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Abstract

Machine learning systems are widely used in many high-stakes contexts in which
experimental designs for assigning treatments are infeasible. When evaluating
a decision instance is costly, such as investigating a fraud case, or evaluating a
biopsy decision, a sample-efficient strategy is needed. However, while existing
active learning methods assume humans will always label the instances selected by
the machine learning model, in many critical applications, humans may decline
to label instances selected by the machine learning model due to reasons such
as regulation constraint, domain knowledge, or algorithmic aversion, thus not
sample efficient. In this paper, we propose the Active Learning with Instance
Rejection (ALIR) problem, which is a new active learning problem that considers
the human discretion behavior for high-stakes decision making problems. We
propose new active learning algorithms under deep Bayesian active learning for
selective labeling (SEL-BALD) to address the ALIR problem. Our algorithms
consider how to acquire information for both the machine learning model and the
human discretion model. We conduct experiments on both synthetic and real-world
datasets to demonstrate the effectiveness of our proposed algorithms.

1 Introduction

Machine learning is increasingly deployed in high-risk applications, including medical diagnosis,
fraud detection, and criminal justice [Zeng et al., 2017, Cecchini et al., 2010, Savage, 2020]. Given
enough labeled data and the same set of feature input, a machine learning model may achieve better
performance than human experts [Abramoff et al., 2023]. Therefore, there have been growing efforts
to develop machine learning (ML) models to assist humans in improving high-risk decisions.

While modern deep learning algorithms’ strong performance across applications makes them par-
ticularly promising for supporting experts, they are often data-hungry and require a large amount
of labeled data to perform well. Yet, in many impactful high-risk applications acquiring a large
number of labeled data is highly costly or can be prohibitive, such as when labeling necessitates
costly human experts’ time and effort. For instance, labeling insurance claims requires human experts’
resources to establish if an insurance claim is fraudulent; similarly, determining medical diagnoses
may require diagnostic procedures that may be time-consuming and possibly risky for patients. Active
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(a) ALIR (b) Toy Example

Figure 1: (a): Active Learning with Instance Rejection (ALIR). The requester wants to acquire
additional labeled samples to improve the ML classifier f . Due to the selective labels problem, only
accepted labeling requests are labeled and added to the dataset D. (b): The most informative samples
to the current ML classifier may not be the best samples to label in ALIR. The instances on the left of
Dpool are more informative to the current classifier yet humans will never label these instances.

learning methods can be a promising path to address this problem, given they aim to select especially
informative instances for labeling to minimize the number of labeled instances necessary to achieve
desirable performance [Cohn et al., 1996].

To do so, most active learning methods operate iteratively, where an initial machine learning model
is first trained on a small labeled data set and the model then informs the selection of particularly
informative instances to be labeled. A new model is then retrained on the augmented labeled data and
this process is repeated until a desirable goal is achieved.

However, active learning methods assume instances selected for labeling by the algorithm will
always be labeled [Settles, 2009]. However, in many real-world high-risk contexts, such as acquiring
diagnoses through costly invasive diagnostic procedures or obtaining the conclusions of insurance
fraud investigations, experimental design is infeasible and it is not possible to automatically acquire
any label the active learning algorithm deems informative. Rather, requests for label acquisition must
be considered and approved by a human expert. Indeed, some diagnostic biopsies may never be
approved by the human doctor because they are inconsistent with medical practices [Dai and Singh,
2021]; if the requests are declined, the biopsy outcomes will not be revealed to benefit the machine
learning model. Similarly, an insurance fraud agent may decline a request for an investigation because
of the remote location or because of a prior belief that the case is unlikely to be fraudulent. Any
given human discretion behavior over requests to acquire labels at a cost is unknown and can be
influenced by various factors. This is known as the selective labels problem [Lakkaraju et al., 2017,
Kleinberg et al., 2018, De-Arteaga et al., 2018, Wei, 2021], in which the outcomes are more likely to
be available for a subset of instances. When a human expert must approve the decision to obtain a
label, selective labeling would result from the expert’s discretion over the labeling process.

Independently of the labeling costs, human decision makers also need to invest time and effort in
considering the algorithm’s recommendation before making a decision. For example, the insurance
agent needs to evaluate each case in order to decide whether an investigation should be launched and
doctors will go through patients’ medical record and assess the risk prior to approving a diagnostic
procedure. Therefore, our goal is to maximize the machine learning model’s predictive performance
within a total budget considering both the examination and labeling cost.

Ultimately, while traditional active learning focuses on identifying instances that would be most
informative for learning, when the human must approve each labeling request, the human may be
inundated with requests to consider acquisitions, any portion of which may be declined and thus not
benefit learning, while incurring a significant loss of the human expert’s resources. This poses a new
challenge for active learning in which it would be valuable to bring to bear the human discretion
of any labeling request so as to identify labeling requests that can achieve the most improvement
in model performance for a given labeling and human discretion costs. We refer to this problem as
Active Learning with Instance Rejection (ALIR), illustrated in Figure 1(a). Crucially, in ALIR, the
instances deemed most informative for the current ML classifier may not be the best candidates for
labeling, as humans may choose to reject these instances (as shown in Figure 1(b)). This challenge
highlights the need for developing new active learning methods tailored to the ALIR framework.
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In this paper, we make the following contributions:

• We propose a new Active Learning with Instance Rejection (ALIR) problem that considers
the human discretion behavior in high-stakes selective labeling contexts. Unlike conventional
active learning, where every instance is labeled by humans, ALIR allows humans to exercise
discretion, selectively choosing whether or not to label certain instances.

