All In: Bridging Input Feature Spaces Towards
Graph Foundation Models

Moshe Eliasof Krishna Sri Ipsit Mantri Beatrice Bevilacqua
University of Cambridge Purdue University Purdue University
Cambridge, UK Indiana, USA Indiana, USA
meb532@cam. ac.uk mantrik@purdue.edu bbevilac@purdue.edu
Bruno Ribeiro Carola-Bibiane Schonlieb
Purdue University University of Cambridge
Indiana, USA Cambridge, UK
ribeirob@purdue.edu cbs31@cam.ac.uk
Abstract

Graph learning is hindered by the lack of a shared input space, as features vary in
semantics and dimensionality across datasets, preventing models from generalizing.
We propose ALL-IN, a method that enables transferability across these diverse input
feature spaces. Our approach projects node features into a shared random space
and builds representations from covariance-based statistics, removing dependence
on the original feature space. Theoretically, we show that the resulting node
representations are invariant in distribution to input feature permutations and the
expected operator is invariant to orthogonal transformations of the input features.
Empirically, ALL-IN achieves strong performance on unseen datasets with new
features across various tasks without requiring retraining, pointing to a promising
direction for truly input-agnostic and transferable graph models.

1 Introduction

Training

xL
X € R"Xd,A c Rnxn —_ GNNLayer _ H(L)

Inference IE

X, e R™@ A, ¢ R**" 2| GNNLayer| — H(L)
xL
X, ¢ RV 4, ¢ Rr*n-9¢-|GNNLayer

(a) Feature dimension mismatch (b) ALL-IN’s node-covariance operators

Figure 1: ALL-IN enables feature-agnostic learning. (a) Standard GNNs fail when feature dimen-
sions differ. (b) ALL-IN computes node-covariance matrices from stochastic projections, yielding a
consistent, feature-agnostic operator.

Foundation models in vision and language benefit from shared input spaces, enabling effective
transfer. In contrast, graph learning faces a major barrier: graphs from different domains often
have incompatible node feature spaces differing in dimension, semantics, and distribution making it

Preprint.

ALrL-IN xL

X Project R(O) H(O)

GNNLayer(®!) (o T

A

[

GNNLayer(“4)

(
L
4> — KO ”{ GNNLayer*5) (JK©
A]| o

A] e o)

Figure 2: ALL-IN Architecture. Input features are randomly projected and used to compute
propagated node-covariance operators { K (®) }];:0 via propagation. These operators drive GNN
layers, whose outputs are concatenated for final representations.

GNI\'Layer(/’K“)

K

T TTITT

difficult to build models that generalize across datasets. While recent efforts leverage LLMs via graph
serialization [31, 53] or align features through projections [46, 52], these methods either discard
structural detail or require careful adaptation, limiting scalability and generality.

We propose ALL-IN (All Input spaces), a statistical approach that sidesteps feature heterogeneity by
modeling node features as samples from a latent distribution. Instead of operating on raw features,
ALL-IN computes a stochastic node-covariance matrix from random projections, capturing pairwise
node similarities in a way that is invariant to feature permutations, orthogonal transformations,
and dimensional mismatches (Figure 1). This covariance-based operator serves as a robust, input-
agnostic foundation for GNNs, enabling transfer across graphs with entirely different feature spaces.
We demonstrate theoretically and empirically that ALL-IN preserves task-relevant structure while
supporting strong cross-dataset generalization, offering a promising path toward true graph foundation
models.

2 Method

Our method, ALL-IN, enables transfer across graphs with heterogeneous input features by replac-
ing raw node features with covariance-based operators that capture robust, general-purpose node
relationships. The framework consists of three stages: (i) Random Feature Projection into a shared
space, (ii) Node-Covariance Operator computation to model feature-driven node similarities, and
(iii) Operator-based GNN propagation for representation learning (Figure 2).

Given node features X € R"™*9, we first we first project them via a random isotropic matrix
C ¢ R¥xh:

RO = XC, withvec(C) ~ N (0, I,), (1)
sampled independently at each forward pass. This ensures distributional invariance to arbitrary input

feature permutations, a critical property for generalization across datasets with differing feature
orderings. We then compute node-covariance operators to capture second-order node similarities.

After centering RY = RO _ 1,7 with# = L5 RZ(»O) € R™" we define:
1
K = NodeCov(R") = - R(” RO e rrxm,)

To incorporate structural context, we propagate features via R®) = A®) R() and compute higher-
order operators K (?) = NodeCov(R(p)) for p = 1,--- , k. These operators encode feature co-
variation across increasing graph neighborhoods. The final set of propagation operators includes
identity, adjacency, and covariance matrices:

O={ILA KO KV K®} (3)

Initial node representations are H(®) = R(®) ¢ S, where S € R™*"= is a structural encoding matrix.
At layer ¢, we update representations via:

H® = B GNNLayer“O) (H“" 1), 0), @
oe0O

Table 1: Performance of ALL-IN on pre-training source datasets compared to specialized supervised
baselines trained individually per dataset. ALL-IN maintains highly competitive performance.

Method ZINC MOLHIV MOLESOL MOLTOX21 MNIST CIFARI0 MODELNET CUNEIFORM MSRC 21
(MAE |) (ROC-AUCT) (RMSEJ) (ROC-AUCT) (ACCT) (ACCT) (acc?) (acc?) (acct)
GCN [26] 0.3674 76.06 1.11 75.29 90.120 54.142 17.18 45.67 89.53
GAT [43] 0.3842 76.00 1.05 75.21 95.535 64.223 65.20 78.60 82.10
GIN [47] 0.1630 75.58 1.17 74.91 96.485 55.255 73.13 79.05 86.31
ALL-IN (0 props) 0.1557 72.74 1.28 68.19 94.57 40.11 37.11 89.88 97.51
ALL-IN 0.1237 74.49 1.29 68.20 95.22 40.08 39.37 91.17 98.08

using learnable transformations per operator. This design allows ALL-IN to operate in a feature-
agnostic manner, enabling transfer to graphs with entirely new input spaces.

For edge features, an analogous projection and aggregation strategy yields edge-derived covariance
operators, which are added to O preserving compatibility across edge feature spaces.

Transferability via Expected Operator Invariance. The theoretical foundation for cross-dataset
generalization lies in the invariance and consistency of the expected node-covariance operator. The
following theorem shows that, on average, ALL-IN recovers a basis-invariant representation of node
similarities enabling stable transfer across datasets with different feature parameterizations.

Theorem 2.1 (Expected Invariance to Orthogonal Transformations). Let X € R"™*? be node features,
Q € R¥? be an orthogonal matrix, and h be the projection dimension. Consider a random g)mjection
matrix C € R>" with vec(C) ~ N(0,14,). Let NodeCov(R() = +(TI.R"))(IL.R©)T be the
Node Covariance operator (Equation (2)), where 11, = I,, — %1,115 is the centering matrix. Then,
the expected Node Covariance computed from the stochastically projected features is invariant to the
orthogonal transformation Q:

Ec[NodeCov(X QC)] = Eg[NodeCov(XC)] = I, X XTI, 5)

where the expectation Ec -] is over the random sampling of C, and T1. X X TT1. is the Gram matrix
of the centered original features.

This result ensures that ALL-IN learns representations based on intrinsic data geometry rather than
arbitrary feature representations. When graphs share underlying structural patterns (e.g., homophily,
role structure), their expected operators align, even with different features, enabling effective transfer.
Moreover, as h — oo , the stochastic operator converges to its expectation (Proposition B.5), ensuring
reliable estimation in practice.

3 Experiments

We evaluate ALL-IN ’s ability to learn transferable graph representations and, critically, to generalize
to unseen datasets with entirely new input features. Our experiments address:

(Q1) How does a single ALL-IN model perform on diverse source datasets compared to specialized
GNN s trained per dataset?

(Q2) Can ALL-IN transfer effectively to new datasets with novel features and tasks?

We present main results here; additional experiments (including runtime) and implementation details
(datasets, hyperparameters) are in Appendices D to F.

3.1 Performance on Pre-training Source Datasets (A1)

We pre-train a single ALL-IN encoder on nine diverse graph datasets, spanning molecules(ZINC [10],
OGBG-MOLHIV [22], OGBG-MOLESOL [22], OGBG-MOLTOX21 [22]), images(MNIST [10], CI-
FAR10 [10], CUNEIFORM [32], MSRC 21 [32]), and 3D shapes (MODELNET [45]) with hetero-
geneous features and tasks. For each dataset-task pair, a dedicated prediction head is attached to
the shared ALL-IN encoder. We compare against GNN baselines (GCN [26], GAT [43], GIN [47])
trained individually for each dataset, using their original, dataset-specific input features. These
supervised baselines are thus specialized for each respective dataset.

Results. Specialized GNNs are expected to perform well on individual source datasets due
to task-specific training. For ALL-IN, the goal is to match them using a single shared en-
coder demonstrating general-purpose representation learning without significant performance loss.
As shown in Table 1, ALL-IN is broadly compet-)]

itive: it outperforms all baselines on ZINC (MAE Table 2: Node classification on unseen datasets
0.1237 vs. GIN 0.1630), and achieves substan- with new features. ALL-IN performs competitively
tial gains on textscCuneiform (91.17% vs.GIN with SOTA.

