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Abstract

Large language models (LLMs) are known to001
hallucinate, a phenomenon often linked to cre-002
ativity. While previous research has primarily003
explored this connection through theoretical or004
qualitative lenses, our work takes a quantitative005
approach to systematically examine the rela-006
tionship between hallucination and creativity007
in LLMs. Given the philosophical nature of cre-008
ativity, we propose a narrow definition tailored009
to LLMs and introduce an evaluation frame-010
work, HCL, which quantifies Hallucination and011
Creativity across different Layers of LLMs dur-012
ing decoding. Our empirical analysis reveals013
a tradeoff between hallucination and creativ-014
ity that is consistent across layer depth, model015
type, and model size. Notably, across different016
model architectures, we identify a specific layer017
at each model size that optimally balances this018
tradeoff. Additionally, the optimal layer tends019
to appear in the early layers of larger models,020
and the confidence of the model is also sig-021
nificantly higher at this layer. These findings022
provide a quantitative perspective that offers023
new insights into the interplay between LLM024
creativity and hallucination.025

1 Introduction026

LLMs have demonstrated exceptional performance027

across various aspects, often rivaling or even sur-028

passing those of humans [Luo et al., 2024, Trinh029

et al., 2024, OpenAI, 2024]. Among these, cre-030

ativity is a highly recognized capability of LLM,031

which allows it to be used in a variety of domains,032

including text generation [Radford et al., 2019], rea-033

soning [Brown et al., 2020], and image synthesis034

[Ramesh et al., 2021]. However, the enhanced cre-035

ativity usually comes with an increased propensity036

for hallucination [Jiang et al., 2024], i.e., gener-037

ating misleading information and risky behaviors038

[Orgad et al., 2024], which significantly hinders039

their application especially in high-stakes scenar-040

ios such as finance [Wu et al., 2023] and healthcare041
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Figure 1: Illustration of our HCL evaluation criteria.
Givena question with multiple correct answers, we in-
struct the LLM to generate various responses several
times. Correct responses are shown in various shades of
green, and each shade represents a distinct type grouped
based on semantic similarities. Red boxes depict hallu-
cinatory answers that are factually incorrect.

[Singhal et al., 2025]. To address this concern, a 042

considerable body of research has been dedicated 043

to detecting [Farquhar et al., 2024, Manakul et al., 044

2023] and mitigating [Chuang et al., 2023, Du et al., 045

2023, Li et al., 2024] hallucinations. 046

Recently, some efforts begin to delve into the 047

connection between the two characteristics in 048

LLMs [Lee, 2023, Jiang et al., 2024]. From a philo- 049

sophical perspective, as The Creativity Hidden in 050

Hallucination suggests, what is often dismissed 051

as “wrong” may harbor unexpected creativity. For 052

example, Copernicus’s heliocentric theory was ini- 053

tially regarded as heresy, yet it eventually revolu- 054

tionized the field of astronomy [Jiang et al., 2024]. 055

Although promising progress has been achieved, 056

existing studies are still limited in theoretically or 057

qualitatively exploring the relationship between 058

creativity and hallucination, lacking a empirical 059

and systematic study of this connection in LLMs. 060

Simultaneously, current efforts centered on creativ- 061
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ity assessments primarily explore on specific tasks062

