink.
Annotator Summary: Chill an egg and put it in the sink.

Skills to Summarize: 1: Pick up the butter knife off of the right side of the kitchen island. 2:
Put the knife handle down in the frying pan that is on the front left burner of the stove. 3: Pick
up the frying pan with the knife in it off of the stove. 4: Put the frying pan with the knife in it
into the sink basin to the right of the potato.
Annotator Summary: Put a frying pan with a knife in it into the sink.

Skills to Summarize: 1: Take the pencil from the desk. 2: Put the pencil on the desk.
Annotator Summary: Take the pencil from the desk, put it on the other side of the desk.

Skills to Summarize: 1: Pick up the left pillow on the chair. 2: Put the pillow on the sofa right
of the newspaper. 3: Pick up the pillow on the chair. 4: Put the pillow on the sofa left of the
newspaper.
Annotator Summary: Place two pillows on a sofa.

Figure 12: Randomly sampled, human language instruction annotations from the EVAL UNSEEN
task set.

25

Under review as a conference paper at ICLR 2023

Skills to Summarize: 1: Pick up the knife in front of the lettuce. 2: Slice the apple in the sink
with the knife. 3: Place the knife into the sink. 4: Pick up the sliced apple from the sink. 5:
Place the apple slice into the pot on the stove. 6: Pick up the pot from the stove. 7: Pick up the
pot from the stove.
Annotator Summary: Slice an apple for the pot on the stove and put the pot on the counter to
the right of the door.

Skills to Summarize: 1: Take the apple from the counter in front of you. 2: Place the apple
in the sink in front of you. 3: Take the knife by the sink in front of you. 4: Cut the apple in
the sink in front of you. 5: Place the knife in the sink in front of you. 6: Take an apple slice
from the sink in front of you. 7: Heat the apple in the microwave, take it out and close the
microwave. 8: Place the apple slice in the sink in front of you.
Annotator Summary: Place a warm apple slice in the sink.

Skills to Summarize: 1: Pick up the loaf of bread. 2: Put the bread on the counter above the
spatula. 3: Pick up the knife that’s above and to the right of the loaf of bread. 4: Cut the top
half of the loaf of bread into slices. 5: Put the knife on the edge of the counter in front of you
horizontally. 6: Pick up a slice of bread from the middle of the loaf. 7: Cook the bread in the
microwave then take it out and close the microwave door. 8: Throw the cooked slice of bread
away.
Annotator Summary: Put a microwaved slice of bread in the oven.

Skills to Summarize: 1: Pick the knife up from off of the table. 2: Open the microwave, slice
the potato, and close the microwave. 3: Open the microwave, place the knife inside of it,
and close the microwave. 4: Open the microwave, pick up the potato slice inside, close the
microwave. 5: Place the potato slice in the pan on the stove. 6: Pick up the pan from the stove.
7: Open the refrigerator, place the pan inside, and close the refrigerator.
Annotator Summary: Move the pan from the stove top to inside the black refrigerator.

Skills to Summarize: 1: Pick up the red tomato on the counter to the right of the stove. 2: Put
the tomato onto the island below the butter knife. 3: Pick up the butter knife off of the kitchen
island. 4: Slice up the tomato on the kitchen island. 5: Place the butter knife onto the island to
the right of the sliced tomato. 6: Pick up a tomato slice off of the kitchen island. 7: Open the
fridge and put the tomato slice on the bottom shelf, then close the door, after a couple seconds
open the fridge and remove the tomato slice then close the door. 8: Open the microwave door
and place the tomato slice inside the microwave in front of the egg.
Annotator Summary: Put a chilled tomato slice into the microwave.

Figure 13: Randomly sampled, human language instruction annotations from the EVAL CHAIN task
set.

26

Under review as a conference paper at ICLR 2023

E EXTENDED EXPERIMENTS, RESULTS, AND ANALYSIS

Table 3: EVAL 100 and EVAL Chain eval dataset per-length and overall skill completion rates. See
Section 5 for experiment setup.

