Under review as a conference paper at ICLR 2026

IPPRO: IMPORTANCE-BASED PRUNING WITH PRO-
JECTIVE OFFSET FOR MAGNITUDE-INDIFFERENT
STRUCTURAL PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Not only the classical methods of neural network pruning but also most
importance-based pruning methods rely too much on parameter magnitudes to
prune effectively. We propose a novel pruning strategy, named IPPRO, using
projective space to alleviate the unfair advantage given to parameter magni-
tudes. We use gradient of loss in the projective space to construct PROscore,
which is a magnitude-indifferent score that is in turn used by IPPRO, our novel
importance-based structured pruning algorithm. Extensive experiments on Con-
volutional Neural Networks (CNNs), Vision Transformers (ViT), and Large Lan-
guage Models (LLMs) demonstrate that IPPRO consistently outperforms, espe-
cially in high compression scenarios. Our results establish IPPRO as a task-
agnostic and architecture-agnostic pruning paradigm, offering both a new theoret-
ical foundation and a practical tool for magnitude-indifferent structured pruning.

1 INTRODUCTION

Deep neural networks have achieved remarkable success across vision and language models, but
their rapidly increasing scale poses severe challenges for computation and deployment on resource-
constrained platforms. Structured pruning has emerged as a practical solution, as channel and filter-
level sparsity translates directly into reduced FLOPs and memory.

Magnitude based pruning (Li et al.|[2017)), which as- ImageNet-1k On DeiT-Tiny
sumes that “larger filters are more important”, re- > i
mains dominant (Fang et al., 2024; 2023) due to “lo9 A
its simplicity and efficiency. However, this heuris-
tic introduces fundamental limitation: as shown the
dot-and-dash line in Fig. [I| pruning decisions are
strongly biased by filter norms, leading to sensitivity
under different normalization schemes and signifi- \ .
cant performance degradation at high compression e s

ratios. More advanced criteria have been proposed, ] B i it i
such as gradient information via Taylor expansion T Ypeedup o 0
(Molchanov et al.l [2019; Ma et al.l |2023) or geo-

metric similarity of filter clusters (He et al., 2019). Figure 1: Pruning performance comparison
However, as shown in Fig.[2] these methods are still without fine-tuning of IPPRO and Magnitude
not fully independent of magnitude information, as pruning on the pre-trained DeiT-Tiny model
indicated by the gap between the red and green ver- with different normalizations (BatchNorm,
ticals. Except for IPPRO, no prior pruning method IdentityNorm, LayerNorm).

has provided a fundamental solution that completely departs from “size matters” criteria.
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We address this issue by observing the dynamics of filters through projective geometry, which con-
siders the space consist of equivalence classes under scale invariance. Within lens of projective
geometry, we can discard the role of magnitude from the filter and consider the magnitude-invariant
criteria which defined via dynamics in projective space. In practice, we consider the projective off-
set from the origin as similarity, placing filters on equidistance location and observe the filters move
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Figure 2: Visualization of magnitude of pruning filters obtained by four different criteria, on
DeepLabV3-Resnet50 with Cityscapes dataset.

toward origin or not. We select this post-movement offset from origin as filter importance criteria
and propose IPPRO: the Importance-based Pruning with PRojective Offset.

IPPRO is conceptually simple, straightforward to implement, and model architecture agnostic. We
validate its practical effectiveness across diverse architectures, ranging from Convolutional Neural
Networks (CNNs) and Vision Transformers (ViT) based vision models to Large Language Models
(LLMs), where it consistently achieves strong performance even under high-pruning regimes and
in no fine-tuning scenarios. We formally define the theoretical foundations of PROscore, the key
importance score with magnitude-indifference in Section [3] describe implementation of IPPRO in
Section 4] and present its comprehensive empirical evaluation in Section 3]

2 RELATED WORKS

2.1 STRUCTURED PRUNING USING MAGNITUDES

Deep Neural Networks (DNNs) are often overparameterized, leading to unnecessary computational
costs. Pruning addresses this by removing unimportant weights or structures. Early methods like
magnitude-based pruning (Han et al., 2015) eliminate weights with small absolute values, achieving
model compression with minimal accuracy loss. However, such approaches may overlook a weight’s
actual impact on performance.

To improve pruning effectiveness, gradient-based methods (Blalock et al., [2020; Molchanov et al.,
2019) consider how changes in weights affect the loss function, enabling more informed decisions.
A key limitation is that most methods rely on magnitude information, making it difficult to fully
disregard its influence. So, our proposed method, IPPRO, address this limitation by moving beyond
magnitude-based heuristics to offer a more nuanced, magnitude-indifferent approach to structured
pruning.

2.2 IMPORTANCE-BASED PRUNING

Importance-based pruning evaluates filter contribution to remove redundancy in CNNs. Norm-based
methods like L;-norm (Li et al.l 2017 and Lo-norm (He et al.| 2018)) prune low-magnitude filters,
while others use filter similarity. For example, (He et al., 2019) uses the Geometric Median to re-
move closely clustered filters, and (Y vinec et al.l 2021} [2022) apply Scalar Hashing and Input-wise
Splitting to detect and prune similar filters based on input relevance.

Statistical and structural approaches further enhance pruning. (Wang et al., [2019b) uses Pearson
Correlation to remove highly similar filters and applies Layer-wise Max-Normalization for cross-
layer comparison. (Wang et al.|[2021)) treats filters as graph nodes to detect redundancy via structural
properties. Recently, (Gupta et al.,2024a) introduced a torque-inspired method that weights filters by
distance from a pivot, capturing spatial structure and offering a simple yet effective pruning strategy.

Our work distinguishes itself from either magnitude or statistics based approaches, as IPPRO for-
mulates pruning in a projective geometry space with a novel importance score defined from gradient
flow.

