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Abstract

Modeling a system’s temporal behaviour in reaction to external stimuli is a fun-
damental problem in many areas. Pure Machine Learning (ML) approaches often
fail in the small sample regime and cannot provide actionable insights beyond
predictions. A promising modification has been to incorporate expert domain
knowledge into ML models. The application we consider is predicting the pa-
tient health status and disease progression over time, where a wealth of domain
knowledge is available from pharmacology. Pharmacological models describe the
dynamics of carefully-chosen medically meaningful variables in terms of systems
of Ordinary Differential Equations (ODEs). However, these models only describe
a limited collection of variables, and these variables are often not observable in
clinical environments. To close this gap, we propose the latent hybridisation model
(LHM) that integrates a system of expert-designed ODEs with machine-learned
Neural ODEs to fully describe the dynamics of the system and to link the expert
and latent variables to observable quantities. We evaluated LHM on synthetic data
as well as real-world intensive care data of COVID-19 patients. LHM consistently
outperforms previous works, especially when few training samples are available
such as at the beginning of the pandemic.

1 Introduction

Understanding the temporal evolution of a dynamical system is the central problem in many areas.
The Machine Learning (ML) approach to this problem has been to learn a collection of latent variables
and construct a dynamical model of the system directly from observational data. While ML has
achieved strong predictive performance in some applications, it has two central weaknesses. The first
is that it requires large datasets. The second is that the latent variables that the ML approach identifies
often have no physical interpretation and do not correspond to any previously-identified quantities.

One approach to dealing with these weaknesses has been to incorporate expert domain knowledge into
ML models. Most of the work using this approach has focused on incorporating high-level knowledge
about the underlying physical system, such as conservation of energy [9, 32, 99], independence
of mechanism [63], monotonicity [59], or linearity [34]. In addition, there have been attempts to
integrate domain-specific “expert models” into ML models to create “hybrid” models. Most of this
work has employed expert models that directly issue predictions [54, 86, 91, 93] or extract useful
features from the raw measurements [41].
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Figure 1: Dependency structure of the three models designed for the laboratory or clinical settings. Dashed
nodes represent unobservable variables. The expert variables ze are observable in the laboratory setting but not
in the clinical setting. The pharmacological model does not contain the links to the clinical variables x.

The approach taken in this paper begins with an expert model in the form of a system of Ordinary
Differential Equations (ODEs) and integrates that expert model into a system of Neural ODEs [14].
The specific problem we address is that of predicting disease progression and health status over time;
the specific expert model(s) come from Pharmacology [42] – but we believe our approach may be
much more widely applicable. For a number of diseases, available pharmacological models, built on
the basis of specialized knowledge and laboratory experiments, provide a description of the dynamics
of carefully-chosen medically meaningful variables in terms of ODEs that govern the evolution
of these states [20, 2, 30]. However, these models are typically not directly applicable in clinical
environments, because they involve too few variables to fully describe a patient’s health state [80, 38],
because the expert variables which the models employ may be observable in the laboratory setting
but not in clinical environments [29, 6], and because the relationships between the expert variables
and clinically observable quantities is not known [25]. We will give a example later in Section 3.5.

This paper proposes a novel hybrid modeling framework, the Latent Hybridisation Model (LHM), that
imbeds a given pharmacological model (a collection of expert variables and the ODEs that describe
the evolution of these variables ) into a larger latent variable ML model (a system of Neural ODEs).
In the larger model, we use observational data to learn both the evolution of the unobservable latent
variables and the relationship between measurements and all the latent variables – the expert variables
from the pharmacological model and the latent variables in the larger model. The machine learning
component provides links between the expert variables and the clinical measurements, the underlying
pharmacological model improves sample efficiency, and the expert variables provide additional
insights to the clinicians. A variety of experiments (using synthetic and real data) demonstrate the
effectiveness of our hybrid approach.

