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Abstract

Recent RL research has utilized reward shaping–
particularly complex shaping rewards such as in-
trinsic motivation (IM)–to encourage agent ex-
ploration in sparse-reward environments. While
often effective, “reward hacking” can lead to the
shaping reward being optimized at the expense
of the extrinsic reward, resulting in a suboptimal
policy. Potential-Based Reward Shaping (PBRS)
techniques such as Generalized Reward Match-
ing (GRM) and Policy-Invariant Explicit Shaping
(PIES) have mitigated this. These methods al-
low for implementing IM without altering optimal
policies. In this work we show that they are effec-
tively unsuitable for complex, exploration-heavy
environments with long-duration episodes. To
remedy this, we introduce Action-Dependent Op-
timality Preserving Shaping (ADOPS), a method
of converting intrinsic rewards to an optimality-
preserving form that allows agents to utilize IM
more effectively in the extremely sparse environ-
ment of Montezuma’s Revenge. We also prove
ADOPS accommodates reward shaping functions
that cannot be written in a potential-based form:
while PBRS-based methods require the cumula-
tive discounted intrinsic return be independent
of actions, ADOPS allows for intrinsic cumula-
tive returns to be dependent on agents’ actions
while still preserving the optimal policy set. We
show how action-dependence enables ADOPS’s
to preserve optimality while learning in complex,
sparse-reward environments where other methods
struggle.
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1. Introduction
There is growing interest in the Reinforcement Learning
(RL) literature in using reward shaping to train agents in
sparse-rewards environments that would otherwise be in-
tractable (Mataric, 1994; Randløv & Alstrøm, 1998; Belle-
mare et al., 2016); specifically, interest in Intrinsic Mo-
tivation (IM): complex, non-Markovian reward functions
used to encourage exploration in sparse reward environ-
ments (Pathak et al., 2017; Burda et al., 2018).

It has been noted that both traditional reward shap-
ing (Randløv & Alstrøm, 1998) and IM (Burda et al.,
2019) can be “hacked,” with the agent learning to opti-
mize the shaping reward at the expense of the actual re-
ward. Potential-Based Reward Shaping (PBRS) aims to
rectify this and provide a form for reward-shaping terms in
which they can be guaranteed to not alter the set of optimal
policies of the underlying environment. To apply PBRS
to IM, previous work on Potential-Based Intrinsic Motiva-
tion (PBIM) (Forbes et al., 2024a) and Generalized Reward
Matching (GRM) (Forbes et al., 2024b) implement arbitrary
intrinsic rewards while preserving the theoretical optimality
guarantees of PBRS. These methods have proven effective
at speeding up training and preventing divergence from an
optimal policy in grid world and cliff walking domains, with
a tabular exploration reward and Random Network Distil-
lation (RND), respectively. However, their efficacy is still
untested in more complex environments. Policy-Invariant
Explicit Shaping (PIES) (Behboudian et al., 2022), another
method developed for implementing shaping rewards with-
out altering the optimal policy, has similarly been tested thus
far only in relatively simple environments, and not in any
environments wherein training with intrinsic reward is itself
essential in consistently obtaining any extrinsic rewards in
agent-environment interactions during training. Testing in
Montezuma’s Revenge, a benchmark environment that has
been widely acknowledged (Mnih et al., 2015; Burda et al.,
2019) to possess these characteristics, we find that all of
these methods, while preserving the optimal policy set, de-
tract from the agent’s ability to learn to the extent that none
of them can outperform an agent training on RND alone.

Motivated by this, we develop Action-Dependent
Optimality-Preserving Shaping (ADOPS), a method for
converting any arbitrary shaping reward (including IM)
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to a form that preserves optimality. ADOPS functions by
consulting an agent’s critic networks’ estimations of the
extrinsic and intrinsic value functions, and using these
estimations, actively adjusting the intrinsic reward seen by
the agent if and only if that reward would cause an action
to be preferred when it would not be preferred by external
rewards alone, or vice-versa. ADOPS improves on existing
methods in several key ways:

1. We forego the need for several key assumptions re-
quired for previous methods to ensure optimality. These
include the requirement that the environment be episodic
and that the underlying IM is “future-agnostic.”

2. We encompass a provably wider set of optimality-
preserving shaping functions than prior methods. While
GRM and PBIM both ensure and require that the expected
intrinsic return at any given time step is action-independent,
our method produces shaping functions whose returns can
be action-dependent, yet still preserve optimality. Addition-
ally, while PIES preserves optimality by eventually return-
ing no shaping rewards at all, our method allows the agent
to receive shaping rewards for an arbitrarily long amount
of time. We argue that both of these improvements over
prior methods are key to ADOPS’s ability to outperform the
baseline in complex, extremely sparse environments.

3. ADOPS empirically improves performance over base-
line IM in complex, extremely sparse environments
where preexisting methods for preserving optimality
fail. We empirically demonstrate improvement over other
optimality-preserving methods and the baseline IM in Mon-
tezuma’s Revenge, and thus achieve a new SOTA in imple-
menting IM while preserving the optimal policy.

2. Background and Related Work
Here, we briefly discuss the relevant background literature
more broadly. In Section 3, we describe more closely the
three specific methods we are building off of, and which we
test against ADOPS in Section 6.

2.1. Intrinsic Motivation

Many problems in reinforcement learning are reward-
sparse (Mataric, 1994) and are difficult for agents to properly
learn. Sparse rewards can lead to an agent never learning a
viable policy. One method to remedy this is by granting a
shaping reward: an extra reward, added to the native envi-
ronment reward, to decrease sparseness, and convey more
useful information.

Intrinsic Motivation is a subfield of reward shaping that aims
to navigate sparse-reward environments by giving the agent
additional “intrinsic” reward shaping functions. These are
usually distinguished from traditional reward shaping func-

tions both by their generality, as most of them are domain-
agnostic, and by their complexity. IM methods are almost
universally non-Markovian, often involving the agent’s en-
tire training history, and involving additional neural net-
works and/or auxilliary learning algorithms.

Intrinsic motivation is often used as a means to reward
exploration of the environment. IM methods such as count-
based exploration (Bellemare et al., 2016), Intrinsic Cu-
riosity Module (ICM) (Pathak et al., 2017), and Random
Network Distillation (RND) (Burda et al., 2018; 2019) in-
centivize visiting unfamiliar states. More recent IM works
implement increasingly complex strategies (Badia et al.,
2020; Yuan et al., 2023).

While useful for exploring, IM algorithms, including RND,
are known to alter the optimal policy of the underlying envi-
ronment. Take for instance the “noisy TV problem” (Burda
et al., 2018), in which an agent prioritizes an inrinsically-
rewarding stochastic area of the state space at the expense of
pursuing external rewards. A version of this problem exists
in Montezuma’s Revenge with RND in particular, deemed
“dancing with skulls,” in which the agent tends to actively
pursue “risky” behavior (Burda et al., 2019).

