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Abstract

World models have been proposed for improving the learning efficiency of deep rein-
forcement learning (RL) agents. However, it remains challenging for world models
to effectively replicate environments that are high-dimensional, non-stationary, and
comprising multiple objects and their interactions. We propose Transformer-based
Imagination with Slot Attention (TISA), an RL agent that integrates a Transformer-
based object-centric world model, policy function, and value function. The world
model in TISA uses a Transformer-based architecture to handle each object’s state,
actions, and rewards (or costs) separately, effectively managing high-dimensional
observations and preventing the combinatorial explosion of dynamics. Also, the
Transformer-based policy and value functions can make decisions by considering
the dynamics of individual objects and their interactions. In Safety-Gym bench-
mark, TISA outperforms a previous Transformer-based world model method.

1 Introduction

Humans understand and predict real-world dynamics through interaction with the environment [Mc-
Closkey et al., 1983]. Inspired by this mechanism, world models have been proposed for improving
the learning efficiency of deep reinforcement learning (RL) agents [Ha and Schmidhuber, 2018].
These agents train the world model to replicate their observations and actions and optimize their
policies within an “imagined” environment generated by the world model [Hafner et al., 2020, 2021].
Recently, deep RL agents with Transformer-based world models have achieved even higher perfor-
mance [Robine et al., 2023, Micheli et al., 2023, Zhang et al., 2023]. However, it remains challenging
for world models to effectively replicate environments that are high-dimensional, non-stationary,
and comprising multiple objects and their interactions. In contrast, when humans are placed in
such environments, they perceive the world not as a monolithic entity but by decomposing it into
discrete concepts such as objects and events [Spelke and Kinzler, 2007], enabling more efficient
decision-making. If integrating these cognitive mechanisms into world models, RL agents would be
capable of operating more effectively even in complex environments.

Object-centric representation learning is a method that accurately represents a visual scene by
segmenting it into multiple entities and extracting individual representations for each one. This
approach has been applied, for example, to video prediction, where it enables the introduction of
mechanisms that predict the unique dynamics of each entity and their interactions, achieving superior
performance compared to conventional representation learning methods [Lin et al., 2020, Zoran et al.,
2021]. Also, SlotFormer [Wu et al., 2023] demonstrated that the video prediction can be refined
simply by combining object-centric representation learning with a Transformer-based autoregressive
model, without the need for such specialized mechanisms. On the one hand, some studies have
proposed to combine RL agents and object-centric representation learning; specifically, OCRL [Yoon
et al., 2023] and EIT [Haramati et al., 2024] employ Transformers that deal with object-centric
representations in both the policy and value function. This enables decision-making that focuses on
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Table 1: Comparison of Our Proposal against Related Methods.
SlotFormer TWM OCRL, EIT TISA (proposed)

Learn object-centric representations ✓ ✓ ✓
Learn action-conditioned dynamics ✓ ✓
Transformer-based dynamics model ✓ ✓ ✓
Transformer-based policy/value function ✓ ✓

(a) World Model

(b) Policy/Value Functions

Figure 1: The architecture of TISA.

individual objects; however, it does not allow for decision-making explicitly based on their dynamics
and interactions.

In this work, we propose Transformer-based Imagination with Slot Attention (TISA), an RL agent
that integrates a Transformer-based object-centric world model, policy function, and value function.
The world model in TISA employs a Transformer-based architecture and handles each object’s state,
the agent’s action, and the reward obtained (or cost) individually. Intuitively speaking, it extracts
discrete concepts in high-dimensional, complex observations, prevents the combinatorial explosion
of dynamics over time, and makes the learning process more effectively. Also, the Transformer-based
policy and value functions can make decisions by considering the dynamics of individual objects
and their interactions. We have evaluated TISA on the Safety-Gym benchmark, which features RL
environments containing various types of objects, including those directly related to rewards or costs,
as well as dynamic and static objects. In this benchmark, TISA outperforms TWM [Robine et al.,
2023], which is a Transformer-based world model method without object-centric representations.
Table 1 presents a comparison between our proposed TISA and related methods.

2 Methods

2.1 World Model

Our world model consists of a slot-based autoencoder model and a Transformer-based dynamics
model, as shown in Figure 1 (a).