2 Problem setting

We consider a set of hospitalized patients [N ] = {1, . . . , N} over a time horizon [0, T ]; t = 0
represents the time of admission and t = T represents the maximal length of stay. The health status
of each patient i is characterized by a collection of observable physiological variables xi(t) ∈ RD,
D ∈ N+; because the physiological variables may include vital signs, bloodwork values, biomarkers,
etc., xi(t) is typically a high-dimensional vector. Although the physiological variables are observable,
they are typically measured only at discrete times, and with error. To avoid confusion, we distinguish
the measurements of these variables y(t) from the true values; i.e.

yi(t) = xi(t) + εit (1)

where the independent noise term εit accommodates the measurement error (modeling εt as an
autocorrelated stochastic process is left as a future work). For illustrative purposes, we also assume
that εt follows a Normal distribution N(0, σ2

i ), but any parametric distribution could be easily
accommodated. We denote the measurement times for each patient as Ti = {ti1, ti2, . . .}. We write
ai(t) ∈ RA, A ∈ N+ for the treatments the patient receives. Some treatments (e.g. intravenous
medications) are continuous; others (e.g. surgical interventions) are discrete, so some components of
ai(t) may be continuous functions but others are (discontinuous) step functions.

It is convenient to write Ai[t1 : t2] = {ai(t)|t1 ≤ t ≤ t2} and Yi[t1 : t2] = {yi(t)|t1 ≤ t ≤ t2, t ∈
Ti} for the treatments and measurements (respectively) during the the time window [t1, t2]. Note that
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Yi[0 : t] and Ai[0 : t] represent histories at time t while Ai[t : T ] and Yi[t : T ] represent treatment
plans and predictions, respectively. Our objective is to predict the future measurements given the
history and a treatment plan Ai[t0 : T ]:

P(Yi[t0 : T ] | Yi[0 : t0],Ai[0 : t0]︸ ︷︷ ︸
Historical observations

, Ai[t0 : T ]︸ ︷︷ ︸
Treatment plan

). (2)

Understanding this distribution will allow us to compute both point estimates and credible intervals
(reflecting uncertainty). Note that it is important for the clinician to understand uncertainty in order to
balance risk and reward. When the context is clear, we will omit the subscript i and the time index t.

3 Method

3.1 The pharmacological model

We begin with a pharmacological model which describes the dynamics of a collection of “expert”
variables ze(t) ∈ RE . Each expert variable captures a distinct and medically-meaningful aspect of
the human body, e.g. the activation of immune system. The pharmacological model describes the
dynamics as a system of Ordinary Differential Equations (ODEs):

że(t) = fe(ze(t),a(t); θe), (3)

where we have written że(t) for the time derivative of ze. The functional form of fe : RE×RA → RE
is specified but the unknown parameters θe (e.g., coefficients) need to be estimated from data.1,2

It is important to note that the system of ODEs (3) describes dynamics that are self-contained, in the
sense that the time derivatives że(t) depend only on the current values of the expert variables ze(t)
and the current treatments a(t), and not on histories or on other variables. To ensure that this obtains,
it may be necessary to limit the scope of the model and limit attention to a single system of the body
(or perhaps to several closely related systems) [19]. As a consequence of these limitations, the expert
variables will usually not give a full picture of the health status of the patient and will usually not
account for the full array of observable physiological variables x(t) [29].

3.2 The latent hybridisation model: linking expert variables with measurements

As we have already noted, pharmacological models are typically developed and calibrated in the
laboratory, where the expert variables can be directly measured – in patients, in laboratory animals, or
even in vitro (Figure 1 A). In clinical environments, the expert variables are frequently not observed
(Figure 1 B and C). To use the pharmacological models in clinical environments, we must establish
links between the expert variables ze(t) and the clinical measurements y(t). To do this we introduce
additional latent variables zm(t) ∈ RM and posit the following relationship between the latent
variables ze, zm and the observable physiological variables x(t):

x(t) = g(ze(t), zm(t),a(t); γ) (4)

The function g : RE×M×A → RD is a neural network with (unknown) weights γ, and maps the
latent space to the “physiological space”. Here we also allow the treatment a(t) to affect the mapping
between the latent ze(t), zm(t) and the observable x(t). This is a standard design in the state space
modeling literature, which we conform to (e.g. Equation 1 in [8] and Equation 1 and 2 in [85]). We
posit that the dynamics of the latent variables zm(t) follow a system of ODEs governed by its current
values zm(t), the treatments a(t) and the current values of the expert variables ze(t).

żm(t) = fm(zm(t), ze(t),a(t); θm), (5)

The function fm : RM×E×A → RM is a neural network with (unknown) weights θm. Equations
(3)-(5) specify the dynamics of LHM. It is convenient to write z(t) = [ze(t) zm(t)] for the vector of
all latent variables and Θ = (θe, θm, γ, σ) for the set of all (unknown) coefficients.