There have been some efforts to mitigate the noisy TV prob-
lem: Chen et al. (Chen et al., 2022) introduce EIPO, which
automatically adjusts the scaling factor of the IM, reducing
the reward when exploration is unnecessary and increasing
it when the agent must explore, and Le et al. (Le et al.,
2024) mitigate it using “surprise novelty.” However, neither
of these approaches provide theoretical guarantees that the
optimal policy set is unchanged, and they both require non-
trivial additional (neural network) architecture and computa-
tional overhead. Forbes et al. (Forbes et al., 2024a) introduce
PBIM, a Potential-Based-Reward-Shaping (PBRS)-based
approach that overcomes both of these limitations, and fur-
ther expand it to the more general method of Generalized
Reward Matching (GRM) (Forbes et al., 2024b). However,
these works don’t demonstrate efficacy at scale. We discuss
these works in further detail in Section 3.

2.2. Potential-Based Reward Shaping

Potential-Based Reward Shaping is a subfield of reward
shaping that specifically studies reward-shaping terms that
are theoretically guaranteed to maintain the optimal pol-
icy set of the underlying environment. The foundational
paper in the field (Ng et al., 1999) explores how adding
a reward shaping term to an MDP can alter the optimal
policy. The study uncovers that the optimal policy will re-
main unchanged in infinite-horizon MDPs, or those with
an absorbing state, if the shaping reward follows the form
of a state-based potential F = γΦ(s′) − Φ(s). This is
further extended by Wiewiora et al (Wiewiora, 2003) by cre-
ating a state-action potential Φ(s, a), whereas the original
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was state-only. Such potentials, however, must be removed
from the final Q-values learned by the model to guaran-
tee policy invariance. Similarly, Devlin et al. (Devlin &
Kudenko, 2012) extend the original potential notation by
adding time-dependence, Φ(s, t), similarly guaranteeing
policy invariance. Harutyunyan et al. (Harutyunyan et al.,
2015) uncovered a method to convert any Markovian reward
function into a potential-based version that follows the form
Φ(s, a, t). A later study by Behboudian et al. (Behboudian
et al., 2022) however demonstrates that this potential-based
conversion can, in fact, alter the optimal policy. In this same
article, the authors propose Policy-Invariant Explicit Shap-
ing (PIES), an algorithm that decrements the magnitude of
shaping rewards to guarantee policy invariance by the end
of training. We discuss this work more closely in Section 3.

PBRS was extended to the finite-horizon setting in (Grzes,
2017), and this finite-horizon setting was then later shown
to be able to accomodate most IM terms’ complex variable-
dependence via PBIM (Forbes & Roberts, 2024; Forbes
et al., 2024a) and later GRM (Forbes et al., 2024b).

In the next section, we highlight three of the most recent
potential-based approaches: PIES, PBIM, and GRM. These
are all “plug-and-play” approaches, signifying that they
are generally adaptable methods for converting a reward
shaping function (or IM) into a form that preserves the
optimal policy (provided some assumptions are met). They
will be the baseline algorithms that we compare our method
against.

3. Preliminaries and Previous Methods
We define a Markov Decision Process (MDP) as a tuple
M = (S, S0, A, P, γ,R), where S is the state space, S0 ⊆
S is the set of start states, A is the action space, P (st+1 =
s′|st = s, at = a) is the probability of transitioning to state
s′ by taking action a in state s, γ ∈ [0, 1] is the discount
factor, and and R is the reward function. An agent in an
MDP follows a policy π(a|s) : S×A → [0, 1], which gives
the probability of taking action a in state s. An optimal
policy maximizes the value function:

V π
M = E

a∼π,s0∼S0,s∼P

N−1∑
t=0

γtRt, (1)

where Rt is the reward at time t, and N is the number of
time steps in a given episode. For infinite-horizon cases, the
sum to N − 1 becomes an infinite sum.

Reward shaping methods, such as IM, add a reward Ft on
top of the regular MDP reward Rt. This defines a new MDP
M ′ = (S, S0, A, P, γ,R

′), where

R′
t = Rt + Ft. (2)

Thus an optimal policy in M ′ may be suboptimal in M ,
and we are interested in constructing an Ft such that this is
provably not the case.

3.1. Potential-Based Intrinsic Motivation (PBIM)

Potential-Based Intrinsic Motivation (Forbes et al., 2024a),
inspired by (Ng et al., 1999), proves that the optimal policy
set of an environment will remain unchanged by the addition
of a shaping reward in the form

Ft = γΦt+1 − Φt, (3)

where Φt is a potential function that meets the boundary
condition:

E
a∼π,s∼T,Rn∼R

(
γN−tΦN − Φt

)
= Φ′

t,∀t ∈ (0, ...N − 1),

(4)
and Φ′

t is an arbitrary function that is constant with respect
to action at.

Any arbitrary shaping reward Ft can be transformed into
a potential-based form if the value of Ft does not depend
on any future actions that the agent takes (For example, in
episodic environments where the shaping reward is given
retroactively). That is, Ft must meet

Ft is constant w.r.t. at′>t,∀t, t′ ∈ (0, . . . , N − 1), (5)

The authors of PBIM propose two transformation methods,
normalized and non-normalized PBIM. Normalized PBIM
is defined as

F ′PBIM
t =

{∑N−2
i=0 −γi−NF ′

i , if t = N − 1

Ft − F̄ , if t ̸= N − 1,
(6)

where F̄ is an estimated average shaping reward for the
current policy. F ′

t for non-normalized PBIM is defined
identically, except that the F̄ term is set to zero. They prove
that using either of these conversion methods with an Ft that
meets the assumption in Equation 5 will result in a F ′

t that
leaves the optimal policy unchanged if used as the shaping
reward in Equation 2. Intuitively, both of these methods
function by waiting until the last time step of an episode,
then subtracting all the accumulated intrinsic rewards from
the agent.

3.2. Generalized Reward Matching (GRM)

Generalized Reward Matching (Forbes et al., 2024b) is a
broader optimality-preserving reward shaping method that
encompasses both PBIM and all other PBRS-based methods.
It defines a matching function mt,t′ : N ×N → [0, 1] that
‘matches’ every instance of the shaping reward at timestep t′

with an appropriately-discounted negative reward in a future
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timestep t. The general form of a GRM shaping reward is

F ’GRM
t = Ft −

t∑
i=0

γi−tFimt,i. (7)

GRM rewards are proven not to alter the optimal policy
under two conditions:

1. Fully-matching: Each given shaped reward must
be subtracted exactly once (Although it may
be partially subtracted across various timesteps):
∀t′
∑N−1

j=t′ mj,t′ = 1.

2. Future-agnostic: Each shaped reward can only be dis-
counted in future timesteps: ∀t,t′>t mt,t′ = 0.

A family of GRM functions is introduced in the same study,
where the shaping reward is ‘matched’ either after a delay
of D ≥ 0 timesteps, or at the end of an episode, whichever
comes first. The corresponding shaping reward is defined
as:

F ’GRM
t (D)=


Ft if t<D

Ft−γ−DFt−D if D≤t<N−1
D−1∑
i=0

−γi−DFN−1−D+i if t=N−1.