AM L-BC SPRINT ET

EVAL 100

Number of Completed Subtasks Overall 0.46 ± 0.05 0.41 ± 0.02 1.27 ± 0.13 0.84 ± 0.01
Length 1 Progress 0.23 ± 0.01 0.77 ± 0.04 0.53 ± 0.07 0.78 ± 0.09
Length 2 Progress 0.22 ± 0.03 0.24 ± 0.03 0.49 ± 0.03 0.53 ± 0.06
Length 3 Progress 0.17 ± 0.03 0.16 ± 0.04 0.48 ± 0.03 0.33 ± 0.12
Length 4 Progress 0.10 ± 0.01 0.06 ± 0.01 0.35 ± 0.06 0.24 ± 0.07
Length 5 Progress 0.16 ± 0.08 0.02 ± 0.01 0.46 ± 0.06 0.09 ± 0.01
Length 6 Progress 0.16 ± 0.01 0.02 ± 0.03 0.36 ± 0.12 0.08 ± 0.04
Length 7 Progress 0.00 ± 0.00 0.00 ± 0.01 0.01 ± 0.02 0.00 ± 0.00

EVAL CHAIN
Number of Completed Subtasks Overall 0.67 ± 0.09 0.04 ± 0.05 2.59 ± 0.66 1.04 ± 0.35
Length 7 Progress 0.04 ± 0.01 0.00 ± 0.00 0.25 ± 0.10 0.09 ± 0.00
Length 8 Progress 0.13 ± 0.02 0.01 ± 0.01 0.43 ± 0.08 0.03 ± 0.01

Here, we present additional results complementary to the experiments in the main paper in Section 5.
We present and analyze LLM annotation examples in Section E.1, zero-shot evaluations with step-
by-step task instructions in Section E.3, and an extended ablation analysis in Section E.4.

E.1 LLM SUMMARY EXAMPLES

We randomly sample 12 OPT-13B task summaries produced while performing skill aggregation
(explained in Section 4.2) using the prompt in Figure 8 and display them in Figure 14. Because we
sample the tokens sequentially during text generation, some of the summaries mostly describe one or
a few of the skills but in a non-sensical manner (e.g., LLM(“Pick up the plastic bowl on the left. Turn
on the lamp.”) = “Look at the plastic bowl on the left”). The summaries also likely can be improved
by including more examples in the prompt. However, after analyzing many more examples, we
see that OPT-13B generally provides fitting high-level summaries for most sequences by skipping
over implied sub-tasks (although it sometimes also skips over important sub-tasks, likely due to the
prompt). For example, it summarizes the task “Pick up the plaid pillow that is on the left end of
the couch. Place the pillow on the ottoman” as “Place a plaid pillow on the ottoman,” in which
picking up the plaid pillow is implied. It also often demonstrates object relation understanding, e.g.,
by stating “Place a plaid pillow” when only the first sub-task in the sequence mentions that the
pillow is plaid.

27

Under review as a conference paper at ICLR 2023

Skills to Summarize: 1: Pick up the plaid pillow that is on the left end of the couch. 2: Place
the pillow on the ottoman.
LLM-generated Summary: Place a plaid pillow on the ottoman.

Skills to Summarize: 1: Pick up the piece of potato furthest to the right. 2: Open the
microwave, place the potato inside, close the door, microwave for two seconds, then remove
the potato. 3: Place the cooked potato piece to the right of the salt shaker.
LLM-generated Summary: Place a cooked potato piece on the table.

Skills to Summarize: 1: Put the spoon in the pot on the left. 2: Pick up the pot with the spoon.
LLM-generated Summary: Put the pot with the spoon on the left.

Skills to Summarize: 1: Open the microwave above the stove and slice the apple inside with
the knife. 2: Place the knife standing up on the blue dish. 3: Remove a slice of apple from the
microwave. 4: Place the apple slice on the blue plate.
LLM-generated Summary: Put an apple slice on the blue plate.

Skills to Summarize: 1: Pick up the butter knife that is next to the fork. 2: Open the
refrigerator. 3: Open the refrigerator and place the knife on the bottom shelf in the refrigerator
then close the door.
LLM-generated Summary: Open the refrigerator and place the butter knife on the bottom shelf
in the refrigerator then close the door.

Skills to Summarize: 1: Open the fridge and put the knife inside. 2: Take a piece of the apple
out of the microwave.
LLM-generated Summary: Take a slice of apple out of the microwave.

Skills to Summarize: 1: Pick up the remote that is on the shelf. 2: Put the remote on the couch.
LLM-generated Summary: Put the remote on the couch.

Skills to Summarize: 1: Pick up the dirty green towel to the right of the bar of soap on the
vanity. 2: Put the towel into the sink, rinse it for a few seconds and pick it back up. 3: Open
the far left bottom drawer to the left of the sink, put the rinsed green towel inside and close the
drawer.
LLM-generated Summary: Put the towel in the drawer.

