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ABSTRACT

Zeroth-order optimization (ZO) is a memory-efficient strategy for fine-tuning Large
Language Models using only forward passes. However, applying ZO fine-tuning
in memory-constrained settings such as mobile phones and laptops remains chal-
lenging since these settings often involve weight quantization, while ZO requires
full-precision perturbation and update. In this study, we address this limitation by
combining static sparse ZO fine-tuning with quantization. Our approach transfers
a small, static subset (0.1%) of "sensitive" parameters from pre-training to down-
stream tasks, focusing fine-tuning on this sparse set of parameters. The remaining
untuned parameters are quantized, reducing memory demands. Our proposed work-
flow enables efficient ZO fine-tuning of an Llama2-7B model on a GPU device
with less than 8GiB of memory while outperforming full model ZO fine-tuning
performance and in-context learning.

1 INTRODUCTION

Large language models (LLMs) have demonstrated superior performance in general-purpose language
generation (Brown et al., 2020; Radford et al., 2019; Liu et al., 2019). Despite their success, fine-
tuning LLMs for specific tasks remains necessary to achieve optimal results. However, the fine-tuning
process often requires significantly more memory compared to inference. Specifically, there are
four main components that occupy the memory during fine-tuning LLMs: (1) the weight parameter
itself; (2) the optimizer state, which contains the information about the past gradient (Kingma &
Ba, 2015); (3) the gradient used to update the parameters; (4) the activation cached to calculate
the weight gradient (Liu et al., 2024c); Previous work, such as QLoRA (Dettmers et al., 2023),
has successfully reduced memory usage for both (1) and (2) by combining weight quantization
and low-rank adaptation (Hu et al., 2021), which enables fine-tuning huge LLMs under consumer
level GPUs. However, on memory-constrained hardware like smartphones, the memory required for
caching (3) gradient and (4) activations for backpropagation remains significant. Prior approaches to
address this issue are often system-based, such as CPU offloading. The disparity between the memory
demands of LLM fine-tuning and hardware capacity limits the adaptability of LLMs, especially when
personalizing them for edge devices.
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Figure 1: CUDA memory benchmarking of Llama2-7B on 3 fine-tuning tasks. We use a batch size of
8 for profiling the memory usage, and we find that SensZOQ (1st bar in each subfigure) can meet the
8 GiB memory target without any system-level solutions such as CPU offloading.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Exploring zeroth-order optimization in LLM fine-tuning. Recently, there has been a resurgence
of interest in zeroth-order (ZO) optimization methods for LLM fine-tuning (Malladi et al., 2023a;
Liu et al., 2024a; Chen et al., 2024). ZO optimization method perturbs model parameters in random
directions and utilize the loss value difference to compute the gradient direction for parameter updates.
A key advantage of ZO methods in LLM fine-tuning is that they do not require backpropagation
procedures, significantly reducing computation and memory requirements. Being backpropagation-
free, ZO methods does not need to cache (3) gradients and (4) activations during fine-tuning. In
practice, ZO methods have demonstrated the potential to achieve performance comparable to first-
order methods in LLM fine-tuning, which create new venues for efficient LLM adaptation strategies.

Efficient ZO LLM fine-tuning with sparsity. Although ZO methods remove the need for back-
propagation, a significant drawback of these methods is the slow convergence rate (Zhao et al., 2024;
Liu et al., 2024a). A recent approach addresses this by fine-tuning with a sparse mask (Liu et al.,
2024a; Zhang et al., 2024b), achieving approximately ∼ 75% dynamic sparsity (perturb & tune 25%
parameters per step). Nonetheless, this sparsity level barely reduces computational overhead, as
the latency during the forward pass with even ∼ 90% sparsity is still comparable to that of dense
matrix operations. This latency increase can greatly impact user experience on applications such as
personal assistants, where even a twofold increase in latency is perceptible. In addition, dynamic
sparsity leads to a reduction in training iterations but not necessarily wall-clock time – determine
and apply the sparsity pattern for each training step could be expensive. Moreover, dynamic sparsity
inherently assumes the whole model must all be in dense weights, and an attempt to combine dynamic
sparse training with parameter-size reduction techniques such as quantization is not computationally
tractable (otherwise it will involve frequent dequantization and quantization). This raises the question:

Is it possible to develop an extreme static sparsity method for ZO fine-tuning that is easy to combine
with quantization method? Would the memory-efficiency of ZO be even pushed further?

Our proposal: ZO LLM fine-tuning with transferable static sparsity. In this paper, we answer
the raised research question by proposing a transferable static sparse ZO LLM fine-tuning strategy.
We observe an extreme sparsity pattern in LLM parameters: a subset, determined by selecting the
top k magnitude entries from the diagonal of empirical Fisher information matrix, is effective for
ZO fine-tuning. Moreover, we find this sparsity pattern can be obtained through LLM’s pre-training
process and transferred to various downstream tasks without modification (as a static selection).

Summary of contributions. Building on these insights, our work proposes a comprehensive
framework for ZO fine-tuning, making the following contributions:

• We identify that only an extremely small portion (0.1%) of LLM parameters should be updated
during ZO LLM fine-tuning. Moreover, we observe that this sparsity pattern can be derived in
LLM pre-training process and transferred across different downstream tasks while still maintaining
good ZO performance without any modification.

• Based on this observation, we propose SensZOQ, an on-device LLM personalization workflow
via integrating Sensitive ZO optimization with Quantization to further improve the memory-
efficiency of ZO fine-tuning (Figure 1).

• We conduct extensive experiments across various LLMs and demonstrate that our method achieves
competitive performance across various downstream tasks.

2 SPARSE ZO FINE-TUNING WITH STATIC SENSITIVE PARAMETERS IN LLM

In this section, we first go through the background of ZO optimization in Section 2.1. We then inspect
an extreme sparsity pattern in LLMs in Section 2.2 and its theoretical guarantees in Section 2.3.

2.1 ZEROTH-ORDER OPTIMIZATION

ZO surrogate gradient estimator. ZO optimizers have been studied widely in the machine learning
community. Given a dataset D = {(x1, y1), . . . , (xn, yn)} and a loss function f with model
parameters w ∈ Rd, ZO optimizer will estimate the gradient at w via ZO surrogate gradient
estimator. Simultaneous Perturbation Stochastic Approximation (SPSA) (Spall, 1992) is such an
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estimator that would first sample a random vector z ∈ Rd and uses the loss value difference to scale
the update direction. z is usually sampled from an Gaussian distribution N (0, Id).