79.05%) and MSRC 21 (98.08% vs.GCN

Method CORA CITESEER PUBMED
8953%) Ol’lly on CIFAR10 and MODELNET (AcC 1) (Acc) (acc)
do dedicated models prevail. The full ALL-IN suesrvisep BassLines . R .

. MLP 48.42 0.63 48.56 0.27 66.26 1.53
consistently surpasses ALL-IN (0 props), con- GCN [26] 7886+ 148 6452+ 089 7449 + 0.99
firming that propagated covariance operators en- __SN47) 67104 300 5880+ 220 6840+ 270

. : LLM-AUGMENTED GNNS

hance representation learning. OFA [31] 76.10 £ 4.11 73.04+ 2.88 75.61 £ 5.06
. . GLEM-LM [8] 67.55 &+ 3.53 66.00 = 5.66 62.12 & 0.07

These results show that a single pre-trained — yirses
encoder can perform strongly across di- GRAPHTEXT[S3] s TIALE 208 S 0260 6370 029

. . . - AMA3- 2.

verse dataset enabling effective multi-task pre- PR
training. ANYGRAPH [46] 6260+ 014 1932+ 037 7073+ 4.13
GRAPHANY [54] 79.36 & 0.23 68.42 + 0.39 76.30 &+ 0.41
MDGPT [49] 43.36 &+ 8.92 42.50 + 9.78 5191 &+ 9.00
oys GCOPE [52] 35.54 £ 2.09 31.18 4 4.35 32.87 £+ 4.08
3.2 Transferablllty GPPT [38] 43.15 +£9.44 37.26 +£6.17 48.31 £17.72
ALL-IN-ONE [39] 52.39 £10.17 40.41 £+ 2.80 45.17 &+ 645
tO Unseen Datasets and InplIt Features (A2) GPROMPT [19] 56.66 +11.22 53.21 +10.94 39.74 £15.35
GPF [11] 38.57 £ 5.41 31.16 = 8.05 49.99 + 8.86
. . GPF-pLUS [11] 55.77 +£10.30 59.67 £11.87 46.64 +18.97
We evaluate the core claim of ALL-IN: that a ULTRA (36) [16] Jo40 L 000 6740 £ 000 7790+ 0.00
single pre-trained encoder can generalize to un- _ SCORE (4] 8180+ 1.02 7133+ 027 8293+ 055
3 3 3 ALL-IN (0 props) 79.26 + 1.08 65.96 & 1.25 77.30 = 0.47
seen datasets with entirely new input features. 41" B e e e o

To isolate representation quality, we keep the en-
coder frozen and train only a lightweight prediction head on top for each new dataset covering both
node and graph tasks with novel features and labels. We compare against supervised GNNs, LLM-
augmented models, and recent graph foundation models (see Appendix D for categorization). Full
results on graph classification (e.g., MUTAG, PROTEINS) are in Appendix D, showing similarly
strong transfer; here we focus on node classification.

Results. ALL-IN achieves strong performance on unseen node classification datasets (Table 2),
despite never seeing their features during pre-training. On CORA, it reaches an accuracy of 82.13%
which not only surpasses standard supervised GCN (78.86%), but it also exceeds leading baselines
like SCORE [44] (81.80%) and GRAPHANY [54] (79.36%). Notably, ALL-IN (O props) already
performs competitively, but the full model consistently improves upon it confirming that propagated
covariance operators enhance generalization.

These results demonstrate that ALL-IN learns general-purpose representations that transfer effec-
tively to new datasets with novel features, supporting both node and graph tasks without task-specific
design unlike specialized models such as (GRAPHANY [54], GRAPHTEXT [53], GCOPE [52],
ANYGRAPH [46]), only supporting node classification.

4 Conclusion

Input feature heterogeneity critically limits the development of Graph Foundation Models (GFMs).
Our ALL-IN offers a theoretically-grounded solution, processing arbitrary node features through
stochastic projections and node-covariance operators to build robust representations independent
of the original feature space. We prove that these representations achieve distributional invariance
to input feature permutations, and their underlying expected operator is invariant to orthogonal
basis changes, thereby helping capture robust intrinsic structures of the data. The empirical transfer
performance of ALL-IN across new datasets with disparate features demonstrates its potential to
mitigate the challenges posed by feature heterogeneity, contributing to the development of GFMs.

Limitations and Future Work. Current scalability for ALL-IN on extremely large graphs is
constrained by its dense covariance operators; developing sparse approximations presents a key
avenue for future research. Another promising direction involves exploring structured or learnable
projections as alternatives to the random Gaussian projections.

References

[1] Beatrice Bevilacqua, Joshua Robinson, Jure Leskovec, and Bruno Ribeiro. Holographic node
representations: Pre-training task-agnostic node embeddings. In The Thirteenth International
Conference on Learning Representations, 2025.

[2] Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.
wandb.com/. Software available from wandb.com.

[3] Semih Cantiirk, Renming Liu, Olivier Lapointe-Gagné, Vincent Létourneau, Guy Wolf, Do-
minique Beaini, and Ladislav Rampasek. Graph positional and structural encoder. In Forty-first
International Conference on Machine Learning, 2024.

[4] Andrea Cavallo, Zhan Gao, and Elvin Isufi. Sparse covariance neural networks. arXiv preprint
arXiv:2410.01669, 2024.

[5] Andrea Cavallo, Madeline Navarro, Santiago Segarra, and Elvin Isufi. Fair covariance neural
networks. In ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 1-5. IEEE, 2025.

[6] Jialin Chen, Haolan Zuo, Haoyu Peter Wang, Siqi Miao, Pan Li, and Rex Ying. Towards a
universal graph structural encoder. arXiv preprint arXiv:2504.10917, 2025.

[7] Runjin Chen, Tong Zhao, Ajay Kumar Jaiswal, Neil Shah, and Zhangyang Wang. LLaGA: Large
language and graph assistant. In Forty-first International Conference on Machine Learning,
2024.

[8] Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaigiang Wang,
Dawei Yin, Wenqi Fan, Hui Liu, and Jiliang Tang. Exploring the potential of large language
models (Ilms) in learning on graphs. ACM SIGKDD Explorations Newsletter, 25(2):42-61,
2024.

[9] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2022.

[10] Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning
Research, 24(43):1-48, 2023.

[11] Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen. Universal prompt
tuning for graph neural networks. Advances in Neural Information Processing Systems, 36:
52464-52489, 2023.

[12] Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for
large language models. In The Twelfth International Conference on Learning Representations,
2024.

[13] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric,
2019.

[14] Billy Joe Franks, Moshe Eliasof, Semih Cantiirk, Guy Wolf, Carola-Bibiane Schonlieb, Sophie
Fellenz, and Marius Kloft. Towards graph foundation models: A study on the generalization of
positional and structural encodings. Transactions on Machine Learning Research, 2025. ISSN
2835-8856. URL https://openreview.net/forum?id=mSoDRZXsqj. Reproducibility Cer-
tification.

[15] Fabrizio Frasca, Fabian Jogl, Moshe Eliasof, Matan Ostrovsky, Carola-Bibiane Schonlieb,
Thomas Girtner, and Haggai Maron. Towards foundation models on graphs: An analysis on
cross-dataset transfer of pretrained gnns. arXiv preprint arXiv:2412.17609, 2024.

[16] Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards
foundation models for knowledge graph reasoning. In The Twelfth International Conference on
Learning Representations, 2024.

https://www.wandb.com/
https://www.wandb.com/
https://openreview.net/forum?id=mSoDRZXsqj

[17] Jianfei Gao, Yangze Zhou, Jincheng Zhou, and Bruno Ribeiro. Double equivariance for inductive
link prediction for both new nodes and new relation types. arXiv preprint arXiv:2302.01313,
2023.

[18] Vikas K. Garg, Stefanie Jegelka, and T. Jaakkola. Generalization and representational limits of
graph neural networks. In International Conference on Machine Learning, 2020.

[19] Chenghua Gong, Xiang Li, Jianxiang Yu, Yao Cheng, Jiagi Tan, and Chengcheng Yu. Self-pro:
A self-prompt and tuning framework for graph neural networks. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pages 197-215. Springer, 2024.

[20] Yufei He and Bryan Hooi. Unigraph: Learning a cross-domain graph foundation model from
natural language. ArXiv, abs/2402.13630, 2024.

[21] Sharon Hendy and Yehuda Dar. Tl-pca: Transfer learning of principal component analysis.
arXiv preprint arXiv:2410.10805, 2024.

[22] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118-22133, 2020.

[23] Qian Huang, Hongyu Ren, Peng Chen, Gregor KrZzmanc, Daniel Zeng, Percy S Liang, and Jure
Leskovec. Prodigy: Enabling in-context learning over graphs. Advances in Neural Information
Processing Systems, 36, 2023.

[24] Xingyue Huang, Pablo Barceld, Michael M Bronstein, Ismail Tlkan Ceylan, Mikhail Galkin,
Juan L Reutter, and Miguel Romero Orth. How expressive are knowledge graph foundation
models? arXiv preprint arXiv:2502.13339, 2025.