1The system in Equation (3) is quite general; appropriate choices of expert variables allow it to capture both
high-order ODEs and time-dependent ODEs [67].

2Some care must be taken because systems such as (3) do not always admit unique global solutions. In
practice, the pharmacological models are sufficiently well-behaved that global solutions exist and are unique.
Although closed-form solutions may not be available, there are various efficient numerical methods for solution.

3



Measurements

Encoder

Numerically solve ODE 

1
2

3 Apply mapping 

Prediction"Reconstruction"History

Sample

Latent space

Figure 2: Illustration of the training and prediction procedure.

The coefficients Θ will be learned from data. However, even after these coefficients are learned, the
initial state of the patient zi(0) is still unknown. In fact, the variation in initial states reflects the
heterogeneity of the patient population. If the coefficients and the initial state were known, the entire
trajectory of zi given the treatments could be computed (numerically). Because we have assumed
that the noise/errors εt are independent, we have

Yi[t0 : T ] ⊥⊥ Yi[0 : t0] | zi(0),Ai[0 : T ],Θ, ∀t0 < T (6)

However, because the initial state is unknown, it must be learned from the measurements yi(t).

LHM would reduce to a pure latent neural ODE model [14, 72] if we omitted the expert variables
(Figure 1 B). However, that would amount to discarding prior (expert) information and so is evidently
undesirable. Indeed, as we have noted in the introduction, our approach is driven by the idea of
incorporating this prior (expert) information into our hybrid model.

In the current work, we assume that the pharmacological model in Equation 3 is correct. In practice,
the model might be wrong in two ways. The obvious way is that the functional form of fe might
be misspecified (e.g. a linear model might be specified when the truth is actually nonlinear). Many
existing techniques can address such misspecification and could be integrated into LHM [35, 64, 98];
see the discussion in Appendix A.7. Alternatively, it might be that the system of expert variables is
not self-contained, and that their evolution actually depends on additional latent variables, we leave
this more challenging problem for future work.

Practical extensions to LHM such as including static covariates and modeling informative sampling
are discussed in Appendix A.7.

3.3 Independent and informative priors

It may be challenging to pinpoint the exact value of the latent variables ze based on observations
(e.g. due to measurement noise or sampling irregularity). For this reason, we quantify the uncertainty
around ze using Bayesian inference. In what follows, we assume the initial states zi(0) of patients
are independently sampled from a prior distribution zi(0) ∼ P0. Two points are worth noting.

Independent Priors. We use independent prior distributions on the expert variables ze and the latent
variables zm, i.e. P(z(0)) = P(ze(0))× P(zm(0)). This guarantees that information in zm(0) does
not duplicate (any of the) information in ze(0), which captures our belief that the latent variables
are incremental to the expert variables. In addition, independent priors are also commonly used in
Bayesian latent variable models such as variational autoencoders (VAEs) [47, 37].

Informative Priors The prior distribution on the expert variables P(ze(0)) should reflect domain
knowledge. Such knowledge is usually available from previous studies in Pharmacology [38]. Using
an informative prior tends to improve the estimation of latent variables, especially in small-sample
settings [52]. Moreover, the expert variables usually take values in specific ranges (e.g. [0, 10] [42])
and going beyond the valid range may lead to divergence. The informative prior can encode such
prior knowledge to stabilize training.
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3.4 Model training and prediction via amortized variational inference

Given the training dataset D = {(Yi[0 : T ],Ai[0 : T ])}i∈[N ], we use amortized variational inference
(AVI) to estimate the global parameters Θ and the unknown initial condition zi(0) [97]. Figure
2 presents a diagram of the training procedure. We start by learning a variational distribution to
approximate the posterior P(zi(0)|Yi[0 : T ],Ai[0 : T ]). As is standard in AVI [47, 97], we use a
Normal distribution with diagonal covariance matrix as approximation:

Q(zi(0)|Yi[0 : T ],Ai[0 : T ]) = N(µi,Σi); µi,Σi = e(Yi[0 : T ],Ai[0 : T ]; φ) (7)