Definition 1 (Simultaneous Perturbation Stochastic Approximation (SPSA) (Spall, 1992)). SPSA
estimates the gradient w.r.t. w with a data example (x, y), a small constant ϵ ∈ R, and a sampled
random vector z ∈ Rd as follows:

ĝ(w, (x, y), z) =
f(w + ϵz; (x, y))− f(w − ϵz; (x, y))

2ϵ
z (1)

There are other ZO surrogate gradient estimators (Liu et al., 2020; Ohta et al., 2020), but in practice
SPSA achieves good performance in ZO fine-tuning. Some ZO algorithms such as DeepZero (Chen
et al., 2024) would utilize the parameter-wise finite difference of loss values to derive parameter-wise
update directions. This would yield O(d) query costs per training step even when combining with
certain sparse masking methods and not practical for LLM fine-tuning scenarios. We therefore select
SPSA with random Gaussian perturbation as our ZO gradient estimator.

ZO-SGD algorithm. ZO-SGD is an optimizer similar to SGD but replaces the FO gradient with ZO
surrogate gradient estimate per training step, as defined below:

Definition 2 (ZO-SGD update rule). ZO-SGD is an optimizer that uses ZO surrogate gradient to
update parameters wt with learning rate ηt and a data example (xt, yt) sampled at timestep t:

wt+1 = wt − ηtĝw(wt, (xt, yt), zt) (2)

MeZO (Malladi et al., 2023a) is a ZO-SGD algorithm that uses the “random seed trick” to save
the need of caching ZO surrogate gradient. The choice of optimizer (SGD) is orthogonal to ZO
optimization techniques, but in our preliminary experiments we find adaptive optimizers such as
Adam (Kingma & Ba, 2015) would not necessarily accelerate ZO convergence in LLM fine-tuning
scenarios. There are other ZO optimizers aware of the parameter-wise heterogeneity of loss curvatures
to accelerate the optimization convergence (Zhao et al., 2024), and we leave how to combine our
method with theirs as future works.

2.2 SPARSE ZO OPTIMIZATION WITH STATIC SENSITIVE PARAMETERS.

Given model parameters w, a loss function f , a data example (x, y), sensitive parameters are defined
as parameters whose corresponding FO coordinate-wise gradient square values are maximized.

Definition 3 (Sensitive parameter mask). A sensitive sparse mask mk ∈ {0, 1}d with k nonzero
entries (

∑
i m(i) = k) is defined as1

mk = argmaxm∥m⊙∇f(w)∥22. (3)

In the context of ZO optimization, we will update sensitive parameters only. Denote that z̄ = z⊙mk.
We will modify the SPSA gradient estimator from ĝ(w, (x, y), z) to ĝ(w, (x, y), z̄), and accordingly:

Definition 4 (Sensitive sparse ZO-SGD update rule).

wt+1 = wt − ηtĝw(wt, (xt, yt), zt ⊙mk,t) (4)

The theoretical support of sensitive parameters can be derived from the lens of SPSA gradient
estimator and Fisher information matrix as follows:

• Maximum zeroth-order loss value changes, from the lens of ZO SPSA estimator.
The square (account for negativity) of loss value difference for ĝw(w, (x, y), z̄) is as follows:

Ez̄{f(w + ϵz̄; (x, y))− f(w − ϵz̄; (x, y))}2 ≈ Ez̄{2ϵz̄⊤∇wf(w)}2 = 4ϵ2∥mk⊙∇wf(w)∥22
Since by Definition 3 our sensitive mask would maximize ∥mk ⊙∇wf(w)∥2 for a given sparsity
ratio, we would expect our sensitive mask to maximize the magnitude of the loss value difference for
any given sparsity ratio. This property is important for ZO as ZO directly leverages the loss-value
difference as a probe of loss landscape to determine the descent direction.

1When the context is clear, we will abbreviate f(w; (x, y)) as f(w) and ∇f(w; (x, y)) as ∇f(w). Notice
that for full batched gradient we will use ∇F(w) .
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• Maximum coverage of Hessian diagonal, from the lens of Fisher matrix.
LLMs are often pre-trained on large text corpus2 to reach low perplexity before entering the fine-
tuning stage. In this case, we would assume pLLM(y|x) ∼ pD(y|x), which implies the empirical
Fisher F̂ should be close to the (true) Fisher matrix F as follows:

F = Ex∼pD,ŷ∼pLLM(·|x)∇w log pLLM(ŷ|x)(∇w log pLLM(ŷ|x))⊤

≈ F̂ = E(x,y)∼pD∇w log pLLM(y|x)(∇w log pLLM(y|x))⊤

As we assume the empirical Fisher matrix approximates Fisher, which also approximates the
Hessian, and empirical Fisher’s diagonal is equal to the coordinate-wise gradient square vector when
computing with downstream task-specific loss, our sensitive parameters would cover a large fraction
of the largest Hessian diagonal entries.
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Figure 2: Cumulative normalized sum of coordinate-wise [∇F(w)]2i of linear layers during Llama2-
7B (Touvron et al., 2023) fine-tuning. For each linear layer, we first sort parameters by the decreasing
order of their gradient square value [∇F(w)]2i , i ∈ [dlayer], and we take the cumulative sum and
normalize it to draw a blue curve, and the red-shaded region is the mean ± std of all blue curves.
Similar figures for Mistral-7B and OPT-6.7B are in Figure 7, and a closer inspection on its relation
with weight type and layer depth is in Figure 9 and 10 in Appendix F.2. We observe that roughly
0.1% parameters in all linear layers contribute about 50% gradient norm square ∥∇F(w)∥22.

This idea of sensitive parameters has been studied in the quantization community (Kim et al., 2024;
Guo et al., 2023) and FO optimization (Sung et al., 2021). However, we are the first one to leverage
the extremely sparse sensitive parameters in LLM fine-tuning to accelerate ZO fine-tuning with LLMs.
When we have perturbation and updating in the scale of billion parameters, finding which parameters
to fine-tune would be important for improving ZO performance. Notice that here we use sensitive
masks mk for understanding purposes. In Section 3.2, we will discuss how to transform Definition 4
to a parameter-efficient optimization pipeline via transferable static sparsity.

2.3 THEORETICAL CONVERGENCE RATE

We would investigate the theoretical convergence of sensitive sparse ZO-SGD on sensitive parameters
under the non-convex optimization settings. Our assumptions are included in Appendix C.2.

Theorem 1 (Convergence rate of sensitive sparse ZO-SGD (Definition 4)). If we pick ηt =
1/(L(k+2)), under Assumptions 1 (bounded gradient error), 2 (Lipschitz smoothness), and 4 (sparse
sensitive parameters), we would have

1

T

T−1∑
t=0

Ez̄,(x,y)∥∇wF(wt)∥2 ≤ O

(
k

c
· L
T

)
(F(w0)−F∗) + 3σ2. (5)

If we still pick ηt = 1/(L(k + 2)), with an extra Assumption 3 (P.L. condition), we would have

Ez̄,(x,y){F(wT )−F∗} ≤
(
1−O

(µ

L
· c
k

))T

(F(w0)−F∗) +
3σ2c

2L(k + 2)
. (6)

2Here we assume data examples (x, y) ∼ pD in fine-tuning datasets after verbalization would also appear in
the large text corpus during pre-training.
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The proof for Inequality 5 is in Appendix C.2 and the proof for Inequality 6 is in Appendix C.3.
If we choose k = d and c = 1, both convergence rates trivially reduce to the standard zeroth-
order convergence rate as O(d/T ) + O(constant) and O((1/d)T ) + O(constant). As we assume
c ≫ k/d, we know d ≫ k/c and therefore both O((k/c)(1/T )) and O((c/k)T ) are much lower
than O(d/T ) +O(constant) and O((1/d)T ) +O(constant) that zeroth-order method will yield.