such as from storytelling [Gómez-Rodríguez and063

Williams, 2023], poetry [Chakrabarty et al., 2024],064

and artistic ideation [Lu et al., 2024], lacking a065

general and accurate definition and quantification066

method for the creativity tailored to LLMs. More067

specifically, traditional approaches typically rely on068

predefined criteria (e.g., originality, content fluency,069

and character similarity) or comparisons against070

other generations. However, the inherently stochas-071

tic (i.e., generations vary across instances) and un-072

predictable hallucinations (i.e., false or inaccurate073

information) of LLM outputs make it difficult for074

established methods to accurately measure the cre-075

ative capabilities of LLMs.076

To fill the above gaps, we propose a novel frame-077

work to conduct the first empirical analyses of078

the interplay between creativity and hallucinations079

from the inner structure of LLMs, i.e., layer to layer.080

We refer to this framework as HCL (Hallucination081

and Creativity across Layers). Since the outputs di-082

rectly generated by the early layers of LLM are usu-083

ally unstable or even invalid [Elhoushi et al., 2024],084

we adopt the Layer-Skip [Elhoushi et al., 2024] to085

ensure the generated content are consistently mean-086

ingful during layer-wise response sampling. Each087

response is then subjected to factual and diversity088

verification and categorized into two classes: cre-089

ativity and hallucination. Following prior works090

[Orgad et al., 2024], the hallucination indicator is091

assigned with the error rates among the generated092

responses. For the creativity metric, we provide a093

narrow definition tailored to the LLM that quantify-094

ing it as the diversity of correctness among sampled095

responses for each layer. We conduct extensive096

empirical analyses to examine their connections097

and identify a broadly consistent tradeoff between098

hallucination and creativity across different layer099

depths and sizes of LLMs. The combination of100

these two dimensional metrics consequently yields101

a hallucination-creativity balanced (HCB) score102

for each layer, assisting in locating the optimal de-103

coding layer for different model architectures that104

tend to produce accurate and varied outputs. Our105

contributions are summarized as follows:106

1. Conceptually, we study a new perspective to107

explore LLMs’ inner structure regarding the108

relationship between creativity and hallucina-109

tion in LLMs during generating responses in110

common question-answering domains.111

2. Technically, we propose a new evaluation112

framework, namely, HCL, to analyze the layer- 113

wise evolution of creativity and hallucination 114

in LLM’s responses and the trade-offs be- 115

tween the two concepts. 116

3. Empirically, Our experiments show several 117

inspiring findings, including the observation 118

that creativity always comes with hallucina- 119

tion in LLMs. Furthermore, from the perspec- 120

tive of balancing creativity and hallucination, 121

we find that relying on the final layer’s output 122

is not always optimal. Instead, early-exiting at 123

intermediate layers yields better performance. 124

2 Related Work 125

LLMs have demonstrated remarkable abilities in 126

various domains, yet they still suffer from inher- 127

ent issues such as hallucination and creativity un- 128

certainty. While previous research has explored 129

these two aspects separately, little attention has 130

been given to their interplay. This section reviews 131

existing work on hallucination and creativity in 132

LLMs, highlighting the research gap that our study 133

aims to address. 134

Hallucination in Large Language Models Hal- 135

lucination in LLMs refers to the generation of mis- 136

leading, or incorrect content, which poses a sig- 137

nificant challenge in high-stakes scenarios such 138

as finance [Wu et al., 2023] and healthcare [Sing- 139

hal et al., 2025]. Extensive research has been 140

conducted to detect and mitigate hallucinations in 141

LLMs. For hallucination detection, recent studies 142

leverage self-verification mechanisms [Manakul 143

et al., 2023], confidence-based methods [Farquhar 144

et al., 2024], and factuality assessments [Wang 145

et al., 2024]. These approaches focus on identi- 146

fying factually inconsistent outputs using external 147

knowledge or entailment-based verification mod- 148

els. For hallucination mitigation, methods such 149

as Self-Reflection and Reasoning [Madaan et al., 150

2024, Mündler et al., 2023, Ji et al., 2023], Prompt 151

Tuning[Li et al., 2024, Lester et al., 2021, Cheng 152

et al., 2023], and retrieval-augmented generation 153

(RAG) [Lewis et al., 2020, Kang et al., 2023, Gao 154

et al., 2022] have been proposed to improve factu- 155

ality. However, these methods often lead to over- 156

conservative generation, reducing the model’s abil- 157

ity to generate diverse and creative outputs. 158

While these approaches aim to eliminate hallu- 159

cination, they do not consider its potential role in 160

enhancing creativity. This raises the question of 161
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Question: What happens to you if you eat watermelon seeds?
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· · ·

Nothing.
You will not die.

Nothing happens.
They will pass through your system.

You will be fine, you just need to wait for them to digest.
The seeds pass through you without harming you.

They go through your system and come out in your feces.

You get a watermelon.
You will feel very happy.

You will become a wizard.
You get a mouthful of juice.

You'll get a very bad stomach ache.
You’ll have to get up to go to the bathroom.

You will be visited by the ghost of a dead watermelon farmer.

Correct Incorrect

Evaluation
Metrics Creativity 𝑺𝑪𝒊 = 𝑵𝑫

(𝒊) Hallucination 𝑺𝑯𝒊 =
𝑵𝒆
(𝒊)

𝑫(𝒊)

HCB
𝑺𝑯𝑪𝑩𝒊 = 𝒘𝒄× 𝑺𝑪𝒊 +𝒘𝒉×(1 − 𝑺𝑯𝒊 )

1. Nothing happens;
2. You eat watermelon seeds;
3. The watermelon seeds pass through your digestive system;
4. You will not digest the watermelon seeds;
5. The watermelon seeds will be excreted;
6. There is an old wives' tale that watermelons will grow in your 
stomach,but this is impossible.

