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Abstract

Eye movements serve as a valuable window into understanding the intricacies of the human
mind and brain within the field of cognitive science. The analysis of eye movements and
gaze fixations has yielded profound insights across various domains, including cognitive
science, marketing, human-computer interaction, and human-robot interaction, providing a
rich source of knowledge on diverse cognitive functions. A critical challenge in eye-tracking
data analysis lies in deciphering a person’s visual attention at each moment from their
measured gaze behaviour, known as “attention decoding.” The majority of eye-tracking
data analyses rely on labour-intensive manual coding of attentional states, a slow and error-
prone endeavour. Recent advancements in machine learning offer potential automation but
were hindered by the lack of publicly available labeled data for benchmarking. The Multiple
Object Eye-Tracking (MOET) dataset, a recent release, overcomes this challenge, providing
eye-tracking data from human participants observing dynamic visual scenes. We improve
upon the existing end-to-end architecture and present several competitive algorithms for
the task of attention decoding on the MOET dataset. We also present baseline results for
the distinct but related task of labeling the attention loci.
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1. Introduction

Exploring where humans direct their gaze and how it relates to their thinking and actions
stands as one of the core inquiries in the realms of psychology and neuroscience (Hayhoe and
Ballard, 2005; Koenig et al., 2016). Eye-tracking technology can contribute to understand-
ing what humans look at and how that influences their cognition and behaviour (Franchak
et al., 2011; Kurzhals et al., 2016; Bambach et al., 2018). The ability to record and an-
alyze eye movements, as well as gaze fixations, has opened up a world of insights across
various fields, including cognition (Kiefer et al., 2017), attention (Kim et al., 2021, 2022),
counterfactual simulation (Gerstenberg et al., 2017), offering a rich source of information
about diverse cognitive functions. However, a key step of eye-tracking data analysis is
determining the locus of a person’s visual attention at each point in time. This process
is called “attention decoding” since it involves decoding a participant’s latent attentional
state from their measured gaze behaviour (Uppal et al., 2023). In environments that include
only a small number of well-separated objects on a static display, the locus of the partic-
ipant’s attention can be determined using basic automated assessments, such as duration
and number of fixations within predefined regions of interest (ROIs) (Carpenter and Just,
1977; Tsai et al., 2012; Raney et al., 2014; Eng et al., 2020; Mirman et al., 2008; Huettig
et al., 2011; Kim and Grüter, 2021). However, such an approach fails to imitate the com-
plexity of the real world. Hence, the majority of eye-tracking data analysis is done using
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software for hand-coding attentional state frame-by-frame (Steinbach, 1969; Tsang et al.,
2010; Kurzhals et al., 2014; Vansteenkiste et al., 2015; Fraser et al., 2017; Miller et al., 2020;
Kim et al., 2020; Pellicer-Sánchez, 2016). This is labour-intensive, slow and prone to errors.

While recent tools from machine learning promise to automate this process, a key limita-
tion to the implementation of such tools has been the lack of publicly available labeled data
for benchmarking attention decoding. The recently released Multiple Object Eye-Tracking
(MOET) dataset (Uppal et al., 2023) overcomes this barrier and provides eye-tracking data
collected from human participants viewing several dynamic visual scenes, alongside the
corresponding class labels and bounding boxes for the objects which the participants were
assigned to track. Previous approaches to tackle this dataset involved the usage of end-
to-end deep learning methods and heuristic rule-based methods. The present work builds
upon this in three ways: (1) we improve upon existing end-to-end architectures for attention
decoding, (2) present competitive alternative algorithms for attention decoding, including
heuristic rule-based and two-stage machine learning approaches, and (3) we present the first
baseline results for the related task of classifying attention loci on the MOET dataset.

2. Related work

Attention decoding methods: Typical automated attention decoding methods pass the
stimulus video frame-by-frame through an off-the-shelf detector, to obtain candidate pre-
dictions for all the objects. These candidate object predictions and the participant’s gaze
location are used to determine the loci of the participant’s attention following deterministic
rules. Kumari et al. (2021) and Machado et al. (2019) utilise off-the-shelf pretrained object
detectors to identify bounding box of objects in each frame, while Wolf et al. (2018) and
Deane et al. (2022) employ segmentation models to obtain segmentation masks. The par-
ticipant’s attention loci is then determined based on which of the candidate objects best
explains the gaze locations. Other methods (Panetta et al., 2019; Rong et al., 2022) extract
an area around the gaze location and predict the object of interest using either an image
classifier or object detector. These methods can perform well when the attentional loci are
well-separated but struggle in crowded scenes. Kim et al. (2020) utilise a hidden markov
model (HMM) in an artificial visual setting to aggregate temporal information across frames
and overcome the challenge of occluded objects.