Here the parameters µi,Σi are produced by an inference network (also known as an encoder) e(·)
with trainable weights φ. When the context is clear, we will denote the variational distribution defined
by Equations (7) as Qφ. The evidence lower bound (ELBO) for the global parameter Θ and the
inference network parameters φ is defined as

ELBO(Θ, φ) = Ez(0)∼Qφ
[
logP(Yi[0 : T ]|Ai[0 : T ], z(0),Θ)

]
− KL[Qφ|P0] (8)

To compute the ELBO for a given Θ and φ, we sample z(0) ∼ Qφ and numerically solve the ODEs
to obtain z(t), ∀t ∈ [0, T ] (Figure 2; Steps 1, 2). Then, we compute the inner log-likelihood function
using the mapping g and the noise distribution (Equations (1) and (4)). Finally, we use Monte Carlo
sampling to evaluate the KL divergence term: Ez(0)∼Qφ [logQφ(z(0))−logP0(z(0))]. This is because
the informative prior P0 may not have an analytical KL divergence (unlike the standard Normal prior
used in previous works [47, 72]). We optimize ELBO by stochastic gradient ascent and update all
parameters jointly in an end-to-end manner (detailed in Appendix A.3).

The prediction procedure follows the same steps as illustrated in Figure 2. For a new patient with
history Yi[0 : t0],Ai[0 : t0], we first estimate the variational posterior Qφ using the trained encoder.
From Equation (6), we can estimate the target distribution in Equation (2) as:

Ez(0)∼Qφ
[
P
(
y(t)|z(0),Ai[0 : t0],Ai[t0 : T ]

)]
, ∀t > t0. (9)

where Ai[t0 : T ] is a future treatment plan. The outer expectation can be approximated by Monte
Carlo sampling from Qφ and the inner probability is given by the likelihood function.

Choice of variational distribution and encoder. The training procedure above is agnostic to the
exact choice of variational distribution and encoder architecture. We choose the Normal distribution
to make fair comparisons with the previous works [14, 72] . For the same reason, we use the reversed
time-aware LSTM encoder proposed in [14]. In the Appendix A.4, we show additional experiments
with more complex variational distributions, i.e. Normalizing Flows [70].

3.5 Using LHM to provide clinical decision support

In order for clinicians to optimally treat patients, they need to predict the progression of disease
given the treatments. Although machine learning models may demonstrate feature importance [16, 4],
they do not uncover the relationships between those features and the underlying pathophysiology.
LHM can provide the missing link between clinical observations and disease mechanisms. In
combination with clinical reasoning, it can provide treating clinicians with decision support in several
complementary ways.

First, LHM can inform the clinicians about the values of the expert variables ze(t) that cannot
be observed in the clinical environment but are important for prognosis, choice of treatment, and
anticipation of complications. For example, understanding and predicting immune response is pivotal
when deciding on immunosuppresive therapy in the treatment of COVID-19: an extreme immune
response may lead to a potentially fatal cytokine storm [24], but a suppressed immune response
may be equally dangerous in case of (secondary) infection [48, 84]. However, because immune
response is not directly observable in the clinical environment, clinicians must rely on proxies such
as C-reactive protein (CRP) for inflammation [58]; by their very nature, such proxies are noisy and
highly imperfect measures of the desired values.

Secondly, LHM can provide the clinician with predictions of the disease progression given the
treatments, enabling the clinicians to design the best treatment plan for the patient at hand.

Finally, LHM can bridge the gap between the laboratory and clinical environments, helping to align
model output with clinical reasoning, and thus to bring models to the patient bedside and also to
foster translational research [78, 28].
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4 Related works

Hybrid models. Hybrid models combine a given expert model with ML [88]. Depending on the
type and functionality of the expert model, various approaches have been proposed. Residual Models
and Ensembles use expert models that can issue predictions directly [54, 86, 89, 91, 93]. A Residual
Model fits a ML model to the residuals of the expert model while an Ensemble averages the ML and
expert predictions. Feature Extraction makes use of an expert model that extracts useful features from
the measurements [41]; an ML model then uses these features to make predictions. These methods
are not suitable for our setting because our expert model is an ODE that governs the latent variables
(5); it does not issue predictions of measurements nor does it extract features that the ML model can
use. Appendix A.5 Table 2 summarizes these approaches.