[25] Jinwoo Kim, Olga Zaghen, Ayhan Suleymanzade, Youngmin Ryou, and Seunghoon Hong.
Revisiting random walks for learning on graphs. arXiv preprint arXiv:2407.01214, 2024.

[26] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017.

[27] Divyansha Lachi, Mehdi Azabou, Vinam Arora, and Eva Dyer. GraphFM: a scalable framework
for multi-graph pretraining. arXiv preprint arXiv:2407.11907, 2024.

[28] Jaejun Lee, Chanyoung Chung, and Joyce Jiyoung Whang. Ingram: Inductive knowledge
graph embedding via relation graphs. In International Conference on Machine Learning, pages
18796-18809. PMLR, 2023.

[29] Ron Levie. A graphon-signal analysis of graph neural networks. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

[30] Renjie Liao, Raquel Urtasun, and Richard Zemel. A PAC-bayesian approach to generalization
bounds for graph neural networks. In International Conference on Learning Representations,
2021.

[31] Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. In The Twelfth
International Conference on Learning Representations, 2024.

[32] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020.

[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library, 2019.

[34] Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou,
and Jonathan Halcrow. Let your graph do the talking: Encoding structured data for llms. arXiv
preprint arXiv:2402.05862, 2024.

[35] Ladislav Rampasek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in
Neural Information Processing Systems, 35:14501-14515, 2022.

[36] Yangyi Shen, Beatrice Bevilacqua, Joshua Robinson, Charilaos Kanatsoulis, Jure Leskovec, and
Bruno Ribeiro. Zero-shot generalization of gnns over distinct attribute domains. In International
Conference on Machine Learning, 2025.

[37] Saurabh Sihag, Gonzalo Mateos, Corey McMillan, and Alejandro Ribeiro. covariance neural
networks. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 17003—17016. Curran
Associates, Inc., 2022.

[38] Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. Gppt: Graph pre-training
and prompt tuning to generalize graph neural networks. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1717-1727, 2022.

[39] Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in one: Multi-task prompting
for graph neural networks. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 2120-2131, 2023.

[40] Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqgi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. In Proceedings of the 47th
International ACM SIGIR Conference on Research and Development in Information Retrieval,

pages 491-500, 2024.

[41] Antonis Vasileiou, Ben Finkelshtein, Floris Geerts, Ron Levie, and Christopher Morris. Cov-
ered forest: Fine-grained generalization analysis of graph neural networks. arXiv preprint
arXiv:2412.07106, 2024.

[42] Antonis Vasileiou, Stefanie Jegelka, Ron Levie, and Christopher Morris. Survey on generaliza-
tion theory for graph neural networks. arXiv preprint arXiv:2503.15650, 2025.

[43] Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Li0, and Yoshua

Bengio. Graph Attention Networks. International Conference on Learning Representations,
2018.

[44] Kai Wang and Siqiang Luo. Towards graph foundation models: The perspective of zero-shot
reasoning on knowledge graphs. arXiv preprint arXiv:2410.12609, 2024.

[45] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 1912—-1920, 2015.

[46] Lianghao Xia and Chao Huang. Anygraph: Graph foundation model in the wild. arXiv preprint
arXiv:2408.10700, 2024.

[47] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

[48] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In International conference on machine learning, pages 40-48. PMLR,
2016.

[49] Xingtong Yu, Chang Zhou, Yuan Fang, and Xinming Zhang. Text-free multi-domain graph
pre-training: Toward graph foundation models. arXiv preprint arXiv:2405.13934, 2024.

[50] Kexin Zhang, Shuhan Liu, Song Wang, Weili Shi, Chen Chen, Pan Li, Sheng Li, Jundong
Li, and Kaize Ding. A survey of deep graph learning under distribution shifts: from graph
out-of-distribution generalization to adaptation. arXiv preprint arXiv:2410.19265, 2024.

[51]

[52]

[53]

[54]

[55]

Yucheng Zhang, Beatrice Bevilacqua, Mikhail Galkin, and Bruno Ribeiro. TRIX: A more
expressive model for zero-shot domain transfer in knowledge graphs. In The Third Learning on
Graphs Conference, 2024.

Haihong Zhao, Aochuan Chen, Xiangguo Sun, Hong Cheng, and Jia Li. All in one and one
for all: A simple yet effective method towards cross-domain graph pretraining. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages
4443-4454, 2024.

Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael Bronstein, Zhaocheng Zhu,
and Jian Tang. Graphtext: Graph reasoning in text space. arXiv preprint arXiv:2310.01089,
2023.

Jianan Zhao, Hesham Mostafa, Mikhail Galkin, Michael Bronstein, Zhaocheng Zhu, and
Jian Tang. Graphany: A foundation model for node classification on any graph. ArXiv,
abs/2405.20445, 2024.

Jincheng Zhou, Beatrice Bevilacqua, and Bruno Ribeiro. A multi-task perspective for link
prediction with new relation types and nodes. In NeurlPS 2023 Workshop: New Frontiers in
Graph Learning, 2023.

A Related Work

Graph Foundation Models (GFMs). GFMs aim to learn representations that generalize across
datasets and tasks, but achieving robust generalization remains challenging, especially when the node
features change. Some recent approaches integrate large language models (LLMs) by converting
graphs to text or embedding features through prompt-based designs [31, 53, 8, 12, 34, 7, 53, 20, 23,
40, 25, 52, 19, 38, 39], but this can lead to loss of structural details. Other recent works align feature
spaces through projections [46, 49, 52, 11], perceiver-based encoders [27], computing analytical
solutions (in the case of node classification) [54], encoding features into the graph structure [15, 16,
44] or encoding feature relationships [36]. While these methods advance GFM capabilities, they often
require task-specific adaptations or face scalability issues, leaving a gap for truly input-space-agnostic
solutions. ALL-IN offers a distinct path: it creates transferable representations by processing arbitrary
input features through stochastic projections and node-covariance operators.

Structural and Positional Encodings. Concurrently, efforts to create universal graph representations
include transferable structural and positional encodings (SPEs) [35, 3, 6, 25]. These SPEs aim to cap-
ture graph topology in a feature-agnostic manner, often within Graph Transformers or GNNs. While
such SPEs can complement node features, ALL-IN directly addresses the challenge of heterogeneous
node features themselves, transforming them into a robust, transferable format using their covariance
structure, irrespective of any additional SPEs.

Covariance networks. Covariance matrices have also informed the design of neural networks. For
instance, coVariance Neural Networks (VNNs) [37] process d x d sample covariance matrices, with
d the input feature dimension, which describe feature inter-correlations, offering benefits like stability
to varying sample sizes and inspiring extensions for fairness [5] and sparsity [4]. Other related efforts
focus on transferring principal components derived from data covariance [21]. While these methods
analyze relationships between features using sample covariance matrices, ALL-IN constructs an n x n
node-covariance matrix, with n number of nodes. This operator quantifies similarities between pairs
of nodes based on how their (randomly projected) features co-vary across dimensions. This distinct
formulation is tailored to building transferable representations from graphs with heterogeneous node
features, addressing a challenge different from that targeted by the aforementioned approaches.

Generalization Theory of MPNNs. Significant theoretical progress has advanced our understand-
ing of generalization in Message Passing Neural Networks (MPNNs). As discussed in recent sur-
veys [42, 50], these efforts often focus on how architectures and graph properties (such as maximum
degree) influence the generalization gap, employing analytical tools like Rademacher complexity and
PAC-Bayesian analysis to derive performance bounds [18, 30]. Other lines of work, leveraging con-
cepts like covering numbers or graphon theory, investigate model stability and generalization under
shifts in graph structure or topology, particularly in large-scale or evolving graph scenarios [29, 41].
While these foundational theories provide important insights into GNN expressivity and their ability
to generalize, especially concerning structural variations, they typically assume a consistent definition
of the input feature space across different graphs. The cross-dataset generalization challenge that
ALL-IN addresses is distinct: we specifically tackle scenarios where graphs present node features
from entirely different feature spaces, potentially varying in both the number of available features
(dimensionality) and their semantic meaning between train (source) and test (target) graphs. Our
theoretical framework (Appendix B) therefore focuses on establishing principles for robustness
and transferability under such input feature space heterogeneity, aiming to complement existing
generalization theories that predominantly address structural changes.

Additional Efforts towards Graph Foundation Models. Another significant challenge in graph
transfer learning arises in settings like heterogeneous knowledge graphs, where models must general-
ize to unseen entities and relation types. Approaches such as ISDEA+ [17] and MTDEA [55] tackle
this by employing set aggregation techniques over representations specific to edge types, aiming for
equivariance to permutations of these types, supported by a “double equivariance” theoretical frame-
work. Similarly, methods like InGram [28], ULTRA [16], TRIX [51], and MOTIF [24] construct
explicit “relation graphs” to model interactions among different edge types. These works provide
valuable solutions for structural and relational heterogeneity. In contrast, ALL-IN primarily addresses
the distinct challenge of heterogeneity in input features, that is, varying feature dimensionalities
and semantics across graphs. While the aforementioned methods focus on generalizing over graph
schema and relation types (often assuming node features are not present), ALL-IN directly processes

arbitrary node features to derive transferable node-covariance operators and representations. Other
efforts in graph representation learning aim for transferability across diverse graph tasks. For example,
HoloGNN [1] proposes a framework to learn node representations that can be applied to various
downstream tasks on a given graph or graphs. However, such approaches typically assume that
the underlying node feature space remains consistent across these tasks. ALL-IN, conversely, is
specifically designed to address the challenge of generalizing to new and unseen datasets where
the node features themselves can differ fundamentally in dimensionality and semantics, a problem
distinct from task-level transfer within a fixed feature domain.