We want to emphasize that our contributions are more on empirical LLM fine-tuning instead of
general machine learning tasks, and in Section 4.2 we extensively compare our sparse ZO methods
with other sparse ZO methods and we demonstrate its superiority during LLM fine-tuning. We
do not use the strict “local r-effective rank” assumption that Malladi et al. (2023a) uses, and our
Assumption 4 can be easily observed empirically in Figure 7. Liu et al. (2024a) and Ohta et al. (2020)
also provide analysis on the convergence of sparse ZO optimization but they do not include our
sensitive sparse masks in their studies.

3 SENSZOQ: A SPARSE ON-DEVICE FINE-TUNING RECIPE

In this section, we describe the transferable static sparsity pattern we observed in LLMs and how we
utilize it for developing an on-device fine-tuning pipeline of LLMs as SensZOQ.

3.1 TRANSFERABILITY OF STATIC SENSITIVE PARAMETER

Transferable sensitive gradient features: from dynamic to static sparsity. Our Theorem 1 focuses
on dynamic sparse fine-tuning. However, Panigrahi et al. (2023) notice that in real LLM fine-tuning
scenario, the fine-tuning performance could be attributed to a sparse subset of weights (∼ 0.01%).
Malladi et al. (2023b) also find certain fine-tuning tasks would demonstrate kernel behaviors, which
include “fixed (gradient) features”: ∇wf(wafter FT; (x, y)) ∼ ∇wf(wbefore FT; (x, y)).

The similarity of gradient features during fine-tuning would imply that we do not need to re-select our
sensitive parameters during fine-tuning i.e. select once before fine-tuning should be sufficient. This
hypothesis can be validated by Figure 3 and Figure 5b. In Figure 3, the fact that “task grad, static”
does not vanish and still has a large ratio over “task grad, dyn.” at the end of training demonstrate
that we can select parameters before fine-tuning.

Surrogate static sensitive parameter mask. Another observation from Figure 3 is that the sensitive
parameters derived from pre-training datasets (C4) would still cover a large fraction of model
sensitivity. Specifically, the parameters overlap between top C4 gradient entries and task gradient
entries are much (>20×) higher than all weight magnitude baselines. Therefore, we could use it as a
surrogate sensitive sparse mask when gradients on downstream tasks are unavailable, particularly in
scenario of on-device personalization. 3

C4 covers a diverse set of text corpus across different domains and we believe it will produce a
generally good transferable static mask. We also note that if we have better knowledge on the exact
downstream domain or task our method will be applied to, we can extract sparse masks with better
specific task performance. So we include an ablation study on other surrogate sensitive parameter
masks in Table 6 and we dive deeper into the overlap of top gradient features in Appendix F.4.

3.2 SENSZOQ: AN OPPORTUNITY FOR ON-DEVICE LLM PERSONALIZATION

Transferable static sparse fine-tuning as a parameter-efficient optimization method. The sparse
optimization on fixed parameters can be implemented as a parameter-efficient optimization workflow,
which will reduce the perturbation and updating time during ZO optimization. Suppose we have
derived a sensitive sparse mask mk, and we know it is fixed during fine-tuning. Instead of applying
mk to z, we would apply it directly to w and extract the nonzero parts as below:

wsparse = w ⊙mk, wdense = w ⊙ (1d −mk) (7)

3Obtaining gradients of LLMs on edge devices is expensive, and we usually cannot transfer data from edge
devices to the cloud to compute the gradient on downstream tasks on cloud. In this case we would need some
surrogate gradient information to derive sensitive sparse masks on cloud. We will discuss this in Section 3.2.
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Figure 3: Cumulative normalized gradient square values of Llama2-7B model’s linear layers after
we apply 99.9% sparsity masks (0.1% nonzeros) of each method. “task grad (dyn.)” refers to the
sensitive parameters selected at the given timestep (x-axis) on each downstream dataset, and “task
grad (static)” refers to the sensitive parameters selected before fine-tuning. “C4 grad (static)” refers to
the sensitive parameters selected with gradients taken from causal language modeling on C4 datasets
(Raffel et al., 2019), and we keep it unchanged during fine-tuning. “weights (largest, static)” and
“weights (smallest, static)” mean we pick the weights with the largest/smallest magnitude in the
pre-trained model respectively. We provide a longer discussion in Appendix F.3.

Denote zk,t ∼ N (0k, Ik) as the Gaussian perturbation sampled in timestep t. We will determine
wsparse before fine-tuning and optimize on wsparse only and leave wdense frozen during fine-tuning. In
this case, our sensitive sparse ZO-SGD update rule will become:

wsparse,t+1 = wsparse,t − ηtĝ(wsparse,t, (xt, yt), zk,t) (8)

Equation 8’s formulation allows (1) a wall-clock efficient of ZO optimization method (2) an
opportunity to enable an on-device personalization workflow.

Wall-clock time efficiency from extreme static sparsity (more on Appendix H).

• ZO fine-tuning. A typical implementation of ZO fine-tuning procedures4 involve 2 forward calls
for SPSA estimator (Definition 1), 3 perturbation calls (2 for SPSA, 1 for resetting the parameters),
and 1 optimizer step calls. Under the extreme sparsity regime (only optimize 0.1% parameters),
sensitive ZO optimization on fixed parameters would nearly eliminate the perturbation and optimizer
step calls, which yields 1.2 - 2.5× speedup compared to ZO full fine-tuning.
• Token generation. Sensitive ZO would need to optimize far less parameters (0.1%) to reach the
same performance as other sparsity methods (will be shown in Figure 5a). This naturally leads to
less inference latency and higher throughput during the token generation process.

SensZOQ: integrating sensitive sparse ZO fine-tuning with quantization. As LLMs are often
pre-trained with user-agnostic public datasets, personalizing LLMs with individual user’s preferences
and meet user’s specific needs before real-world deployment are vital (Tan et al., 2024a; Mairittha
et al., 2020). However, transferring the user-specific data to upstream cloud before fine-tuning LLMs
would raise privacy concerns (Xu et al., 2018). On the other hand, personal devices usually have
less computational budget and are more memory-constrained than the cloud (Zhu et al., 2023), and
performing full fine-tuning would easily exceed the device memory budget.