ML inspired by physics uses physical laws to guide the design of architectures [77, 96, 82], loss
functions [94, 26], and weight initialization [68]. Examples include Hamiltonian neural networks
[32, 9, 99], which reflect the conservation of energy. These models utilize general physical laws
rather than a specific expert model, and are rather different than the hybrid models discussed above.

Works involving expert ODEs. Some recent works also propose to integrate expert ODEs into the
learning system. It is worth comparing with their problem settings and proposed methods. [53]
assumes that the observations are directly generated by the expert variables x(t) = g(ze(t)) (compare
with Equation 4 of this work). It does not involve any machine-learned latent variable or neural
ODE. Hence, [53] tends to fall short when the expert variables alone are inadequate to predict the
observations. The method in [56] differs from LHM in the type of expert ODE used and the way
to incorporate machine-learned latent variables. In [56], the expert ODE depends on an unknown
time-varying parameter θ(t), i.e. że(t) = fe(ze(t), θ(t)) (compare with Equation 3). It treats θ(t)
as a latent variable and uses ML techniques to infer its value. In contrast, LHM assumes that the
expert ODE is self-contained, i.e. with no dependency on any unknown time-varying parameters
or variables. The method in [51] addresses a different problem setting, where the expert model is
mis-specified. It introduces a ML component fm to additively correct for the discrepancy between
the expert ODE and the true dynamics f , i.e. f = fe + fm. It thus relates to the residual models
discussed above. Finally, the method in [39] deals with discrete time series and incorporates expert
difference equations. It is nontrivial to generalize the model and the inference algorithm in [39] to the
continuous time setting, which this paper focuses on.

Neural ODEs. Neural ODEs approximate unknown ODEs by a neural network [14], frequently using
standard feed-forward networks. ODE2VAE uses an architecture with identity blocks to approximate
second-order ODEs [95] and GRU-ODE uses an architecture inspired by the Gated Recurrent Unit
(GRU) [21, 15]. Neural ODEs and extensions have achieved state-of-the-art performance in a variety
of problems involving irregularly-sampled time series data [72, 21, 45]. We discuss other approaches
to learning unknown ODEs from data in Appendix A.5.

Mechanistic models. Mechanistic models are widely applied in sciences such as Physics [81],
Epidemiology [92, 31], and Pharmacology [30, 42]. These models use ODEs to describe a system’s
continuous-time evolution, possibly under external interventions. The dynamics of the system is
specified deterministically through the governing ODEs; e.g., Equation (3). When the mechanistic
models are developed based on experimental data, they may have a causal interpretation [76]
(Appendix A.5). LHM focuses on the prediction problem and it leverages the scientific or causal
knowledge encoded in the expert ODE fe to issue principled predictions.

Latent variable models. Latent variable models are widely used in disease progression modeling
[87, 4]. These models attempt to infer a set of latent variables to predict complex high-dimensional
measurements. The latent variables sometimes have high-level interpretations (e.g. cluster mem-
bership), but do not usually correspond to any well-defined and clinically meaningful physiological
variable. Moreover, without informative priors, the latent variables can usually be identified only up to
certain transformations (e.g. permutation of cluster labels [62]). By contrast, LHM involves medically
meaningful expert variables driven by known governing equations and following informative priors.

5 Experiment and evaluation

Here we present the results of two experimental studies, one with simulated data and one
with real data. In both experiments, we study the effect of dexamethasone treatment for
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COVID-19 patients. Both studies are modeled on the real-life treatment of COVID-19 pa-
tients in the ICU. The implementation of LHM and the experiment code are available at
https://github.com/ZhaozhiQIAN/Hybrid-ODE-NeurIPS-2021 or https://github.com/
orgs/vanderschaarlab/repositories

5.1 Simulation study

In this simulation, we use LHM to predict the results of a single dexamethasone treatment. Each
patient i will receive a one-time treatment; with dosage di ∼ uniform[0, 10] mg and time si ∼
uniform[0, 14]. Our objective is to predict future measurements.

Datasets. We generated a variety of datasets to evaluate the model performance under different
scenarios. To evaluate how the number of clinical measurements affects performance, we generated
datasets with D = 20, 40 or 80 observable physiological variables x. For each dataset, we set the
number of un-modeled states zm according to the number of variables in x to be M = D/10 =
2, 4 or 8 (respectively). (We made this choice to reflect the fact that a larger number of physiological
variables often necessitates a larger number of un-modeled states.) We consider a time horizon of
T = 14 days; this is the median length of stay in hospital for Covid-19 patients [69]. After setting M
and D, we generate the data points within a dataset independently.