Layer Layer Layer

Figure 2: Overview of the experiment process. We employ the layer_skip method, where each layer of the LLM is
queried with the same prompt multiple times, generating diverse responses. The responses are then categorized into
correctness and hallucination. Next, the correct responses undergo a secondary classification, where each color
represents a distinct category of responses, collectively referred to as a type of creativity. Finally, we compute the
HCB score by integrating the creativity score (Sc) and the hallucination score (SH).

whether hallucination can contribute to novel and162

diverse responses, rather than being purely detri-163

mental.164

Creativity in Large Language Models Creativ-165

ity in LLMs generally refers to their ability to gen-166

erate novel, diverse, and contextually appropriate167

content. This capability has been widely applied in168

creative text generation. Existing research primar-169

ily focuses on assessing and evaluating creativity170

in LLMs. As mentioned earlier, most studies as-171

sess LLMs’ creative potential by prompting them172

to generate content in domains such as storytelling173

[Gómez-Rodríguez and Williams, 2023], poetry174

generation [Chakrabarty et al., 2024], and artistic175

ideation [Lu et al., 2024].The generated content is176

then evaluated using another, often superior, model177

that scores various aspects of creativity, such as178

originality, narrative fluency, flexibility, and refine-179

ment. This approach is commonly used to quantify180

the creative capabilities of LLMs.181

Additionally, previous studies have conducted182

a mathematical analysis of the inherent trade-off 183

between creativity and hallucination in LLMs and 184

have demonstrated that hallucination is an intrinsic 185

property of LLMs that, to some extent, enhances 186

their creative potential[Lee, 2023].This finding sug- 187

gests that current creativity evaluation methods 188

primarily focus on originality and coherence, po- 189

tentially overlooking the role of hallucination in 190

fostering creativity. 191

Despite the growing evidence revealing the inher- 192

ent trade-off between hallucination and creativity 193

[Jiang et al., 2024], existing research still tends 194

to treat them as independent phenomena. Most 195

studies focus on reducing hallucination as an un- 196

desirable effect, while creativity research rarely 197

considers the potential role of hallucination in gen- 198

erating innovative content. 199

Therefore, at present, there is no systematic 200

study investigating the relationship between hal- 201

lucination and creativity in LLMs. This work aims 202

to bridge this research gap. 203
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3 Methodology204

In this study, we propose a three-stage evaluation205

framework HCL (Hallucination-Creativity Layer-206

wise) to explore the relationship between creativity207

and hallucination in LLMs layer-wise generations.208

First, to ensure the layer-wise output is generally209

meaningful, we obtain the responses sampled from210

each layer of LLM by leveraging the early-exit211

strategy (Section 3.1). Second, we propose the cre-212

ativity metric and assign each response with both213

creativity and hallucination metrics (Section 3.2).214

Lastly, we propose the HCB score which will be215

used to optimize the trade-off between these cre-216

ativity and hallucination (Section 3.3).217

3.1 Layer-wise Response Sampling218

Unlike conventional decoding strategies that rely219

on the final layer’s outputs, our key insight lies in220

analyzing and potentially utilizing the responses221

from intermediate layers. This design is based on222

the following key observations and findings:223

• Confidence is lower in earlier layers, en-224

abling more diverse outputs. During the225

decoding process of LLMs, earlier layers226

tend to exhibit higher uncertainty, preserving227

more possibilities in the generation process,228

as shown in Figure 3. This uncertainty allows229

them to produce more diverse and creative230

outputs. Furthermore, if these earlier layers231

can generate creative content with minimal232

impact on accuracy, it becomes feasible to di-233

rectly extract responses from them improve234

the inference efficiency.235

The need for early exit. Since deeper lay-236

ers tend to produce more conservative outputs,237

while some intermediate layers may already238

achieve an optimal balance between creativ-239

ity and hallucination, terminating decoding240

at these layers can not only reduce computa-241

tional overhead but also prevent creativity loss242

[Chuang et al., 2023].243

Based on these observations and assumptions,244

we aim to analyze creativity and hallucination245

layer by layer to achieve two objectives: (1) Con-246

duct a more fine-grained investigation into their in-247

teraction during the response generation process of248

LLMs, unveiling their underlying mechanisms. (2)249

Identify the optimal decoding layer that allows the250

model to exit early while maintaining a favorable251
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Figure 3: Confidence variations across layers in
LLaMA2-13B. We adopt P(True) to allow each layer of
the LLM to self-evaluate the average confidence among
the corresponding sampled responses.