2.3  STRUCTURED PRUNING FOR TRANSFORMER ARCHITECTURES

Transformer architectures have become dominant in both vision and language domains, driven by
the success of Vision Transformers (ViTs) and large language models (LLMs). However, pruning
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Figure 3: Illustrations for conceptual understanding of PROscore for /V-dimensional filter F'.

transformers presents unique challenges due to the structure of multi-head self-attention (MHA).
Unlike convolutional layers, where filters can be pruned independently, attention mechanisms often
require coordinated pruning of related components.

To address this, two primary pruning targets have emerged in the literature. The first is head pruning,
which removes entire attention heads to reduce computational cost and redundancy (Michel et al.,
2019; Yu et al.| 2022a; |Yu & Xiang| 2023)). The second is neuron-level pruning, which reduces the
dimensionality within each head by removing individual neurons or projection components (Shim
et al.}2024;|Yu et al., 2022b; [Zhu et al., [2021)). Some recent approaches combine both strategies and
extend pruning to additional components such as embedding dimensions (Yang et al.,2023a; [Fang
et al.| [2024) or entire attention blocks (Yu et al.| [2022b).

Although TPPRO can be applied to both head-level and neuron-level pruning by grouping related
neurons, this work focuses on neuron-level pruning. This choice aligns naturally with the general-
ization of filter pruning in CNNs, where individual channels are evaluated and removed based on
importance. Neuron-level pruning offers finer granularity and greater flexibility, making it a more
suitable target for magnitude-invariant importance scoring such as PROscore.

3 METHODS

Let C be number of prunable channels in a neural network model, and F},--- , Fc € R" be the
filters which correspond to the channels. Each filter F; is a vector, which has two distinct types of
geometric information: magnitude and direction. We aim to design a novel pruning methodology
that challenges the “size matters” myth in pruning, where ‘size’ is the magnitude of a prunable filter,
as this myth limits the potential of magnitude-based pruning.

In Section [3.I] we introduce the concept of projective geometry, and define the mapping function
embed which maps the filters to the projective space RPY. After placing the filters to RPY, in
Section [3.2] we explain the distance in projective space given by an angular distance, and define the
proposed importance using the angular distance.

3.1 EMBEDDING FILTERS INTO PROJECTIVE SPACE

To extract the directional information of a filter, which can complement its magnitude, we place the
filter on a projective space with proper mapping embed, and specify the projective space which we

utilized. In algebraic geometry, the (real) projective space RPY is defined as quotient of RV +1 — A{;O}
under equivalence relation  ~ cz for all nonnegative real constant ¢, comprised of lines in RN +1

passing through origin. The element of RPY can be expressed as [v] = [vg : - - - : v] which called
homogeneous coordinates, where

Ve #0,[vg -+t un] =[cvg : -+ con]. (D)

The point [v] of projective space PRY exactly corresponds to the line in RV ! whose direction
vector is parallel to v and passing through 0.
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Considering the filter as a vector in RY, we can find the embedding function which maps filter
F,=(F, - ,Fin)#0to RPN by following function:

embed : (Fi1, -+ ,Fin) — [||F]| : Fin 2 -+ Fin]- 2)
In Fig. [3a we visualize how the filter F’ is mapped to the projective representation in N = 2 case.
Note that N = 2 appears in practice when the target layer is batch normalization layer. For the zero
filter Of, the embedding would be [1 : 0 : - - : 0], which corresponds to axis line of extra parame-
ter in RN*!. Another benefit of this placement to RPY is that it naturally enjoys the magnitude-
indifferent characteristic readily noticed by the scale invariance: embed(cF) = embed(F) for
c>0.

3.2 PROSCORE: A NOVEL IMPORTANCE SCORE FOR PRUNING

In projective space RPY, the distance between two points may be considered as an angle between
two lines in RV*+! where each line represents each point in RP™. If we denote B,.(0) be the set
of points in RPY whose angular distance between the origin is equal to r, then we can see that
Im(embed) C By 4(0); i.e. the distance between embed(F') and the origin is always equal to /4.
This is visualized in Fig. [3a| using line representations in RV*1! that B, /4(0) becomes the cone
centered at 0 and embed(F') will become a line included in B /4(0).

This phenomenon is exploited to ensure fair chance for the filters to be pruned, overcoming the
sole dependency on the magnitude. After placing the filters to B /4(0), we gauge the fate of each
filters by estimating whether it would move closer to origin (and be pruned) or not, according to the
direction of gradient descent. As depicted in Fig. [3b} if the gradient descent moves p; = embed(F;)

to one-step forwarded point p in RPY, then the movement toward origin can be represented by
angular distance 0(p}).

We define the tangent tan(6(p})) as a importance score for pruning decision of filter F;, and name
it PRojective Offset score (PROscore). Precisely, given F; let D; be extra variable initialized by
|| F5||. Then the projective point p; = [||F;|| : F3] would be updated to Eq. (3) by gradient descent
on loss function £, and A which is a hyperparameter that serves a similar role to learning rate in the
loss function.

oL
= || E| — A=
pi= |IF] =25

: Fi — ’
D, AVEL 3)

And the PROscore is computed by
F;i— A
PROscorey (i) := tan(0(p})) = %

which would be the proposed importance score of ¢-th filter. As depicted in Fig. the i-th channel
would have small 6(p;) when the red-colored movement of gradient descent makes p; closer and
otherwise (the blue-colored arrow) not.

) “4)

4 IMPLEMENTATION OF IPPRO

We present Importance-based Pruning with PRojective Offset (IPPRO), our implementation of
structural pruning using PROscore presented in Section 3| First, we overview the parameter injec-
tion trick to realize the projective space embedding. Then, we present the algorithm to compute
PROscore, our novel importance score for IPPRO, and conclude the section with the remaining
implementation details.