(8)

Note here, as noted in (Forbes et al., 2024b), that if D ≥
N − 1 for any given episode, then Equation (8) becomes
equivalent to PBIM, while if D = 0, it becomes equivalent
to having no shaping reward at all. In our experiments, we
use this same parameterization as a representative sample
of GRM methods.

3.3. Policy-Invariant Explicit Shaping (PIES)

Policy-Invariant Explicit Shaping (Behboudian et al., 2022)
proposes learning from a shaping reward without altering
the optimal policy by multiplying the expected return of that
shaping reward by a scaling coefficient ζ that scales linearly
to zero before the end of training. During training, PIES
begins with ζ0 = 1, then for each episode n during training,
ζ is updated according to

ζn =

{
ζn−1 − 1

C if ζn−1 > 1
C

0 otherwise.
(9)

Here, C is a coefficient that controls how quickly ζ decays.
Ideally, it will reach zero with enough training time left that
the agent can converge to an optimal policy, if the reward
shaping term is one that the agent would otherwise hack.

4. More General Conditions For Optimality
A PBRS term that follows Equation (4) guarantees that
the optimal policy set of the original MDP will remain un-
changed. This includes the PBRS terms utilized in both

PBIM and GRM.1 However, though it is a sufficient condi-
tion for the preservation of optimality, it is not a necessary
condition, and we prove in Theorem B.1 that there will exist
optimality-preserving reward-shaping terms that cannot be
written as a difference of potentials that follow Equation (4)
in any non-trivial environment.

Similarly, PIES preserves optimality by using only extrinsic
reward in the latter stages of training: this is also clearly
a sufficient condition to preserve optimality, but just as
clearly not a necessary one. As such, it follows that many
optimality-preserving reward-shaping functions cannot, in
principle, ever be obtained from either PIES or the PBRS-
based methods described in prior literature.

In this section, we examine the more general condition from
which Equation 4 is derived, and derive a more general
condition, which captures optimality-preserving reward-
shaping potentials that are “action-dependent,” and thus
provably cannot be accommodated by prior plug-and-play
optimality-preserving methods. In Section 5 we then intro-
duce ADOPS, which can accommodate this more general
form.

4.1. Conditions For Optimality-Preserving Reward
Shaping Functions Beyond PBRS

We define the Q-function

Qπ
M (s, a, t) = RM (s, a, t) + V π

M (s′, t+ 1) (10)

to be the expected discounted return of taking action a in
state s of MDP M , then following policy π.2 For simplicity
of notation, we also define Qπ

M (st, at, t) = Qπ
M,t = Qπ

M .
We notate the Q-function of taking an action and then fol-
lowing an optimal policy as Qπ∗

M = Q∗
M . We can then write

the general condition for preserving optimality: we want
to ensure the optimal policy set is the same for both the
original MDP M and the shaped MDP M ′, that is:

argmax
a

Q∗
M = argmax

a
Q∗

M ′ ∀s, t. (11)

This is the condition that all prior work in PBRS seeks to
preserve. Note crucially that we are defining π∗ such that
it is an optimal policy in the original environment M , not
necessarily in an environment M ′ with the shaping reward
present. For clarity on this point, we define Qπ

E = Qπ
M to

be the extrinsic Q function, and Qπ
IE = Qπ

M ′ = Qπ
E +Qπ

I

to be the combined extrinsic and intrinsic Q functions. We
define V π

IE , V
π
E , and V π

I likewise. Thus, we have

argmax
a

Q∗
E = argmax

a
(Q∗

E +Q∗
I) ∀s, t, π∗. (12)

1The Φt terms in each of these methods are implicit, rather
than explicit, but both methods are designed around ensuring that
Equation 4 always holds.

2Note the direct t-dependence, as we’re generally dealing with
non-Markovian reward functions.
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Note the enumeration over all π∗: this is because, while
every optimal policy by definition has identical Q∗

E and V ∗
E

to every other optimal policy, they may differ from each
other intrinsically, resulting in different Q∗

I and V ∗
I .

If we now define ā as any action not in argmaxa Q
∗
E , then

Equation 12 becomes equivalent to

V
π∗
1

IE (s, t) = V
π∗
2

IE (s, t) ∀s, t, π∗
1 , π

∗
2 (13)

Q∗
IE(s, ā, t) < V ∗

IE(s, t) ∀s, ā, t, π∗. (14)

Intuitively, the first of these conditions says that every action
that would be optimal without IM must remain optimal after
the addition of the IM, while the second condition says that
any suboptimal action must remain suboptimal with the
addition of any shaping reward.3

In prior work in PBRS, the optimal policy set is provably
unchanged due to mathematical guarantees that Q∗

M ′ differs
from Q∗

M by some term that is independent of the agent’s
actions at a given time step: see for example the Φ(s) of
(Ng et al., 1999), or the Φ′

t of (Forbes et al., 2024a). In
other words, all prior work in this area has met the condition
of Equation 12 by removing Q∗

I(a)’s a-dependence, and
essentially setting Q∗

I(a) = V ∗
I ∀a. While this is a suffi-

cient condition to ensure that optimality is preserved (as this
term then drops out of the argmaxa, it is not a necessary
one. As we will see, it leaves out a theoretically interest-
ing and empirically useful subset of optimality-preserving
reward shaping functions: those whose cumulative intrin-
sic returns are allowed to depend on the agent’s actions.
In Appendix B.1, we offer a formal proof that there exist
optimality-preserving reward shaping functions that meet
these conditions we have just provided, but which cannot be
accounted for by any PBRS function. In the next section, we
derive a new plug-and-play method of utilizing arbitrary IM
functions while theoretically guaranteeing preservation of
optimality, one that both overcomes the limitations of flex-
ibility highlighted in Appendix B.1 and foregoes the need
for several key assumptions (an episodic environment, and
future-agnosticity as defined in Equation 5). We then show
that our method speeds training efficiency over a baseline
in a complex, difficult environment where other optimality-
preserving methods fail.

5. ADOPS For Action-Dependent
Optimality-Preserving Shaping

Here, we introduce our main contribution, and prove its
efficacy at preserving the optimal policy.

3Implicit in the step from Equation 12 to Equation 13 is the
fact that Q∗

E(a
∗) = V ∗

E ∀a∗, π∗.

5.1. The ‘Ideal’ ADOPS Function

Inspired by the conditions in Equations 13 and 14, we first
introduce an “ideal” reward-shaping conversion method that
actively checks whether these conditions are satisfied, and
if not, modifies the initial shaping reward just enough to
ensure that they are. We define this ideal ADOPS reward
as F ′ = F + F2, where F is some arbitrary initial shaping
reward, and F2 is defined as

F2=

{
min(0,V ∗

E−Q∗
E+V ∗

I −γV ∗
I (s′)−F−ϵ) if Q∗

E<V ∗
E

max(0,V ∗
E−Q∗

E+V ∗
I −γV ∗

I (s′)−F ) if Q∗
E≥V ∗

E .