Skills to Summarize: 1: Pick up the plastic bowl on the left. 2: Turn on the lamp.
LLM-generated Summary: Look at the plastic bowl on the left.

Skills to Summarize: 1: Slice up the fruit that is in the sink. 2: Place the knife in the second
row of the fridge. 3: Grab a slice of the fruit. 4: Place the fruit slice on the back right pan. 5:
Grab the pan that has the fruit in it.
LLM-generated Summary: Put a slice of fruit on a pan in the fridge

Skills to Summarize: 1: Pick up the pot on the front right burner. 2: Chill the pot in the fridge
then get it back out and close the door.
LLM-generated Summary: Put a pot on the stove, put it in the fridge, get it out, close the door.

Skills to Summarize: 1: Pick up the knife on the counter. 2: Cut the potato in the sink into
slices. 3: Put the knife in the sink with the potato. 4. Pick up a slice of potato from in the sink.
5. Warm the potato slice in the microwave and then remove it.
LLM-generated Summary: Warm the potato slice in the microwave.

Figure 14: LLM Summary examples. We randomly sample 12 language combinations generated by
the OPT-13B text generation model (Zhang et al., 2022) and display them without cherry-picking
specific examples. The LLM often creates a high level description by skipping implied steps (like
humans do), e.g., “Put the remote on the couch” implies the need to pick up the remote.

28

Under review as a conference paper at ICLR 2023

E.2 COMPARING SUMMARIES FROM DIFFERENT LLMS

In this section, we justify the use of OPT-13b as our summarization model by comparing its sum-
maries of three different skill sequences to OPT-350m (350 million parameters) and OPT-1.3b (1.3
billion parameters). The summaries and sequences are displayed in Figure 15. Although these are
3 randomly sampled examples, they highlight differences between the models that hold true across
many examples that we examined.

As the language model size increases, it understands more of the relationships between sub-tasks in
each sequence, therefore generating better summaries. An example of this is the second example
in Figure 15, which highlights a sequence in which both OPT-1.3b and OPT-13b understand the
high-level task of putting a warmed plate in the cabinet, as opposed to OPT-350m which essentially
repeats the second sub-task in the sequence. Yet sometimes, only OPT-13b produces a reasonable
summary. In the last example, OPT-13b produces a summary that implies that an agent must wash
the potato (“Put a rinsed potato on the counter...”); the other two models’ summaries only mention
the last step of putting the potato down.

Skills to summarize: 1. Pick the clock up from the desk. 2. Turn the lamp on.
OPT-350m Summary: Look at the clock.
OPT-1.3b Summary: Turn on the lamp.
OPT-13b Summary: Look at the clock.

Skills to summarize: 1. Take the plate from the cabinet to the left of the stove. 2. Warm the
plate in the microwave, above the stove. 3. Put the plate in the cabinet.
OPT-350m Summary: Place the plate in the microwave.
OPT-1.3b Summary: Put a warmed plate in the cabinet.
OPT-13b Summary: Put a warmed plate in the cabinet.

Skills to summarize: 1. Open the microwave, take out the potato and shut the door. 2. Put the
potato in the sink, turn the water on and off again. Take the potato out of the sink. 3. Place the
potato on the counter, to the right of the sink.
OPT-350m Summary: Put the potato on the counter, to the left of the sink.
OPT-1.3b Summary: Place the potato on the counter, to the right of the sink.
OPT-13b Summary: Put a rinsed potato on the counter to the right of the sink.

Figure 15: Comparison of OPT-350m, 1.3b, and 13b summaries on 3 randomly sampled sequences
from our dataset. In general, as the model size increases, the summary becomes better. However,
there are some sequences all three on which all 3 models do not generate good summaries for, such
as the first sequence in these examples.

E.3 STEP BY STEP ZERO-SHOT EVALUATIONS

Humans may sometimes prefer to give more detailed instructions, e.g., if they do not trust a house-
hold robot to successfully execute a high-level instruction. In that case, they are likely to give
detailed, step-by-step instructions instead. In this section, we demonstrate the effectiveness of our
pre-training strategy in enabling execution of longer-horizon tasks when specified by such step-by-
step instructions. To generate these step-by-step instructions, we combine all subtask instructions
into one paragraph to condition agents on instead of the high-level human annotation. For example,
a task with 2 subtasks, “Pick up the knife” and “Slice the potato,” is given the simple task annotation
“Pick up the knife. Slice the potato.”