• We propose different active learning algorithms for ALIR and discuss their trade-offs. Unlike
traditional active learning, the benefit of each method depends on the underlying human
discretion behavior. We show theoretically that ALIR is equivalent to traditional active
learning when the human discretion behavior is homogeneous across instances and propose
new methods for unknown, heterogeneous discretion behaviors.

• We conduct comprehensive experiments on both synthetic and real-world datasets to demon-
strate the effectiveness of our proposed algorithms.

2 Related Work

Active Learning: To render costly data annotation more efficient, Active Learning has been studied
extensively in the machine learning community [Lewis and Gale, 1994, Schohn and Cohn, 2000,
Nguyen and Smeulders, 2004, Freytag et al., 2014, Gal et al., 2017, Sener and Savarese, 2017,
Gong et al., 2019, Gao and Saar-Tsechansky, 2020]. Traditionally, the key challenge addressed
by most methods is to label the most informative unlabeled instances from which to induce the
classifier. Existing methods assume humans will always label the instances selected by the active
learning algorithm. We consider the selective labels problem where in many high-stakes decision
making problems, humans may not label the selected instances due to their past experience, domain
knowledge, or algorithmic aversion[Dai and Singh, 2021, De-Arteaga et al., 2018, Dietvorst et al.,
2015]. Recent papers have studied active learning for treatment effect estimation from observational
data [Jesson et al., 2021, Deng et al., 2011, Sundin et al., 2019]. Unlike these papers, we study the
selective labels setup where the outcome is selectively observed, which is different from the treatment
effect estimation problem where we can observe an outcome under the selected treatment arm.

Selective Labels Lakkaraju et al. [2017] proposes the “contraction” technique to evaluate a machine
learning classifier’s performance in the selective labels problem. However, the point identification of
the model performance is generally impossible without strong assumptions and partial identification
is studied in the recent literature [De-Arteaga et al., 2018, D’Amour, 2019, Rambachan et al., 2022].
Unlike previous papers on studying the limitations in evaluation and optimizing predictive rules in
the selective labels problem, we focus on how to acquire useful information to improve the machine
learning model in the selective labels problem. Rambachan and Roth [2019] studies how historical
human-generated data may bias the machine learning model in the selective labels problem and our
paper studies how to work with the human decision makers to improve the machine learning model
in selecting informative samples.

Human-AI Collaboration: There are works in the machine learning community designing different
forms of human-AI collaborated decision-making systems such as learning to defer [Cortes et al.,
2016, Madras et al., 2018, Gao et al., 2021, Gao and Yin, 2023, Gao et al., 2023], or learning to
advise [Bastani et al., 2021, Grand-Clément and Pauphilet, 2024, Bhatt et al., 2023, Cao et al., 2024].
Unlike these work, we focus on how to collect information under human supervision. Our work
is also motivated by the literature on overriding decisions and trust in algorithm adoptions [Sun
et al., 2022, Wang et al., 2022]. Dietvorst et al. [2015] finds that humans are likely to override the
algorithm’s decisions when they observe machine learning algorithms make mistakes. Bansal et al.
[2021] studies how the quality of the explanation and the predictive quality of the machine learning
model affect human decisions. There are also works that study different interventions to improve the
trust of humans in the machine learning model [Dietvorst et al., 2018, Lakkaraju and Bastani, 2020,
Zhang et al., 2020]. de Véricourt and Gurkan [2023] uses an analytical modeling framework and
stylized human behavior model to show that humans may never know the true performance of AI in
the selective labels problem. Our work is different from these papers as we focus on how to acquire
useful information to improve the machine learning model in the selective labels problem.
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3 Problem Statement and Background

3.1 Selective Labels Problem

We have access to a pool of unlabeled data Dpool = {xi}ni=1, where each instance has a underlying
label yi ∈ {1, · · · ,K}. We denote the marginal distribution of X as P (X) and the conditional
distribution of Y given X as P (Y |X). We assume that the unlabeled data is drawn i.i.d. from P (X).
A human decision maker will make a yes decision (ai = 1) or no decision (ai = 0) for the decision
subject. The corresponding outcome yi can only be observed when ai = 1.

We assume there exists a human discretion function e(X) that maps the input X to a probability
of being labeled by the human decision maker. We denote the probability of X being labeled as
P (A = 1|X) = e(X). This corresponds to how humans will examine and label the instances. Then
for an instance xi, if ai = 1, it will be labeled, returning the label yi, and be added to the current
labeled dataset D = {xi, yi}i:ai=1. Otherwise, the human labeler will reject it and no outcome
will be available for the instance. No matter whether the instance is labeled or not, (xi, ai) will be
added to the current human decision dataset L = {xi, ai}ni=1, which records all the human labeling
information. A predictive model with likelihood P (y|x, θ) parametrized by θ ∼ P (Θ|D) can then
be trained on the labeled dataset D.

3.2 Active Learning

The requester now wants to acquire some additional labeled samples to improve the ML classifier.
Since human labelers need time and resources to decide whether to investigate each instance (e.g.,
have a meeting to decide whether to operate on the organ, decide on whether to audit the firm) and
label it (e.g., perform the biopsy, audit the firm), the requester wants to minimize the number of
instances that need to be labeled. We denote the cost for examining the instance as ce and the cost for
labeling the instance as cl. The total cost is the sum of the current examination cost and label cost.
Therefore, with a total budget of B, the requester wants to select a subset of instances S ⊆ Dpool to
be labeled by the human labelers while maximizing the performance of the ML classifier P (y|x, θ).
Given a model P (y|x, θ), pool dataset Dpool, and labeled dataset D, active learning algorithms use an
acquisition function A(x, θ) to select where to label next by argmaxx∈Dpool A(x, θ). For example,
A(x, θ) = unif() corresponds to the random acquisition function, which unif() returns a uniformly
random number between 0 and 1; and A(x, θ) = H(y|x,D) =

∑
c P (y = c|x,D) log(P (y =

c|x,D)) corresponds to the uncertainty sampling principle that picks the next sample with the largest
predictive entropy. Our algorithm extends the following Bayesian Active Learning with Disagreement
(BALD) algorithm [Houlsby et al., 2011, Gal et al., 2017].