We use a pharmacological model adapted from [18] that describes five expert variables (E = 5)
under dexamethasone treatment for COVID-19 patients. We use the same model in the real-data
experiment. We specify the model and the expert variables in Appendix A.1. The un-modeled states
zm are governed by the nonlinear ODE fm shown in equation (5); the true physiological variables
x are generated by the function g in Equation (4). The specifications of fm and g are provided
in Appendix A.4. For each patient i, each of the components of its initial condition zi(0) were
independently drawn from an exponential distribution with rate λ = 100. Measurement noises are
drawn independently from εit ∼ N(0, σ2), for σ = 0.2, 0.4 or 0.8; Equation (1). We first simulate
all daily measurements at t = 1, 2, . . . , T , and then randomly remove measurements with probability
0.5 to proxy the fact that measurements are made irregularly.

Prediction task For a given patient i, we use the measurements Y[0 : t0] up to some time t0 and the
treatment plan for that particular patient to predict the future measurements Y[t0 : T ]. (Note that
treatment may have occurred prior to time t0 or may be planned following time t0.) To evaluate the
performance under different lengths of observed history, we use t0 = 5, 10 or 12 days. We evaluate
the overall prediction accuracy over t ∈ [t0 : T ] with Root Mean Squared Error (RMSE). We evaluate
the uncertainty calibration in the same time window using the Continuous Ranked Probability Score
(CRPS). The evaluation metrics for each future time step is shown in Appendix A.4.

Training and Evaluation. We partition each dataset into a training set, a validation set, and a testing
set. We consider training sets consisting of N0 = 10, 100, or 500 data points; each validation set has
100 data points and each testing set has 1000 data points.

Benchmarks. We compare the performance of our method (LHM) with the performance of four
other methods: latent Neural ODE (NODE), the original Pharmacology model (Expert), the residual
model (Residual), and the ensemble model (Ensemble) of Expert and NODE, described below. The
details of the optimization and hyper-parameter settings are reported in Appendix A.4.

NODE involves Z latent variables z(t) ∈ RZ whose evolutions are described by ż(t) =
fm(z(t),a(t); θm), where fm is a neural network with trainable weights θm. The number of latent
variablesZ is a hyper-parameter that is set to be greater thanM+E, which is the number of true latent
variables.3 NODE predict the physiological variables as ŷN (t) = gN (z(t),a(t); γN ), where gN is a
a neural network with trainable weights γN . Expert is given the true governing equation (3), which
describes the expert variables ze(t), but no un-modeled latent variables. We use a neural network
gE with trainable weights γE to predict the physiological variables: ŷE(t) = gE(ze(t),a(t); γE).
Residual Given a trained Expert model, we calculate its residuals r(t) = y(t) − ŷE(t). Then a
NODE is trained to predict the residuals. The final prediction is ŷE(t) + r̂(t). Ensemble makes
prediction as w1tŷN (t) + w2tŷE(t), where ŷN (t) and ŷE(t) are the predictions issued by NODE
and Expert respectively. The ensemble weights w1t and w2t are learned on the validation set to
minimize the prediction error.

3We found that the performance of NODE is not sensitive to the exact choice of Z so long as it is sufficiently
larger than M + E. (This is consistent with findings reported in the literature [22].)
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Figure 3: Simulation Results. Prediction performance on future measurements Y[5 : 14] given the observed
history Y[0 : 4] as measured by RMSE (first row) and CRPS (second row). The three columns show the results
under (1) different training sample sizes N0, (2) different numbers of un-modeled variables M , and (3) different
noise levels σ. The shaded areas represent 95% confidence intervals.