Slot-based AutoEncoder Model: The slot-based autoencoder model is trained to extract object-
centric representations from observations through the reconstruction. The slot encoder extracts object-
centric representations from an observation ot into n slots (s1, . . . , sn)t using a Transformer called
Slot Attention [Locatello et al., 2020]. The deterministic slots (s1, . . . , sn)t are transformed into
probabilistic latent states (z1, . . . , zn)t. The slots (s1, . . . , sn)t are logits for categorical distributions,
which are denoted by latent states (z1, . . . , zn)t that each have 16 categorical variables, with each
variable represented by an 8-dimensional one-hot vector [Hafner et al., 2021]. In the mixture decoder,
the latent states (z1, . . . , zn)t are each decoded into RGB images and (unnormalized) masks using
a spatial broadcast decoder [Watters et al., 2019]. The masks are normalized across latent states
(z1, . . . , zn)t using a softmax function and use them as mixture weights to combine the individual
RGB images into a single reconstruction ôt. Figure 2 visualizes the reconstructed images for each
latent state.

Slot Encoder: (z1, . . . , zn)t ∼ pϕ((z
1, . . . , zn)t|ot),

Mixture Decoder: ôt ∼ pϕ(ôt|(z1, . . . , zn)t).
(1)
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Figure 2: Visualization of (per-latent state) reconstructions.

Transformer-based Dynamics Model: The Transformer-based dynamics model predicts the future
latent states (z1, . . . , zn)t+1 from the past latent states (z1, . . . , zn)s, action as, reward rs−1, and
cost cs−1 for s = t, t − 1, t − 2, . . . . We denote the history of the latent states from time t − l
to t by (z1, . . . , zn)t−l:t. The Transformer-based dynamics model is composed several modules.
The hidden state predictor fψ is a Transformer that feeds each entity of the history of the latent
states (z1, . . . , zn)t−l:t, action at−l:t, reward rt−l:t−1, and cost ct−l:t−1 as tokens and predicts the
deterministic hidden states (h1, . . . , hn)t and h′

t as the outputs of the current latent states (zt, . . . , zn)t
and action at. In this Transformer, causal masking prevents self-attention layers from accessing future
time steps in the training sequence, but the hidden states (h1, . . . , hn)t can still access the current
latent states (z1, . . . , zn)t and action at. Note that the positional encoding for this Transformer is only
dependent on time t but not on the index of the latent states, which takes values from 1 to n, because
the prediction is expected to be equivariant to the order of the latent states. The latent states, reward,
cost, and discount predictors are implemented as multilayer perceptrons (MLPs). The latent states
predictor pψ(ẑkt+1 | hkt ) computes the parameters of a categorical distribution conditioned on the
deterministic hidden state hkt to predict the future latent state ẑkt+1. The reward predictor pψ(r̂t | h′

t)
calculates the parameters of a normal distribution conditioned on the deterministic hidden state h′

t to
predict the reward r̂t. Both the cost predictor pψ(ĉt | h′

t) and discount predictor pψ(γ̂t | h′
t) compute

the parameters of a Bernoulli distribution to predict the cost ĉt and discount factor γ̂t. We visualize
the trajectories generated by the model in Appendix A.

Hidden state predictor: (h1, . . . , hn)t, h
′
t = fψ((z

1, . . . , zn)t−l:t, at−l:t, rt−l:t−1, ct−l:t−1),

Latent state predictor: ẑkt+1 ∼ pψ(ẑ
k
t+1|hkt ), for k = 1, . . . , n,

Reward predictor: r̂t ∼ pψ(r̂t|h′
t),

Cost predictor: ĉt ∼ pψ(ĉt|h′
t),

Discount predictor: γ̂t ∼ pψ(γ̂t|h′
t).

(2)

Loss Functions: The goal for the slot-based autoencoder model is to minimize the reconstruction
error J t

rec, while J t
ent and J t

cross serve as regularization terms. The entropies J t
ent prevent the latent

states (z1, . . . , zn)t from collapsing into one-hot distributions. The corss-entropies J t
cross align the

encoded latent states (z1, . . . , zn)t with the predicted latent states (ẑ1, . . . , ẑn)t from the dynamics
model [Robine et al., 2023]. Here, since the latent states (z1, . . . , zn)t encoded by the slot encoder
are ordered randomly, J t

cross is computed by rearranging them to minimize
∑n
k=1 |zkt − ẑkt |.

Laeϕ = E

[
T∑
t=1

(
J t
rec + α1J t

ent + α2J t
cross

)]
, where J t

rec = −lnpϕ(ot|(z1, . . . , zn)t),

J t
ent = −

n∑
k=1

H(pϕ(z
k
t |ot)), J t

cross =

n∑
k=1

H(pϕ(z
k
t |ot), pψ(ẑkt |hkt−1)),

(3)

with hyperparameters α1, α2 ≥ 0.