In response, we propose an on-device personalization workflow SensZOQ illustrated in Figure 4.
The high-level overview is that we use surrogate gradient information from pre-training datasets
∇wpLLM(y|x) to extract sensitive parameters wsparse and keep wsparse in 16 bits, while we quantize
the remaining dense weights wdense (Step 1-4). We send wsparse and Q(wdense) to personal devices
(Step 5), and we perform on-device ZO fine-tuning only on wsparse (Step 6).

We highlight that SensZOQ’s memory consumption is nearly minimal: we can fine-tune a Llama2-7B
model under 8 GiB GPU memory without any offloading as illustrated in Figure 1. This would satisfy
the memory constraint by a wide range of edge or mobile devices as illustrated in Table 11.

4We take MeZO’s implementation (Malladi et al., 2023a) as a reference.
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ZO fine-tuning

Pre-trained LLM Apply sensitive sparse masks

Cloud Edge

Figure 4: SensZOQ: an on-device LLM personalization workflow via integrating Sensitive ZO
optimization with Quantization. The high-level idea is that we first decompose w to wsparse and
wdense, and then quantize wdense (on the cloud). On the edge devices, we will fine-tune wsparse only.

In addition, our method does not put strict constraints on specific choices of quantization al-
gorithms since any algorithm that aims to minimize the least-square quantization error term
Q(w) = argminQ(w)Ex∥(w − Q(w))x∥22 or its variant would suffice (Chee et al., 2024; Nagel
et al., 2020; Frantar et al., 2022; Lin et al., 2023; Kim et al., 2024).

Efficient implementation of sensitive sparse linear layers. In Appendix G, we discuss how to
efficiently implement our sensitive sparse ZO fine-tuning in forward passes of linear layers with
training and inference workflow: use Equation 18 when we have access to efficient uniform integer
matmul to compute Q(wdense)x and in other cases, we would usually use Equation 19 for token
generation and Equation 21 for ZO training.

4 EXPERIMENTS

In this section, we aim to validate the effectiveness of our SensZOQ, shown in Figure 4, as a memory-
efficient LLM fine-tuning solution. This naturally leads to comparison with other ZO methods, which
we evaluate in Section 4.1. Additionally, we assess the effectiveness of our sensitive parameter
mask derived from pre-training texts (C4) against other heuristic sparsity methods in Section 4.2.
Specifically, we aim to address the following research questions:

• RQ1: What is the performance of our SensZOQ compared with other ZO methods?
• RQ2: Is optimizing C4-gradient-derived sensitive parameters more effective than optimizing other
subset of parameters during ZO fine-tuning?

We focus on 7B-level LLM models including Llama2-7B (Touvron et al., 2023), Mistral-7B (Jiang
et al., 2023), and OPT-6.7B (Zhang et al., 2022) as they would fit with common on-device memory
constraints (8 GiB) listed on Table 11 after applying quantization. We use SST-2 (Socher et al.,
2013), RTE (Wang et al., 2018), CB (De Marneffe et al., 2019), BoolQ (Clark et al., 2019), WSC
(Levesque et al., 2012), WiC (Pilehvar & Camacho-Collados, 2019), COPA (Roemmele et al., 2011),
WinoGrande (WinoG) (Sakaguchi et al., 2020), and WikiText-2 (Wiki2) (Merity et al., 2017) datasets.
We follow standard ZO fine-tuning settings and use the same codebase as in Malladi et al. (2023a).
More details of our experiments (hyperparameters, task-specific prompts, etc.) are in Appendix I.

We include additional results for Llama2-13B and OPT-13B, and harder tasks such as commonsense
reasoning, math reasoning, and MMLU in Appendix D. To the best of our knowledge, there are no
ZO-LLM research yet evaluated on harder commonsense reasoning or math tasks. We take a
pioneering step in this direction and establish the ZO baselines. In addition, we investigate the
empirical training convergence w.r.t. optimization steps for OPT-13B in Appendix E.

4.1 ON-DEVICE PERSONALIZATION

We evaluate the performance of our SensZOQ method in Table 1. We follow the exact recipe as
described Figure 4, where we only optimize 0.1% sensitive parameters derived from a small batch of
C4 texts on top of a 4-bit quantized model. SensZOQ’s results are shown as 1st row for each subtable.
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Table 1: Fine-tuning performance of different methods. In the first column, “Q” means the full model
is quantized with 4-bit quantization method (SqueezeLLM (Kim et al., 2024)), and “ZO-SGD” means
the model is fine-tuned with ZO-SGD optimizer. For each cell, we report the mean and standard
deviation of test set accuracy (↑) of 3 random trials in the format of meanstd, except that we report test
set perplexity (↓) for Wiki2. We finally report the average performance rank (Wiki2 included) and
average accuracy (Wiki2 excluded) in the last 2 columns. Notice that we add the results for FO-SGD
& FO-Adam for reference and we do not use it for performance rank computation.

(a) Llama2-7B

Methods SST-2 RTE CB BoolQ WSC WiC COPA WinoG Wiki2 Rank↓ Acc↑

Q, ZO-SGD SensZOQ 94.70.4 74.71.2 66.72.2 83.00.5 57.43.9 65.20.9 85.02.2 65.70.7 5.39.005 1.9 74.1
LoRA 93.80.6 64.71.1 64.94.7 79.71.1 61.52.1 59.80.1 85.70.5 63.80.6 5.42.004 3.4 71.7
Prefix 80.54.3 65.51.2 63.13.0 80.30.2 54.511.4 58.31.3 82.00.8 62.60.5 5.74.016 4.6 68.4

ZO-SGD Full FT 94.60.5 73.35.1 66.70.8 81.90.8 58.04.3 61.90.2 82.71.7 63.10.4 5.42.002 2.8 72.2

Zero-shot 89.00.0 57.80.0 32.10.0 69.90.2 50.20.0 36.50.0 79.00.0 64.80.6 5.48.000 5.4 59.9
ICL 94.80.2 71.54.3 72.615.2 77.54.6 53.21.1 61.14.3 87.02.2 67.51.3 NA 2.5 73.2

FO-SGD Full FT 95.40.3 84.10.9 73.20.0 85.11.2 62.80.5 72.01.8 85.31.2 71.11.7 78.6
FO-Adam Full FT 96.00.4 85.10.3 86.99.9 85.50.7 57.73.6 71.80.4 87.70.5 79.21.0 4.83.000 81.2

(b) Mistral-7B

Q, ZO-SGD SensZOQ 94.00.3 78.00.6 70.22.2 75.12.4 59.64.9 63.60.7 88.31.2 74.10.5 5.24.002 1.7 75.4
LoRA 94.00.4 65.31.3 64.94.5 70.33.7 60.93.7 61.10.4 88.30.5 71.21.2 5.27.004 2.9 72.0
Prefix 86.92.1 57.31.4 63.75.9 62.20.9 60.34.6 49.00.3 81.31.7 64.21.3 5.44.003 4.0 65.6