(15)
Here, ϵ is an arbitrarily small positive constant. We are
defining V ∗

I here such that it represents the maximum in-
trinsic reward achievable while following an extrinsically
optimal policy.

The first case of this equation can be intuitively thought of as
checking to see if Equation 14 is violated, and if so adjusting
the intrinsic reward downwards until it no longer is (“if this
action is extrinsically suboptimal, make sure that it is still
suboptimal when the IM is taken into account”). Conversely,
the second case checks to see if Equation 13 is violated, and
adjusts the IM upwards if so until it is not (“if this action is
extrinsically optimal, make sure that its intrinsic returns are
equal to those of every other extrinsically optimal action”).

A full proof that this version of ADOPS preserves the op-
timal policy can be found in Appendix B.2. In the next
section, we introduce a practically-implementable version
of ADOPS, and prove that it preserves optimality, as well.

5.2. A Practical, Easy-To-Use Form of ADOPS

While it would be ideal, it is usually not feasible to imple-
ment Equation (15) , as it requires an accurate estimate of
the optimal value function. Let’s assume instead that we
have access to some critic function that allows us to make
approximations of the value function of a given state, and
the Q-function of taking some action in that given state,
under the agent’s current policy π. Let us also assume that
this critic handles the extrinsic and intrinsic rewards sepa-
rately, such that we can deal with them independently (this
is already a common practice, for example in (Burda et al.,
2019), whose example we follow in Section 6 ). We notate
these estimates as V̂ π

E , V̂ π
I , Q̂π

E , and Q̂π
I . This notation has

implicit variable-dependence, but occasionally throughout
this section we make their variable dependence explicit, as
in Q̂π

E(s, a).

Given some initial shaping reward F , about which we make
no assumptions, we define the ADOPS reward to be

F2=

{
min(0,V π

E −Qπ
E+V π

I −γV π
I (s′)−F−ϵ) if Qπ

E<V π
E

max(0,V π
E −Qπ

E+V π
I −γV π

I (s′)−F ) if Qπ
E≥V π

E .

(16)
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We define this shaping reward in terms of the actual value
and Q-function values (as opposed to their critic-based esti-
mates) for the proof, and discuss our conditions for imple-
menting this practically at the end of this section.

For our proof, we make an additional assumption about
our optimization process itself. Let πn be a policy that
takes action an in some state s ∈ S. Additionally, take πm

to be a policy that is identical to πn, except that it takes
action am in that same state s. We will say that a policy πn

is “unstable” if there exists a πm such that Qπm

IE (s, an) <
V πm

IE (s) and Qπn

IE(s, am) ≥ V πn

IE (s). In other words, if
a policy is unstable, that means there exists some other
extremely similar policy, which differs by only one action
in one state, and yet is strictly preferred under any nontrivial
mixture of the two policies. Conversely, a policy is “stable”
if no such strictly-preferable policy exists. We can now state
our assumption:

Assumption 5.1. The training algorithm being used will,
upon convergence, only execute stable policies.

This assumption can be thought of as a requirement that the
learning algorithm being employed will only converge to
a policy that is preferred to all other policies in the local
policy space (a local optimum). Note that any optimal
(with respect to intrinsic and extrinsic rewards) policy will
always be stable, and thus that any algorithm guaranteed to
converge to an optimal policy is also guaranteed to converge
to a stable policy. Intuitively, then, we should expect any
competent learning algorithm not to ever converge to an
unstable policy, as any exploration around the local policy
space would cause the agent to learn action am over an.
Indeed, any learning algorithm that does not ever explore
the local policy space sufficiently so as to find such a strictly-
preferred, small perturbation to its current policy is unlikely
to have learned much in the first place. As such, this is
a reasonable assumption to make, at least in the limit as
training converges to a policy, which is the domain in which
we’re interested for the purposes of leaving the set of optimal
policies unchanged.

We now prove that adding an ADOPS reward term to any
initial F preserves optimality.

Theorem 5.2. An intrinsic reward of the form F ′ = F +F2

with F2 defined according to Equation 16 will preserve the
set of optimal policies.

Proof. We proceed by first showing that for all possible
actions the agent could take, Qπ

IE ≥ V π
IE iff Qπ

E ≥ V π
E , and

Qπ
IE < V π

IE iff Qπ
E < V π

E . We then, from this, show that for
all stable policies under Assumption 5.1, argmaxa(Q

π
IE) =

argmaxa(Q
π
E).

We begin by rewriting Equation (16) to be more concise,
and removing the cases, while keeping it mathematically

equivalent. We define

Ω = V π
E −Qπ

E + V π
I − γV π

I (s′)− F (17)
C1 = 1(Qπ

E < V π
E ∧ Ω > 0) (18)

C2 = 1(Qπ
E ≥ V π

E ∧ Ω < 0) (19)
C3 = 1(Qπ

E < V π
E ∧ Ω ≤ 0) (20)

where C1, C2, and C3 are indicator functions that are 1 if
the condition in them is true, and 0 otherwise. We can then
rewrite F2 as

F2 = Ω− (C1 + C2)Ω− C3ϵ. (21)

We can now rewrite Qπ
IE as

Qπ
IE (22)

= E
s′∼P (s′|a,s)

[R+F+F2+γV π
IE(s′)] (23)

= E
s′∼P (s′|a,s)

[R+V π
IE−Qπ

E+γV π
E (s′)−(C1+C2)Ω−C3ϵ] (24)

= E
s′∼P (s′|a,s)

[V π
IE−(C1+C2)Ω−C3ϵ]. (25)

When taking the argmax of this result, the V π
IE term drops

out due to having no a-dependence, and we are left with

argmaxa Qπ
IE=argmaxa E

s′∼P (s′|a,s)
[−(C1+C2)Ω−C3ϵ]. (26)

For any given a value, either Qπ
E(a) < V π

E , or Qπ
E(a) ≥

V π
E . If Qπ

E(a) < V π
E , then a will not be included in

argmaxa(Q
π
E(a)). Correspondingly, if Qπ

E(a) < V π
E , then

Equations 17, 18, 19 and 20 require that C2 = 0, and
one of either −C1Ω or −C3ϵ will be nonzero and strictly
negative for these actions, with the other term being zero.
Therefore, for actions that are extrinsically worse in expec-
tation than the current policy, the term inside the argmax of
Equation 26 will be strictly less than zero. Thus, following
Equation 25, if Qπ

E(a) < V π
E , then Qπ

IE(a) < V π
IE .

If Qπ
E(a) ≥ V π

E , however, both the C1 and C3 terms in
the argmax of Equation 26 will be zero. The C2 term
will be strictly positive if Ω < 0, and zero otherwise. This
observation combined with Equation 25 implies that Qπ

IE ≥
V π
IE . Therefore all actions with Qπ

E(a) < V π
E will not be

included in argmaxa(Q
π
IE(a)), as there will always be at

least one action with a greater expected Qπ
IE(a) (the best

action sampled from the current policy π).