4.1 PROJECTIVE OFFSETTING VIA PARAMETER INJECTION

We implement the idea of embedding into the projective space as outlined in Section [3]by introduc-
ing additional parameter D with desired initialization D" = diag(||Fy|,--- ,||Fn/||). To bring
filters to projective space, we inject D parameter to the model using the extension method (Jung &
Leel [2025), which adds two identical parameters D and D, by modifying element-wise computation
layer o, which appear next to the target layer 1 as follows:

Yp5(@) =Dz — Dz + o(x). 3)
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The modification by 1, 75 does not harm the model’s functionality and performance, since D and

D are set to be same. This parameter injection trick does not alter the model’s forward functional-
ity or final outputs, but rather serves to extract auxiliary gradient information during the backward
pass, which is exclusively used for computing PROscore. The introduced parameters are removed to
retrieve the original model before actual pruning happens, as they are needed for PROscore compu-
tation.

4.2 COMPUTING PROSCORE OF FILTER

In Algorithm[I| we present the algorithm that we implemented to compute PROscore.

Algorithm 1: PROscore Computation

1: Input number of channels N, dataset D, layer W, consecutive operation o and model f(W, o)
Compute D™ = diag(||Fy||,--- , | Fn|l)

Extend model to f(W, 1/JD75) using ¢, 5 in Eq. H

Initialize D, D + D"

Compute V L using backpropagation with D

Compute tan(6(p’)) for all i’s by Eq.

Return the PROscore) (i) tan(0(p})) for each filter F;

AR A R

Given pretrained model with filters F; = W, ., we compute D‘"** by line 2 of Algorithm |I| and
extend the model by adding parameters to o, which are initialized by D****. The choice of ¢ would
be followed by the choice of target layer. For example, if the target is scaling factor of batch normal-
ization layer in ResNet then o would be the ReLU activation. After extending model, we estimate
the loss gradient using the training dataset via backpropagation. Finally, we compute the tangent
value of angular distance 6(p}) between the origin and p/.

4.3 COMPUTING PROSCORE OF ATTENTION

Attention layer of transformer, mostly the MHA (Multi-Head self attention) requires several modi-
fications to prune in sense NP (neuron pruning) which introduced in (Shim et al., [2024).

First, the MHA does not include any activation layer ¢ inside the attention score computation, thus
we consider the auxiliary identity activation right after the QKV computation and extend the model
by replacing this identity function )p () = Dx+. In initialization of D, we consider the multiplier
m,; which is solution of quadratic equation mi —1 = m;||F;|| for each filter index 4. After, we rescale

F; by F; < m;F; and initialize D; < % — 1. As a result, this initialization does not change the

Q.K and V tensor but place (D;, F;) on B;/4(O).

Second, due to latency issue, the number of neurons of each head must be equal for the parallel op-
eration in GPU. Therefore, we group the neurons to be pruned together, and take average PROscore
over each neurons.

Lastly, the number of channels in query and key must equal; we adjust the pruning ratio to be equal
on query and key, when we prune the attention layer after PROscore computation.

4.4 IMPLEMENTATION OVERVIEW

IPPRO computes the PROscore without updating model parameters. Gradients are accumulated
across the dataset, and pruning is applied to the original model using the precomputed scores. This
design avoids iterative retraining during scoring and improves scalability. Further details of the im-
plementation are provided in Section [A] To ensure fair comparisons, we followed a standardized
fine-tuning protocol, full details of which are described in Section [B| In particular, we strictly ad-
hered to the original pretrained fine-tuning recipe and did not compare against models trained with
modified or alternative recipes (e.g., modified distillation loss), so that our evaluation remains con-
sistent and unbiased.
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Table 1: DeiT and EfficientFormer pruning performance on ImageNet-1k

Acc(1%)
Model Method Params /(%) FLOPs|(%)
Base. Prun. A
WDPruning (Yu et al.|[2022a) 81.80 80.76 -1.04 36.1 43.7
X-Pruner (Yu & Xiang|[2023) 81.80 81.02 -0.78 - 51.7
DeiT-Base UVC (Yu et al.[[2022b) 81.80 80.57 -1.23 - 54.5
SNP (Shim et al.|[2024) 81.80 79.63 -2.17 63.5 63.6
IPPRO (ours) 81.80 81.14 -0.66 63.7 63.6
WDPruning (Yu et al.|[2022a) 79.85 7838 -1.47 39.8 43.7
X-Pruner (Yu & Xiang|[2023) 79.85 7893 -0.92 - 47.8
DeiT-Small UVC (Yu et al.[[2022b) 79.85 7882 -1.03 - 50.0
SNP (Shim et al.|[2024) 79.85 7852 -1.33 54.7 56.5
IPPRO (ours) 79.85 79.13 -0.72 554 56.5
SSVIiTE (Chen et al.[|[2021) 7220 70.12 -2.08 26.3 30.7
WDPruning (Yu et al.[[2022a) 72.20 70.34 -1.86 38.5 46.1
DeiT-Tiny X-Pruner (Yu & Xiang{|2023) 7220 71.10 -1.10 - 53.8
UVC (Yu et al.[[2022b) 7220 71.30 -0.90 - 53.8
SNP (Shim et al.|[2024) 7220 7029 -1.91 473 53.8
IPPRO (ours) 7220 71.67 -0.53 433 53.8
EfficientFormer-L1 SNP (Shim et al.|[2024) 7920 75.53 -3.67 - 53.8
IPPRO (ours) 79.20 77.08 -2.22 48.8 53.8

5 EMPIRICAL VALIDATIONS

We validate the effectiveness of our proposed method, IPPRO, across a diverse range of deep
learning tasks, including image classification, semantic segmentation, and language. For image
classification, we conduct experiments on DeiT (Touvron et al.l [2021) and EfficientFormer (L1
et al., 2022) with the ImageNet-1k dataset (Deng et al., |2009), and on various CNN models us-
ing ImageNet-1k, CIFAR-10 and CIFAR-100 (Krizhevsky et al.,2009). For semantic segmentation,
we use DeepLabv3-ResNet50 (Chen et al.,[2017) on the Cityscapes dataset (Cordts et al.,|2016). Fur-
thermore, to demonstrate its versatility, we apply IPPRO to a language task using the LLAMA-7B
model (Touvron et al.| 2023)). These comprehensive experiments showcase IPPRO’s robust perfor-
mance and broad applicability.