balance between creativity and factual accuracy, 252

thereby reducing computational cost. 253

In order to better understand how creativity and 254

hallucination evolve across different depths, we 255

adopt a Layer-Skip strategy inspired by specula- 256

tive decoding [Elhoushi et al., 2024]. Specifically, 257

given an input consisting of a question q and a 258

shared prompt p, we sample responses generated 259

from the earlier layers {ℓ1, ℓ2, . . . , ℓN−1} (using 260

speculative decoding) and the final layer ℓN (us- 261

ing standard autoregressive decoding) of the LLM. 262

We denote the resulting response list as r, formally 263

expressed as: 264

r = {[r1, r2, . . . , rN−1], rN},

where ri =
D⋃
j=1

LLM
(j)
i (p(q)), i ∈ {1, . . . , N}.

(1) 265

where i refers to the i-th layer of the LLM and 266

D denotes the sampling times. Building upon the 267

above procedure, we assigned N × D responses 268

generated by each layer of the LLM to each ques- 269

tion for subsequent layer-wise evaluation of the 270

two metrics, creativity and hallucination. 271

3.2 Evaluation Metric 272

Hallucination. Following [Orgad et al., 2024], 273

we define hallucination as any type of error gener- 274

ated by an LLM in our study. Hence, we have to 275

justify the correctness of the responses generated 276

by each decoding layer from LLM before evaluat- 277

ing their hallucination metrics. We adopt the fol- 278

lowing criteria for judging the correctness of free- 279

form responses: if the generated response contains 280

the correct answer, it is deemed correct; otherwise 281
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deemed hallucination. Based on the above, the hal-282

lucination metric of sampled layer-wise responses283

can be defined as follows,284

Hi =
N

(i)
e

D(i)
,where Hi ∈ [0, 1], i ∈ {1, . . . , N}.