B Theoretical Insights

This section establishes the theoretical foundations underpinning the ability of ALL-IN to handle
heterogeneous input features and enable generalization across datasets. A core contribution is proving
the method’s robustness to common variations in feature representation. We first demonstrate that
the computed node-covariance operators and the resulting node representations are invariant in
distribution to arbitrary permutations of the input features, providing fundamental robustness to
feature re-ordering. We then show that the expected node-covariance operator is invariant to general
orthogonal transformations, ensuring robustness to the choice of orthonormal basis (Appendix B.1).
Building on these properties, we validate the stochastic training procedure using Jensen’s inequality
under standard convexity assumptions (Appendix B.2). Finally, we discuss conditions supporting
transferability, analyzing scenarios where the operator remains stable across graphs with differing
feature distributions and proving its consistency for large projection dimensions (Appendix B.3). All
proofs are provided in Appendix C.

B.1 Invariance to Feature Space Transformations

A primary obstacle to cross-dataset transfer is the lack of feature standardization, leading to arbitrary
differences in feature ordering and basis choice across datasets. Our approach, centered on node-
covariance after random projection, inherently addresses these issues through invariance properties.
First, the use of random isotropic Gaussian projections renders the process statistically insensitive to
the order of input features. We formalize this by showing that the distribution of the projected feature
matrix remains unchanged when the original features are permuted.

Proposition B.1 (Distributional Invariance of Projected Features to Feature Permutation). Let
X € R4 be node features, P € RY*4 be any permutation matrix, and h be the projection
dimension. Let C € R" be an isotropic Gaussian random matrix (i.e., vec(C) ~ N(0, I).
Define the projected features as R\©) = X C and the features projected after permutation as

R = (XP)C. Then R®) and R"") are equal in distribution: R £ RO,

In essence, Proposition B.1 establishes that random projections effectively “mix” features, rendering
their original ordering statistically irrelevant after projection. More importantly, the permutation
invariance is characterized in distribution, rather than pointwise: for a fixed random projection C, the
features in R(“) retain sensitivity to input permutations, thereby enabling a neural network to better
capture the relationships between node features and topology.

To illustrate this concept, consider three nodes u, v, w € V with features X, = (0,1), X, = (0,1),
and X,, = (1,0). Under strict (pointwise) permutation invariance, the embeddings of all nodes
would be equivalent, obscuring the key distinction that « and v share identical features, whereas w
has a different feature. In contrast, distributional invariance ensures that the distributions of RSLO),

5,0), and RS,?) are identical, yet individual forward passes yield different outcomes: given C, we
have RELO) = RSJO) #* RSB). This property preserves the model’s ability to distinguish between nodes
u and v (which share the same features) and node w (which has a different feature), while maintaining
symmetry in the model’s statistical behavior, thus striking a balance between permutation invariance
and expressive power.

Next, we show that the NodeCov operators applied to the sequence {R(”) },];:O yield features that are
also distributionally invariant.

Corollary B.2 (Distributional Invariance of Node Covariance Operators to Feature Permutation).
Let X € R™*? be node features, and P € R4 be any permutation matrix. Let R(®) = X C be

10

the initial projected features. Let K = {K () }’;:0 be the set of node-covariance operators, where

K® = NodeCov(ApR(O)) is computed using the deterministic function NodeCov, and A is the
adjacency matrix. It follows directly from the distributional invariance of R%) that the entire set of
operators K is also invariant in distribution to permutations of the input features X. That is, if KC is

the set of operators computed using X P instead of X, then K LK.

The significance of Proposition B.1 and Corollary B.2 is substantial: it guarantees that the complete
statistical behavior of R(®) and the operators K (?) central to ALL-IN is fundamentally robust to
arbitrary input feature ordering, directly addressing a key source of heterogeneity across graph
datasets. This distributional invariance also extends to the hidden representations H @, for all
¢ =1...L derived from these operators, as shown in Theorem C.1 in Appendix C.

The stochastic projection matrix C plays a critical role beyond enabling the distributionally invariance
properties discussed earlier; its use is intrinsically linked to the expressive capability of the learning
framework. Training with node-covariance operators NodeCov(R(?)) derived from these stochastic
projections offers advantages over relying on a single, deterministically computed covariance oper-
ator, such as NodeCov(X). While NodeCov(X) provides a stable, pointwise feature-permutation
invariant view of node similarities, it can obscure subtle but important distinctions between nodes.
In contrast, individual stochastic realizations NodeCov(R(?)) = NodeCov(X C) (for a specific C)
can preserve these finer-grained distinctions, providing richer and more varied signals to the GNN.
Theorem B.3 formalizes this concept by demonstrating that there exist instances where the stochastic
operator NodeCov (X C) can distinguish nodes that the deterministic operator NodeCov(X) cannot.

Theorem B.3 (Distinguishability through C). There exist node features X € R"*¢ nodes
u,v € V with X,, # X, such that NodeCov(X) makes u, v indistinguishable (automorphic),
but NodeCov(X C) (for a.s. all C) makes u, v distinguishable (not automorphic).

Finally, while distributional invariance covers permutations, analyzing the expected operator reveals
broader robustness to basis changes and identifies the structure captured on average, as we show next.

Theorem 2.1 (Expected Invariance to Orthogonal Transformations). Let X € R™*? be node features,
Q < R pe an orthogonal matrix, and h be the projection dimension. Consider a random projection
matrix C € R>" with vec(C) ~ N(0, I4;). Let NodeCov(R()) = +(II.R")(II.R©)™ be the
Node Covariance operator (Equation (2)), where 11, = I,, — %1n13; is the centering matrix. Then,
the expected Node Covariance computed from the stochastically projected features is invariant to the
orthogonal transformation Q:

Ec[NodeCov(X QC)| = Ec[NodeCov(XC)] = TI. X X 11,)

where the expectation Ec -] is over the random sampling of C, and T1. X XTI is the Gram matrix
of the centered original features.

Theorem 2.1 demonstrates that the expected operator is agnostic to any choice of orthonormal basis
(rotations, reflections, permutations) for the input features. Furthermore, identifying this stable
expectation as the Gram matrix of centered original features (IT. X X TTI.) reveals that ALL-IN, on
average, recovers intrinsic, basis-invariant pairwise node similarities directly reflecting the original
data structure, irrespective of the specific random projection used.

B.2 Training Objective Upper Bound

ALL-IN computes the feature projection R(®) and node-covariance operator K (°) = NodeCov(X C')
using a stochastic projection matrix C' sampled in each forward pass. We now validate this prac-
tical training approach by showing its connection to performance on the stable, expected final
representation E[H (©)], assuming common convexity conditions for the final prediction layer.

Theorem B.4 (Loss Upper Bound). Ler H(") ¢ R be the final node representations computed

by ALL-IN, dependent on the initial random projection C. Let ¢ : RxA Ly RAXE pe the final
prediction layer, and let L(-,Y) be the loss function comparing predictions to ground truth labels Y.
Assume that the composite function f(HF)) = L(p(HF)),Y') is convex with respect to the final
node representations HF) (this holds, for instance, if ¢ is a linear map or linear plus softmax, and

11

L is cross-entropy or mean squared error). Then, our stochastic optimization objective provides an
upper bound for the loss of the expected representation:

L(OEHD)),Y) < Ec[L(o(HP),Y)] (6)

Loss of Expected Representation Expected Loss (Training Objective)

where the expectation Ec || is taken over the random projection matrix C.

Theorem B.4 provides key theoretical support for training with stochastic projections. The inequality
(Equation (6)) establishes that the expected loss minimized during training (RHS) serves as a
guaranteed upper bound for the loss evaluated on the stable, expected final representation (LHS).
Therefore, minimizing the empirical average loss (approximating the RHS) acts as a theoretically
sound surrogate objective, implicitly promoting minimization of the loss associated with the expected
representation, thus validating our stochastic approach.

B.3 Conditions for Transferability and Operator Consistency

Beyond invariance, achieving transfer across graphs with fundamentally different feature distributions
(X®, X @ for graphs G1, G2) relies on the stability of the underlying structure captured by the
expected operator, E¢[K(*)] = II, X XTTI.. We posit that such stability can arise when graphs
share intrinsic properties. Plausible scenarios where such stability in the expected operator might arise
include graphs exhibiting similar relational structures tied to node features (e.g., comparable label
homophily if features reflect labels), originating from a shared underlying generative process (e.g.,
common SBM or graphon influencing features), or possessing similar distributions of node roles (e.g.,
hubs, bridges) if features are role-informative. In these cases, even if the specific feature realizations
differ, the resulting T, X () (X ())TTI,, matrices may capture analogous relational structures.

For this potential transfer to be practically realized, the stochastic operator K }so) computed using a
finite projection dimension h must reliably estimate its expectation. This holds for large h.