IPPRO’s performance was compared against various state-of-the-art pruning methods, Such as Tay-
lor (Molchanov et al., 2019), SNP (Shim et al., [2024)), SIRFP (Lv et al., [2024), and LLM-Pruner
(Ma et al.} |2023)). Across all benchmarks, IPPRO consistently delivered better or comparable perfor-
mance with a reduced model size.

5.1 PRUNING PERFORMANCE ANALYSIS

5.1.1 PERFORMANCE ANALYSIS OF IPPRO oN CNNs

We first evaluate IPPRO on CNN-based semantic segmentation task using DeepLabv3 with ResNet-
50 on the CityScapes dataset (Cordts et al., 2016)), following the setup of DCFP (Wang et al.| [2023).
While SIRFP (Wu et all [2025) and DCFP
(Wang et al) 2023) are segmentation task-
specific pruning method, IPPRO is task and
architecture-agnostic. Despite this generality,
IPPRO achieves comparable or superior results,

Table 2: Cityscapes - DeepLabV3-ResNet50

mloU

Prun.

Method Params|(%) FLOPsl(%)

Base.

Random 816 787 -29 59.8 60.6

1 1 NS (Liu et al.}2017} 81.6 799 -1.7 62.3 59.4

eVeI.l ShOWH}g an. edge over SIRFP n some Taylor(Molchanov et al.[2019}  81.6 803 -1.3 63.7 60.1

Settlngs’ Wthh hlghhghts the Strength Of our DepGraphll-anggal.. 2023) 81.6 800 -1.6 59.2 60.4

N FPGM(He et al.[2019} 81.6 802 -14 63.9 61.2

approach. As shown in Table @ IPPRO pre-  DCFp(Wang etal[2023] 816 809 07 642 60.9

FGP(Lv et al.|2024] 793 790 -03 64.4 60.4

serves full mloU at around 60% model reduc-  swrp{Waer alp023| 816 813 03 648 613

. . IPPRO 815 815 0.0 64.0 61.8
tion and consistently outperforms or matches tours) _ -

. . FPGM(He et al.|2019) 816 793 -23 74.5 71.0

other methods across pruning levels. Qualita-  DCFp(Wang etal7023] 816 802 -14 743 713

. . . SIRFP(Wu et al.{[2025] 81.6 809 -07 74.4 71.9

tive results (Figs. @] and [7) show that semantic  pprooursy S5 812 03 74s 722

structure and object boundaries remain intact, = FPGM(He ctaLlpo19] 8.6 779 37 848 807

. . DCFP(Wang et al.[2023] 816 795 -2.1 83.9 802

even under high sparsity. SIRFP(Wa ct al.|2025] 816 794 22 87 816

IPPRO (ours) 815 796 -19 85.1 81.6

For image classification, we further validate
IPPRO on ResNet-50 and MobileNet with
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Figure 4: Qualitative results of IPPRO on the segmentation task: Cityscapes dataset using
DeepLabv3. From left to right: input image, ground truth, unpruned model, and IPPRO-pruned mod-
els with 60%, 70%, and 80% sparsity, respectively.

Table 3: LLAMA-7b pruning performance comparison of various pruning method on five common
reasoning datasets

Remain Param Acc(T%)

. Method Avg(1% Drop(] %
Ratio BoolQ PIQA ARCe ARCc opoa &0%) PUL%)
10 Bascline 073 078 067 041 042 0600 0.0
LLM-Pruner (Ma et al|2023] 069 076 063 037 040 0570 3.0
FLAP (An et al.| 024] 0.69 076 0.69 039 039 0584 1.6
038 : Lal]2022
Dobi-SVD (Wang etal 2025} 073 077 065 037 042 0588 12
IPPRO (ours 073 077 067 038 040  0.590 1.0

ImageNet-1K, as well as VGG19 and ResNet-56 with CIFAR-10/100. Across all settings, IPPRO
demonstrates robust compression—accuracy trade-offs. More detailed results and analyses are pro-
vided in Section[d

5.2 PERFORMANCE ANALYSIS OF IPPRO ON VISION TRANSFORMERS(VIT)

To demonstrate the generalizability of IPPRO beyond CNNs, we conducted a comprehensive
performance comparison of recent structural pruning methods, including IPPRO, on a range of
Transformer-based vision models: DeiT (Base/Small/Tiny), and EfficientFormer-L1. The experi-
ments were performed on the ImageNet-1k dataset, and the results are summarized in Table [T}

Table [T] clearly illustrates that IPPRO demonstrates superior performance across the Various DeiT
models. Notably, when compared to other pruning methods achieving similar FLOPs reductions,
IPPRO consistently maintained the lowest or a highly competitive accuracy drop. For instance, on
the DeiT-Base model, IPPRO reduced FLOPs by 63.6% with an accuracy drop of only 0.66%. This
is a significantly better result than SNP, which showed a much larger accuracy drop of 2.17% for the
same FLOPs reduction. Furthermore, IPPRO exhibited the minimal accuracy degradation among all
compared methods for this model.

Our experiments on the EfficientFormer-L1 model also confirmed the superior performance of IP-
PRO. While SNP achieved a 53.8% FLOPs reduction with a substantial accuracy drop of 3.67%,
IPPRO maintained more stable performance with a smaller accuracy drop of 2.22%. This result
highlights the ability of the IPPRO methodology to generalize effectively to other Transformer-
based models for vision tasks, showcasing its broad applicability.