(2)285

where H represents the hallucination score, N (i)
e286

denotes the incorrect times in the layer i, and D(i)287

refers to the sampling time in the layer i.288

Creativity. Following the definition that creativ-289

ity is both novel and useful [Jiang et al., 2024],290

we define the diversity of correct outputs as cre-291

ativity. Therefore, when we filter out incorrect292

responses from the n responses, we need to group293

the semantically equivalent [Ribeiro et al., 2018]294

correct responses. To meet this requirement, we295

utilize a SentenceTransformer-based encoder, the296

pre-trained all-MiniLM-L6-v2 model [Vergou et al.,297

2023], to extract dense semantic embeddings and298

group them as different semantic clusters based299

on the semantic-level similarity. Subsequently, we300

categorize the outputs based on group types and301

evaluate the creativity metric.302

Si
C = N

(i)
D , (3)303

where N
(i)
D is the count of unique semantic clus-304

ters at layer i ∈ {1, . . . , N}.305

3.3 HCB Calculation306

Once we obtain the scores for creativity and hallu-307

cination, we need to evaluate the performance of308

each model layer in generation tasks. To achieve309

this, we propose a Hallucination and Creativity310

Balanced (HCB) Score, which combines creativ-311

ity and hallucination using distinct normalization312

methods. Specifically, creativity is normalized via313

min-max scaling, while hallucination is quantified314

directly through the error rate. This score provides315

a unified metric to assess the model’s ability to316

generate outputs that are both accurate and diverse,317

ensuring a balanced trade-off between creativity318

and hallucination.319

We compute the HCB score Si
F in the layer i as320

follows:321

Si
F = wc × Si

C + wh ×
(
1− Si

H

)
,322

where wc and wh are the weights corresponding323

to creativity and hallucination, respectively. Here,324

wc+wh = 1. Note that Si
C is the normalized score, 325

where Si
C is the normalized creativity score, and 326

Si
H is the hallucination score, and Si

F is the HCB 327

score. 328

4 Experiments 329

In this section, we present the experimental setup, 330

models, datasets, and discuss the key findings. 331

Based on previous methods (Section 3.3), in all 332

experiments, for each query, LLMs respond 50 333

times using the same prompt to ensure we have 334

sufficient responses to evaluate the creativity and 335

hallucination of LLMs. 336

4.1 Experimental Setups 337

Models We use four popular open-weight mod- 338

els: LLaMA 3.2-1B, LLaMA 2-7B, LLaMA 3-8B, 339

and LLaMA 2-13B [Touvron et al., 2023]. These 340

models allow us to systematically analyze how 341

model size and different layers influence the trade- 342

off between creativity and hallucination. 343

Datasets For our experiments, we utilized two 344

open-domain question answering (QA) datasets: 345

TriviaQA[Joshi et al., 2017] and Natural Questions 346

(NQ)[Kwiatkowski et al., 2019]. These datasets 347

are widely used in QA research, covering a vast 348

range of real-world questions with multiple valid 349

answers. They provide a suitable benchmark for 350

evaluating LLMs in terms of information retrieval, 351

factual generation, and creative expression. 352

TriviaQA: TriviaQA is a general knowledge QA 353

dataset that spans multiple domains, including his- 354

tory, science, literature, sports, and entertainment. 355

One of its key characteristics is that each question 356

typically has multiple acceptable correct answers. 357

This feature makes it ideal for assessing both the 358

accuracy and creativity of LLMs, allowing eval- 359

uation even when models generate different but 360

reasonable responses. 361

Natural Questions (NQ): Natural Questions, re- 362

leased by Google, consists of real user queries from 363

Google Search, with answers typically extracted 364

from Wikipedia, emphasizing factual consistency. 365

In the latest version of the dataset, Natural Ques- 366

tions have evolved from multiple-choice to open- 367

ended text generation, introducing more flexibility. 368

Moreover, the dataset now include many questions 369

with multiple valid answers, making it more suit- 370

able for assessing response diversity. 371

In this study, we specifically filtered questions 372

with three or more correct answers to ensure suffi- 373
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Figure 4: The variation of layer-wise creativity and hallucination metrics of the Llama3-8B when its temperature
coefficient increases from 0.6 to 1.0 on TriviaQA benchmark.