ZO-SGD Full FT 94.60.1 74.62.1 68.86.2 76.60.2 54.86.2 62.60.5 88.30.5 72.20.5 5.23.004 2.1 74.1

Zero-shot 54.80.0 50.50.0 37.50.0 43.41.8 50.80.0 39.40.0 78.00.0 66.20.1 5.25.000 5.0 52.6
ICL 60.716.7 55.24.7 33.313.1 46.86.5 50.40.6 63.80.9 88.70.5 74.00.8 NA 3.9 59.1

FO-SGD Full FT 94.90.6 87.61.2 85.73.9 86.10.7 62.50.0 70.80.6 88.31.7 82.11.1 82.3
FO-Adam Full FT 95.10.2 86.40.7 88.13.4 83.11.5 64.77.3 72.72.9 82.71.7 85.90.3 4.81.013 82.3

(c) OPT-6.7B

Q, ZO-SGD SensZOQ 94.90.5 72.83.6 83.35.1 73.90.7 59.35.3 62.02.0 84.01.4 65.00.8 9.82.009 1.1 74.4
LoRA 94.20.2 69.61.6 69.01.7 69.62.0 57.19.1 57.20.8 83.02.2 63.10.4 9.90.000 3.4 70.4
Prefix 93.30.4 71.21.0 72.01.7 68.92.8 62.52.4 59.40.5 80.02.4 63.71.1 9.92.033 3.3 71.4

ZO-SGD Full FT 94.40.3 72.71.2 79.83.0 72.11.2 57.44.6 60.20.9 82.32.6 64.60.3 9.88.009 2.2 72.9

Zero-shot 61.00.0 60.70.0 46.40.0 55.71.0 55.50.0 36.50.0 77.00.0 61.10.3 10.88.000 5.8 56.7
ICL 74.014.6 65.811.2 54.85.9 67.92.1 53.21.7 41.04.5 80.72.9 61.50.8 NA 5.0 62.4

FO-SGD Full FT 95.20.3 81.80.9 92.33.0 79.21.3 59.07.7 66.52.3 85.70.9 68.80.6 78.6
FO-Adam Full FT 95.70.2 81.12.6 83.93.9 81.10.7 56.17.9 66.50.5 81.31.2 66.40.8 8.51.000 76.5

Comparison with ICL & ZO Full FT. The results of in-context learning (ICL) and ZO full fine-
tuning (ZO Full FT) on 16-bit models are shown as the 4th and 5th row for each substable in Table 1.
7B models are usually not large enough such that ICL would outperform with FT (Liu et al., 2022;
Mosbach et al., 2023). In addition, ICL induces additional KV-cache memory burden if the number
of demonstration examples are large or demonstration texts are long. Our method SensZOQ does
not induce significant inference latency and memory burden as it only needs to use 0.1% parameters.
SensZOQ also outperform ICL and ZO Full FT. This is impressive give that quantization would
degrade performance of the base model for SensZOQ, but SensZOQ still manages to match the
fine-tuning performance of 16-bit model.

Comparison with ZO PEFT methods. The primary purpose of quantization is to represent
parameters in less bits (therefore reducing model sizes) and improve system-level metrics such as
weight loading time and inference latency (Dettmers et al., 2022; Chee et al., 2024). In order to
retain such benefits during fine-tuning stage, our fine-tuning methods should be parameter-efficient.
A natural baseline becomes fine-tuning PEFT methods such as LoRA (Hu et al., 2021) and Prefix
Tuning (Li & Liang, 2021) on top of the same quantized LLM weights as SensZOQ. These results are
shown as the 2nd and 3rd row for each substable in Table 1. SensZOQ still outperforms both LoRA
and Prefix Tuning when applied to the same 4-bit quantized base model.
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Comparison with Adam Full FT of smaller size model. The memory-efficiency of ZO is achieved
via cheap queries in the loss landscape with random perturbation. The absence of accurate descent
direction naturally leads an inferior performance than first-order (FO) full FT on the same model size,
as also observed by Malladi et al. (2023a). However, we argue that such performance degradation
is still acceptable in terms that ZO FT on larger models outperform FO FT on smaller models. In
Table 2, we pick 2 popular LLM sizes (1B and 7B scale) and we find that applying SensZOQ on
6.7B OPT model generally outperforms FO-Adam full FT on 1.3B OPT model, and the later already
surpasses the 8 GiB memory budget (e.g., 11.6 GiB on RTE compared to SensZOQ’s 5.2 GiB).

Table 2: Fine-tuning performance of SensZOQ versus Adam FT of smaller model in the OPT family.
We follow the same experiment procedure as in Table 1.

# Params Methods SST-2 RTE CB BoolQ WSC WiC COPA WinoG Wiki2 Rank↓ Acc↑

4-bit

ZO-SGD
6.7B SensZOQ 94.90.5 72.83.6 83.35.1 73.90.7 59.35.3 62.02.0 84.01.4 65.00.8 9.82.009 1.3 74.4

16-bit

ZO-SGD
6.7B Full FT 94.40.3 72.71.2 79.83.0 72.11.2 57.44.6 60.20.9 82.32.6 64.60.3 9.88.009 2.4 72.9

16-bit

FO-Adam
1.3B Full FT 93.60.5 73.92.4 75.03.9 73.81.0 61.91.2 62.41.5 76.71.2 60.80.6 10.75.000 2.2 72.3
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(a) Static transferability performance of different sparsity masks. “static” means that we will determine the
trainable parameters (sparsity mask) before fine-tuning and other parameters are kept unchanged.
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(b) The performance gap between sensitive parameters derived from causal LM loss in C4 datasets and gradients
from each fine-tuning task. “Static” means the parameters to optimize are determined before fine-tuning and
other parameters are kept unchanged during fine-tuning (static sparsity). “Dyn.” means the parameters to
optimize will be updated every 100 training steps (dynamic sparsity).

Figure 5: Performance of different sparsity methods in Llama2-7B ZO fine-tuning.