5.3 PERFORMANCE ANALYSIS OF IPPRO ON LARGE LANGUAGE MODELS(LLMS)

To demonstrate that IPPRO is not limited to vision tasks and can generalize to a variety of other
tasks, we conducted experiments on both the LLaMA-7B and LLaMA-2-7B models using different
pruning ratios. Our experimental setup followed the configuration of LLM-Pruner, so we used only
randomly selected 10 datasets for the PROScore calculation, and during the performance recov-
ery phase using Alphaca dataset 2023). For evaluation, we performed only zero-shot
evaluation.
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Table 4: LLAMAZ2-7b pruning performance comparison of various pruning method on five common
reasoning datasets

Remain Param Acc(1%)

. Method Avg(1% Drop(] %
Ratio PIQA HellaSwaz  WinoGrande ARCe ARCc 20 pUL%)
1.0 Baseline 0.78 057 0.69 076 043 0646 0.0
LLM-Pruner (Ma ot al.]2023) 0.67 035 052 048 022 0448 19.8
SliceGPT (Ashkboos ot al.|2024]  0.58 0.46 0.55 037 028 0448 19.8
05 Bonsai (Dery et al12024) 0.66 0.40 0.54 049 026  0.470 17.6
Wanda-sp (Sun et al.||2023) 0.63 0.32 0.53 043 0.20 0.422 224
IPPRO (ours) 0.68 043 0.51 050 028  0.480 16.6

We compared the results of the LLaMA-7B model on five common sense reasoning datasets: BoolQ
(Clark et al.| [2019), PIQA (Bisk et al.| [2020), ARC-easy (Clark et al.,2018)), ARC-challenge (Clark
et al., 2018) and OpenbookQA (Mihaylov et al.,[2018]). As shown in Table [3| IPPRO demonstrates
consistent and robust performance on all datasets. So, our average score is higher than other stat-of-
the-art LLM pruning methods. Similarly, we compared the results of the LLaMA2-7B model on five
common sense reasoning datasets: PIQA, HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi
et all 2021), ARC-easy and ARC-challenge. As shown in Table 4] IPPRO does not perform well
on just one specific dataset; instead, it achieves a consistently high or comparable score across all
datasets. This indicates that IPPRO ensures strong generalized performance across various tasks.

5.4 RESULTS WITHOUT FINETUNING

To examine whether the effectiveness of IPPRO depends heavily on fine-tuning, we evaluated
its performance without any fine-tuning and compared it with L;-norm (He et al.l 2017)), Taylor
(Molchanov et al., 2019), and hessian (Moosavi-Dezfooli et al., [2019) pruning methods. Using
a uniform pruning ratio across all layers, IPPRO consistently outperformed all baselines on the
ImageNet-1k dataset with DeiT-Tiny, as shown in Fig. [5al Notably, when the pruning ratio is in-
creased to an extreme level, the superiority of IPPRO becomes even more pronounced. Furthermore,
even without fine-tuning, IPPRO demonstrates more stable performance in segmentation tasks us-
ing DeeplabV3-ResNet50, as shown in Fig. [5bl As a result, IPPRO demonstrate its applicability in
low-resource environments such as embedded or on-device setting. Also, the results for the LLMs
are in Section[C4]

5.5 SAMPLING SENSITIVITY ANALYSIS

IPPRO computes importance scores by accumulating gradients, as defined in Eq. (), which results
in linear time complexity with respect to the number of input samples. While using the full dataset
ensures maximum accuracy, it incurs substantial computational cost. To evaluate this trade-off, we
analyze the sensitivity of our gradient-based importance estimation to the number of samples used.
We employed the LLaMA-7B model, and our experiments showed that IPPRO is robust to subset-
based sampling. As seen in Table 5, the performance difference was merely 0.04% when using

ImageNet-1k on DeiT-Tiny Cityscape on DeeplabV3
701 - -4~ Taylor 804 -4~ Taylor
N, = Hessian = Hessian
o o = —- 1 704
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2 504 ' 601
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i 40 _g 50
Q [y
= O 40+
3 304 =
© % 30 4
5 20 °
8 E 204
<< 104
104
ol
6 1b Zb Bb 4‘0 5‘0 6‘0 7‘0 8‘0 6 1‘0 2‘0 Bb 4b 5‘0 6‘0
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(a) DeiT-Tiny Result (b) DeepLabV3-ResNet50 Result

Figure 5: Without Finetuning Topl Acc and mloU results of DeiT-Tiny and DeeplabV3 models
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Table 5: LLM Pruning results on different calibration size

ibrati Acc(T%

Calibration Set Method (1%) Avg(1%)

Num samples BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c  OBQA

NA Baseline 73.1 78.3 72.9 66.8 67.3 414 424 63.17

10 LLM-Pruner 69.5 76.4 68.1 65.1 63.4 379 40.0 60.06
IPPRO (ours)  72.8 76.8 67.5 65.1 67.2 37.6 39.6 60.94

100 IPPRO (ours)  72.9 75.9 66.7 66.3 65.6 37.7 39.0 60.59

1000 IPPRO (ours)  72.1 76.8 67.1 62.8 68.5 38.8 40.8 60.98

only 10 samples compared to 1,000. This implies an immense empirical speedup potential without
sacrificing pruning performance. Additional results are available in the Section[E]

6 DISCUSSION

IPPRO and Catalyst regularization (Jung & Lee, 2025)) are closely related, much like the relationship
between magnitude pruning and Lasso regularization. As shown in |[Liu et al.| (2017), Lasso leads
to pruning decisions based on filter magnitudes after reducing the filter norm. Similarly, Catalyst
regularization results in pruning decisions based on the ratio between trained filters and auxiliary
parameters, which is essentially the same criterion used in IPPRO.

The “size matters” myth in pruning has proven to be a more pervasive and problematic heuristic
than previously acknowledged. Although IPPRO is model- and task-agnostic, its performance is
consistently competitive with, or even superior to, specialized methods such as SIRFP (Wu et al.,
20235)) for segmentation and SNP (Shim et al., [2024)) for model-specific pruning. IPPRO’s mecha-
nism, measuring angular distance from the origin in projective space to eliminate scale dependence,
is conceptually simple, yet remarkably effective. These results suggest that magnitude bias, long
regarded as a minor artifact, may in fact be a central factor limiting the effectiveness of conventional
pruning strategies.