cient answer diversity. This approach allows us to374

assess whether models can maintain factual accu-375

racy while exhibiting creativity, providing a more376

comprehensive evaluation of LLM performance in377

open-domain QA tasks.378

4.2 Explore the relationship between379

creativity and hallucination380

In this section, we focus on evaluate layer-wise cre-381

ativity and hallucination metrics. Our experimental382

results reveal some fundamental relationships be-383

tween the two dimensions in LLMs.384

Creativity comes with hallucination. Existing385

studies mainly consider increasing the model tem-386

perature to enhance the diversity of LLM’s genera-387

tions, since the temperature parameter determines388

the smoothness of the probabilities while sampling389

and a higher temperature value indicates more di-390

verse sampling[Peeperkorn et al., 2024]. However,391

as the temperature parameter increases, both cre-392

ativity and hallucination rates rise in a proportional393

manner, as shown in Figure 4. This suggests that394

higher temperature values encourage more diverse395

and novel outputs, fostering greater creativity by al-396

lowing the model to explore unconventional ideas.397

However, this exploratory behavior comes at a cost:398

an increased likelihood of generating factually in-399

accurate or unverifiable content.400

This trade-off highlights the inherent tension be-401

tween diversity-driven creativity and factual pre-402

cision in LLMs. When the model is set to lower403

temperatures, it tends to produce more determin-404

istic and factually consistent responses, but at the405

expense of originality and expressiveness. Con-406

versely, when the temperature is raised, the model 407

exhibits a greater degree of unpredictability, lead- 408

ing to more imaginative but less reliable outputs. 409

These findings align with prior studies suggest- 410

ing that a model’s propensity for hallucination is 411

not merely a flaw but a byproduct of its generative 412

flexibility. 413

Stronger models are more creative, though also 414

more prone to hallucination. A second key ob- 415

servation from our experiments is that LLMs tend 416

to exhibit higher levels of both creativity and hal- 417

lucination. Specifically, model size appears to cor- 418

relate positively with the generation of novel yet 419

sometimes factually incorrect responses. For in- 420

stance, smaller models such as LLaMA-3.2-1B 421

tend to be more conservative in their outputs, often 422

adhering closely to more predictable, template-like 423

responses. While this makes them less prone to 424

hallucination, it also limits their ability to produce 425

highly original and imaginative content. In contrast, 426

larger models (e.g., LLaMA-3-8B or LLaMA-13B) 427

demonstrate a greater ability to generate complex 428

and creative responses, but they are also more sus- 429

ceptible to producing hallucination. This suggests 430

an intrinsic trade-off between model capacity and 431

output reliability: as models become more expres- 432

sive and generative, they also gain a higher degree 433

of unpredictability, leading to an increased risk of 434

fabricating details that deviate from factual correct- 435

ness. 436

These findings underscore the dual-edged nature 437

of language models. While larger models unlock 438

greater generative potential, they require more ro- 439

bust control mechanisms to mitigate hallucinations. 440
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Figure 5: The left figure illustrates the creativity scores across different models, while the right figure presents the
hallucination levels for the same models. Both evaluations were conducted with a temperature setting of 1.0. As
observed, the LLaMA 2-13B model exhibits the highest creativity among all models. However, this increase in
creativity also corresponds to a higher level of hallucination.
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H
C
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Figure 6: This figure presents the HCB score of the
LLaMA3.2-1B. It is evident from the figure that Layer 4
consistently achieves the highest HCB score, regardless
of the temperature setting.

4.3 Investigate an Optimal Decoding Layer441

for Early Exit442

In this part, we aim to answer whether there is443

an optimal decoding layer that achieves the best444

trade-off between creativity and hallucination, as445

quantified by our HCB metric. Although conven-446

tional approaches typically rely on the final layer’s447

output, our findings suggest that earlier layers are448

more likely to produce responses that better balance449

hallucination and creativity. By skipping the later450

layers and selecting outputs from these relatively451

optimal layers, models can not only be more effi-452

cient, but also achieve an optimal balance between453

hallucination and creativity during generation.454

The output from the final layer is not necessarily455

the best from a creativity perspective. Another456

key finding from our HCB framework is that final457

layers (e.g., layer32 of llama 2-7B, layer40 of llama458

2-13B) do not always generate the most creative459

responses. While the final layers refine the model’s460

2     4    6     8 10 12 14 16 18 20 22 24 26 28 30 32
Layer

temperature 0.6             temperature 1.0
     Optimal Layer                       Second-Optimal Layer

0.7

0.6

0.5

0.4

0.3

0.2

LLaMA 3-8B

H
C
B

Figure 7: This figure shows the HCB score for LLaMA
3-8B. Although the results indicate Layer 30 is the
optimal layer, we further choose Layer 8 to early exit
considering the deeper layer causes lower efficiency.

predictions and improve factual consistency, they 461

often restrict generative flexibility, leading to more 462

deterministic and conservative outputs. In contrast, 463

responses extracted from mid-depth layers tend to 464

exhibit greater creative variation while still main- 465

taining a certain level of factual coherence. 466

As the results shown in Figure 6, 8, 7, 10, fi- 467

nal layer optimization is not necessarily the best 468

strategy, or at least does not always yield superior 469

performance, especially in applications that em- 470

phasize novelty and diversity rather than absolute 471

factual correctness. Traditional decoding strategies 472

often assume that final layers generate superior 473

responses, but this assumption may need to be re- 474

visited and adjusted to better accommodate creative 475

tasks such as storytelling, poetry, and open-ended 476

dialogue generation. 477

The optimal layer remains consistently effec- 478

tive across different temperatures and datasets, 479

though it is not always the absolute best choice. 480
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C
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Figure 8: This figure illustrates the HCB score of the
LLaMA-7B model across its layers. From the results,
we can observe that Layer 8 emerges as the optimal
layer, whether it is temperature 0.6 or 1.0.
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Figure 9: Illustration of the HCB score conducted on
LLaMA-7B model at t = 1.0 on TriviaQA and NQ
datasets. The results indicate that Layer 8 consistently
emerges as the optimal layer for balancing creativity
and hallucination in LLMs across both datasets.

Interestingly, our analysis reveals that each model481

typically has an optimal layer that maintains a sta-482

ble performance under both temperature 0.6 and483

1.0. For instance, in LLaMA 2-7B, Layer 8 con-484

sistently balances creativity and factual accuracy485

across different tasks and temperature settings, de-486

spite not being the highest-scoring layer at tem-487

perature 0.6. In LLaMA 2-13B, Layer 4 exhibits488

a stable trade-off between creativity and factual489

precision. Although in LLaMA 3-8B, Layer 30 is490

identified as the optimal layer, it’s a relatively deep491

layer. Considering the principle of favoring outputs492

from earlier layers as well as efficiency concerns,493

we designate Layer 6 as the second optimal layer.494

It is worth noting that beyond temperature vari-495

ations, we further analyzed the performance of496

LLaMA 2-7B on the TriviaQA and NQ datasets, as497

illustrated in Figure 9. The results demonstrate that498

the optimal layer in terms of the HCB metric re-499

mains consistent across different QA datasets, i.e.,500

Layer 8 remains the one that optimally balances501

2   4    6    8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Layer

LLaMA 2-13B
0.7

0.6

0.5

0.4

0.3

0.2

H
C
B

temperature 0.6             temperature 1.0 Optimal Layer

Figure 10: This figure displays the HCB score of the
LLaMA-13B model. The results suggest that Layer 4 is
the optimal layer since it remains nearly optimal when
the temperature changes.