Bayesian Active Learning with Disagreement (BALD): BALD [Houlsby et al., 2011] uses the
epistemic uncertainty as the aquisition function. The epistemic uncertainty measures the uncertainty
about model parameters instead of the inherent uncertainty about the data that cannot be reduced by
acquiring more samples. The information gain is defined as the mutual information between the label
and the model parameters which can be written as follows:

I(y, θ|x,D) = Ey|x,D[H(θ|D)−H(θ|y, x,D)]

=−
∑
c

P (y = c|x,D) log(P (y = c|x,D)) + Eθ∼P (θ|D)

[∑
c

P (y = c|x, θ) log(P (y = c|x, θ))

]
.

(1)

Here the posterior P (θ|D) can be approximated by the approximated posterior q(θ|D) from the
Bayesian neural network, and using MC sampling [Gal et al., 2017] to approximate Equation (1) as

≈ −
∑
c

( 1

T

∑
t

p̂tc

)
log

( 1

T

∑
t

p̂tc

)
+

1

T

∑
c,t

p̂tc log(p̂
t
c),

where p̂tc is the probability of input x taken class c under the t-th MC sample from the approximated
posterior q(θ). We denote this objective as Î(y, θ|x,D) ≈ I(y, θ|x,D).

BALD will then select the instance by argmaxxi∈Dpool Î(y, θ|xi,D).
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4 Methods

4.1 Naively Apply Bayesian Active Learning with Disagreement (BALD)

If we ignore the selective labels problem and simply treat it as the traditional active learning setup
where every instance will always be labeled, we can use the same computation procedure in the
standard BALD algorithm (in the supervised learning setup) to select the next instances to label.
Definition 4.1 (Naive-BALD).

ÎNaive(y, θ|x,D) :=Î(y, θ|x,D, a = 1)

=− Eθ∼P (θ|D)

∑
c

P (y = c|x, θ, a = 1) log(
P (y = c|x,D, a = 1)

P (y = c|x, θ, a = 1)
). (2)

However, when humans are involved, we need to consider the probability of each instance being
labeled. When the instance with high information gain is unlikely to be labeled, BALD may send
many instances to the human labelers but only few of them will be labeled, thus wasting the time and
resources of the human labelers.

4.2 Bayesian Active Learning with Disagreement with Selective Labels (SEL-BALD)

First, we show the information theoretical objective under ALIR. When considering the human
discretion behavior, the information gain Î(y, θ|x,D) can be derived as
Definition 4.2 (e-BALD).

Î(y, θ|x,D) =e(x)Î(y, θ|x,D, a = 1)

=− e(x)Eθ∼P (θ|D)

∑
c

P (y = c|x, θ, a = 1) log(
P (y = c|x,D, a = 1)

P (y = c|x, θ, a = 1)
) (3)

The first equality is proved in Theorem A.1 in Appendix A. Intuitively, this objective indicates we
should focus on instances with higher probabilities to be labeled by human decision makers. If e(x)
is known exactly, we can directly select the instances by the acquisition function e(x)Î(y, θ|x,D).
It’s worth noting that when e(x) ≡ c, 0 < c ≤ 1, which means human decision makers will choose to
label all instances with the same probability c, the Naive-BALD and e-BALD objective is equivalent
and the problem reduces to the traditional active learning setting.

Since in our setting, e(x) is not known a priori, we can fit another predictive model ê(x) = P (a =
1|x, ϕ) on the human decision dataset L to approximate this objective. However, in practice, ê(x)
may be inaccurate given a small dataset. Therefore, we need to acquire samples that are 1) likely to
be labeled by the human decision makers and 2) are both informative to the machine learning model
and the human discretion model update.

We consider the information gain about the human discretion response and the model parameters.
Assume we try to use a Bayesian neural network eϕ(x) to approximate the human discretion model
e(x), we can define the information gain about the human discretion response and the model
parameters as

Î(a, ϕ|x,L) ≈ −
∑

c∈{0,1}

( 1

T

∑
t

ĝtc

)
log

( 1

T

∑
t

ĝtc

)
+

1

T

∑
c,t

ĝtc log(ĝ
t
c). (4)

Here ĝtc is the probability of input x being labeled as c under the t-th MC sample from the approxi-
mated posterior q(ϕ). We denote this objective as Î(l, ϕ|x,L) ≈ I(l, ϕ|x,L). Selecting samples that
maximize this acquisition function will help us to learn more effectively about the human discretion
model. This joint information gain can be estimated as
Definition 4.3 (Joint-BALD).

Î({a, y}, {θ, ϕ}|x,L,D) = e(x)Î(y, θ|x,D, a = 1) + Î(a, ϕ|x,L) (5)
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Algorithm 1 Bayesian Active Learning for Selective Labeling with Instance Rejection (SEL-BALD)
Input: Initial labeled dataset D,L, pool dataset Dpool, β, MC-samples T , budget B.
Output: Updated machine learning model f(x).
while Budget is not used up do

Select the instance xi that maximizes the acquisition function in Equation (5), (6), or (7).
Human will decide whether to label the instance xi.
if the instance xi is labeled then

Add (xi, yi) to D and (xi, ai) to L.
else

Add (xi, ai) to L.
end if
Update the human discretion model eϕk+1

(x) on L.
Update the machine learning model fθk+1

(x) on D.
end while

We prove Equation (5) in Theorem A.2. The first term in Equation (5) is equivalent to Equation (3) and
the second term is the information gain between the human discretion model and human responses.
If we have the perfect knowledge about the human discretion model, then the second term equals
0 and Joint-BALD reduces to e-BALD. On the other hand, if we have a high epistemic uncertainty
about human responses, the second term will encourage exploration to learn the human discretion
model better. Once the second term becomes small (we have a good understanding of the human
discretion model), Joint-BALD will automatically reduce to e-BALD and start exploiting.