The strength of IPPRO arises from the universality of PROscore. Rather than relying on filter size,
PROscore defines importance through the trajectory of filters under gradient descent, ensuring that
PROscore is not tied to any particular model architecture or task. Consequently, IPPRO applies
consistently acriss paradigms such as CNNs, ViT, and LLMs, demonstrating broad generalization.
Unlike domain-specific approaches, IPPRO establishes a truly versatile pruning paradigm grounded
in magnitude-indifferent principles. As further evidenced in Section D] IPPRO is uniquely free from
magnitude correlations compared to other criteria, reinforcing its position as a truly magnitude-
indifferent pruning paradigm.

Despite the demonstrated strengths, IPPRO have limitations such as computational overhead facing
large datasets as PROscore requires a full-batch gradient. However, as shown in Section [5.5] and
Section [E] PROscore remains reliable with subset-based sampling, suggesting a promising direction
toward a stochastic variant for online pruning at data scale.

7 CONCLUSION

We introduce PROscore, a novel magnitude-invariant importance criterion, and bulit upon it to pro-
pose IPPRO, a structured pruning method. Unlike conventional approaches that rely on filter mag-
nitude, PROscore leverages projective geometry to evaluate filter importance through angular dis-
placement under gradient descent. This fundamentally challenges the longstanding “size-matters”
assumption in pruning. Extensive experiments across CNNs, ViT, LLMs demonstrate that IPPRO
delivers consistent and robust performance improvements regardless of model architecture or task
domain. Notably, it maintains strong accuracy under high pruning ratios and limited fine-tuning sce-
narios. These results highlight IPPRO as a versatile and practical tool for pruning. Beyond empirical
gains, our work provides the theoretical foundation of structural pruning in projective geometry,
offering a fresh perspective for future pruning research. Overall, IPPRO establishes a magnitude-
indifferent paradigm for importance-based pruning, advancing both the theoretical understanding
and practical utility of neural network compression.
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Table 6: Finetuning configurations for models.

Finetuning Configs ResNet-50  MobileNetv2 ResNet-56 VGG-19 DeiT
dataset ImageNet-1k  ImageNet-1k  CIFAR-10 CIFAR-100 ImageNet-1k
epochs 180 300 400 400 300
batch size 128 256 256 256 512
optimizer SGD SGD SGD SGD AdamW
learning rate scheduler step cosine step cosine cosine
step size 40 - 30 - -

base learning rate 0.01 0.01 0.025 0.017 0.0005
weight decay le-4 le-4 0.0005 0.005 0.01
optimizer momentum 0.9 0.9 0.9 0.9 (0.9, 0.999)

A IMPLEMENTATION DETAIL

Note that the model parameters are not updated during the PROscore computation. The extended
model is reverted to the original model and then we prune the filters according to the obtained
PROscore.

To reduce the randomness of the empirical results of our implementation, we fixed the pre-trained
weights T and the parameter D obtained from the extended projective space computed using the
pre-trained weights. Also, we accumulate the gradients V g, £ and % from each batch of the back-

propagation process using the entire dataset D, unless otherwise mentioned.

Using the accumulated gradient values, along with the original model weights and the expanded
parameter D, the layer-wise PROscore is computed according to Eq. (@). Using the PROscore,
layer-wise pruning is performed on the original base model, which does not include the extended
parameter D using the previously computed importance scores.

B FINETUNE RECIPE

In this section, we detail the hyper-parameters used for fine-tuning as shown in Table[6] All or some
of the models were fine-tuned using the PyTorch 1.13 framework on a Nvidia RTX 4090 GPU.
Additionally, we emphasize that we did not use external data augmentation skills such as Color-
jitter or Mix-up, which often employed to improve the performance in other pruning methods, since
it invokes ethical issue on fair-comparison, as pretrained model did not used them and results with
additional augmentation may not show the advantage of pruning method only.

C ADDITIONAL PERFORMANCE ANALYSIS

C.1 CIFAR-10 AND CIFAR-100

We evaluated IPPRO on CIFAR-10 (ResNet-56) and CIFAR-100 (VGG19) using DepGraph pre-
trained weights (Fang et al.| 2023)). As shown in Table[/} IPPRO reduces FLOPs and parameters by
up to 49% on CIFAR-10 with a 0.55% accuracy gain. Even at higher compression rates (up to 77%),
accuracy drops by only 1%, outperforming other methods. On CIFAR-100, IPPRO achieves 87%
FLOPs and 87% parameter reduction with minimal accuracy loss, highlighting its effectiveness for
compact, high-performing models.

C.2 IMAGENET-1K

On ImageNet-1k, we evaluate IPPRO with ResNet-50 under three compression levels (47%, 60%,
and 74% FLOPs reduction). As shown in Table [§) IPPRO improves Top-1 accuracy by 0.06% at
moderate pruning and remains competitive at higher compression, outperforming state-of-the-art
methods. Furthermore, for other FLOP reductions on 60% and 74%, IPPRO exhibited significantly
higher accuracy compared to other superior methods.
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Table 7: CIFAR-10 and CIFAR-100

Model Method Top-1 Acc (%) Params| FLOPs]
Dataset Base. Prun. A (%) (%)
Depgraph(Fang et al.|[2023) 93.53 9377 +0.24 - -
HBFP(Basha et al.[[2024) 93.26 9242 -0.84 439 43.6
GAL(Lin et al.;[2019) 93.26 93.38 +0.12 12.3 37.6
HRank(Lin et al.[[2020) 93.26 93.52 +0.26 17.0 29.3
CHIP(Sui et al.[[2021) 93.26 94.16 +0.90 439 47.4
FPAC(Yang et al.|[2023b) 93.26 93.71 +0.45 42.8 47.4
ResNet-56  IPPRO (ours) 93.53 94.06 +0.53 49.7 49.3
CIFAR-10" ™ HRank(Lin et al.| 2020) 9326 9072 -2.54 684 74.1
HBFP(Basha et al.[[2024) 93.26 91.79 -147 75.4 74.9
GAL(Lin et al.|[2019) 93.26 91.58 -1.68 66.1 60.2
CHIP(Sui et al.;[2021) 93.26 92.05 -1.21 71.8 72.3
SPSRC(Sun & Shi/[2024) 93.59 91.65 -1.94 64.7 63.9
IPPRO (ours) 93.53 9247 -1.06 717.7 71.8
Depgraph(Fang et al.|[2023) 73.50 7039 -3.11 - 88.7
Kron-OBS(Wang et al.|[2019a) 73.34 60.66 -12.6 - 83.5
VGG19 Greg-2(Wang et al.![2020) 74.02  67.75 -6.27 - 88.6
CIFAR-100 EigenD(Wang et al.||2019a) 73.34 65.18 -8.16 90.9 88.6
Torque(Gupta et al.||2024b) 73.03 65.87 -7.16 90.8 88.7
GAT Transprunig(Lin et al.|[2024) 73.26 66.68 -6.58 - 89.0
IPPRO (ours) 73.50 70.47 -3.03 87.9 87.5