We compare SPRINT and IL on both EVAL 100 and EVAL CHAIN tasks with the combined, step-
by-step task annotations in Table 4. L-BC and SPRINT both perform similarly on the step-by-
step EVAL 100 tasks compared to with the original annotations, while both perform better on

29

Under review as a conference paper at ICLR 2023

EVAL CHAIN tasks thatn with the original annotations. This is likely due to how EVAL CHAIN
tasks are on average much longer (7 or 8 tasks). Therefore, instructions spelling out exactly what to
do allow agents to more easily understand what and in which order subtasks should be performed.

Table 4: Step-by-step evaluation number of completed sub-tasks (number of completed sub-tasks).

L-BC SPRINT

EVAL 100 Completed Subtasks 0.46 ± 0.01 1.24 ± 0.19
EVAL CHAIN Completed Subtasks 0.22 ± 0.03 3.11 ± 0.08

E.4 EXTENDED ABLATION STUDY

In this section, we examine a series of additional questions regarding specific design choices of our
method, in a manner complementary to Section 5.1.3. We also visualize all ablations’ zero-shot
policy evaluation performance in on both EVAL 100 and EVAL CHAIN task sets in Table 5.

How much does the LLM contribute to skill aggregation? To answer this question, we com-
pare using SPRINT with LLM aggregation on adjacent sub-trajectory sequences but no chaining
(SPRINT w/o chain) to SPRINT with skill aggregation, but where the skills are relabeled by
naı̈vely concatenating the sentences together (SPRINT w/o chain, w/ concat-agg). Across both
task sets, SPRINT w/o chain, w/ concat-agg is outperformed by SPRINT w/o chain, especially in
EVAL CHAIN. This signifies that using the LLM helps with understanding very-long horizon, high-
level semantic instructions as the LLM generates relevant task summaries for consecutive skills in a
trajectory.

What if we relabel with the LLM during chaining? We examine also using the LLM to label
skills during cross-trajectory skill aggregation (SPRINT w/ LLM-chain), rather than concatenating
the skill annotations together (SPRINT). Overall, SPRINT w/ LLM-chain performs slightly worse
in average return and success rates. When analyzing the summaries generated by the LLM, we
found that randomly paired instructions can rarely be summarized meaningfully, thereby resulting
in noisy and sometimes meaningless instructions. Therefore, we implemented SPRINT w/ LLM-
chain by only utilizing the top 1% (top 10 candidates with our batch size of 1024) of in-batch
chaining candidates (ranked by the LLM’s prediction of what the next skill should be). Even so,
the performance is not better than just simply concatenating the instructions, as even these top 1%
candidates still have a high chance of not being sensible sentences to summarize.

Does LLM skill aggregation help L-BC? We perform LLM skill aggregation with the L-BC base-
line in order to examine whether LLM skill aggregation alone can help with pure imitation learning
methods (L-BC w/ LLM-agg). This change along doubles the average number of subtasks com-
pleted against regular L-BC in EVAL 100 and causes it to jump from 0.04 subtasks completed in
EVAL CHAIN to 1.86 (Table 2 for original L-BC results). These results demonstrate the significant
impact LLM aggregation alone can make.

Table 5: Zero-shot Ablation Subtasks Completion Table

EVAL 100 Subtasks Completed EVAL CHAIN Subtasks Completed

SPRINT (ours) 1.27 ± 0.13 2.59 ± 0.66
SPRINT w/ LLM-chain 1.15 ± 0.01 2.46 ± 0.21
SPRINT w/o chain 0.91 ± 0.03 2.04 ± 0.04
SPRINT w/o chain, w/ concat-agg 0.77 ± 0.06 0.67 ± 0.20
L-BC w/ LLM-agg 0.93 ± 0.04 1.86 ± 0.12
SPRINT w/o LLM-agg 0.38 ± 0.05 0.10 ± 0.04

E.5 QUALITATIVE COMPARISON RESULTS

Zero-shot evaluation. We compare SPRINT, AM, and L-BC zero-shot evaluation results on long
EVAL CHAIN tasks in Figure 16. In general, SPRINT is able to make substantially more progress

30

Under review as a conference paper at ICLR 2023

on EVAL CHAIN tasks as it leverages the large language model to generate longer-horizon, seman-
tically meaningful pre-training tasks and performs cross-trajectory chaining to learn to chain its
existing dataset tasks. In the visualized examples, SPRINT is able to understand and successfully
execute many of the sub-tasks implied but not directly stated by the natural language task instruc-
tion. L-BC makes very little progress on these tasks, not even understanding what the first sub-task
to complete should be as the task annotation is out of distribution from what it saw while training.
Finally, AM is able to make some progress on some of these tasks due to its long-horizon goal pre-
training objective. However, this is less effective than our language-conditioned pre-training in such
zero-shot evaluations.