Motivated by the upper confidence bound (UCB) principle in online regret minimization [Auer, 2002,
Li et al., 2010], we can define the acquisition function as
Definition 4.4 (Joint-BALD-UCB).

Î({l, y}, {θ, ϕ}|x,L,D) = Q(êϕ(x), β)Î(y, θ|x,D) + Î(l, ϕ|x,L) (6)

Here Q̂ is the empirical quantile function and Q̂(êϕ(xi), β) is the upper confidence bound of the
probabilities (drawn using the MC samples) of xi being labeled by the human decision makers of
our current best estimation. The hyperparameter β balances the exploration-exploitation trade-off.
With a larger β → 1, the acquisition function will have more exploration of samples with higher
uncertainties. Similarly, we can use Thompson Sampling [Thompson, 1933] to control the degree of
exploration, which leads to the following objective:
Definition 4.5 (Joint-BALD-TS).

Î({l, y}, {θ, ϕ}|x,L,D) = q(êϕ(x))Î(y, θ|x,D) + Î(l, ϕ|x,L) (7)

q(êϕ(x)) represents the empirical sample drawn from the MC samples. Each time we will random
sample a set of model parameters from the posterior and select the instance with the largest information
gain calculated using Equation (7). Compared to UCB, Joint-BALD-TS does not have to specify
the hyperparameter. The complete algorithm for Bayesian active learning with selective labeling
(SEL-BALD) is shown in Algorithm 1.

5 Experiments

First, we want to emphasize that in ALIR, the benefit of each method is more nuanced than traditional
active learning and highly depends on human decision behavior and the underlying data distribution.
As our analysis above suggests, Naive-BALD and e-BALD correspond to the information gain
when e(x) ≡ c, 0 < c ≤ 1. When c = 1, this corresponds to the traditional active learning
problem where humans always label the instance, and the efficacy of Naive-BALD and e-BALD
have been demonstrated in existing papers [Gal et al., 2017]. We also conduct the experiment under
homogeneous human decision behavior in Appendix C. In this section, we aim to show the benefit of
the proposed method when the human discretion behavior is unknown and heterogeneous.

We conduct experiments on both synthetic and real-world datasets to demonstrate the effectiveness
of our proposed algorithm when human discretion behavior is unknown and heterogeneous. We
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(a) Synthetic Data (b) Initial Labels (c) RANDOM (d) Naive-BALD

(e) e-BALD (f) Joint-BALD (g) Joint-BALD-UCB (h) Joint-BALD-TS

Figure 2: Qualitative Results for Synthetic Data. Figure 11(a) shows the underlying synthetic data
distribution. Figure 11(b) shows the initial labels randomly acquired. Figure 2 (c)-(h) show the
labeled data the corresponding learned decision boundary after spending a budget of 450. Human
decision makers always reject to label when x1 > 0. RANDOM and Naive-BALD spend most of the
budget on examination since many candidate applications are in the high-risk region and have low
probabilities to be labeled. In contrast, e-BALD selects the samples that are most likely to be labeled
according to a noisy estimation of the human discretion model, which overlooks the lower left region
which is important for learning the correct decision boundary.

assume there is a cost of 1 to examine every data instance and a cost of 5 to label the instance.
For the predictive model and human discretion model class, we use a Bayesian neural network
and use MCdropout [Gal et al., 2017] to approximate the posterior (we set the number of MC
samples as 40 in all experiments). The model architecture is a 3-layer fully connected neural
network with LeakyReLU activation function. We use the Adam optimizer with a learning rate of
0.01. We run the experiments on a server with 3 Nvidia A100 graphics cards and AMD EPYC
7763 64-Core Processor. We compare our proposed methods against the Naive-BALD algorithm
and the random acquisition function (RANDOM). We set β = 0.75 for Joint-BALD-UCB in all
experiments. For results, we report the accuracy and number of samples acquired of the machine
learning model on a subset of the test set where the instance has a positive probability to be included
in the dataset. We do not consider the performance of instances that have zero probability of showing
up in the data since human decision makers will always reject such decision instances and a machine
learning model can have arbitrary performance on such subpopulation. The code is available at
https://github.com/ruijiang81/SEL-BALD.

5.1 Synthetic Data

We use a comprehensive synthetic example to illustrate the benefit of the proposed algorithms. We
generate a synthetic two-cricle dataset with 2 features. The response variable is binary and can be
considered as fraud of an insurance claim. We generate 20000 data samples and downsample 90% of
the data points with x1 ≥ 0 where x1 is the second dimension of the input feature. This is to make the
toy example a little more challenging for the RANDOM baseline and simulate a real-world scenario
where there are a lot of insurance claims in the candidate pool that won’t be investigated where active
learning is necessary to reduce the potential waste of human workers’ time. The resulting dataset has
around 3700 samples as the training set and around 1600 samples as the test set. The visualization of
the synthetic data is shown in Figure 11(a).