4.2 EFFECTIVENESS OF SPARSE ZO FINE-TUNING ON SENSITIVE PARAMETERS

Comparison with other static sparsity masks. We first investigate the performance of optimizing
our sensitive parameters versus other subsets of parameters in static sparsity regime with the 16-bit
model. We first consider standard weight-magnitude baselines as weights with largest magnitude,
weights with smallest magnitude (SparseMeZO’s sparsity patterns (Liu et al., 2024a)), and a random
subset of weights baseline. There are some other weight importance metrics in the pruning community
such as GraSP (Wang et al., 2020), and we also evaluate their performance in the static transfer
setting. We note that these pruning metrics were originally proposed for deciding which parameters
to retain instead of being removed during pruning, and it has no direct implications for ZO FT. Given
a threshold vector τ , the formal definitions of all methods are listed as below:
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• sensitive parameters with C4 gradients: m = |∇f(wbefore FT; (xC4, yC4))| ≥ τ
• random subsets: m = random_dim_d_vector_with_k_nnz(d, k)
• weights with largest magnitude: m = |wbefore FT| ≥ τ
• weights with smallest magnitude: m = |wbefore FT| ≤ τ
• smallest GraSP scores: m = −wbefore FT ⊙ E(x,y)∼DH(wbefore FT)∇wf(wbefore FT) ≤ τ

As illustrated in Figure 5a, we can find that ZO fine-tuning would benefit from sparse optimization,
as all methods would achieve higher than ZO full fine-tuning when optimizing 10% parameters.
However, only sensitive parameters would maintain its performance as we move to the extreme
sparsity region (<1%). In fact, the performance curve of sensitive parameters w.r.t. different sparsity
levels is near a flat curve, which indicates the performance loss by moving from 10% to 0.1%
is minimal. We also find that optimizing weights with smallest magnitude is more effectively
than optimizing weights with largest magnitude, which aligns with Liu et al. (2024a)’s findings.
However, sensitive parameters is still more effective for optimizing weights with smallest magnitude.
This suggests that sensitive parameters are more effective to serve as the sparse parameters in our
SensZOQ instead of SparseMeZO’s weights with smallest magnitude.

Transferability of SensZOQ’s sparsity masks. SensZOQ uses C4 gradients to produce a transfer-
able static mask used in downstream tasks. In Figure 5b, we compare the performance of optimizing
sensitive parameters with gradients on C4 dataset with its theoretical upper bound: static sensitive
parameters derived from gradients on each fine-tuning task as the solid line and its dynamic version as
the dash-dotted line. We also include the static and dynamic random subset parameters as a baseline.
We can find that the gap of sensitive parameters between deriving from gradients on C4 dataset and
gradients on each fine-tuning task at ratio 1e-3 is small. Together with Figure 11 that we evaluate the
top gradient entries similarity between C4 and downstream tasks, we believe SensZOQ’s sensitive
masks from C4 gradients would yield satisfactory performance in general.

5 RELATED WORKS

Zeroth-order fine-tuning of LLMs. Since MeZO (Malladi et al., 2023a) first demonstrates
the effectiveness of ZO for LLM fine-tuning, ZO has attracted great research interests from the
LLM community in different aspects. For example, ZO is effective for edge device fine-tuning in
communication-constrained and federated settings (Ling et al., 2024; Zhang et al., 2024a; Tang et al.,
2024; Liu et al., 2024b). Notably, Zelikman et al. (2023) illustrate the possibility of exchanging
single-byte projected gradients in distributed zeroth-order workloads, yielding both communication
and privacy benefits. Numerous research has also focused on enhancing the optimizer aspect of zeroth-
order optimization (Jiang et al., 2024; Pang & Zhou, 2024; Gautam et al., 2024). Other researchers are
also interested in improving ZO’s efficiency or convergence rate from cleverer optimizer designs. Li
et al. (2024b) explore the middle ground between small-batched FO-SGD and large-batched ZO-SGD
to balance the convergence speed and memory footprints. Liu et al. (2024a) and Zhang et al. (2024b)
suggest that sparsity would potentially accelerate ZO optimization convergence. Zhao et al. (2024)
precondition ZO perturbation with knowledge from parameter-wise loss curvature heterogeneity to
gain convergence speedup. To tbe best of our knowledge, Liu et al. (2024a) is the only ZO fine-tuning
with sparsity (smallest weight magnitude mask) work at this moment, and we have ablated on its
static extreme sparsity performance in Figure 5a.

6 CONCLUSION

In this work, we identify that only a small portion of LLM parameters needs to be updated during ZO
fine-tuning, and these static and sparse subset parameters can be derived during the pre-training phase
and transferred across various downstream tasks without requiring any modifications, preserving effi-
cient ZO performance. We propose SensZOQ, a workflow that integrates sparse ZO optimization with
4-bit quantization to further enhance the memory efficiency of on-device fine-tuning. SensZOQ lever-
ages static sparse fine-tuning to enable the personalization of 7B LLMs on-device, reducing memory
consumption to less than 8 GiB of CUDA memory. Despite this efficiency, SensZOQ achieves better
performance than both in-context learning (ICL) and full ZO fine-tuning. Therefore, SensZOQ creates
a new venue to facilitate on-device fine-tuning.
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APPENDIX

In Section A, we discuss some related works of sparsity techniques in LLM. In Section B we describe
all notations used in this paper. In Section C, we include the assumptions and exact proof on the
convergence rate (Theorem 1). In Section D, we include experiment results on OPT-13B and Llama2-
13B. We also take a pioneering move to investigate the effectiveness of SensZOQ and ZO methods in
commonsense reasoning, Math, and MMLU tasks. In Section E, we investigate the empirical training
convergence w.r.t. optimization steps for OPT-13B. In Section F, we inspect the appearance of
sensitive parameters across models and tasks. We also investigate the effects of different data sources
that would produce different sensitive masks. In Section G, we provide a high-level recommendation
on how to efficiently implement our sensitive sparse ZO fine-tuning in forward passes of linear layers
with existing quantization methods or training / inference workflow. In Section H, we investigate the
wall-clock time efficiency of our static sparse ZO fine-tuning formulation. In Section I, we describe
miscellaneous details (hyperparameters, task templates, hardware config, etc.) in our experiments.

A RELATED WORKS OF SPARSITY IN LLM

Sparsity-driven techniques are widely adopted in improving ML model’s efficiency (Tan et al., 2024b;
Xia et al., 2023; Liu et al., 2023; Peng et al., 2013; Frankle & Carbin, 2019) and robustness (Zhong
et al., 2024; 2021). Frankle & Carbin (2019) show that within large feed-forward networks, there
exists a subnetwork that, when trained in isolation, can achieve test accuracy comparable to that of the
original network. In the foundation models era, Liu et al. (2023) demonstrate that transformer-based
models, such as OPT (Zhang et al., 2022), exhibit great sparsity (≥ 95%) in activations. Moreover,
Panigrahi et al. (2023) discover that for RoBERTa (Liu et al., 2019), fine-tuning a very small subset
of parameters (∼ 0.01%) can yield performance exceeding 95% of that achieved by full fine-tuning.
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B NOTATIONS

We present the notations used in this work as follows.

Table 3: Notations used in this paper

Term/Symbol Explanation
f loss function
t optimization timestep t

d number of model parameters
dlayer number of parameters in one linear layer. This means the number of rows times

the number of columns in each linear layer.