Proposition B.5 (Consistency of Projected Node Covariance). Let X € R"*9 be node features. For
a projection dimension h, let C € R¥™" be such that vec(C) ~ N(0, I). Define the stochastic

node-covariance operator K,(IO) = NodeCov(XC) = +(IL.XC)(II.XC)T, where I1. is the

centering matrix. Then, K ,(LO) converges in probability to its expected value as h — co:
K9 L Eo K" =T, X X", ash — oo. (7

This consistency connects theory to practice. It shows that for a sufficiently large h, the operator
accurately reflects the stable expected operator IT. X X TTI... Therefore, if two graphs have aligned
expected operators (due to shared properties), using a large enough h allows ALL-IN to effectively
leverage these shared underlying structures, facilitating transfer across disparate feature spaces.

C Additional Theoretical Considerations and Proofs

Proposition B.1 (Distributional Invariance of Projected Features to Feature Permutation). Let
X € R™? be node features, P € R**% be any permutation matrix, and h be the projection
dimension. Let C € R¥" be an isotropic Gaussian random matrix (i.e., vec(C) ~ N(0, Ip).

Define the projected features as R(®) = X C' and the features projected after permutation as
R = (XP)C. Then R®) and R") are equal in distribution: R < RO,

Proof. Let C have columns ¢y, .. ., ¢;. Since the entries Cjy, are i.i.d N(0, 1), each column ¢; ~
N(0, I,;) and the columns are mutually independent.

Consider the matrix C = PTC. Since P is a permutation matrix, P is also a permutation matrix
and is orthogonal, that is P7(PT)T = PTP = I,.

The columns of C are ¢; = PT¢;. Since ¢; ~ N(0, I;) and P is orthogonal, then

¢; ~ NP0, P I,(P")") = N(0,P"P) = N(0,1,) (®)

12

Furthermore, since cy, . .., ¢, are independent, the transformed columns ¢;, .. ., ¢;, are also inde-
. = e . = d
pendent. Thus, the matrix C' has the same distribution as C, i.e., C = C.

Now consider R(®) = (X P)C. Since C £ C, we can write:

RO L (xP)C
Substitute C = PTC:
RO L (xP)(PTC)= X(PPT)C
Since P is orthogonal, PPT =1,

RYLX1,Cc=XC=R
Thus, R and R(®) are equal in distribution. O

Corollary B.2 (Distributional Invariance of Node Covariance Operators to Feature Permutation).
Let X € R™"*? be node features, and P € R4 be any permutation matrix. Let R(®) = X C be
the initial projected features. Let K = {K () }’;:0 be the set of node-covariance operators, where

K® = NodeCov(ApR(O)) is computed using the deterministic function NodeCov, and A is the

adjacency matrix. It follows directly from the distributional invariance of R%) that the entire set of
operators K is also invariant in distribution to permutations of the input features X. That is, if KC is

the set of operators computed using X P instead of X, then K LK.

Proof. Let g,(R\®)) = NodeCov(APR(®)) be the deterministic function that computes the p-th
order node covariance operator from the initial projected features R(®). From Proposition B.1, we

have R© £ R Since applying a deterministic function g, to random variables that are equal in
distribution results in outputs that are equal in distribution, we have g, (R®)) 4 gp(R), which

means K ® £ K®) foreachp = 0.. . k. Furthermore, since all operators K () in K are derived
from the same R(%), and all operators K () in K are derived from R, the distributional equality

e d =
extends to the joint distribution of the sets: K = K. O

Theorem C.1 (Distributional Invariance of Hidden Representations to Input Permutation). Let
X € R"™*? be node features, and P € R4 be any permutation matrix. Let R = XC be
the initial projected features, and K = {K (®) }2]3:0 be the set of node-covariance operators. Let

the initial hidden representation be H®) = R(©) & S, where S is a structural encoding matrix
independent of X. Subsequent hidden representations H") for ¢ = 1, ..., L are computed by a
deterministic GNN layer function.

The initial hidden representation H©) and all subsequent hidden representations H_(K) or { =
1,..., L are invariant in distribution to permutations of the input features X. That is, if H) are the

representations computed using X P instead of X, then H®) 2HO® forall L.

Proof. We proceed by induction on the layer index /.

Base Case (¢ = 0). Let R(®) = XC and R(®) = (X P)C. The initial hidden representations

are H® = RO ¢ S and H® = R ¢ §. From Proposition B.1, we know that R(®) 4 RO,
Since the structural encoding S is assumed independent of X (and thus fixed with respect to the
permutation P), and the concatenation operation & is a deterministic function, applying this function

preserves the distributional equality. Therefore, H® = R© ¢ § £ R©® ¢ § = H(). The base
case holds.

Inductive Hypothesis. Assume that for some layer £ — 1 > 0, the hidden representations are equal
in distribution: -1 £ F(-1),

Inductive Step (Layer /). The hidden representations at layer ¢ are computed as:

HY = F,(H""Y,0)

13

HO = F,(HY,0)
where I} represents the deterministic computation performed by the £-th GNN layer (given fixed
learned weights), O = {I, A} U K with IC = {NodeCov(AP?R(")}k_, and O = {I, A} UK with
K = {NodeCov(APR)}k_.

From Corollary B.2, we know that the set of random operators K is equal in distribution to K,ie.
K £ K. Since I and A are fixed, the full set of operators used by the layer also satisfies O 20.

Now consider the inputs to the function Fj,. The pair (H*~1) O) determines H), and the
pair (H~Y,O) determines H"). Both H*~1) and O are deterministic functions of the ini-
tial projection R(®) (and fixed elements S, A, I, and layer weights). Let J be the function
representing the computation up to layer £ — 1 and the computation of operators, such that
(H"Y 0) = J(RY, S, A, I, Weights) Similarly, (H*~Y, 0) = J(R"), S, A, I, Weights).

Since R £ RO (Proposition B.1) and J is a deterministic function, it follows that the joint
distribution of the outputs is preserved:

(H D, 0) £ (HD,0)

This establishes that the inputs to the deterministic layer function Fy are equal in distribution.
Applying the deterministic function Fy preserves this equality:

HO = F,(H"Y 0)L F(H"D,0)= H®
Thus, the inductive step holds. O

Theorem B.3 (Distinguishability through C). There exist node features X € R"¥¢ nodes
u,v € V with X,, # X, such that NodeCov(X) makes u, v indistinguishable (automorphic),
but NodeCov(X C) (for a.s. all C) makes u, v distinguishable (not automorphic).

Proof. We will show that there exists X, u, v such that (1) nodes u and v are automorphic within
NodeCov(X), and consequently, the GNN, when using NodeCov(X) as the operator and identical
initial embeddings, produces identical final representations for these nodes. (2) For the same X, with
probability 1 (over the draw of C'), nodes v and v are not automorphic and therefore distinguishable
in NodeCov(X C). We provide a constructive example. Let n = 3 nodes {u,v,w} and d = 3
features. Consider the feature matrix X:

xTr 101
xX=|xr :(0 1 1)
XI{ 1 1 0

Here, X, = (1,0,1)7, X, = (0,1,1)7, and X,, = (1,1,0)7. Clearly, X, # X,.

Proof for item (1). The column means of X are X, = (2/3,2/3,2/3)T. The centered feature
matrix X, =1I.X = X — 13XCTl is:

0}

1/3 —-2/3 1/3
X, = (2/3 /3 1/3)
/3 1/3 -2/3

Then
2/9 -1/9 -1/9
NodeCov(X) = (1/9 2/9 1/9) .
-1/9 —-1/9 2/9
In the weighted graph defined by NodeCov(X), all nodes are automorphic to each other. If a GNN
uses NodeCov(X) as its feature-derived operator and starts with identical initial embeddings for
all nodes, standard message passing layers will preserve this symmetry, leading to identical final

representations H. TSL) = H, qSL) = H fUL). Thus, such a GNN cannot distinguish « from v.

Proof for item (2). Let R©®) = X C. The rows of R are R = X7C, R = x7C, R =
Xg C. Since X, # X, and C' is drawn from a continuous distribution (Gaussian entries), Xg C +#

14

X I'C with probability 1. Thus, RY £ R almost surely. Let R”) = II.R(®). The rows of R, are

E%, E%, 203, Since RSJO) * RSJO), it follows that RE,OBL # RE% almost surely (unless II,. projects
their difference to zero, which is a measure zero event for a fixed X and random C'). The operator is
K = NodeConv(XC) = 1 R.RT. An element (K©);; = 1R(%) - REOJ) Consider the specific
symmetry that existed for NodeConv(X), e.g., (NodeConv (X)), = (NodeConv (X)), = —1/9.
For K9, we compare (K(©)),,,, = %REOZ . Rg% and (K(©)),,, = %RS{E . EO,Z, These are equal
if (&071 - %) . £?3, = 0. Since Rc?& - R&?), # 0 almost surely, and Ré?),, is a random vector
(whose distribution depends on C'), the event that their dot product is exactly zero has probability
0 for continuous distributions unless one of them is deterministically zero (which is not the case
here a.s.). Therefore, with probability 1, (K(©),,,, # (K(),,,. This breaks the specific symmetry
that made node u and node v have equivalent relational profiles to node w in NodeCov(X'). More
generally, the matrix K (9) will not, with probability 1, exhibit the high degree of symmetry found
in NodeCov(X) for this specific X. Thus, nodes u and v will generally not be automorphic with
respect to K (¥) in the same way they were for NodeCov(X). A GNN using this specific realization
K© (and identical initial embeddings, can now potentially produce H. ﬁL) #* Hqu) because the
operator K (©) provides different relational information for u and v.