Results. Figure 3 shows the predictive performance under various samples sizes N , number of
latent variables M , and noise levels σ (results for other settings are reported in Appendix A.4).
To contextualize the scale of the performance metric, we report that a naive baseline (predicting a
constant number of all individuals and all time steps) achieves an RMSE around 1.0. All methods
outperform this naive baseline and LHM achieves the best overall performance. Expert does not
perform well because it leaves out the latent variables zm(t). As a result, its performance does not
consistently improve when more training samples become available. In contrast, NODE is flexible
and fully data-driven. Although its performance improves with increased sample size, NODE is less
sample efficient and it achieves worse performance for all the sample sizes considered. NODE is
more robust to the increase in M because it treats the number of latent variables as a hyper-parameter.
We observe that the performance gap between NODE and LHM decreases when more latent variables
zm(t) are added. This is because increasing M reduces the proportion of the variables E/M that
can be explained by the expert model. Both Residual and Ensemble achieve performance gains over
NODE and Expert alone, but they under-perform LHM because they perform averaging directly in
the output space rather than trying to infer zm in the latent space.

5.2 Real-data experiments

In this experiment, we use real data to evaluate the predictive performance of LHM and to illustrate
its utility for decision support in a realistic clinical setting that closely tracks the actual treatment of
COVID-19 patients in ICU.

Dataset. We used data from the Dutch Data Warehouse (DDW), a multicenter and full-admission
anonymized electronic health records database of critically ill COVID-19 patients [27]. Up until
March 2021, DDW has collected the health trajectories for 3464 patients admitted to intensive care
units (ICU) across the Netherlands. However, even if we use the entire DDW for training, the sample
size is still relatively small compared to what is typically used by ML (tens or hundreds of thousands
of samples [40]). Furthermore, patients are even scarcer at the early stage of pandemic, arguably
when a decision support tool is most needed: only 607 patients were admitted at the first peak (by
April 2020). After applying the eligibility criterion detailed in Appendix A.6, we obtained a dataset
of 2097 patients whose disease progression is characterized by an irregularly-sampled time series
of 27 physiological variables (Appendix A.6). These variables capture the vital signals, respiratory
mechanics, and biomarkers that are crucial for clinical decisions. In addition, we also included 11
static variables that are known to affect the progression of COVID-19, e.g. BMI (Appendix A.6).

Prediction task. Denote t0 as the time when the patient received the first dose of dexamethasone
(we set t0 = 24 for untreated patients). We use the history up to 24 hours before t0, Y[t0 − 24 :
t0], to predict the future Y[t0 : t0 + 24H] over a time horizon H = 1, 3 or 7 days. We use
N0 = 100, 250, 500 or 1000 patients for training, 97 for validation, and 1000 for testing. The
pharmacological model and the prior distribution of expert variables are detailed in Appendix A.1.
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Patient A

Patient B

Patient C

Figure 4: The observed measurements and the inferred expert variables for three illustrative patients.
Left: The observed physiological variable x1(t): C-Reactive Protein. Middle: The inferred expert variable ze1(t):
the immune response to viral infection. Right: The inferred expert variable ze2(t): dexamethasone concentration.
Vertical dotted lines mark the times of dexamethasone injections.

Table 1: Prediction accuracy (RMSE) on COVID-19 intensive care data under different training
sample sizes N . Prediction horizon H = 24 hours. The standard deviations are shown in the brackets.

Method \N0 100 250 500 1000

Expert 0.718 (0.71) 0.704 (0.02) 0.702 (0.02) 0.713 (0.01)
Residual 0.958 (0.63) 1.003 (0.03) 0.717 (0.05) 0.635 (0.04)
Ensemble 0.707 (0.60) 0.657 (0.05) 0.628 (0.05) 0.599 (0.05)
NODE 0.662 (0.65) 0.659 (0.02) 0.644 (0.05) 0.650 (0.04)
ODE2VAE 0.674 (0.62) 0.666 (0.02) 0.643 (0.02) 0.619 (0.02)
GRU-ODE 0.722 (0.60) 0.673 (0.05) 0.623 (0.05) 0.601 (0.05)
Time LSTM 0.706 (0.63) 0.649 (0.03) 0.600 (0.03) 0.631 (0.02)
LHM 0.633 (0.51) 0.605 (0.02) 0.529 (0.02) 0.511 (0.02)

Benchmarks. In addition to all the benchmarks introduced in Section 5.1, we compared the results
with two extensions of NODE, GRU-ODE and ODE2VAE, which achieved strong performance in
medical time series prediction [95, 21]. We also used the Time LSTM as a strong baseline [7].