We’ve now shown that, in any given state s, any action
in a∗ ∈ argmaxa(Q

π
E(s, a)) will have Qπ

IE(s, a
∗) >

V π
IE(s), but we’ve not yet proven that each a∗ will be

in argmaxa(Q
π
IE(s)). To prove this, let’s now assume

for contradiction that there exists some other action ā /∈
argmaxa(Q

π
E(s, a)) such that Qπ

IE(s, ā) > Qπ
IE(s, a

∗).
We define πā to be identical to policy π except that it takes
action ā in state s. We can then prove that πā is unstable,
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and thus that, under Assumption 5.1, a converged agent will
not follow it. Under this new policy, we can calculate the
new Q-function of a∗:

Qπā

IE(s, a
∗) = E

s′∼P (s′|a,s)
V πā

IE − (C1 + C2)Ω− C3ϵ).

(27)

Because, by definition, V πā

E (s) < Qπā

E (s, a∗) (as otherwise
ā would be an extrinsically optimal action in s), we know
that both the C1 and C3 terms must equal zero, leaving
only the C2 term, which is always positive if nonzero. This
proves that V πā

IE ≤ Qπā

IE(s, a
∗). That is one of the two

conditions required for πā to be unstable.

On the other hand, if the agent follows policy πa∗ , defined
as a policy that’s identical to π except that it takes action a∗

in state s, the Q-function of taking action ā becomes

Qπa∗
IE (s, ā) = E

s′∼P (s′|a,s)
V πa∗
IE − (C1 + C2)Ω− C3ϵ).

(28)

In this formulation, since we know that V πa∗
E (s) >

Qπa∗
E (s, ā), we know that the C2 term must be zero, while

one of either the C1 or C3 terms must be strictly negative,
with the other being zero. This implies that Qπa∗

IE (s, ā) <
V πa∗
IE (s): the other condition required for πā to be unstable.

Because action a∗ is strictly better than ā when the agent is
following policy πa∗ , and no worse when the agent is follow-
ing policy πā, it follows that it is strictly better when follow-
ing any nontrivial mixture of the two policies, and that πā

is an unstable policy. From Assumption 5.1, we know that
the learning algorithm will never converge to such a policy.
Thus we have a contradiction: in convergence, there exists
no policy for which Qπ

IE(s, ā) > Qπ
IE(s, a

∗) that is not in
argmaxa(Q

π
E), and thus every action in argmaxa(Q

π
IE) is

also in argmaxa(Q
π
E).

A similar line of reasoning goes the other direction. Given
an action a∗ ∈ argmaxa(Q

π
IE(s, a)) and another action

ā /∈ argmaxa(Q
π
IE(s, a)) with Qπ

E(s, ā) > Qπ
E(s, a

∗), we
find that Qπa∗

IE (s, ā) < V πa∗
IE and Qπā

IE(s, a
∗) ≥ V πā

IE , thus
concluding that this ā is unstable as well.

When dealing with convergent policies then, given Assump-
tion 5.1, we must conclude

argmax
a

(Qπ
IE) = argmax

a
(Qπ

E) ∀π. (29)

Because we can ensure that the learned value functions and
action-value functions using the full reward will induce the
same optimal actions comparing to the extrinsic reward for
any converged policy, the training process will align with the
Bellman optimality equation (Peng & Williams, 1993) using

the extrinsic reward only. Therefore, upon convergence, the
underlying learning algorithm using the ADOPS shaped
reward will subsequently produce an optimal policy under
the extrinsic reward, and Equation 11 holds.

This proof so far has been for an F2 wherein we have some
access to perfect estimations of state and action values. To
extend our framework to function approximations of state
and action values, we apply an additional assumption that
the base learning algorithm for updating different value
estimations convergences. In other words, under the premise
that the approximation error is bounded by ε, the value
estimations are bounded by a factor Cε with regards to
the approximation error (Agarwal et al., 2019; Jin et al.,
2023). With our proven optimality-preserving property then,
the underlying learning algorithm with the shaping reward
from ADOPS, in the worst-case scenario, shares the same
convergence property as the original version of the problem,
without utilizing the ADOPS reward.

6. Empirical Results
We test ADOPS, as well as prior optimality-preserving re-
ward shaping methods in the Montezuma’s Revenge (Belle-
mare et al., 2013) Atari Learning Environment (ALE) with
RND IM (Burda et al., 2019). We find that PBIM, GRM,
and PIES all fail to converge to a policy that outperforms the
policy trained on the baseline IM. We tested several versions
of ADOPS in this environment and found that all versions
tested achieve higher performance than the baseline IM. We
provide details of our experiments in Appendix A.1.

6.1. PBIM

We find that PBIM with RND, whether normalized or non-
normalized, fails to ever obtain nonzero extrinsic rewards in
Montezuma’s Revenge. PBIM almost immediately saturates
the agent’s action probabilities in this environment (the
average probability of the action being taken). We find
that the culprit is PBIM’s reliance on accounting for all its
intrinsic rewards at the end of the episode, combined with
Montezuma’s Revenge’s long episode lengths. This is due
to the exponential nature of the denominator in the final
reward for an episode under PBIM:

F ′
N−1 = − U0

γN−1
, (30)

where U0 is the discounted return of the previous intrinsic
rewards obtained throughout the episode. When training in
smaller environments, such as the cliff walker and grid world
experiments of (Forbes et al., 2024a), this reward is reason-
able, and effectively speeds up training. In environments
like Montezuma’s Revenge, however, with potentially very
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Figure 1. Comparison of all methods in Montezuma’s Revenge.
All plots are smoothed over the past 10 steps. Error bars are errors
on the mean. Differences between RND and both normalized and
non-normalized GRM are statistically significant, with p = 0.009
and p = 0.031, respectively. Differences between RND and PIES
are nearly, but not quite statistically significant, with p = 0.059.
Differences between normalized and non-normalized GRM are not
statistically significant, with p = 0.37 (two-sided t-test). ADOPES
is better than RND to a statistically significant degree, p = 0.038.
ADOPS, ADOPES, and ADOPES w/ F/2 all improve on PIES to
a statistically significant degree, with p = 4.4e− 5, p = 2.4e− 6,
and p = 6.4e− 5, respectively (two-sided t-test). They similarly
improve over GRM and PBIM. N = 10 for each GRM run, N = 1
for each PBIM run, and N = 20 for all other methods.

long episodes and relatively low γ values, the denominator
in this reward becomes unwieldy, and the end-of-episode
‘penalty’ term exponentially explodes, preventing further
learning. We investigate and discuss this finding further in
Appendix A.2.