(xt, yt) a data example sampled at timestep t as a pair of input vector and training target

wt ∈ Rd weight/parameter vector at optimization timestep t

f(w; (x, y)) training loss of w evaluated at a single data example (x, y)

F(w) full-batched training loss of w

H(w; (x, y)) Hessian matrix of w evaluated at (x, y)
ϵ a small perturbation scaling constant (close to 0)

zt ∈ Rd random Gaussian perturbation vector sampled at timestep t

ĝ(w, (x, y), z) estimated ZO surrogate gradient for w with a data example (x, y) and a sampled
Gaussian perturbation vector z (Definition 1)

ηt learning rate for ZO-SGD optimizer (Definition 2) at timestep t

mk ∈ {0, 1}d a sensitive sparse mask with k nonzero entries (Definition 3)

mk,t ∈ {0, 1}d a sensitive sparse mask with k nonzero entries derived at optimization timestep t

Id Identity matrix with shape Rd×d

Ĩd,mk Ĩd,mk is equal to the identity matrix Id with the main diagonal masked by mk

1d a vector of size d with all entries equal to 1
Tr trace operation

Q(w) parameter vector w that is quantized by Q

F (true) Fisher information matrix

F̂ empirical Fisher information matrix
pLLM LLM as a probabilistic model
pD true data distribution
L Lipschitz constant in Assumption 2
µ PL condition number in Assumption 3

σ2 stochastic gradient error term in Assumption 1
WQ the query weight matrix Q in attention layers
WK the key weight matrix K in attention layers
WV the value weight matrix V in attention layers
WO linear weight matrix for the output embedding matrix O in attention layers
WGate the gated unit layer in SwiGLU for Llama architecture
WUp the up projection weight layer in SwiGLU for Llama architecture
WDown the down projection weight layer in SwiGLU for Llama architecture
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C THEORETICAL CONVERGENCE RATE

C.1 ASSUMPTIONS

We start with listing standard assumptions in nonconvex optimization literature:

Assumption 1 (Bounded stochastic gradient errors). For any data example (x, y) ∈ D and for
any w ∈ Rd, denote the full-batched loss function F(w) = E(x,y)∈Df(w; (x, y)), we have

∥∇wf(w; (x, y))−∇wF(w)∥2 ≤ σ2. (9)

Assumption 2 (Lipschitz smoothness). We assume that f(w,x) is L-Lipschitz smooth (L > 0): for
any w,w′ ∈ Rd,

∥∇wf(w; (x, y))−∇wf(w′; (x, y))∥ ≤ L∥w −w′∥. (10)

Assumption 3 (PL inequality). We assume that F(w) fulfills the Polyak-Lojasiewicz (PL) condition:
there exists some µ > 0, for any w ∈ Rd

1

2
∥∇wF(w)∥2 ≥ µ(F(w)−F∗), F∗ is the minimum value F∗ = inf

w
F(w). (11)

Inspired by Figure 7, we would assume the sensitive parameters of w are sparse.

Assumption 4 (Sensitive parameters are sparse). We assume at timestep t ∃mt ∈ {0, 1}d with the
number of nonzero entries as k, ∃c ∈ [0, 1] such that

∥mt ⊙∇wf(wt; (xt, yt))∥2 = c∥∇wf(wt; (xt, yt))∥2.
Here we assume c ≫ k/d. 5

C.2 PROOF FOR EQUATION 5, THEOREM 1

We will start with formulating the expectation of sensitive sparse ZO surrogate gradient norm square
in terms of its corresponding stochastic gradient norm square.

Lemma 1 (Sensitive sparse ZO surrogate gradient norm square).

Ez̄[∥ĝ(wt, (xt, yt), z̄t)∥2] = (2 + k)c∥∇wf(w, (xt, yt))∥2

Proof for Lemma 1. We know that our z̄ can be considered as being sampled from N (0, Ĩd,mk
)

where Ĩd,mk
is the identity matrix Id with the main diagonal masked by mk.

We expand the sensitive sparse ZO surrogate gradient covariance matrix as follows:

Ez̄ĝ(w, (x, y), z̄)ĝ(w, (x, y), z̄)⊤

= Ez̄i
[z̄iz̄

⊤
i

(
(mk ⊙∇wf(w; (x, y)))(mk ⊙∇wf(w; (x, y)))⊤

)
z̄iz̄

⊤
i ]

= 2
(
(mk ⊙∇wf(w; (x, y)))(mk ⊙∇wf(w; (x, y)))⊤

)
+ ∥mk ⊙∇wf(w; (x, y))∥2Ĩd,mk

Then the sensitive sparse ZO surrogate gradient norm square is the square of the diagonal of its
corresponding covariance matrix:

Ez̄[∥ĝ(wt,xt, z̄t)∥2] = diag
(
Ez̄ĝ(w, (x, y), z̄)ĝ(w, (x, y), y), z̄)⊤

)2
= 2c∥∇wf(w, (xt, yt))∥2 + kc∥∇wf(w, (xt, yt))∥2

= (2 + k)c∥∇wf(w, (xt, yt))∥2

Then we are in good shape of deriving the convergence rate under the Lipschitz smoothness condition:

5From Figure 7, we know that for c ∼ 0.5, we only need k/d ∼ 0.001. In this case k/c ∼ 0.002d.
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Proof for Equation 5, Theorem 1.

f(wt+1,xt) ≤ f(wt; (xt, yt)) + ⟨∇f(wt; (xt, yt)),wt+1 −wt⟩+
L

2
∥wt+1 −wt∥2

≤ f(wt; (xt, yt))− ηt⟨∇f(wt; (xt, yt)), ĝ(wt,xt, z̄t)⟩+
Lη2t
2

∥ĝ(wt,xt, z̄t)∥2

Ez̄f(wt+1,xt) ≤ Ez̄f(wt; (xt, yt))− ηtEz̄∥mk,t ⊙∇f(wt; (xt, yt))∥2 +
Lη2t
2

Ez̄∥ĝ(wt,xt, z̄)∥2

Ez̄f(wt+1,xt) ≤ Ez̄f(wt; (xt, yt))− cηtEz̄∥∇f(wt; (xt, yt))∥2 +
Lη2t
2

c(k + 2)Ez̄∥∇wf(wt; (xt, yt))∥2

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y){F(wt)− cηt∥∇wF(wt)∥2 + cσ2ηt +
Lη2t
2

c(k + 2)∥∇wF(wt)∥2 +
Lη2t
2

c(k + 2)σ2}

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y){F(wt)−
(
cηt −

Lη2t
2

c(k + 2)