Results. The main results are shown in Table 1 (additional results are shown in Appendix A.6). LHM
consistently outperformed the benchmarks. Its performance with N0 = 100 samples is close to the
pure ML approaches’ performance with N0 = 500 samples. As the sample size increases from 100
to 1000, the predictive accuracy of LHM improves by 19% while Time LSTM improves by 11% and
NODE by less than 5%. A larger improvement rate suggests LHM adapts to the newly available data
faster, which is important when the samples are scarce. As expected, the standalone expert model
achieved poor performance because it is unable to capture the full array of clinical measurements.

LHM in action. Here we show how LHM can support clinical decisions beyond predicting future
clinical measurements. Managing the level of immune response is pivotal when deciding on im-
munosuppresive therapy for COVID-19 patients [24, 84, 48]. This is a challenging task because
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the “right” level of immune response varies across patients [43]: for most patients, we would like
to reduce the immune response to avoid cytokine storm and consequent organ failure [24], but for
patients with other infections (e.g., a secondary bacterial or fungal infection), we would like to keep
their immune systems activated [48, 17]. Because immune response is not directly observable in the
clinical settings, clinicians resort to unspecific inflammatory markers such as C-Reactive Protein
(CRP) [58]. However, better markers of the immune response such as the cytokine Type I IFNs can
be measured in the laboratory setting and have been included in the pharmacological model as an
expert variable ze1. Moreover, the immune response is affected by dexamethasone concentrations in
the lung tissue (the expert variable ze2). These concentrations are not easily or routinely measured in
a clinical setting, and are therefore not available to clinicians.

Figure 4 shows the measurements of CRP x1, and the inferred immune response ze1 and dexametha-
sone concentration ze2. The two expert variables are inferred by a trained LHM using the first five
days of observations. We selected three representative patients based on the treatment regimen they re-
ceived. Patient A is representative of the 59.8% of the population who did not receive dexamethasone;
Patient C is representative of the 12.2% who received dexamethasone according to the guidelines
[60], and Patient B is representative of the 28.0% of the population who received dexamethasone but
whose treatment was not according to the guidelines.

For patient A, the initial level of CRP was moderately high, but then it rose and peaked at about 100
hours after admission. In the absence of contraindications, a clinician might begin dexamethasone
treatment at this point, but LHM predicts that immune activity ze1 would decrease afterwards even
without treatment. (The right panel is blank because dexamethasone was never administered.)

Patient B was admitted to the ICU with a very high level of the inflammatory marker CRP. Two
doses of dexamethasone were given in rapid succession, preceding a decline in both CRP x1 and
immune activity ze1. However, after the dexamethasone depleted in the patient’s body, the expert
model predicts that the immune response will pick up again. This is reflected in the re-occurrence of
the high CRP level.

Patient C was admitted to the ICU with a moderately high level of CRP. LHM also inferred a high
level of immune activity ze1 at the initial stage. Inflammation was greatly reduced after dexamethasone
treatments, which has an immunosuppressive effect; so x1 and ze1 display the same downward trend.
Because dexamethasone concentrations falls rapidly within 24 hours after treatment, it was repeated
at 24 hour intervals, as seen in the right panel. This pattern is clinically expected under the treatment
regimen.

6 Discussion and future work

This paper has focused on a single disease (COVID-19), a single treatment (dexamethasone), and a
single expert model. The ultimate goal is to build a model that encompasses a variety of diseases, a
variety of treatments and multiple expert models. This is a challenge for future work.
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[9] Tom Bertalan, Felix Dietrich, Igor Mezić, and Ioannis G Kevrekidis. On learning hamiltonian
systems from data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(12):121107,
2019.

[10] Josh Bongard and Hod Lipson. Automated reverse engineering of nonlinear dynamical systems.
Proceedings of the National Academy of Sciences, 104(24):9943–9948, 2007.

[11] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings of the national
academy of sciences, 113(15):3932–3937, 2016.

15



[12] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem with artificial
neural networks. Science, 355(6325):602–606, 2017.

[13] Gang Chen, Yingtao Zuo, Jian Sun, and Yueming Li. Support-vector-machine-based reduced-
order model for limit cycle oscillation prediction of nonlinear aeroelastic system. Mathematical
problems in engineering, 2012, 2012.

[14] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations. arXiv preprint arXiv:1806.07366, 2018.
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