O

Theorem 2.1 (Expected Invariance to Orthogonal Transformations). Let X € R"™*? be node features,
Q < R pe an orthogonal matrix, and h be the projection dimension. Consider a random projection
matrix C € R>" with vec(C) ~ N(0, Ia). Let NodeCov(R(")) = +(II. RV)(II.R©)T be the
Node Covariance operator (Equation (2)), where I1, = I, — %lnlz is the centering matrix. Then,
the expected Node Covariance computed from the stochastically projected features is invariant to the
orthogonal transformation Q:

Ec[NodeCov(X QC)] = Eg[NodeCov(XC)] = I, X XTI, 5)

where the expectation Ec|"] is over the random sampling of C, and 1. X X TT1,. is the Gram matrix
of the centered original features.

Proof. Let R(©) = X C. Using the definition of the NodeCov operator and properties of the centering
matrix II.:

NOdeCov(R(O)) = %(HCR(O))(HCR(O))T

- LIL(XC)(XO)'TI

1
= EHCXCCTXTHC
Taking the expectation over C":

1
Ec[NodeCov(XC)] = E¢ EHCXCCTXTHC

1
= EHCX]EC[CCT}X TTI. (by linearity of expectation)

We evaluate Ec[CCT]. Let ¢; € R be the j-th column of C. Since the entries of C are i.i.d.
N (0, 1), each column vector ¢; follows ¢; ~ N'(0, I;). Therefore, E[c;c]] = I,. Using linearity
of expectation:

h h h
Ec[CCT|=Ec | cjc] | =) Ecleje]| =Y Is=hl,
j=1 j=1 j=1
Substituting this back:

1
Ec[NodeCov(X C))] = EHCX(hId)XTHC =T XXTT1I,

15

Now consider the transformed features X = X Q. Let R” = XC = XQC. We compute
Ec[NodeCov(R®)]:

_ 1 _ _
NodeCov(R®)) = (I, ROY(II,RONT
1
= +IL(XQC)(XQC) I,

= %HCXQCCTQTXTHC

Taking the expectation over C":

Ec[NodeCov(XQC)] = %HCXQEC[CCT]QTXTHC

= %HCXQ(hId)QTXTHC (using E[CC™) = h1y)
=TI.XQI,QT X™1I,
=IL.X(QQ")X"II,
=TI.XI;XTII. (since Q is orthogonal, QQ”T = I,)
=TI.XXT1I1,

Thus, Ec[NodeCov(X QC)] = Ec[NodeCov(X C)] = TI. X X TTI.. O

Theorem B.4 (Loss Upper Bound). Let H(L) ¢ R™*/ " be the final node representations computed
by ALL-IN, dependent on the initial random projection C. Let ¢ : RPE s RXE pe the final
prediction layer, and let L(-,Y") be the loss function comparing predictions to ground truth labels Y .
Assume that the composite function f(H)) = L(¢(H™)),Y') is convex with respect to the final
node representations HF) (this holds, for instance, if ¢ is a linear map or linear plus softmax, and
L is cross-entropy or mean squared error). Then, our stochastic optimization objective provides an
upper bound for the loss of the expected representation:

LGEc[H™)),Y) < EolL(@(HT),Y)] (6)

Loss of Expected Representation Expected Loss (Training Objective)
where the expectation Ec || is taken over the random projection matrix C.
Proof. The proof follows directly from Jensen’s inequality for vector- or matrix-valued random
variables.

Let the random variable be the final hidden representation Z = H (L), which is a function of the
random projection matrix C.

By assumption, the function f is convex with respect to its input argument H (%), Jensen’s inequality
states that for a convex function f and a random variable Z with finite expectation, f(E[Z]) <
E[f(Z)]. Applying this with Z = H (L) and the defined function f, we get:

L(¢(Ec[H™)),Y) < Ec[L(¢(H™),Y)]
which is the desired result. O

Proposition B.5 (Consistency of Projected Node Covariance). Let X € R™*¢ be node features. For
a projection dimension h, let C € R¥" be such that vec(C) ~ N(0, I3). Define the stochastic

node-covariance operator K,(LO) = NodeCov(XC) = +(II. XC)(II.XC)T, where Il is the

centering matrix. Then, K ,(10) converges in probability to its expected value as h — co:
K" LECKY) =TI, XXTTI. ash — oc. 7)
Proof. Let C = [ey, ..., cp) denote the random projection matrix, where each column ¢; € R?

is a random vector. Since the entries of C are sampled i.i.d. from N(0,1), the columns ¢; are
independent and identically distributed according to ¢; ~ N(0, I).

16

The stochastic node-covariance operator K ,(LO) (Equation (2)) can be rewritten as:
K\ = £ (I.XC)(11.XC)"
= %(HCX[cl, o)X e, . . ch])T
= (. Xecy,..., 0. Xep)) (M Xey, ..., M. Xcp))"

= e

h
(TI.X¢;)(II.Xc;)" (using block matrix multiplication definition)
=1

J

Let us define the random matrix Y; € R™*" as:
Y = (Il Xc;)(IL.X¢;)"

Since the columns c¢; are i.i.d. and Y; is a fixed function of c¢; (given the fixed matrices X and II..),
the random matrices Y7, Y5, ..., Y} are also independent and identically distributed (i.i.d.).

The operator K }(LO) can thus be written as the sample mean of these i.i.d. random matrices:

h
1
0
Ki(z):EZY}
=1

Now, we compute the expected value of Y. Using the linearity of expectation and the property that
IT, and X are constant with respect to the expectation over C' (and TI. = IT7):

E[Y;] = E[(TL. X ¢;)(I. X ¢;)"]
=E[M.Xc;c] X"TI]]
=TI XE[c;c] | XTI,

Since ¢; ~ N(0,1;), we know that E[c;c]] = Cov(c;) + E[¢;|E[c;]" = I; + 00" = I,
Substituting this in:

E[Y;] =M. XI,X I, =TI X X"1I,

Let Ko = II. X X TTI,... We have shown that E[Y;] = Kexp. Since X is a fixed finite matrix, and
the moments of Gaussian variables are finite, the expectation E[Y] exists and is finite.

We have K ,(ZO) as the sample mean of h i.i.d. random matrices Y}, each with finite expectation
K.,. By the Weak Law of Large Numbers, applicable to sums of i.i.d. random vectors or matrices
(considering convergence element-wise or in matrix norm), the sample mean converges in probability
to the expected value as the number of samples h goes to infinity. Therefore, for each entry (a, b) of
the matrices:

h
1
(K}(lo))ab =+ Z(Yj)ab 2 E[(Y])a] = (Kexp)ab ash — 0o

This element-wise convergence implies convergence in probability for the matrix:

K9 % K, =T.XX"T,. ash— oc.
This completes the proof. O

D Additional Results

D.1 Categorization and Description of Baselines

Table 2 compares our approach against diverse families of baselines evaluated on node classification
benchmarks. We group methods into four primary categories: (i) SUPERVISED GNNS that are trained

17

from scratch on each dataset, (ii)) LLM-AUGMENTED GNNS where the node features are enhanced
using language models, (iii)) LLM-BASED REASONING that convert the graph into a compatible input
to pre-trained LLMs, and (iv) GNN-BASED methods.

SUPERVISED BASELINES include (a) MLP: a multi-layer perceptron directly on the target dataset
features without using graph structure; serves as a non-graph baseline. (b) GCN [26]: trained from
scratch on the target dataset (c) GIN [47] trained from scratch, included to represent expressive
message-passing GNNs in supervised settings. These fall under supervised baselines as they do not
perform pretraining or transfer, and rely solely on training from scratch on each dataset.

LLM-AUGMENTED GNNS include (a) OFA [31]: constructs a prompt-augmented graph using text
nodes and pretrains an RGCN to enable in-context transfer across node/link/graph tasks; falls here
for fusing text prompts with GNN structure and relying on LLM embeddings. (b) GLEM-LM [8]:
Enhances GNNs using sentence-level text embeddings from a frozen LLM; categorized here due to
its augmentation of GNN input via LLM-derived features. These are classified as LLM-Augmented
GNN s since they incorporate LLMs to enrich graph inputs or guide GNN training, but retain a GNN
backbone.

LLM-BASED methods include (a) GRAPHTEXT [53] that transforms k-hop neighborhoods into
textual prompts and performs zero/few-shot classification using frozen LLMs and (b) RWNN [25]
that converts random walks on graphs to node label anonymized sequendes and uses frozen LLMs
for prediction. belong to this category due to their reliance on prompt-based inference using LLMs
without any GNNss.