The qualitative results for each label acquisition method are shown in Figure 2 and the quantitative
metrics are reported in Table 1. Since there are many high-risk samples that human decision makers
do not label, most of the samples RANDOM selects are not labeled by the human decision maker.
Similarly, Naive-BALD is highly influenced by the initial labels and human discretion behavior. If
the most informative samples to the current machine learning classifier have a low probability to be
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RANDOM Naive-BALD e-BALD Joint-BALD Joint-BALD-UCB Joint-BALD-TS
Accuracy 0.78 0.55 0.76 0.77 0.99 0.98

Examination (%) 0.91 0.95 0.39 0.52 0.53 0.50
Labeling (%) 0.09 0.05 0.61 0.48 0.47 0.50

Table 1: Quantitative Statistics for Synthetic Data. We report the accuracy and the fraction of the
budget spent for examination and labeling. RANDOM and Naive-BALD spend most of the budget
on examination and few labels is acquired. e-BALD acquires the most labels but many of them are
not informative due to the noisy estimation of e(x). Joint-BALD-UCB and Joint-BALD-TS balance
the examination and labeling budget automatically and achieve the best accuracy.

(a) e-BALD (b) Joint-BALD (c) Joint-BALD-UCB (d) Joint-BALD-TS

Figure 3: Estimated Human Discretion Behavior for Synthetic Data. We show the decision boundary
for the estimated human discretion behavior for each method after spending a budget of 450. e-BALD
underestimates the lower left region of the feature space due to the lack of exploration. Joint-BALD-
UCB and Joint-BALD-UCB recover the correct decision boundary.

labeled by humans, Naive-BALD will keep sending such instances to humans to examine and waste
all the budget. The initial labels sampled are shown in Figure 11(b). Since there are not many samples
when x1 < 0, the human discretion model cannot estimate the correct human decisions accurately.
As a result, e-BALD relies on the noisy estimation of the human discretion model and greedily
explores the lower right region of the feature space while it is important to acquire samples from
the left region in order to learn the correct decision boundary. Compared to e-BALD, Joint-BALD
has a better exploration and labeled a few instances on the left, however, it is also influenced by
the noisy estimation of e(x) and focus more on the points on the right side of the sample space.
Joint-BALD-UCB and Joint-BALD-TS both encourage more exploration for e(x). As a result, both
methods can learn the correct decision boundary in a sample-efficient way.

Finally, we show the estimated human discretion model in Figure 3. Since e-BALD acquires samples
based on its current noisy estimation of the human discretion model, it fails to learn the correct
decision boundary and maintains a wrong probability estimation about the left lower region of
the feature space. While Joint-BALD has a slightly better estimation, it still focuses more on the
high-probability region and has a large estimation error on the left lower region. Joint-BALD-UCB
and Joint-BALD-UCB correctly recover the decision boundary with the help of sufficient exploration.

5.2 Case Study: Fraud Detection

For our case study, we use the Give-Me-some-Credit (GMC) dataset [Credit Fusion, 2011]. GMC
dataset is a real-world loan dataset with 10 features including age, monthly income, debt ratio, number
of dependents, and a binary response variable that indicates whether the loan application will default.
We balance the dataset by random undersampling and randomly choose 400 samples as the test set.
We use this dataset to build a hypothetical insurance claim case. Assume each instance is an insurance
claim where a human agent can investigate whether it is fraudulent. The insurance company wants to
build a machine learning model to predict fraud cases in the future. Since such investigation is costly,
the company wants to use an active learning method and send some selected instances to agents for
potential investigation and agents have the freedom to decline the investigation request since the
company does not want to waste human resources and potential profit from acquiring these samples.

Human Behavior Model: For the human discretion model e(x), we assume human decision makers
will have the following acceptance probabilities:
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(a) GMC Acc. (b) GMC Sample (c) MNIST Acc. (d) MNIST Sample

Figure 4: Results for GMC and MNIST. We report the accuracy and number of samples labeled for
both datasets. RANDOM and Naive-BALD spend most of the budget on examination since they do
not consider human discretion behavior. On both datasets, Joint-BALD-UCB and Joint-BALD-TS
demonstrate robust performance across different budgets.

e(x) =


0.3 High Debt and Low Income
0.9 High Debt and High Income
0 Low Debt.

A detailed discussion about the initial human discretion model can be found in Appendix D. This
simulates the selective labels setup where the biased human decision makers are skeptical about
insured customers with high debt and these customers are more likely to be investigated.

We report the accuracy and number of samples acquired for each method in Figure 4(a) and Figure 4(b)
respectively. The results are averaged over 3 runs with a query size of 10, 50 randomly examined
instances initially, and a budget of 450. Compared to other methods, RANDOM and Naive-BALD
acquire the least samples given the same budget since both methods do not consider the human
discretion behaviors, which leads to suboptimal model performance. e-bald has a small benefit
over all other methods when the total budget is small, which is expected when the initial estimated
human discretion model is useful since e-BALD greedily acquires samples based on the current best
estimation. However, this effect soon disappears and e-bald has a worse performance compared to
Joint-BALD-UCB and Joint-BALD-TS which have a better exploration of e(x) for a larger budget.

5.3 MNIST

We also examine each active learning method on a high-dimensional dataset MNIST [LeCun, 1998].
MNIST is a large handwritten digit dataset with 28x28 pixels and 10 classes. The test set size is
10000 and we use 10000 samples in the training set as Dpool. We report the accuracy and number
of samples acquired for each active learning method on the test set. The results are averaged over 3
runs with a query size of 20, 100 randomly examined instances initially, and a budget of 1000. For
the human discretion behavior, we assume P (a = 1|x) = 0 for all classes 0-6, and human decision
makers have the probabilities of 0.3, 0.3, 0.9 to label the instances with classes 7, 8, 9 respectively.
This also corresponds to the realistic setting where many insurance claims will not be investigated
and human discretion behavior is different for different instances.