6.2. GRM

To compare our method to GRM, we chose the same subset
of GRM methods recommended in (Forbes et al., 2024b), pa-
rameterized by the delay hyperparameter D in Equation (8).
To determine for which value for D GRM fares best in this
environment, we tested single runs across a wide range of D
values. We detail the results of this hyperparameter test in
Appendix A.3. We find that lower D values are consistently
better, keeping in line with our results from Section 6.1, and
further suggesting that too-long delays between when an
intrinsic reward is received by the agent and accounted for
can cause an exponential explosion. Our best-performing
candidate used D = 1. We therefore tested both normal-
ized and non-normalized versions of this equation as our
representative tests of GRM.

As can be seen from Figure 1, all versions of GRM or PBIM
failed to reach the same average cumulative extrinsic re-
ward as RND, to a statistically significant degree. Addition-
ally, non-normalized GRM seems to outperform normalized

GRM. Though this difference isn’t statistically significant,
we hypothesize that it is because our environment’s extrin-
sic reward is strictly positive, which tends to make longer
episodes more likely to have extrinsically higher returns, and
thus a bias toward prolonging the episode like that described
in (Forbes et al., 2024a) is not harmful in the same way as
in their experiments, which are in environments where the
optimal policy is to reach a goal state as quickly as possible.
Thus, the normalization’s effect of mitigating this bias may
not be as useful here.

6.3. PIES

We tested PIES with a ζ decay rate 1
C = 1

15000 . We chose
this rate to strike a balance between giving the agent enough
time with intrinsic rewards to explore the environment and
giving it enough time without intrinsic rewards to converge
to an optimal policy. With this decay rate, PIES “starts” con-
serving the optimal policy, in theory, at exactly the halfway
point in training, as this is the point at which it begins to
return an IM of zero. We also modified the PIES algorithm
slightly to suit our larger training environment: we update
the value of the ζ coefficient every iteration, rather than
every episode, as we are training multiple agents in parallel,
and with highly variant episode lengths from one episode
to another. We also modified PIES by using it to shape the
coefficient of IM, rather than a potential-based Markovian
shaping reward, as it was used in (Behboudian et al., 2022):
we consider this itself to be a novel extension of the PIES
methodology, albeit a simple one.

Our PIES results are also plotted in Figure 1. Note that,
while PIES performs well initially, it decreases in perfor-
mance rapidly upon approaching the halfway point of train-
ing, and never recovers: in other words, its performance
worsens as soon as PIES begins to approach conserving the
optimal policy set of the underlying environment. This sug-
gests a clear trade-off: PIES can either conserve the optimal
policy of the underlying environment, or allow for IM to
be used effectively, but struggles to do both simultaneously.
Also of note is that the multiplicative coefficient for the IM
we used for our RND runs (and thus the effective value of
ζ at the first iteration for our PIES runs) was simply 1, as
in the original RND paper (Burda et al., 2019). As that
paper didn’t test different values for this hyperparameter,
the initially good performance of PIES in Figure 1 suggests
that the best value of this coefficient is likely lower than
the default value used. In the first half of Figure 1, after
all, PIES is essentially equivalent to RND as implemented
in the same plot, but with a lower and steadily decreasing
multiplicative coefficient for the intrinsic rewards. In Sec-
tion 6.4, we present more results that suggest this is indeed
the best explanation for PIES’s good early performance.
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6.4. ADOPS

We test three versions of our method. The first, our baseline
ADOPS method, simply implements Equation (16) using
the critic networks’ estimations of the relevant quantities.

Noting that these critics’ estimations are much better later
on in training than earlier, we also implement a fusion of
our method with PIES, which we call Action Dependent
Optimality Preserving Explicit Shaping (ADOPES). It is
equivalent to ADOPS, except with a ζ coefficient multiplied
by F2 that begins at 0, then scales up throughout training, to
a final value of 1, rather than down. This means that PIES
and ADOPES both begin identically, giving the agent unfet-
tered access to the base IM at the start of training. However,
while PIES linearly scales this reward down throughout
training until the agent is receiving no IM at all, ADOPES
instead scales up the coefficient by which F2 is multiplied,
thus preserving the optimal policy in a way that still gives
the agent access to IM during the latter half of training.

Finally, inspired by the early success of PIES in Figure 1,
to see what extent lowering the starting multiplicative co-
efficient for IM had on the training speed, we also trained
on a version of ADOPES with the starting IM coefficient
lowered to .5, or half of what it was in the original RND
paper or our other experiments.

All our ADOPS-based runs are included in Figure 1. All
of our methods outperform all prior optimality-preserving
work in terms of the average extrinsic return of the final
policy to a statistically significant degree, and ADOPES
also outperforms RND to a statistically significant degree,
as well as being the best-performing method overall. Our
modified version of ADOPES with a lowered IM coefficient
learned more quickly than the other runs, supporting our
explanation that PIES’s promising results earlier on in train-
ing were the result of incidentally finding better values for
the IM scaling coefficient along the way to zero. However,
unlike PIES, ADOPES allows the agent to keep receiving
intrinsic rewards past the halfway point of training and thus
can maintain its ability to receive higher extrinsic returns
throughout training.

7. Conclusion
We present ADOPS, a novel plug-and-play method for
implementing shaping rewards while preserving the opti-
mal policy of the underlying environment. We prove this
optimality-preserving property, as well as the lack of several
previously-necessary assumptions, and demonstrate SOTA
performance in a difficult environment, as compared with
other optimality-preserving methods.
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pressing arbitrary reward functions as potential-based ad-
vice. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 29(1), 2015.

Jin, R., Li, S., and Wang, B. On stationary point convergence
of ppo-clip. In The Twelfth International Conference on
Learning Representations, 2023.

Kazemipour, A. Ppo-rnd, 2022. URL https://github.
com/alirezakazemipour/PPO-RND.

Le, H., Do, K., Nguyen, D., and Venkatesh, S. Beyond
surprise: Improving exploration through surprise novelty.
In Proceedings of the 23rd International Conference on
Autonomous Agents and Multiagent Systems, pp. 1084–
1092, 2024.

Mataric, M. J. Reward functions for accelerated learning.
In Machine learning proceedings 1994, pp. 181–189. El-
sevier, 1994.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Ng, A. Y., Harada, D., and Russell, S. Policy invariance
under reward transformations: Theory and application to
reward shaping. In ICML, volume 99, pp. 278–287, 1999.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In International conference on machine learning,
pp. 2778–2787. PMLR, 2017.

Peng, J. and Williams, R. On the convergence of stochastic
iterative dynamic programming algorithms. Adaptive
Behavior, 1:437–454, 1993.

Randløv, J. and Alstrøm, P. Learning to drive a bicycle using
reinforcement learning and shaping. In ICML, volume 98,
pp. 463–471. Citeseer, 1998.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Wiewiora, E. Potential-based shaping and q-value initial-
ization are equivalent. Journal of Artificial Intelligence
Research, 19:205–208, 2003.