GNN-BASED methods include (a) ANYGRAPH [46] that pretrains a graph mixture-of-experts
model using link prediction objective on diverse graphs that allows transfer to unseen datasets,
(b) GRAPHANY [54] that learns permutation-invariant attention over a bank of pretrained Lin-
earGNNs; (c) MDGPT [49] pretrains a GCN on multiple datasets with SVD-projected features
and prompt vectors; (d) GCOPE [52] constructs a universal pretraining graph with virtual nodes
and uses contrastive learning to train a shared GNN; (e) GPPT [38] introduces task-specific graph
prompts for node task and link-prediction alignment; (f) GPROMPT [19] utilizes prompt vectors into
graph pooling via element-wise multiplication (g) ALL-IN-ONE [39] combines token graphs with
original graph as prompts (h) GPF [11] introduces prompt tokens and GPF-PLUS trains multiple
independent basis vectors and combines them using attention (i) ULTRA [16] learns transferable
graph representations by conditioning on relational interactions. (j) SCORE [44] introduces zero-shot
reasoning on knowledge graphs using graph topology. All of these are grouped under GNN-BASED
baselines as they rely on pretraining GNNs (often with auxiliary components like prompts or experts)
to enable generalization to new graphs.

D.2 Using SVM on the Pre-trained Representations

To assess the linear separability and structural quality of the learned graph representations from ALL-
IN, we evaluate downstream graph classification accuracy using support vector machines (SVMs)
with both linear and radial basis function (RBF) kernels (Table 3). This setup allows us to probe how
well the learned representations support simple (linear) versus more expressive (nonlinear) decision
boundaries.

We compare against several non-learnable baselines that do not involve any representation learning:

(a) Input Features (X'): Raw input features of each graph, computed by averaging node features.

(b) Propagated Input Features (A X): Features after one round of neighborhood propagation,
capturing local graph structure.

(c) Input Features along with random walk structural encodings (X @ S): Concatenates the raw
features with random walk structural encoding (RWSE) [9], which encodes graph structure
based on transition probabilities of random walks.

These baselines serve as direct input replacements for ALL-IN and are shared across both kernel
settings. They provide a strong reference for understanding the inherent structure in the input space,
independent of any learning or pretraining.

For ALL-IN, we report results both with and without concatenation of the input features to assess the
added value of structural information in the learned embeddings.

18

Table 3: Graph classification accuracy (%) using SVMs with Linear and RBF kernels. Baselines are
shared across both kernels. Results are reported as mean =+ standard deviation over 10 runs.

Method MUTAG PTC PROTEINS NCI1 NCI109 ENZYMES
(acc 1) (acc 1) (acc 1) (acct) (acc 1) (acct)

LINEAR SVM

Input Features 8187+ 725 60.88 £ 1.83 72.68 & 0.58 6459 +1.24 6336 £2.22 22.00 £ 4.46

Propagated Input Features ~ 69.64 +14.21 57.34 £10.89 59.56 £3.94 64.16 £1.22 6326 £ 1.63 14.33 £5.01
Input Features + RWSE 80.96 £ 0.89 60.14 £ 1.15 65744+043 6430+0.16 6345+020 27.00 £ 4.63

ALL-IN 7447+ 770 53124 9.09 6091 £425 6326136 63.19+1.89 21.16 £6.28
ALL-IN + Input Features 7447+ 770 52.84 4 9.03 62.00 429 6445+148 6372+ 1.67 21.50+5.18
RBF SVM

Input Features 7273 £14.29 5588 +£11.58 71.06 £2.93 6644 143 66.80 & 1.35 33.33 £4.77

Propagated Input Features ~ 79.70 11.03 ~ 54.10 £10.25 72.05£4.70 55.66 £5.80 58.05+5.42 33.16 +4.43
Input Features + RWSE 79.21 £10.99 58.71 £ 8.76 6721 £622 70.68 £2.60 67.82+279 36.66 + 5.96
ALL-IN 8298 £ 7.76 59.28 &+ 9.13 70.62+4.53 6588+ 1.62 6568+ 190 28.83 + 587
ALL-IN + Input Features 84.06 = 6.61 5988+ 7.72 7142+429 6754 +133 6734 £1.51 3216 £ 6.71

Under the RBF kernel, ALL-IN combined with input features achieves the best performance on four
out of six datasets, including PTC, NCI1, NCI109, and ENZYMES, highlighting its ability to
encode discriminative patterns suitable for nonlinear classification. In contrast, performance under
the linear kernel is more mixed, with RWSE showing strong results on datasets like PROTEINS,
indicating some inherent linear separability in the structural baseline. Overall, these results demon-
strate that ALL-IN learns representations that are expressive and transferable across diverse graph
datasets, especially when paired with nonlinear classifiers.

D.3 Additional results on transferability to unseen datasets

In Table 4, we present comparison with more baselines on our graph classification datasets MUTAG
and PROTEINS. We describe below the changes we make to the following baselines to make them
applicable to this setting:

* GLEM-LM [8]: This is a method that only supports tasks on text-attributed graphs. Since
the TU Datasets [32] do not have node text attributes, we describe the input node features
and pass them to ChatGPT.

¢ GCOPE [52]: This method introduces one virtual node for each node classification dataset,
connecting it to all the nodes within the dataset. To perform graph classification, we
introduce one virtual node for each graph classification dataset and connect it to all the
nodes in all the graphs within the dataset.

* ANYGRAPH [46]: This method performs node classification by adding one node per
class and connecting each training node to its corresponding class node. Classification of
unlabeled nodes is performed by computing the dot product between the node’s embedding
and each class node embedding to rank the classes. To extend this paradigm to graph
classification, we introduce a virtual node that connects to all nodes in the graph and add one
class node per category. For classifying new graphs, we compute the dot product between
the virtual node embedding and each class node embedding to rank the classes.

We leave out the following methods and provide justification below:

e GRAPHTEXT [53]: While the authors mention that GRAPHTEXT is applicable for graph
classification, they do not provide a way to construct a graph syntax tree for an entire graph,
which can be ambiguous as it could involve introducing a virtual node or averaging results
from syntax trees of multiple nodes.

* GRAPHANY [54]: This method is explicitly only designed for node classification on
arbitrary graphs as it relies on an analytical solution that is not directly applicable to graph-
level tasks.

The results in Table 4 further substantiate ALL-IN’s strong performance. These findings reinforce the
observations made in the main paper: ALL-IN, with its frozen pre-trained encoder and a retrained
head, effectively generalizes to new graph classification datasets with novel input features, surpassing
a wide variety of adapted baselines.

19

Table 4: Performance on unseen graph-classification datasets with new input features. ALL-IN
demonstrates strong transferability, underscoring its versatility and ability to handle different fea-
ture spaces. | indicates these methods were modified to work on these datasets, as explained in
Appendix D.3

Dataset MUTAG PROTEINS
(acc 1) (acct)
SUPERVISED BASELINES
MLP 67.20 £ 1.00 59.20 + 1.00
GIN [47] 89.40 £ 5.60 76.20 &+ 2.80
LLM-AUGMENTED GNNSs
OFA [31] 61.04 £ 471 6140 £+ 2.99
GLEM-LMT [8] 7297 £ 0.00 43.22 £12.01
LLM-BASED
RWNN-DEBERTA [25] 58.22 + 0.24 67.85 + 0.53
GNN-BASED
GCOPET [52] 81.87+ 7.26 71.84 4+ 3.48
ANYGRAPHT [46] 75.61 £ 6.94 7223 4+ 4.63
MDGPT [49] 57.36 £14.26 54.35 £10.26
GPPT [38] 60.40 £15.43 60.92 +-12.47
ALL-IN-ONE [39] 79.87 £ 534 6649 + 6.26
GPROMPT [19] 73.60 £ 476 59.17 £11.26
GPF [11] 68.40 £ 5.09 6391 £+ 3.26
GPF-pLUS [11] 6520 £ 6.94 62924+ 2.78
ULTRA(3G) [16] 63.33 £ 0.00 58.09 + 0.00
SCORE [44] 8533 £ 2.11 68.54 + 1.47
ALL-IN (0 props) 9250 £ 6.60 76.72 &+ 3.19
ALL-IN 9290 £ 6.34 78.20 &+ 3.81

D.4 Asymptotic Computational Complexity

For a graph with n nodes and m edges, with node feature matrix X € R"™*<, projecting features using
a random linear transformation takes O(ndh) time and O(nh) memory, where h is the projection

dimension. Computing { R() }];:1 takes O(k(m+n)) time, as this is equivalent to k message-passing
layers propagating R(®). The centering operation takes O(knh) time.

When explicitly constructing the node-covariance operators K () = %Rﬁp)(szp))T e R»*,
the computational complexity is O(kn?h) and memory complexity is O(kn?) (asp = 1,--- , k),

resulting in quadratic complexity with respect to the number of nodes. This explicit construction
is necessary in certain scenarios such as subgraph GNNs where the full pairwise similarity matrix
is required as the graph structure itself [1, 14]. However, for standard message passing operations
in most MPNNSs [26, 47, 35], we can avoid explicitly constructing the covariance matrix. Since
message passing can be written as a left-hand multiplication by a propagation matrix (our covariance
operator K), and by substituting the definition K = RR", we can compute R(R" H“~1)) instead
of (RR")H“~1), This way, at no point do we need to hold the full covariance matrix in memory.
This approach has computational complexity O(k(m + nh - h{¢=1)) and memory complexity
O(n(h + h¥=1)) for the entire layer computation, where h(*~1) is the feature dimension of H(¢~1),
avoiding the O(n?) memory bottleneck while producing mathematically identical results.