The results are shown in Figure 4(c) and Figure 4(d) respectively. Similarly to our previous findings,
baselines like RANDOM and Naive-BALD struggle to acquire samples humans will label, and
waste most of the budget on examination. For high-dimensional data, the performance of e-BALD
appears worse in the beginning potentially because the propensity score is harder to estimate for high-
dimensional data [D’Amour et al., 2021]. On the other hand, Joint-BALD-UCB and Joint-BALD-TS
are able to learn the human discretion model better through exploration, and lead to a larger number
of samples labeled and better model performance.

5.4 Additional Experiments

Changing Human Behaviors: While we motivate the Active Learning with Instance Rejection
problem in the cold-start setting, the ALIR problem can still happen when human behavior changes,
thus we need to acquire new labels to better model the underlying function and the human discretion
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model. We offer an illustrative example of ALIR under changing human behaviors in Appendix B.
In the example, we assume the company starts to use a machine learning model to advise human
decision makers, thus leading to a change in the human discretion behavior. We further demonstrate
that the ALIR problem still exist when human behaviors change and the proposed methods in the
paper can also be applied in such settings.

More Real-World Datasets: We compare the proposed methods with baselines on Fashion MNIST
[Xiao et al., 2017], CIFAR-10 [Krizhevsky, 2009], Adult [Becker and Kohavi, 1996] and Mushroom
[mus, 1981] datasets in Appendix E. We find similar findings that the proposed methods improve
over Naive-BALD and RANDOM under the selective labels setting.

Other Human Behavior Model: In addition to the piecewise linear function used to simulate
the human behaviors, we compare with a Logistic Regression based human behavior model in
Appendix F. We randomly sample a few positive and negative samples from the datasets to train a
Logistic Regression model and use it to simulate human responses. The results are similar to our
results presented in the main paper.

Other Uncertainty Metric: While we focus on improving the BALD method in this paper, it is
possible to extend the proposed method for these metrics by replacing the information gain term with
another uncertainty term such as the entropy. We demonstrate that in Appendix G. We implement
Joint-Entropy-UCB that replaces the information gain with the entropy measure on the synthetic data.
Joint-Entropy-UCB can also improve the traditional entropy objective in this case.

6 Conclusion and Future Work

In this paper, we propose the Active Learning with Instance Rejection (ALIR) problem, which is a
new active learning problem that considers the human discretion behavior for high-stakes decision
making problems. We propose a new active learning algorithm e-BALD, Joint-BALD, Joint-BALD-
UCB, and Joint-BALD-TS using deep Bayesian active learning for selective labeling (SEL-BALD) to
address the ALIR problem and validate the effectiveness of our proposed algorithm on both synthetic
and real-world datasets. With unknown and heterogeneous human behavior, Joint-BALD-UCB and
Joint-BALD-TS often lead to robust model performance improvement across different budgets.

However, there are several limitations to our work. First, we consider all humans as a single entity and
assume they have the same discretion model which is an average of all humans. In practice, different
human decision makers may have different discretion models. Second, it is also promising to use
semi-supervised learning [Grandvalet and Bengio, 2004] to train the predictive model while it brings
additional challenges to the ALIR problem. In addition, e(x) may not be accurately modeled which
could affect the performance of the proposed algorithm. One potential issue is the misspecification
of the model class used to represent human behavior. For instance, if a linear model like Logistic
Regression is applied to a fundamentally non-linear human behavior pattern, this could introduce
estimation bias into the proposed AL method. To mitigate this, non-parametric models could be
employed, as they are less prone to such misspecification bias. Last, it is also worth noting that in
certain applications like recidivism prediction or organ transplantation, prioritizing instances to be
labeled may have significant fairness implications, therefore our method may not apply. However,
the ALIR problem still exist in many real-world problems such as tax audit or fraud detection. It
would be interesting to study the fairness concerns in ALIR. We believe these bring promising future
research opportunities and leave these as future work.
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A Proofs

Theorem A.1 (e-BALD). Assume when a = 0, the observation is a fixed non-informative value y0
(e.g., NA). If the human decision maker has a probability e(x) to label the instance, then

I(y; θ|x,D) = e(x)I(y; θ|x,D, a = 1).

Proof. Let e(x) = p(a = 1|x).

I(y; θ|x,D)

=Ey,θ|x,D log
p(y|θ, x,D)

p(y|x,D)

=e(x)Ey,θ|a=1,x,D log
p(y|θ, x,D, a = 1)

p(y|x,D, a = 1)
+ (1− e(x))Ey,θ|a=0,x,D log

δy0(y)

δy0
(y)

=e(x)I(y; θ|x,D, a = 1).

The second equality is because of the law of total expectation.

Theorem A.2 (Joint-BALD). Under the condition of Theorem A.1,

I({a, y}; {θ, ϕ}|x,L,D) = e(x)I(y; θ|x,D, a = 1) + I(a;ϕ|x,L).

Proof. Recall that L = {xi, ai}i=1:n and D = {xi, yi}ai=1.

I(a, y; θ, ϕ|x,L,D)

=I(a; θ, ϕ|x,L,D) + I(y; θ, ϕ|a, x,L,D)

=I(a; θ, ϕ|x,L) + I(y; θ, ϕ|a, x,D)

=Ea,ϕ|x,L log
p(a|ϕ, x,L)
p(a|x,L)

+ Ea|xEy,θ|a,x,D log
p(y|θ, x, a,D)

p(y|x, a,D)

=I(a;ϕ|x,L) + e(x)Ey,θ|a=1,x,D log
p(y|θ, x, a = 1,D)

p(y|x, a = 1,D)

+ (1− e(x))Ey,θ|a=0,x,D log
δy0

(y)

δy0
(y)

=I(a;ϕ|x,L) + e(x)Ey,θ|a=1,x,D log
p(y|θ, x, a = 1,D)

p(y|x, a = 1,D)

=I(a;ϕ|x,L) + e(x)I(y; θ|x,D, a = 1).