Table 8: Comparison of pruning performance on ImageNet dataset

Top-1 Acc (%) Top-5 Acc (%)
Model Method Params|(%) FLOPs/(%)
Base. Prun. A Base. Prun. A

SFP (He et al.||2018) 76.15 7461 -1.54 9287 9206 -0.81 N/A 41.8

Autopruner (Luo & Wu2020)  76.15 7476 -1.39 92.87 92.15 -0.72 N/A 48.7

FPGM (He et al.|[2019) 76.15 7559 -0.56 9287 92.63 -0.24 37.5 422

Taylor (Molchanov et al.|2019) 76.18 74.50 -1.68 N/A N/A N/A 44.5 44.9

GAL (Lin et al..2019) 76.15 7195 -420 92.87 9094 -1.93 16.9 43.0

HRank (Lin et al.[[2020) 76.15 7498 -1.17 9287 9233 -0.54 36.6 43.7

SCOP (Tang et al.[[2020) 76.15 7595 -020 92.87 92.79 -0.08 42.8 453

CHIP (Sui et al.[[2021) 76.15 76.15 0.00 9287 9291 +0.04 44.2 48.7

RGP(Chen et al.|[2023) 7622 7530 -092 N/A N/A NA 43.8 43.8
FPBICI(Tang et al.|[2024) 76.13 76.08 -0.05 9286 9285 -0.01 459 50.4

ResNet-50 IPPRO (ours) 76.15 7621 +0.06 9287 93.02 +0.15 46.4 50.4
SCOP (Tang et al.[[2020) 76.15 7526 -0.89 9287 9253 -0.34 51.8 54.6

SIRFP (Wu et al.[[2024) 76.15 75.14 -1.01 92.87 93.12 +0.25 N/A 58.7

CHIP (Sui et al.[[2021) 76.15 7526 -0.89 9287 9253 -0.34 56.7 62.8

Torque (Gupta et al.[2024a) 76.07 7458 -149 N/A N/A N/A 64.5 57.2
FPBICI(Tang et al.|[2024) 76.13 7501 -1.12 9286 9230 -0.56 57.7 63.8

IPPRO (ours) 76.15 7551 -0.64 9287 92.67 -0.20 60.0 60.0

HRank (Lin et al.[[2020) 76.15 69.10 -7.05 92.87 89.58 -3.29 67.5 76.0

CHIP (Sui et al.[[2021) 76.15 7330 -2.85 9287 9148 -1.39 68.6 76.7

RGP (Chen et al.|[2023) 7622 7268 -354 N/A N/A NA 75.0 75.0

IPPRO (ours) 76.15 7338 -2.77 9287 9150 -1.37 74.2 74.2

Meta (Liu et al.|2019) 7470 6820 -6.50 N/A N/A NA N/A 54.2
MobileNetV2  GFP (Liu et al.[[202T) 75.74  69.16 -6.58 N/A N/A N/A N/A 50.5
IPPRO (ours) 7201 6790 -411 90.62 88.04 -2.58 423 54.2

We further validate IPPRO on MobileNetV2, a compact model without residual connections, where
it shows the smallest accuracy drop at comparable FLOPs, demonstrating architectural versatility.

C.3 GLOBAL PRUNING
We define our importance score using angular deviation in the projective space, measuring how

much each filter responds to data relative to a reference value of tan(7). Although the absolute
score can vary with the hyperparameter A\, PROscore enables global comparability without explicit
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normalization, unlike magnitude-based methods. This property is essential for global pruning, where
importance scores must reside on a comparable scale to ensure fair competition among filters across
layers. Without this, layers with intrinsically larger scores may be unjustly favored. To verify that
score scaling induced by Eq. A does not undermine pruning behavior, we analyze its effect and
confirm the stability of our method in Section [G]

Table 9: Global Pruning Performance results of ImageNet and CIFAR-10 datasets.

(a) ImageNet-1k on ResNet-50 (b) CIFAR-10 on ResNet-56

Top-1 Acc (%) Remain Top-1 Acc (%) Remain
Method Base. Prun. A  FLOPs(G) Method Base. Prun. A FLOPs(M)
ResConv-Prune(Xu et al.|2020) 762 700 -6.2 1.6 FSM(Duan et al.|[2022) 9326 93.63 404 61.17
DBP-0.5(Wang et al.[|2019c) 76.2 724  -38 N/A ITFCP(Chen & Wang|2024) 93.39 93.60 +0.21 60.73
Meta(Liu et al.[[2019) 762 734 28 1.0 GCNNA(J1ang et al.|[2022) 9372 93.72 0 58.29
AutoSIim(Yu & Huang|[2019) 762 740 -2.2 1.0 FSIM(Liu et al.][2023] 9330 9348 +0.18 59.24
GReg-2(Wang et al.|/[2020) 762 739 23 1.3 IPPRO (ours) 93.53 94.00 +0.47 63.66
i}"l‘,lﬁi‘)stho?r:; a2z ;gé %2 }72 % QSFM(Wang ot al|2022] 9321 9188 -1.33  50.62
GBN(You et al.[2019) 93.10 91.76 -1.34 40.23
HALP(Shen et al.|[2022} 762 68.1 -8.1 0.6 FSIM(Liu et al.|2023) 9330 91.96 -1.34 31.08
MDP (Sun et al.{2024) 762 70.0 -6.2 0.5 IPPRO (ours) 9353 9243 -1.10 37.49
IPPRO (ours) 762 699 -6.3 0.6 —

By leveraging this robust scoring scheme, our global pruning method consistently outperforms con-
ventional magnitude-based global pruning. As shown in Table[J] it also achieves performance on par
with other advanced approaches specifically designed to address the shortcomings of norm-based
criteria.