Therefore, the computational complexity of ALL-IN depends on the specific use case, i.e. it is
O(k(n? + m)) time and O(kn?) memory when explicit covariance matrices are required and
O(k(m 4 nh - h¢=1)) time and O(n(h 4+ h*~1))) memory for standard MPNN message passing.

E Dataset Information

In this section, we describe the datasets used in our experiments. We categorize them based on their
use in pretraining and task transferability.

20

Table 5: Statistics of pre-training datasets used in ALL-IN. The datasets span molecules, drugs,
computer vision-derived graphs and 3D shape point clouds.

Dataset # Nodes # Edges # Features # Classes Domain / Category
ZINC 23.2 (avg) 24.9 (avg) 28 - Molecular Graph Regression
OGBG-MOLHIV 25.5 (avg) 27.5 (avg) 9 2 Drug Discovery
OGBG-MOLESOL 13.3 (avg) 13.6 (avg) 9 - Solubility Prediction
OGBG-MOLTOX21 18.6 (avg) 19.4 (avg) 9 12 (multi-label) Toxicology
MNIST (SUPERPIXELS) 75 142 1 10 Vision (Digits)
CIFAR10 (SUPERPIXELS) 85 170 1 10 Vision (Objects)
MODELNET 100 (fixed) 150 (fixed) 3 40 3D Shape Classification
CUNEIFORM 62 (avg) 150 (avg) 1 30 Archaeology / OCR
MSRC 21 212 (avg) 336 (avg) 4 21 Image Segmentation

Table 6: Statistics of finetuning datasets used in our experiments. For node classification datasets
(citation networks), we report the total number of nodes and edges. For graph classification datasets
(bioinformatics), we report the number of graphs and average graph sizes.

Dataset # Graphs / Nodes # Edges # Features # Classes Domain / Task

CORA 2,708 nodes 5,429 1,433 7 Citation Network / Node Classification
CITESEER 3,327 nodes 4,732 3,703 6 Citation Network / Node Classification
PUBMED 19,717 nodes 44,338 500 3 Citation Network / Node Classification
MUTAG 188 graphs 17.9 (avg) 7 2 Bioinformatics / Graph Classification

PROTEINS 1,113 graphs 39.1 (avg) 3 2 Bioinformatics / Graph Classification

E.1 Pre-training Source Datasets (A1)

For pretraining ALL-IN, we use 10 diverse datasets covering molecular graphs, drugs, computer
vision, and 3D shapes. The statistics for each dataset are summarized in Table 5. The detailed
information is as follows:

e ZINC [10] is a molecular property prediction dataset where the task is regressing the
constrained solubility values of molecules. We report mean absolute error (MAE) as the
evaluation metric.

* MOLHIV, MOLESOL, MOLTOX21 [22] is a collection of molecular graphs from the OGB
benchmark covering drug discovery and toxicity prediction tasks. Depending on the dataset,
we perform binary classification (MOLHIV), regression (MOLESOL), or multi-label classifi-
cation (MOLTOX21). Performance is measured using ROC-AUC or RMSE, as appropriate.

* MNIST, CIFAR10 [10] are computer vision datasets converted into graph-structured super-
pixels. Each image is modeled as a fixed-structure graph, with 1-dimensional input features
and a 10-way classification objective.

* MODELNET [45] is a 3D object classification benchmark where shapes are represented as
fixed-size point cloud graphs. We use the 10-class subset.

e CUNEIFORM [32] is a graph-based OCR dataset derived from ancient script symbols,
consisting of 62-node graphs with 150 edges on average and a 30-class prediction target.

* MSRC-21 [32] is an image segmentation dataset where region adjacency graphs are
constructed from visual scenes. Each graph has approximately 212 nodes and 336 edges,
with 4-dimensional node features and 21 semantic class labels.

E.2 Transferability to Unseen Datasets and Input Features (A2)

To evaluate the transferability of ALL-IN to unseen input features, we choose the following datasets
summarized in Table 6 and explained below:

* CORA, CITESEER, PUBMED [48]: In these datasets, nodes represent academic papers and
edges denote citation links. Each node is assigned a class label corresponding to a subject
area. The task is to predict the category of a paper based on its content features and citation
graph. Models are evaluated under transductive learning settings using fixed splits [48].

21

Table 7: Hyperparameter Configuration for Pretraining Stage.

Category Hyperparameter (Value)
Architecture

Activation Function ReLU

Attention Type in GPS PerformerAttention

GPS Heads 4

Channels h9) 256

Random Projection Dim h 512

Backbone GNNLayer gps_gine

Number of Layers L 6

Input PE Dim h 20

Use Random Projections True

Node-Covariance Operators k 0, 2
Training Setup

Pretraining Epochs 500

Batch Size 64

Dropout 0.0

Learning Rate 0.0001

Weight Decay 0.0

Normalization Type batchnorm

* MUTAG [32]: A binary classification dataset of small molecule graphs. Nodes represent
atoms with categorical features, and graphs are labeled based on mutagenic effect on a
bacterium.

* PROTEINS [32]: A dataset of protein structures modeled as graphs where nodes represent
secondary structure elements and edges reflect neighborhood in the amino acid sequence.
Each graph is labeled as enzyme or non-enzyme.

F Implementation Details

We implement ALL-IN using PyTorch [33] (BSD-3 Clause license) and PyTorch Geometric [13]
(MIT license). For experiment tracking and hyperparameter logging, we utilize the Weights and
Biases framework [2]. Experiments were conducted with NVIDIA RTX A6000, RTX 4090, and
NVIDIA A100 GPUs.

For all experiments, we use the GPS framework [35] with the GIN message passing layer [47] for
{GNNLayer(Z’A)("A) }_ - and we use standard message passing layer for other operators.

F.1 Pre-training on Different Source Datasets (Q1)

To evaluate large-scale transfer, we pretrain ALL-IN on a diverse set of 10 graph datasets spanning
multiple domains, as described in Appendix E. Each training epoch cycles through all datasets once,
optimizing dataset-specific objectives. We train for 500 epochs and checkpoint every 25 epochs.
Hyperparameters are detailed in Table 7. To accelerate training, (1) we use DataParallel to support
multi-GPU runs, (2) cache the random projection matrix C' and refresh every 100 steps, (3) sample
10,000 graphs randomly at each epoch for MNIST and CIFAR10, and (4) sample 128 nodes with
6-nearest neighbors as edges for MODELNET in each graph.

F.2 Evaluation on Unseen Datasets and Input Spaces (Q2)

To evaluate the transferability of ALL-IN to unseen datasets with novel input features, we freeze the
pretrained encoder and evaluate its representations by training lightweight classifiers on new target
datasets. These datasets span both node-level and graph-level classification tasks, with input feature
spaces and labels disjoint from those used during pretraining.

For each target dataset, we instantiate a prediction head using one of the following: (1) a multi-layer
perceptron (MLP) for both node and graph classification tasks; (2) a 2-layer GCN [26] applied to
node classification benchmarks (CORA, CITESEER, PUBMED); and (3) a 2-layer GIN [47] for graph
classification benchmarks (MUTAG, PROTEINS). All prediction heads are trained with frozen
ALL-IN features as input. No gradients are backpropagated into the encoder during this stage.

22

For MLPs, we use a single hidden layer of size 128 with ReLU activation, followed by a softmax
or sigmoid output layer, depending on whether the task is single-label or multi-label. We train
all classifiers using the Adam optimizer with a learning rate of 0.001 and early stopping based on
validation loss. Node classification models are trained on the standard 20/30/50 splits [48] and
evaluated using accuracy. For graph classification, we perform 10-fold stratified cross-validation and
report the mean and standard deviation of classification accuracy.

All transfer experiments are implemented in PyTorch and PyTorch Geometric. Environment and
optimization settings match those described in Appendix F.1.

G Broader Impact

This work proposes a method for learning transferable representations for graphs with different input
feature spaces. It may benefit tasks where training data is limited or diverse in structure, such as
molecule classification or drug discovery. As the method is task-agnostic, it could be applied in
various domains without careful tuning. We do not foresee any immediate negative societal impact,
but users should be cautious when applying the method to sensitive domains without domain-specific
validation.

23

	Introduction
	Method
	Experiments
	Performance on Pre-training Source Datasets (A1)
	Transferability to Unseen Datasets and Input Features (A2)

	Conclusion
	Related Work
	Theoretical Insights
	Invariance to Feature Space Transformations
	Training Objective Upper Bound
	Conditions for Transferability and Operator Consistency

	Additional Theoretical Considerations and Proofs
	Additional Results
	Categorization and Description of Baselines
	Using SVM on the Pre-trained Representations
	Additional results on transferability to unseen datasets
	Asymptotic Computational Complexity

	Dataset Information
	Pre-training Source Datasets (A1)
	Transferability to Unseen Datasets and Input Features (A2)

	Implementation Details
	Pre-training on Different Source Datasets (Q1)
	Evaluation on Unseen Datasets and Input Spaces (Q2)

	Broader Impact