The term J t+1
cross, defined in Equation 3, is also used make the Transformer-based dynamics model to

learn the transitions of the latent states (z1, . . . , zn)t. Here, J t+1
cross is computed by rearranging the

predicted latent states (ẑ1, . . . , ẑn)t+1 to minimize
∑n
k=1 |zkt − ẑkt |. The terms J t

reward, J t
cost, and

J t
discount are negative log-likelihoods used to optimize the reward r̂t, cost ĉt, and discount factor γ̂t,

respectively. Then, the total loss functions for the Transformer-based dynamics model is givend by:

Ldynψ = E

[
T∑
t=1

(
J t+1
cross + β1J t

reward + β2J t
cost + β3J t

discount

)]
, where

J t
reward = −ln(pψ(rt|h′

t)),J t
cost = −ln(pψ(ct|h′

t)),J t
discount = −ln(pψ(γt|h′

t)),

(4)

with hyperparameters β1, β2, β3 ≥ 0 and γt = 0 for episode ends and γt = γ otherwise.
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Figure 3: The TISA training results.
2.2 Transformer-based Policy and Value Functions

The policy function πθ(at|ẑ1t , . . . , ẑnt ), along with the two state value functions–the reward value
function vξr (ẑ

1
t , . . . , ẑ

n
t ) and the cost value function vξc(ẑ

1
t , . . . , ẑ

n
t )–are implemented using Trans-

formers (see Figure 1 (b)). The Transformer takes as input tokens consisting of the latent states
ẑ1t , . . . , ẑ

n
t along with initial values, such as the action ainit and state values vr,init, vc,init, sampled

from a learnable normal distribution. The Transformer outputs corresponding to these initial values
are the action at and the state values vr and vc. Positional encoding is added uniformly to the latent
states ẑ1t , . . . , ẑ

n
t , ensuring that the Transformer’s output does not depend on their order, making the

output equivariant to the order of the latent states.

3 Experiments on Safety Gym

We have evaluated TISA on the five environments of the Safety-Gym benchmark [Achiam and
Amodei, 2019] (refer to Appendix B for details). In these environments, the goal is to navigate robots
to designated locations while avoiding collisions with surrounding objects. Given that Safety Gym is
designed to evaluate the performance of RL safetiness, where the frequency of critical failure (the cost)
is the most important metrics as well as the reward, we adopted a learning method to build a safe policy,
Augmented Lagrangian method [As et al., 2022], to TISA and a comparison method (see Appendix C
for details). We used performance scores used in [Achiam and Amodei, 2019] for E = 10 episodes of
Tep = 1000 steps. The average undiscounted reward return is defined as Ĵr(π) = 1

E

∑E
i=1

∑Tep
t=0 rt,

and the average undiscounted cost return is defined as Ĵc(π) = 1
E

∑E
i=1

∑Tep
t=0 ct. We compared

TISA with TWM [Robine et al., 2023], a Transformer-based world model method without object-
centric representations. We limited interactions with the environments within 100K and obtained the
average scores over five runs. Experimental details are provided in Appendix D.

4 Results

We summarized the time courses of the scores in Figure 3. The solid lines denote the average over
five runs, while the shaded areas denote the standard deviations. In three out of the five environments–
PointGoal1, CarGoal1 and PointButton1–TISA has achieved the better rewards with the costs at the
same levels as TWM. The success of TISA demonstrates that the Transformer-based world model
with object-centric representations effectively captures the dynamics of individual objects, leading to
more efficient learning. Additionally, the Transformer-based policy and value functions promote the
learning of more effective policies by taking into account the unique dynamics of each object. This is
particularly evident in the PointButton1 environment, which features the greatest variety of objects
among the five environments, including dynamic obstacles and the most diverse object shapes. Here,
TISA shows a clear performance advantage over TWM, highlighting its capability to learn effectively
even in complex environments. Also, the limitations of TISA are discussed in Appendix E.
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A Trajectories generated by our world model

(a) PointGoal1.
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(b) CarGoal1.

(c) PointGoal2.
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(d) PointButton1.

(e) PointPush1.
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B Safety Gym Benchmark Tasks

PointGoal1 CarGoal1 PointGoal2 PointButton1 PointPush1
Figure 4: 5 tasks in Safety Gym. In our experiments, we utilize first-person-view images with a
resolution of 64× 64 pixels as observations. The green objects indicate the goals the robot needs to
reach. In the PointPush1 task, the yellow box must be pushed into the goal area, while interacting
with any other object type is regarded as unsafe behavior.