Finetuning. We finetune SPRINT, AM, and L-BC on EVAL UNSEEN tasks, in household floor-
plans that were never seen while training, and visualize qualitative policy rollout examples after
finetuning in Figure 17. In general, SPRINT is able to finetune to longer-horizon tasks while AM
and L-BC both struggle with making progress on longer-horizon tasks despite receiving rewards for
every completed sub-task. SPRINT’s ability to complete more sub-tasks on many of the longer-
horizon tasks is demonstrated in Figure 17a, while a case in which both SPRINT and AM make
partial progress throughout finetuning is demonstrated in Figure 17b. We believe that AM has more
trouble finetuning on these tasks than SPRINT because the task specification for AM (goal images) is
out of distribution; pre-training on semantic tasks with SPRINT allows agents to more easily learn
longer-horizon behaviors as the task specifications may still be in-distribution of the pre-training
tasks that LLM skill-aggregation and skill chaining produce.

31

Under review as a conference paper at ICLR 2023

SPRINT

AM

L-BC

Task: Throw away a microwaved slice of potato. Completed
Subtasks

8/8

1/8

0/8

(a) SPRINT successfully solves this task, while AM fails to slice the potato and repetitively iterates
between putting the potato in the fridge and microwave. L-BC fails to even pick up the potato, as
the task annotation does not directly describe picking up a potato.

SPRINT

AM

L-BC

Task: Place a cooked potato slice inside the refrigerator. Completed
Subtasks

7/8

0/8

0/8

(b) SPRINT nearly solves this task, while AM picks up an egg instead of a potato. L-BC picks up
random objects not related to the annotation.

SPRINT

AM

L-BC

Task: Put a chilled tomato slice into the microwave. Completed
Subtasks

8/8

1/8

0/8

(c) SPRINT completes the entire task. AM picks up the tomato but fails to put it down onto the
counter and slice it. L-BC aimlessly wanders and picks up random objects.

Figure 16: Visualizations of zero-shot policy rollouts on three tasks in the EVAL CHAIN task set.

32

Under review as a conference paper at ICLR 2023

SPRINT

AM

L-BC

Task: Place two pillows on a sofa. Completed
Subtasks

3/4

1/4

1/4

(a) SPRINT picks up and places one of the pillows on the sofa, and picks up the second but does not
manage to place the second on the sofa, thus completing 3/4 subtasks. AM and L-BC both learn to
pick up a pillow but never learned to place it in the correct spot.

SPRINT

AM

L-BC

Task: Take the pencil from the desk, put it on the other side of the desk. Completed
Subtasks

1/2

1/2

0/2

(b) SPRINT and AM both learn to pick up a pencil from the desk, although neither manage to put
the pencil down in the correct place “on the other side of the desk.” Meanwhile, L-BC never picks
up the pencil.

Figure 17: Visualizations of policy rollouts on two tasks in the EVAL UNSEEN task set, after fine-
tuning each method. These floor plans were originally unseen to all agents until finetuning.

33

	Introduction
	Related Work
	Preliminaries
	SPRINT: Scalable Semantic Policy Pre-Training with Language Instructions
	Instruction-Conditioned Offline RL
	Language-Model-Based Instruction Aggregation
	Cross-Trajectory Chaining

	Experiments
	Experimental Setup
	SPRINT Solves Long-Horizon Tasks Zero-Shot
	SPRINT Agents Finetune Effectively in Unseen Environments
	Ablation Studies

	Discussion, Limitations, and Future Work
	
	SPRINT Pseudocode
	Large Language Model Prompt
	Baselines and Implementation
	Language-conditioned Behavior Cloning
	Episodic Transformers
	Actionable Models (AM)
	SPRINT

	Dataset and Environment Details
	Dataset Details
	Evaluation Tasks

	Extended Experiments, Results, and Analysis
	LLM Summary Examples
	Comparing Summaries from Different LLMs
	Step by Step Zero-shot evaluations
	Extended Ablation Study
	Qualitative Comparison Results