Yuan, M., Li, B., Jin, X., and Zeng, W. Automatic intrin-
sic reward shaping for exploration in deep reinforcement
learning. In International Conference on Machine Learn-
ing, pp. 40531–40554. PMLR, 2023.

10

https://github.com/alirezakazemipour/PPO-RND
https://github.com/alirezakazemipour/PPO-RND


Action-Dependent Optimality-Preserving Reward Shaping

Figure 2. Action probabilities for RND and PBIM.

A. Experimental Details
Here, we detail more about our experiments.

A.1. Experimental Setup

Montezuma’s Revenge ALE environment is a challenging sparse-rewards environment with a history of being used as a
benchmark for IM methods (Burda et al., 2018; 2019). We used the environment unmodified. Our base model for all trained
agents was the PPO algorithm (Schulman et al., 2017), with additional intrinsic rewards from the RND network (Burda
et al., 2019). We use the same hyperparameters as the 32-worker Convolutional Neural Net (CNN) runs in (Burda et al.,
2019), with one key difference: while (Burda et al., 2019) clips external rewards to the interval [−1, 1], we train on the
external reward as-is because we are primarily concerned with methods that preserve the optimal policies of the underlying
environment, and this clipping might alter that set (for example, by eliminating the effective difference between a reward
of 1, 000 and 2, 000, and thus changing whether it is strictly preferred for the agent to collect the latter reward first). To
compensate for this change, we scaled the extrinsic reward down by a factor of 1000, to keep the expected order of magnitude
of extrinsic rewards identical to that in (Burda et al., 2019).4 For methods requiring normalization, such as PBIM Norm, we
used exponential smoothing with α = 0.05. For all ADOPS variants, we used ϵ = 1e− 7.

We use the implementation in PPO-RND (Kazemipour, 2022) as an initial codebase. PPO-RND does not have an active
license. We conducted experiments using gymnasium API simulated by Arcade Learning Environment (ALE) (Bellemare
et al., 2013) for Montezuma’s Revenge. We use ”ALE/MontezumaRevenge-v4” in our experiments. Gymnasium API is
under the MIT license and ALE is under GPL-2.0 license.

We conducted our experiments on two servers with Ubuntu 22.04. One server has 12 Intel(R) Xeon(R) CPU E5-1650, 2
NVIDIA GeForce GTX 1080, and 32 GiB memory. We run two experiments concurrently on it. The other server has 12
AMD EPYC 7401P CPU, 1 NVIDIA TITAN RTX, and 30 GiB memory. Each run takes around 30 hours.

A.2. Failure of PBIM To Obtain Rewards

As can be seen in Figure 2, PBIM and PBIM Norm immediately saturate the action probability, preventing the agent from
ever obtaining nonzero extrinsic rewards. This is contrasted with action probabilities for a run of RND, which demonstrates
a typical action probability for successful methods in this environment at the beginning of training. As the PBIM methods
immediately converge to an action probability of 1, they never explore the environment, and thus never obtain any extrinsic
rewards.5 We use the same maximum episode length and intrinsic discount γI values as (Burda et al., 2019), which are
4, 500 and .99, respectively. As an order-of-magnitude calculation, 1

.994500 ≈ 1019, implying that we should expect the
intrinsic rewards in the final time steps of the longest episodes in this environment with PBIM to be around this large. Indeed,

4We found that without this scaling factor, the agent performed significantly worse. This scaling factor is considered separately from
the scaling factor discussed in Section 6 in the context of PIES and ADOPES, as it is for extrinsic rewards, whereas that factor is for IM.

5In both cases, the particular action being taken at every time step by the agent is to not move at all.
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Figure 3. Extrinsic returns for runs with various values of D in Equation (8). All runs are normalized. The run with D = N − 1 is
equivalent to PBIM Norm from (Forbes et al., 2024a).

through inspection, we did observe rewards of this magnitude under both PBIM and PBIM-Norm, and it was these rewards
that saturated the action probability in Figure 2 and thus prevented learning. Thus, we find that neither PBIM method is
suitable to be used in environments with potentially long episode lengths and low γ values, but should instead be limited to
environments with shorter episodes and long time horizons within those episodes.6

A.3. Hyperparameter Test For D in GRM

We plot the results of our GRM D hyperparameter test in Figure 3. We ran these tests using the normalized versions of
GRM, taking into account the results of (Forbes et al., 2024b) suggesting that this makes a wider range of D values robust
against introducing unwanted biases from the data.

B. Additional Proofs
Here, we detail additional proofs.

B.1. Proof Regarding GRM’s Lack of Generality

Here, we prove that there is a relevant set of optimality-preserving shaping functions that cannot be accommodated by GRM
or PBRS.7

Theorem B.1. There exist optimality-preserving reward shaping functions which cannot be written as GRM shaping
functions.

Proof. In a given MDP, take the shaping function F ′
t = Rt. Trivially, this preserves the optimal reward. For a proof by

contradiction, we assume there exists some mt,t′ , Ft such that this can be written as a GRM shaping reward in the form of
Equation (7). Taking the intrinsic return at time t, we get

U I
t =

N−1∑
j=t

γj−tF ′
j (31)

=

N−1∑
j=t

γj−tFj −
N−1∑
j=t

j∑
i=0

γi−tFimj,i, (32)

where U Iold
t is the cumulative discounted sum of Ft. We know from the proof for GRM’s optimality in (Forbes et al., 2024b)

6For reference, the longest episode length in an environment wherein PBIM successfully sped up training performance in (Forbes
et al., 2024a) was 640 time steps, and the discount factors tested ranged from .99 to .995.

7These are equivalent sets of functions, as proved in (Forbes et al., 2024b).
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that this entails

U I
t = −

t−1∑
i=0

γi−tFi +

t−1∑
i=0

γi−tFi

(
t−1∑
j=i

mj,i

)
. (33)

Since all Ft′ must be future-agnostic (Equation (5)), we can apply Equation (5) to assert that U I
t has no at-dependence.

But this is not generally true, and certainly false in any nontrivial environment: because we’ve defined F ′
t such that

U I
t = UE

t , this would imply that in every environment, the agent actions cannot influence its return. We have thus derived a
contradiction, and so our assumption that GRM can accommodate F ′

t = Rt was false.

To further understand the implications of this proof, examine what would happen if we were to plug this counterexample
shaping function F ′

t = Rt into the GRM framework: it would convert it into a shaping reward that is, indeed, action-
independent. In doing so, it would discard much of the useful information contained in that reward.

In contrast with GRM or other PBRS-based methods, ADOPS can easily accommodate reward shaping functions of this
type: in fact, the theoretical best ADOPS method we define in Equation (15) correctly identifies this shaping function as not
disrupting the optimal policy to begin with, and returns it back unchanged, with F ′

t = Ft.