Datasets for attention decoding: Most of the datasets utilised by methods described
in the previous section are either not publicly available (Machado et al., 2019; Panetta
et al., 2019; Kumari et al., 2021; Deane et al., 2022), limited by size (Wolf et al., 2018),
or do not contain the required annotations (Rong et al., 2022) to train attention decoding
models. The VISUS dataset (Kurzhals et al., 2014) contains gaze data from 25 participants
watching 11 different videos, wherein each participant was assigned a task to perform while
watching the video (e.g., follow a red car), with the aim of eliciting particular naturalistic
patterns of gaze behaviour. While appropriately annotated for our purposes, the scenes
in the VISUS dataset are quite sparse, with most frames containing only a single moving
object, making attentional decoding relatively easy on this dataset. The Multiple Object
Eye-Tracking (MOET) dataset (Uppal et al., 2023) extended the Multiple Object Tracking
2016 (MOT16) benchmark dataset (Milan et al., 2016) with eye-tracking data obtained from
16 participants viewing 14 videos while tracking distinct target objects through the videos.
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Figure 1: Example frames from the MOET dataset. The blue bounding box indicates the
object of interest while the white circle indicates the gaze location.

The MOT16 dataset is a widely used benchmark dataset for multiple object tracking since
it provides a large number of crowded moving objects in complex real-world scenes. In the
MOET dataset, target objects are annotated in each frame with class labels and bounding
boxes. Due to the availability of required annotations and the realistic and challenging
nature of MOT16 videos, we utilise the MOET dataset for all our experiments.

3. Methodology

3.1. Data description and preprocessing

The Multiple Object Eye-Tracking (MOET) dataset extends MOT16 with eye-tracking data
obtained from 16 participants viewing the 14 videos while tracking distinct target objects in
the videos. Target objects are annotated in each frame with class labels and bounding boxes,
with the assigned target object changing roughly 10 times per video. The annotations were
obtained from a RetinaNet model (Lin et al., 2017b) trained on the MS COCO dataset.

The experimental setup of the data collection relies on the assumption that the gaze
point is always inside the object assigned to be tracked, also known as the overt condition,
which is not always the case. The participants track the target imperfectly in some cases as
expected. Preliminary analysis revealed that ∼ 42% of the annotated frames do not follow
the overt condition; some examples are included in Figure 1. Since the ground truth labels
contain a significant amount of noise, data cleaning is crucial before proceeding to training.
Similar to Uppal et al. (2023), we perform the following data-cleaning steps:

• Imputation of missing data: The gaze position is interpolated linearly from ad-
jacent non-missing frames whenever we encounter the gaze data missing for short
sequences (< 10 frames, ≈ 167ms), which typically reflect blinks. Remaining frames
with missing gaze, or in which no objects were detected, are omitted from the dataset.
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• Verifying overt condition: Since the participant’s gaze is not always directed to-
wards the specified target object (either because the participant is off-task or because
they are transitioning between two targets), Uppal et al. (2023) apply a distance
threshold, dropping frames from the training data in which the gaze is more than a
certain Euclidean distance (100 pixels) away from the nearest point of the bounding
box of the assigned target object. As discussed in Section 4.2, we experiment with
several different values of this threshold using their original end-to-end architecture.

For evaluation, we split the dataset across participants since splitting across videos
leads to the data being in different domains. We also note that participants 2 and 9 were
excluded from the evaluation due to duplicate and incomplete gaze data, respectively. For
each video, we train a model on 80% of the participants (11 participants) and then evaluate
the performance on the remaining 20% of the participants (3 participants). This emulates
applications in which we have labeled data from some participants watching a video and
want to apply the model to data from new participants watching the same video, that is,
generalization across participants. We measure performance by the mean (across frames)
Intersection over Union (IoU) between the predicted and ground truth bounding boxes.

3.2. End-to-end attention decoding architectures

Architecture overview: Uppal et al. (2023) proposed an end-to-end attention decod-
ing model (Figure 2), which uses a pretrained object detector backbone and incorporates
gaze using gaze density maps. The model consists of a ResNet-50 Feature Pyramid Net-
work (FPN; Lin et al., 2017a) backbone extracted from a Faster R-CNN model (Ren et al.,
2015), pretrained on the “Common Objects in COntext” (COCO) dataset (Lin et al., 2014).