The first equality is by the chain rule of mutual information; the second equality is because the
observation of all a is in L and all the observation of y is in D; the third equality is because the
distribution of y and a are independent of ϕ and θ, respectively.

B Extensions on AI Advising/Changing Human Behavior

While we motivate the Active Learning with Instance Rejection problem in the cold-start setting in
the main paper, the Active Learning with Instance Rejection can still happen when human behavior
changes, thus we need to acquire new labels to better model the underlying function and the human
discretion model. Here we offer an illustrative toy example of ALIR under changing human behaviors.
In this toy example, we assume the company starts to use a machine learning model to advise human
decision makers, thus leading to human discretion behavior change.

We use a synthetic example to illustrate the AI advising setting We generate a synthetic two-moon
dataset with 2 features. The response variable is binary and can be considered as whether an insurance
is fraudulent. We generate 20000 data samples and downsample 90% of the data points with x0 ≤ 6
where x0 is the first dimension of the input feature. This simulates a real-world scenario where there
are a lot of valid insurance claims in the candidate pool where active learning is necessary to reduce
the potential waste of human workers’ time. The resulting dataset has around 3700 samples as the
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training set and around 1600 samples as the test set. The visualization of the synthetic data is shown
in Figure 5(a).

Initial Human Behavior Model: For the initial human discretion model e0, we assume human
decision makers will only investigate claims with 3 ≤ x0 ≤ 6 and follow the acceptance probabilities
below:

h0(x) =


0.6 3 ≤ x0 ≤ 6 and x1 > 3

0.4 3 ≤ x0 ≤ 6 and x1 ≤ 3

0 otherwise.
(8)

This simulates the selective labels setup where initially human decision makers will only investigate
claims of a certain subpopulation, and the machine learning model fitted on this subpopulation may
not generalize well to the whole population even with ample data. Here the human decision makers
have a higher probability to investigate fraud cases.

Updated Human Behavior Model: We use the initial human behavior to collect 200 samples with
instance rejection, then we train a Bayesian neural network f0(x) on the initial labeled dataset D
and deploy it to assist human decision makers. After the machine learning model is deployed, we
assume the human decision makers will have a new behavior model e(x) that follows the acceptance
probabilities below:

h(x) =


0.6ρ+ (1− ρ)f0(x) 3 ≤ x0 ≤ 6 and x1 > 3

0.2ρ+ (1− ρ)f0(x) 3 ≤ x0 ≤ 6 and x1 ≤ 3

0ρ+ (1− ρ)f0(x) x0 ≤ 3

0 otherwise.

Here ρ is an algorithmic-aversion hyperparameter that controls the level of trust in the machine
learning model. When ρ = 0, the human decision makers will fully trust the machine learning model.
When ρ = 1, the human decision makers will ignore the machine learning model and follow the
initial human behavior model. We set ρ = 0.5 to simulate a partial adoption of the machine learning
model. However, for the high-risk region x0 > 6, the human decision makers will never investigate
no matter what the machine learning model advises.

Since the updated human behavior model may have higher label probabilities for the cases at certain
regions (e.g., x0 ≤ 3), we can use different active learning strategies to acquire new samples to
improve the machine learning model’s generalizability. We test Naive-BALD, RANDOM, and Joint-
BALD-UCB on this synthetic dataset for illustration. We set the query size as 20 and the number of
acquisition steps as 10. For batch acquisition with query size K, we use the greedy strategy to select
the K samples with the largest acquisition function value.

First, we visualize the labeled data after 3 and 9 steps of active learning in Figure 5. We can see that
Joint-BALD-UCB selects the samples that are likely to be labeled by the human decision makers
and are both informative to the machine learning model and the human discretion model update. In
contrast, Naive-BALD selects the samples that are informative to the machine learning model but may
not be labeled by the human decision makers. In this case, Naive-BALD got stuck in the high-risk
region x0 > 6 where human decision makers will always reject the loan applications, thus leading to
no improvement for the machine learning model. RANDOM selects the samples randomly and since
many candidate applications are in the high-risk region, it also has a low probability of selecting the
samples that will be labeled by the human decision makers. Joint-BALD-UCB successfully recovers
the correct decision boundary. This example aims to demonstrate that the ALIR problem still exist
when human behavior change and the proposed methods in the paper can also be applied in such
settings.

C Homogeneous Human Behavior

In this section, we show how different active learning methods perform under homogenous human
behaviors. As demonstrated in the main paper, when e(x) ≡ c, 0 < c ≤ 1, Naive-BALD corresponds
to the correct information gain and we expect all the proposed methods to perform similarly.
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(a) Synthetic Data (b) Random - Step 3 (c) Naive-BALD - Step 3 (d) UCB - Step 3

(e) Random - Step 9 (f) Naive-BALD - Step 9 (g) UCB - Step 9

Figure 5: Synthetic Data. Figure 5(a) shows the underlying synthetic data distribution. Figure 5
(b)-(d) and (e)-(g) shows the labeled data after 3 and 9 steps of active learning. Human decision
makers always reject to label when x0 > 6. BALIR selects the samples that are likely to be labeled
by the human decision makers and are both informative to the machine learning model and the
human discretion model update. In contrast, BALD selects the samples that are informative to the
machine learning model but may not be labeled by the human decision makers. RANDOM selects
the samples randomly and since many candidate applications are in the high-risk region, it also has a
low probability to select the samples that will be labeled by the human decision makers.