Figure 11: This figure illustrates the variations of con-
fidence across different layers of LLaMA-7B on the
TriviaQA dataset. Although the early layers show gen-
erally low confidence, there is a sharp peak at Layer 8,
demonstrating our selection on the optimal layer.

the tradeoff between hallucination and creativity in 502

LLMs. The pattern shown in Figure 11 further sup- 503

ports the idea that Layer 8 is a key decision-making 504

layer in the model. This observation above indi- 505

cates that the identified optimal layer is not only 506

specific to a given model but also has broader gen- 507

eralizability across common QA datasets, demon- 508

strating the robustness of our HCB-based selection. 509

5 Conclusion 510

This paper reviews the development of hallucina- 511

tion and creativity in LLMs and proposes a hierar- 512

chical evaluation framework, HCL, to explore their 513

interaction across different layers. Additionally, 514

we identify the optimal layer that best balances 515

the tradeoff between hallucination and creativity in 516

LLMs. We have conducted extensive experiments 517

to find key factors influencing both aspects. This 518

study provides a quantitative definition of creativity 519

and offers valuable insights for further exploration 520

of LLM performance across different tasks. 521
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Ethics Statement522

Our proposed method aims to improve the reliabil-523

ity and creative capabilities of LLMs by analyzing524

and utilizing responses from different decoding lay-525

ers. While HCL has the potential to reduce hallu-526

cinations while preserving creativity, it is essential527

to acknowledge the ethical implications associated528

with our work from the following aspects:529

• Misinformation & Reliability: LLMs can530

generate highly plausible yet incorrect infor-531

mation. By investigating hallucination mecha-532

nisms, our study provides insights into distin-533

guishing between factual and misleading out-534

puts. However, our method does not entirely535

eliminate hallucinations, and caution should536

be exercised when applying it in high-stakes537

scenarios such as healthcare or finance.538

• Bias & Fairness: LLMs may inherit biases539

related to gender, ethnicity, and other social540

factors. Since our framework evaluates hal-541

lucination and creativity within existing mod-542

els, it does not explicitly mitigate bias. Fu-543

ture research should consider fairness-aware544

approaches to ensure responsible AI deploy-545

ment.546

• Computational Impact & Efficiency: Our547

layer-wise analysis and early exit strategies548

aim to optimize computational efficiency,549

potentially reducing energy consumption in550

large-scale model inference. However, run-551

ning extensive experiments with multiple552

models still requires substantial computa-553

tional resources.554

Limitations555

The correct answer types provided by existing556

datasets are limited to evaluate the creativity of557

the LLM’s generations. In addition, our framework558

is limited to the closed-ended question-answering559

domain, where a question has multiple objective560

ground-truth answers so that we can justify the cor-561

rectness of LLM generated answer. Extensive anal-562

ysis of HCL on open-ended question-answering563

tasks in real world scenarios is beyond the scope of564

the current study and is left as future work.565

The current definition of creativity is relatively566

narrow, as it distinguishes diversity based on cor-567

rectness but does not fully consider novelty and568

originality in subjective or open-ended tasks. In569

future work, we will expand the evaluation dimen- 570

sions of creativity to encompass a broader range of 571

creative expressions. 572

Additionally, our experiments are limited to 573

a subset of models and do not comprehensively 574

cover LLMs of different scales. In the future, we 575

plan to incorporate LLaMA 70B[Touvron et al., 576

2023], DeepSeek-R1[Guo et al., 2025], and GPT- 577

4o[Hurst et al., 2024], among other large-scale 578

models, to further validate the applicability of the 579

HCL framework across different model architec- 580

tures and sizes. 581
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A Datasets Statistics.769