Pretrained
Backbone

(Faster R-CNN)

Gaze Location

Input frame

Gaze Density Map Alternate Convolutional
and Pooling Layers

Dense
Layers

Predicted
Bounding Box

Element-wise
multiplication

Figure 2: End-to-end Model Architecture

For each input frame I, the highest-resolution (128x128) feature map F(I) is obtained
from the FPN. Each input frame I is associated with a gaze point g = (x, y). In order to
capture the spatial attention of the participant, the gaze point g is transformed into a gaze
density map GDM(g), which is represented by a Gaussian, centred at the gaze location:

GDM(g) = N (g, σ), (1)
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where the standard deviation σ is a model hyperparameter. This can be interpreted as a
feature importance map, describing the spatial attention of the participant at the current
frame. We combine F(I) and GDM(g) in a weighting mechanism, similar to the approach
proposed by Sattar et al. (2020). Specifically, GDM(g) is downsampled to match the reso-
lution of F(I) and is integrated as shown below:

Fwgt(I) = F(I)⊗GDM(G) (2)

where ⊗ stands for element-wise multiplication. The weighted feature map Fwgt(I) is
passed through 2 alternating 3x3 convolutional and 2x2 pooling layers, doubling the depth
at each step. Finally, we pass it through three dense layers to predict the final bounding box.
Note that Uppal et al. (2023) explored using both GRU units and dense layers at the end to
gauge the effect of temporal information to combat object collisions and occlusions. Since
they concluded that temporal information propagated by the GRU units did not improve
model performance, we only take into account a single frame at a time.

Training procedure: The weights of the pretrained ResNet-50 FPN backbone network
are frozen during training. Each model is trained for 150,000 iterations, using L1 loss and
Adam for stochastic optimization, with learning rate 10−3 and weight decay 10−4. We
keep σ = 500 px, following Uppal et al. (2023). We note that the training of this model is
quite unstable and hence layer normalization is added in the dense layers. Apart from this,
thresholding to ensure the overt condition (see Section 3.1) is also omitted. As discussed
in Section 4, these two changes to the training procedure lead to significant performance
improvements over the procedure of Uppal et al. (2023).

3.3. Two-Stage method

We also present a simple two-stage method using a pretrained object detector, as illustrated
in Figure 3. Faster R-CNN, pretrained on the MS COCO dataset, is used to obtain the
top-k bounding boxes (for some predetermined model hyperparameter k), based on their
predicted probability, for each frame. All the bounding boxes are concatenated into a single
vector, alongside the corresponding gaze point for that frame. The collection of such vectors
is used to train a multi-output random forest regressor with 1000 estimators which predicts
the bounding box of the object of interest. In the case where k is greater than the number
of objects predicted by Faster R-CNN, the remaining elements of the vector are set as 0.

3.4. Heuristic baselines

We include the following heuristic baselines proposed by Uppal et al. (2023):

• Fixed Box Baseline: For each video, the fixed-box baseline predicts a bounding
box of fixed size centred around the gaze point. The size of the bounding box is the
average size of all bounding boxes, across all training participants, for that video.

• Object Detector (OD) baseline: Using the Faster R-CNN model, pretrained on
the MS COCO dataset, candidate bounding box predictions are generated for each
input frame. If the gaze location is present inside any of the candidate bounding
boxes, it is chosen to be the object of interest. In the case of overlapping bounding
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Figure 3: Two-Stage Model Architecture

boxes, the one with the highest prediction probability (as given by the Faster R-CNN
model) is chosen. If the gaze location does not lie inside any of the predicted bounding
boxes, then a random candidate is chosen to be the object of interest.

• Object Detector (OD) mod: It is similar to the above baseline with a slight
modification in the case when the gaze location does not lie inside any of the candidate
bounding boxes; in such a scenario, the Euclidean distance between the gaze point
and the nearest point of all the candidate-bounded boxes is calculated, and the one
with the least value is chosen as the predicted bounding box.

• Object Detector (OD) oracle: The “OD Oracle” model is given access to the true
target bounding box and selects the best bounding box out of those provided by the
object detector; while this is not feasible in practice, the performance of this model
provides a reference upper bound on the best performance possible for any model
selecting one of the bounding boxes output an object detector.

4. Experimental Results

All the experiments were performed on Ubuntu 20.04.2 LTS, with implementation using
PyTorch 1.11 and logging using the Weights & Biases (wandb) toolbox. Code for reproducing
our results is available at [Omitted for anonymity.].

4.1. Generalisation across participants

Averaged results across all the 14 videos suggest that the best results are achieved by the
OD Mod method, which applies heuristics to combine gaze with the output of an off-the-
shelf object detector, followed closely by the Two-Stage model, as seen in Table 1. Since
the performance of the end-to-end model is lower than that of the OD Mod baseline, both
of which are much lower than that of the OD Oracle with access to the original bounding
boxes, we speculate that the overall error is dominated by errors in the initial estimation of
the bounding boxes, rather in the downstream selection of the best bounding box.
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Approach Algorithm Mean IoU (Std. Dev.)