(a) Accuracy (b) Number of Sample

Figure 6: Results for MNIST with Homogeneous Human Behavior. We report accuracy and number
of samples labeled. All the proposed methods have similar model performance with homogeneous
human discretion behavior across different budgets.

We use the same experimental setup in Section 5.3 with the MNIST database and change the human
decision behavior as e(x) ≡ 0.8. The model accuracy and number of samples labeled are reported
in Figure 6(a) and Figure 6(b) respectively. Naive-BALD and e-BALD also have similar model
performance compared to other SEL-BALD methods we proposed in the paper.
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D Human Behavior Model in Case Study

The human discretion model used in the case study is

e(x) =


0.3 Debt > Q̂(Debt, 0.7) and Income ≤ Q̂(Income, 0.7)
0.9 Debt > Q̂(Debt, 0.7) and Income > Q̂(Income, 0.7)
0 Debt ≤ Q̂(Debt, 0.7).

where Q̂(·, α) is the empirical 100 × α quantile of the metric. This simulates the selective labels
setup where human decision makers are skeptical about insured customers who have high debt.

E Experiments with More Datasets

We compare the proposed methods with baselines on Fashion MNIST [Xiao et al., 2017], CIFAR-10
[Krizhevsky, 2009], Adult [Becker and Kohavi, 1996] and Mushroom [mus, 1981] datasets in this
section. For Fashion MNIST and CIFAR-10, we use the same human behavior model as the one used
in MNIST. For Mushroom, we assume humans have the following probability to label the instances:
0 when x1 < 0; 0.3 when x1 > 0 and x4 > 0; 0.9 otherwise. For Adult, we assume humans have the
following probability to label the instances: 0 when x0 > Q0.5(x0); 0.3 when x0 ≤ Q0.5(x0) and
x1 > Q0.5(x1); 0.9 otherwise.

The results for the accuracy and the number of samples labeled are shown in Figure 7 and Figure 8,
respectively. We find similar qualitative conclusions that Joint-BALD variants often produce better
results than Naive-BALD and RANDOM.

(a) Fashion MNIST (b) CIFAR-10 (c) Adult (d) Mushroom

Figure 7: Experimental Results (Accuracy) for Additional Datasets. We report the accuracy for
each cost on different additional datasets. Joint-BALD variants often produce better results than
Naive-BALD and RANDOM across different costs. Fashion-MNIST and CIFAR-10 use the same
setting as MNIST in the main paper.

(a) Fashion MNIST (b) CIFAR-10 (c) Adult (d) Mushroom

Figure 8: Experimental Results (Number of Samples) for Additional Datasets. We report the number
of samples labeled for each cost on different additional datasets. Naive-BALD and RANDOM label
much less samples than the Joint-BALD variants and e-BALD often labels the most labels.

F Experiments with ML-based Human Behavior Model

In addition to the piecewise linear human behavior model we used, we compare with a Logistic
Regression based human behavior model. We randomly sample 3 positive and negative samples
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(a) Accuracy (b) Num

Figure 9: ML Human Behavior Model (Adult)

(a) Accuracy (b) Num

Figure 10: ML Human Behavior (Mushroom)

from the datasets to train a Logistic Regression model and use it to simulate human responses.
Humans have a higher probability to label the instances if the predicted probabilities from the Logistic
Regression are larger and humans will reject to label when the predicted probabilities are low.

The results with Adult dataset is shown in Figure 9(a) and Figure 9(b) and results with Mushroom
dataset is shown in Figure 10(a) and Figure 10(b). The proposed methods can significantly outperform
baselines like Naive-BALD. We also note RANDOM sometimes is a strong baseline (e.g., in the
Mushroom dataset) in the batch active learning setting as documented in the previous work [Kirsch
et al., 2019].

G Experiments with Other Uncertainty Metric

While we mainly focus on improving the BALD objective in this paper, our methods can potentially
be generalized by replacing the mutual information with other metrics in the objective. For example,
we can replace the information gain with other uncertainty measures such as entropy. A similar
Joint-Entropy-UCB objective can be written as

Ent({l, y}, {θ, ϕ}|x,L,D) = Q(êϕ(x), β)Ent(y, θ|x,D) + Ent(l, ϕ|x,L) (9)

As shown in Figure 11, we implement Joint-Entropy-UCB with entropy measure on the synthetic
data. Joint-Entropy-UCB can also improve the traditional entropy objective in this case.

(a) Synthetic Data (b) Initial Labels (c) Entropy (d) Joint-Entropy-UCB

Figure 11: Extension on other uncertainty-based metric: Qualitative Results for Synthetic Data after
spending a budget of 450. Our method can also help improve the performance of other uncertainty-
based active learning metric like Entropy.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose the active learning with instance rejection problem and propose
several methods to address the problem. Unlike traditional active learning, the benefit of
each method is more nuanced and depend on the underlying human behavior model. We
show Joint-BALD-UCB and Joint-BALD-TS is more robust for unknown and heterogeneous
human discretion models.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations and future work in the last section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide proofs in Appendix A with full assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the experimental setting and justification of our design choice. We
will also release our code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our code will be made public upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide these details in the Experiments section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide confidence intervals in our figures. For our synthetic data, it is
from a single run to demonstrate the failure case of different methods, so it is not applicable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We discuss computing recourse in the experiments section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our paper has no violation to the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss potential societal impacts in the last section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our paper uses public dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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