C Policy Objective Function

The objective of the safe reinforcement learning problem is to maximize the accumulated reward under a given
safety threshold b:

max
π

Eπ

[
∞∑
t=0

γtrt

]
s.t. Eπ

[
∞∑
t=0

γtct

]
≤ b. (5)

To solve this problem, following the Augmented Lagrangian method from [As et al., 2022], we define the
objective function of the policy as follows:

Jθ = J r
θ −Ψ(J c

θ , λk, µk), (6)

where

J r
θ = Eπθ

[
lnπθ(at|ẑ1t , . . . , ẑnt )Ar(ẑ1t , . . . , ẑ

n
t , at)

]
,

J c
θ = Eπθ

[
lnπθ(at|ẑ1t , . . . , ẑnt )Ac(ẑ1t , . . . , ẑ

n
t , at)

]
.

(7)

Here, Ar(ẑ1t , . . . , ẑ
n
t , at) is the advantage function [Mnih et al., 2016] for the reward, and Ac(ẑ1t , . . . , ẑ

n
t , at)

is the advantage function for the cost, computed similarly to the reward’s advantage function. Both advantage
functions are estimated using the generalized advantage estimator (GAE) [Schulman et al., 2016]. Additionally,
µk = max(µk−1(ν + 1.0), 1.0) represents a monotonically non-decreasing term corresponding to the gradient
step k, where ν > 0. The penalty term and Lagrange multiplier in the loss function are updated as follows:

Ψ(J c
θ , λk, µk), λ

k+1
p =

{
λk(J c

θ − b) + µk(J c
θ − b)2, λk + µk(J c

θ − b) if λk + µk(J c
θ − b) ≥ 0

− (λk)
2

2µk
, 0 otherwise.

(8)

D Experimental Details

TISA takes approximately 4 days to train with 2 NVIDIA V100 GPUs. The hyperparameters used in the
experiments are listed in Table 2.
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Table 2: Hyperparameters
Name Symbol Value

Number of Slots n 6
Slot Size 128
Number of Slot Attention iterations 2
World Model Batch Size 64
History Length l 16
Imagination Batch Size 400
Imagination Horizon 15
Discount Factor γ 0.99
GAE Parameter 0.95
Penalty Term ν 1e-5
Initial Penalty Multiplier µ0 0.95
Initial Lagrangian Multiplier λ0 2e-4
Safe Threshold b -0.1
Coefficient of Jent α1 5.0
Coefficient Jcross α2 0.01
Coefficient of Jreward β1 10.0
Coefficient of Jcost β2 50.0
Coefficient of Jdiscount β3 50.0
Environment Steps - 100K
Action Repeat - 2
Observation Learing Rate - 0.0001
Dynamics Learning Rate - 0.0001
Actor Learning Rate - 0.0001
Critic Learning Rate - 0.00001
Safety Critic Learining Rate - 0.00001

E Limitations

One issue of TISA is computational efficiency. Compared to TWM, TISA requires twice the computational
resources and eight times longer run time. However, as shown in Figure 3, it demonstrates better sample
efficiency than TWM.

Another issue is that the autoencoder used in TISA employs the simplest decoder among those used in slot-based
object-centric representation learning methods, namely the Mixture Decoder [Locatello et al., 2020], which does
not work well with naturalistic images. However, this problem could be addressed by using a more advanced
decoder that is better suited for handling naturalistic images.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing
issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: The
papers not including the checklist will be desk rejected. The checklist should follow the references and follow
the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each
question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area
chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions)
with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While
"[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a proper
justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or
"we were unable to find the license for the dataset we used"). In general, answering "[No] " or "[NA] " is not
grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is
often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting
evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer
[Yes] to a question, in the justification please point to the section(s) where related material for the question can
be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.

• Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: It is shown in Section 4, Results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: It is detailed in the Limitations section of the Appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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• The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: It is detailed in the Experiments section of Section 4 and the Experimental Details section
of the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.
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• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: Unfortunately, we were unable to prepare the data and code for open access in time for
this submission. We will make the necessary resources available and provide detailed instructions to
reproduce the main experimental results as soon as possible.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: It is detailed in the Experimental Details section of the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: It is used in the Results section of Section 4, and its explanation is clearly provided.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: This is detailed in the Experimental Details section of the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research is fully compliant with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [No]

Justification: The paper does not discuss both potential positive and negative societal impacts of the
work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All methods used in this paper are appropriately cited within the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]
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Justification:In Section 3, we propose a new model and provide a detailed explanation of it.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16


	Introduction
	Methods
	World Model
	Transformer-based Policy and Value Functions

	Experiments on Safety Gym
	Results
	Trajectories generated by our world model
	Safety Gym Benchmark Tasks
	Policy Objective Function
	Experimental Details
	Limitations