Completely Rule-Based Fixed Box Baseline 0.2203 (0.0713)

Object Detector (OD) + Rule
OD Baseline 0.4769 (0.1177)
OD Mod 0.5091 (0.0990)
OD Oracle 0.7088 (0.0740)

Machine Learning
Uppal et al. (2023) 0.3593 (0.1214)
End-to-end Method (Ours) 0.4358 (0.1164)
Two-Stage Method (Ours) 0.4941 (0.1290)

Table 1: Means and standard deviations (across test set participants) of mean IoUs (across
14 videos), for each algorithm. Faded values indicate cases where the model uses
“oracle” knowledge of the true bounding box and are provided only for comparison.

4.2. Hyperparameter Tuning

Distance threshold for end-to-end method: Uppal et al. (2023) apply a crucial data-
cleaning step of verifying the overt condition. We experiment on different values of this
threshold (50, 100, 200, 500 and no threshold) on their end-to-end attention decoding
architecture, trained and evaluated for all the participants on 7 of the 14 videos. As seen
in Table 2, the model performance is greatest when trained without any training threshold.
Hence, we use no threshold when training our end-to-end attention decoding models.

Training Threshold 50 100 200 500 None

Mean IoU 0.4094 0.3971 0.4061 0.3946 0.4264

Table 2: Mean IoUs (across 7 of the 14 videos, for all the participants) for the end-to-end
architecture proposed by Uppal et al. (2023).

Number of bounding boxes and distance threshold for Two-Stage method: As
above, experimented with the distance threshold, as well as the parameter k ∈ {10, 20, 50, 100},
for the Two-Stage method; results are in Table 3. In contrast to the end-to-end model, the
Two-Stage Method performed best with a distance threshold of 50 and k = 10.

No. of top detections, k
Distance Threshold

0 50 100 200 500 None

10 0.4817 0.4941 0.4904 0.4724 0.4422 0.3969
20 0.4799 0.4931 0.4899 0.4731 0.4421 0.3978
50 0.4789 0.4929 0.4905 0.4742 0.4455 0.4008
100 0.4790 0.4928 0.4912 0.4747 0.4460 0.4016

Table 3: Mean IoUs (across all 14 videos) for test set participants for the Two-Stage Method
for varying values of k and distance threshold for dataset cleaning.
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Models Accuracy Weighted F1 Score

OD Baseline 85.84 % 0.8877
OD Mod 89.11 % 0.9102
OD Oracle 94.10 % 0.9565
Two-Stage Method 88.50 % 0.8742

Table 4: Classification metrics for test set participants (across all videos) for the task of
labeling attention loci. Faded values indicate cases where the model uses “oracle”
knowledge of the true bounding box and are provided only for comparison.

4.3. Classifying Attention Loci

Whereas our previous experiments focused on estimating a bounding box for the locus of the
participant’s attention, in many applications, it is useful to explicitly classify the object the
participant is attending to. To the best of our knowledge, there are no existing comparable
benchmarks for this latter task; here, we present the first baselines for this task using our
two-stage models. The dataset primarily contains annotations for 5 classes: person (86%),
car (6%), motorcycle (1.7%), chair (1.7%), bus (1.5%), and other miscellaneous classes (<
1%). Due to this class imbalance, we report both accuracy and weighted F1 score. For OD
Baseline, OD Mod and OD Oracle, the predicted class label for the corresponding bounding
box predicted by the pretrained object detector is considered the attention locus label. For
the Two-Stage method, the class label for the candidate bounding box having maximum
IoU with the predicted bounding box is taken as the predicted label. As shown in Table 4,
OD Mod performed best in terms of both accuracy and F1 score, although the Two-Stage
Method gives competitive performance terms of accuracy.

5. Conclusion

Attention decoding is a challenging computer vision task with limited prior literature. The
Multiple Object Eye-Tracking (MOET) dataset provides a benchmark for the development
of automated attention decoding algorithms. This paper presents a comprehensive study
on tackling the problem of attention decoding on the MOET dataset and provides several
competitive baselines, including heuristic rule-based methods, two-stage and end-to-end
machine learning methods. We also improve upon the end-to-end architecture proposed by
Uppal et al. (2023) and present baseline models for the task of labeling attention loci.

Our results highlight the challenge of developing end-to-end machine learning models
that convincingly outperform simpler heuristics; specifically, end-to-end models were gen-
erally outperformed by the two-stage methods, combining pretrained object detectors with
heuristic rules or random forest models. We note that the performance of all methods on
the MOET dataset may be limited by artefacts in the construction of the original data, in
particular the idiosyncratic method that was used to construct the “ground truth” bound-
ing boxes during data collection. This would help explain the substantial gap between the
performance of the “oracle” algorithm and the other approaches, and why preprocessing
the data with different distance thresholds considerably changes performance.
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