C.4 RESULTS WITHOUT FINETUNING OF LLMS

To assess the impact of fine-tuning on LLMs pruning, we evaluated IPPRO without any fine-tuning
and compared it against Li-norm (He et al., |2017) and Taylor (Molchanov et al., 2019) pruning
methods using LLM-Pruner. We pruned the models to retain 20% and 30% of the parameters and
reported the results on nine datasets, as shown in Table ['115} At the 20% retention level, the perfor-
mance of I[PPRO was generally comparable to Taylor, with slight variations across some datasets. In
contrast, at the 30% retention level, IPPRO consistently outperformed all other methods across ev-
ery dataset. These results indicate that, even without fine-tuning, IPPRO provides stable and reliable
performance when applied to LLMs.

Table 10: LLAMA-7b without finetune results

Remain Param

Ratio Method WikiText2 (%) PTB (l%) | BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA ‘ Avg ‘ Drop(|.%)

1.0 | Baseline | 12.62 22.14 | 73.1 783 729 66.8 67.3 41.4 424 | 63.17 | 0.0
LLM-Pruner (L1) 236.23 446.55 50.52  57.89 40.42 51.46 3586 27.99  27.80 | 41.70 21.47

0.2 LLM-Pruner (Taylor) 19.77 36.66 59.39 7557 65.34 61.33 59.18 3712 39.80 | 56.82 6.35
IPPRO (ours) 17.89 29.39 6526 74.54 64.06 63.22 5826 3456 3820 | 56.87 6.3
LLM-Pruner (L1) 294.00 446.55 4147  56.58 35.62 50.91 32.11 25.51 29.80 | 38.86 24.31

0.3 LLM-Pruner (Taylor) 32.85 74.33 62.17  68.77 59.49 53.28 4583 3038 3540 | 50.76 1241
IPPRO (ours) 18.89 31.63 6526 73.75 61.67 62.12 5424 3379  36.60 | 5535 7.82

D COMPARISON OF IMPORTANCE CRITERIA

We compare IPPRO with other magnitude- and gradient-based pruning methods such as L;-norm
(He et al.,|2017), Taylor (Molchanov et al.,[2019), and geometric (He et al., 2019). For fairness, we
compute gradients across the entire dataset, even for methods like Taylor that support randomized
subsets. As shown in Fig. [6] traditional methods heavily depend on pre-trained weights and pro-
duce highly similar pruning patterns. In contrast, [IPPRO demonstrates reduced reliance on initial
weights, yielding distinct importance distributions. Histogram visualizations of ResNet-50 layers
further confirm that IPPRO prunes differently, supporting its robustness against weight initialization
bias.
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Figure 6: Visualization of magnitude of pruning filters obtained by four different criteria, on
DeepLabV3-Resnet50 with Cityscapes dataset.

E SENSITIVITY ANALYSIS

We conduct experiments on ResNet-56 with CIFAR-10 and VGG-19 with CIFAR-100, varying the
number of samples used to 100%, 50%, 25%, and 5% of the dataset. A balanced label sampler is
employed to preserve label distribution across mini-batches. To account for randomness introduced
by subset sampling, each configuration is repeated five times, and both the mean (Mu) and the
maximum accuracy are reported.

Table 11: Experimental results on different dataset size

(a) CIFAR10 dataset on Resnet-56 (FLOPs reduction (b) CIFAR100 dataset on VGG19 (FLOPs reduction

71.85%) 87.5%)
Dataset Time Top-1 Acc (%) Dataset Time Top-1 Acc (%)
size  usage(s) Base. Prun. Mu(Max) A Mu (Max) size  usage(s) Base. Prun. Mu(Max) A Mu (Max)
Full 45.4 93.53 92.47 -1.06 Full 132 735 70.47 -3.03
50% 25.4 93.53  92.18(92.44)  -1.35(-1.09) 50% 6.9 735 69.66(70.09)  -3.84(-3.41)
25% 16.6 93.53  92.27(92.46)  -1.26 (-1.07) 25% 35 735 69.55(70.03)  -3.95(-3.47)
5% 72 9353 92.21(92.43)  -1.32(-1.10) 5% 0.7 735 69.58(70.24)  -3.92(-3.26)

F QUALITATIVE RESULTS OF DEEPLABV 3

In this section, we present qualitative results of the segmentation task. We compare the original im-
age, ground truth segmentation, segmentation result from the unpruned model, and the segmentation
result after pruning using our PROscore.
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Figure 7: Visualization CitySpace dataset Our Pruning results of using DeeplabV3-ResNet50 models

G SENSITIVITY ANALYSIS OF A VALUE

The absolute value of PROscore is affected by the hyperparameter A\, which controls the step size of
the gradient movement in real projective space RPY, since the angle 0(p}) is related to the length

pip;. In extreme case, if A — 0 then 6(p;) — T and thus the PROscores would distribute close to
one.
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However, the pruning decision are invariant under selection of isotropic scaling on A > 0, since we
are choosing filters with respect to their relative order which are invariant: if the p}’ is new point
under gradient movement with different step size A, then following holds: if 6(p;) < 6(p};) then

0(pi) < 0(py).

To validate this, we conduct experiments on Resnet56 model with A set to 1, 0.1, 0.01, and 0.001,
examining both the preservation of pruning indices and the consistency of PROscore scales across
layers. As shown in Fig.[8a] the pruning indices remained stable regardless of the A value, and Fig.[8b|

shows that the relative importance measured by PROscore is invariant under A selection.
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