B.2. A Proof of Optimality of the “Ideal” ADOPS Shaping Function

Given some initial shaping reward F , about which we make no assumptions, we define the ideal (usually inaccessible)
ADOPS shaping reward to be

F2 =

{
min(0, V ∗

E −Q∗
E + V ∗

I − γV ∗
I (s

′)− F − ϵ) if Q∗
E < V ∗

E

max(0, V ∗
E −Q∗

E + V ∗
I − γV ∗

I (s
′)− F ) if Q∗

E ≥ V ∗
E .

(34)

Here, we are defining V ∗
I such that it represents the maximum intrinsic reward achievable while following an externally

optimal policy. While for any extrinsically optimal policy, it will always be true that V ∗
E is equivalent to that of any other

extrinsically optimal policy, they may differ in terms of which achieves higher intrinsic reward: when this is the case, we
take VI to be the maximum of these.

We prove that adding this reward term to any initial F preserves optimality.

Theorem B.2. An intrinsic reward of the form F ′ = F + F2 with F2 defined according to Equation 34 will preserve the set
of optimal policies.

Proof. Proof by contradiction. To prove that optimality is preserved, it suffices to prove that Equations 13 and 14 hold for
any trajectory. Let us assume that there exists some π̄ such that

Qπ̄
E < V ∗

E Qπ̄
E +Qπ̄

I ≥ V ∗
E + V ∗

I . (35)

This is equivalent to assuming that Equation 14 does not hold. We can then write the quantity Qπ̄
E +Qπ̄

I as

Qπ̄
E +Qπ̄

I = Qπ̄
E + E(F + F2 + γV π̄

I (s′)). (36)

From the first component of our assumption, we know that F2 is going to be defined according to the topmost case of
Equation 34. We can then decompose our expression into contributions from terms wherein F2 = 0 (from the min function),
and those in which it does not. We can define

Qπ̄
E +Qπ̄

I (37)
=P0(Q

π̄
E +Qπ̄

I ) + (1− P0)(Q
π̄
E +Qπ̄

I ) (38)
=P0(Q

π̄
E + E(F0 + γV π̄

I,0(s
′))) (39)

+(1− P0)(Q
π̄
E + E(F ̸=0 + F2, ̸=0 + γV π̄

I,̸=0(s
′))) (40)

where P0 is a scalar representing the proportion of trajectories from the relevant state in the relevant action in which F2 = 0,
and the subscripts 0 and ̸= 0 represent the contributing terms in which F2 = 0 and F2 ̸= 0, respectively.

13
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For the terms with the ̸= 0 subscript, we find

Qπ̄
E + E(F̸=0 + F2,̸=0 + γV π̄

I,̸=0(s
′)) (41)

=Qπ̄
E + E(F̸=0 + V ∗

E −Qπ̄
E + V ∗

I − γV π̄
I,̸=0(s

′)− F̸=0 − ϵ+ γV π̄
I,̸=0(s

′)) (42)

=Qπ̄
E + E(V ∗

E −Qπ̄
E + V ∗

I − ϵ) (43)
=V ∗

E + V ∗
I − ϵ. (44)

We also know from the condition in 34 that

V ∗
E −Qπ̄

E + V ∗
I − γV π̄

I,0(s
′)− F0 − ϵ ≥ 0 (45)

Qπ̄
E + γV π̄

I,0(s
′) + F0 ≤ V ∗

E + V ∗
I − ϵ (46)

Qπ̄
E + E(γV π̄

I,0(s
′) + F0) ≤ V ∗

E + V ∗
I − ϵ, (47)

which gives us an upper bound for the terms with the 0 subscript.

Taking our assumption, then, we can replace both components of Equation 40 with their respective reductions, which gives
us

V ∗
E + V ∗

I ≤ Qπ̄
E +Qπ̄

I (48)
≤ P0(V

∗
E + V ∗

I − ϵ) + (1− P0)(V
∗
E + V ∗

I − ϵ) (49)
≤ V ∗

E + V ∗
I − ϵ. (50)

This is a contradiction, and thus we have proven that Equation 14 holds.

To prove Equation 13, we similarly assume that there exists some extrinsically optimal π∗ such that

Qπ∗

E = V ∗
E Qπ∗

E +Qπ∗

I ̸= V ∗
E + V ∗

I . (51)

The second component of our assumption includes two possible cases:

Qπ∗

E +Qπ∗

I < V ∗
E + V ∗

I or Qπ∗

E +Qπ∗

I > V ∗
E + V ∗

I . (52)

Let’s begin by assuming the first of these. We can again decompose Qπ∗

E +Qπ∗

I into two parts, using the constant P0 to
denote the percentage of contributing trajectories that are set to zero:

Qπ∗

E +Qπ∗

I (53)

=P0(Q
π∗

E +Qπ∗

I ) + (1− P0)(Q
π∗

E +Qπ∗

I ) (54)

=P0(Q
π∗

E + E(F0 + γV π∗

I,0 (s
′))) (55)

+(1− P0)(Q
π∗

E + E(F ̸=0 + F2,̸=0 + γV π∗

I,̸=0(s
′))). (56)

Here, due to our differing assumption, whether or not a contributing trajectory has its F2 term set to zero is determined by
the max function in the latter case of Equation 34, rather than the min function in the former. For trajectories where F2 ̸= 0,
then, we get

Qπ∗

E + E(F̸=0 + F2,̸=0 + γV π∗

I,̸=0(s
′)) (57)

=Qπ∗

E + E(F̸=0 + V ∗
E −Qπ∗

E + V ∗
I − γV π∗

I,̸=0(s
′)− F̸=0 + γV π∗

I,̸=0(s
′)) (58)

=Qπ∗

E + E(V ∗
E −Qπ∗

E + V ∗
I ) (59)

= V ∗
E + V ∗

I . (60)

For conditions with the 0 subscript, we know from the condition in Equation 34 that

V ∗
E −Qπ∗

E + V ∗
I − γV π∗

I,0 (s
′)− F0 ≤ 0 (61)

Qπ∗

E + γV π∗

I,0 (s
′) + F0 ≥ V ∗

E + V ∗
I (62)

Qπ∗

E + E(F0 + γV π∗

I,0 (s
′)) ≥ V ∗

E + V ∗
I . (63)

14
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Looking first at the first decomposition of the ̸= in Equation 52, we get

V ∗
E + V ∗

I > Qπ∗

E +Qπ∗

I (64)
> P0(V

∗
E + V ∗

I ) + (1− P0)(V
∗
E + V ∗

I ) (65)
> V ∗

E + V ∗
I . (66)

This is a contradiction. The other decomposition of our assumption in Equation 52 implies

V ∗
E + V ∗

I < Qπ∗

E +Qπ∗

I (67)

V ∗
E + V ∗

I < V ∗
E +Qπ∗

I (68)

V ∗
I < Qπ∗

I . (69)
(70)

Here, between Equations 67 and 68, we applied our first assumption in Equation 51. Because we have defined V ∗
I to be the

highest possible intrinsic reward among extrinsically optimal trajectories, this is a contradiction as well. Thus Equation (13)
must hold. This suffices to prove that the set of optimal policies remains unchanged.

15