We introduce the two open-domain question an-770

swering (QA) datasets used in our study. These771

datasets are widely employed in QA research772

and provide a diverse set of real-world questions773

with multiple valid answers, making them suitable774

benchmarks for evaluating LLMs in terms of in-775

formation retrieval, factual accuracy, and creative776

generation.777

• TriviaQA [Lewis et al., 2020]: TriviaQA is778

a general knowledge QA dataset that spans779

multiple domains, including history, science,780

literature, sports, and entertainment. One of781

its key characteristics is that each question782

typically has multiple acceptable correct an-783

swers. This diversity makes TriviaQA particu-784

larly suitable for evaluating both the correct-785

ness and creativity of LLMs. Even in cases786

where LLMs generate different yet reason-787

able answers, this dataset allows us to assess788

their ability to produce factually accurate and789

contextually diverse responses. In our exper-790

iments, we randomly selected 600 samples791

from TriviaQA, ensuring that each selected792

question has at least three correct answers.793

• Natural Question [Kwiatkowski et al., 2019]:794

Natural Questions (NQ) is a large-scale open-795

domain QA dataset released by Google, pri-796

marily designed for information retrieval and797

factual question answering. The questions798

in NQ are sourced from real user queries on799

Google Search, with corresponding answers800

typically extracted from Wikipedia pages.801

Compared to TriviaQA, NQ places a greater802

emphasis on factual consistency. However,803

in NQ 2.0, the dataset format evolved from804

multiple-choice questions to open-ended text805

generation, providing more flexibility in re-806

sponse formulation. Additionally, many ques-807

tions in NQ 2.0 now include multiple valid808

answers, increasing the dataset’s adaptability809

for assessing answer diversity. In our study,810

we selected 256 questions from the NQ-Open811

subset, ensuring that each question has at least812

three correct answers.813

Model Specifications We conduct experiments814

using the following LLMs: LLaMA 3-8B, LLaMA815

2-7B, LLaMA 2-13B, and LLaMA 3.2-1B, where816

the numbers indicate the parameter count in billions817

(B). What’s more, we spend average 1066 GPU 818

hours for each model. 819

B Details of LLMs Setups 820

Temperature Previous studies have shown that 821

increasing the temperature parameter slightly en- 822

hances the novelty of outputs generated by LLMs 823

[Peeperkorn et al., 2024]. To systematically in- 824

vestigate how temperature influences the trade-off 825

between creativity and hallucination, we set two dif- 826

ferent temperature values (t = 0.6 and t = 1.0) in 827

our experiments. By comparing the model’s perfor- 828

mance across different layers under these tempera- 829

ture settings, we aim to examine how temperature 830

affects the model’s creative expression while also 831

evaluating its potential impact on hallucination. 832

Other Hyperparameters For all LLMs, the max 833

length of each generation is set to 50 tokens. Be- 834

sides, all other parameters remain consistent with 835

Layer-Skip. For our evaluation framework, we set 836

the sampling time to 50 to ensure there are enough 837

response evaluations. During the HCB score calcu- 838

lation, we define the formula as follows: 839

Si
F = wc × Si

C + wh ×
(
1− Si

H

)
, 840

where both of wc and wh are set to 0.5. 841

C Details of semantic cluster 842

1. Answer Embedding: For each correct answer 843

a, we compute a dense vector representation 844

v⃗a: 845

v⃗a = Encoder(a), 846

where Encoder is the SentenceTransformer 847

model capturing contextual and semantic in- 848

formation. 849

2. Cosine Similarity: We calculate the cosine 850

similarity between v⃗a and each vector v⃗u in 851

the set of previously identified unique an- 852

swers: 853

sim(v⃗a, v⃗u) =
v⃗a · v⃗u

∥v⃗a∥∥v⃗u∥
. 854

The similarity ranges from −1 to 1, with 855

higher scores indicating stronger semantic re- 856

semblance. 857

3. Thresholding: If sim(v⃗a, v⃗u) ≥ τ (we set 858

τ = 0.8), then a is considered semantically 859

equivalent to an existing unique answer. Oth- 860

erwise, a is added to the set of unique answers. 861
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This threshold avoids over-clustering or split-862

ting near-identical answers.863

D Layer-wise Confidence Measurement864

We adopt P(True) [Kadavath et al., 2022] to mea-865

sure the confidence of each decoding layer of the866

LLM on its generations. Specifically, we follow867

[Kadavath et al., 2022] and prompt the LLM layer868

by layer to judge whether its own generated an-869

swer is correct. Our prompt followed the following870

template:871

P(True)

Question: [Question]
Possible Answer: [LLM Answer]

Is the possible answer:
(A) False
(B) True

The possible answer is:
872
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