)
∥∇wF(wt)∥2 +

(
cσ2ηt +

Lη2t
2

c(k + 2)σ2

)
}

Denote α = Lc(k + 2), we will have

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y){F(wt)− ηt

(
c− α

2
ηt

)
∥∇wF(wt)∥2 +

(
cσ2ηt +

α

2
σ2η2t

)
}

Set ηt <
c

α
=

1

L(k + 2)
, we have

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y){F(wt)−
cηt
2

∥∇F(wt)∥2 +
(
cσ2ηt +

α

2
σ2η2t

)
}

If we apply our sparse ZO update rule recursively for T steps,

1

T

T−1∑
t=0

Ez̄,(x,y)∥∇wF(wt)∥2 ≤ 2α

Tc2
(F(w0)−F∗) +

1

T

T−1∑
t=0

(
cσ2ηt +

α

2
σ2η2t

)
cηt
2

≤ 2α

Tc2
(F(w0)−F∗) + (2σ2 + σ2)

≤ 2L(k + 2)

c

1

T
(F(w0)−F∗) + 3σ2

≤ O

(
k

c
· L
T

)
(F(w0)−F∗) + 3σ2

C.3 PROOF FOR EQUATION 6, THEOREM 1

We can derive a convergence rate of sensitive sparse ZO-SGD optimization method under PL
inequality and Lipschitz-smoothness as follows (this proof resumes from our prior proof with the
Lipschitz-smoothness condition alone):

Proof for Equation 6, Theorem 1. Denote κ as the condition number κ =
µ

L
.
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Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y){F(wt)−
cηt
2

∥∇F(wt)∥2 +
(
cσ2ηt +

α

2
σ2η2t

)
}

≤ Ez̄,(x,y){F(wt)− cµηt(F(wt)−F∗) +
(
cσ2ηt +

α

2
σ2η2t

)
}

Ez̄,(x,y){F(wt+1)−F∗} ≤ Ez̄,(x,y){(F(wt)−F∗)− cµηt(F(wt)−F∗) +
(
cσ2ηt +

α

2
σ2η2t

)
}

Ez̄,(x,y){F(wt+1)−F∗} ≤ Ez̄,(x,y){(F(wt)−F∗)− cµηt(F(wt)−F∗) +
(
cσ2ηt +

α

2
σ2η2t

)
}

Plugging in ηt ≤
c

α
and applying recursively for T iterations.

Ez̄,(x,y){F(wT )−F∗} ≤ (1− cκ

(k + 2)
)T (F(w0)−F∗) +

3σ2c2

2α

≤ (1− cκ

(k + 2)
)T (F(w0)−F∗) +

3σ2c

2L(k + 2)

≤
(
1−O

(µ

L
· c
k

))T

(F(w0)−F∗) +
3σ2c

2L(k + 2)
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D MORE EXPERIMENT RESULTS

13B model results. In Table 4, we compare SensZOQ vs. ZO full FT & ICL in 2 popular 13B
models: Llama2-13B and OPT-13B. SensZOQ still maintains its superior performance over both ICL
and ZO Full FT. In the last row of OPT-13B (Table 4b), we ablate on the effect of 4-bit SqueezeLLM
quantization and as expected, the average test accuracy will increase a little but not too much (∼0.1)
after we remove the quantization on the dense weight parts.

Table 4: Fine-tuning performance of different methods. In the first column, “Q” means the full model
is quantized with 4-bit quantization method (SqueezeLLM (Kim et al., 2024)), and “ZO” means
the model is fine-tuned with ZO-SGD optimizer. For each cell, we report the mean and standard
deviation of test set accuracy (↑) of 3 random trials in the format of meanstd. We finally report the
average accuracy across tasks in the last column.

(a) Llama2-13B

Methods SST-2 RTE CB BoolQ WSC WiC COPA WinoG Avg

Q, ZO SensZOQ 94.80.4 76.52.9 86.32.2 80.71.1 56.71.6 58.02.4 88.70.9 72.91.3 76.8

ZO Full FT 95.00.2 74.41.0 85.71.5 80.50.4 54.84.7 60.91.4 90.70.5 70.50.2 76.6

Zero-shot 30.40.0 50.90.0 44.60.0 57.01.2 41.30.0 50.80.0 83.00.0 65.20.4 52.9
ICL 38.84.8 51.41.9 22.66.1 59.93.0 36.50.0 52.10.9 88.71.7 71.00.5 52.6

(b) OPT-13B

Q, ZO SensZOQ 93.80.4 76.71.6 65.51.7 72.80.6 59.90.5 59.91.4 88.71.2 63.70.4 72.6

ZO Full FT 93.90.5 74.01.0 67.92.5 72.40.3 61.52.4 58.62.3 87.01.4 63.31.3 72.3

Zero-shot 61.00.0 58.50.0 48.20.0 59.80.1 36.50.0 52.00.0 80.00.0 60.70.2 57.1
ICL 83.08.5 59.84.2 72.01.7 71.62.4 38.12.3 53.62.2 84.02.9 63.20.8 65.6

ZO Sens. (C4, static) 93.30.2 75.21.0 64.21.5 73.50.3 62.52.1 60.01.7 87.30.5 65.50.7 72.7

Commonsense reasoning, math, MMLU dataset results. In Table 5, we still compare Sen-
sZOQ vs. ZO full FT & ICL in standard commonsense benchmarks (Hu et al., 2023; Yang et al.,
2024), 1 math algebraic word problem task AQuA (Ling et al., 2017), and MMLU (Hendrycks et al.,
2021). To the best of our knowledge, there are no ZO-LLM research yet evaluated on harder
commonsense reasoning or math tasks. We take a pioneering step in this direction and establish
the ZO baselines.

SensZOQ still achieves the highest average accuracy. If we compare SensZOQ with ZO full FT on
pairs, SensZOQ wins 5/8 for commonsense reasoning, and the math task. However, SensZOQ loses
in MMLU task, and we speculate this might be due to a data distribution mismatch between C4 and
education domain/expert-level QA in MMLU. In Table 6 we find switching the source of extracting
sensitive parameters from C4 to OpenWebMath or ArXiv will significantly close this gap. Even so,
C4 is still a generally good choice.

Table 5: Fine-tuning performance of different methods for Mistral-7B on 8 commonsense reasoning
tasks (cs), 1 math task (math), and MMLU task. For each cell, we report the mean and standard
deviation of test set accuracy (↑) of 3 random trials in the format of meanstd. We finally report the
average accuracy across tasks in the last column.

Methods Arc-E (cs) Arc-C (cs) HS (cs) OBQA (cs) PIQA (cs) SIQA (cs) BoolQ (cs) WinoG (cs) AQuA (math) MMLU Avg

SensZOQ 88.60.1 77.91.3 82.10.4 76.50.6 84.50.5 68.10.4 75.12.4 74.10.5 27.72.1 58.20.2 71.3

ZO Full FT 89.20.5 78.60.8 80.51.1 76.40.3 84.10.2 67.60.1 76.60.2 72.20.5 24.12.0 59.20.1 70.9

Zero-shot 86.80.0 75.90.0 77.90.8 71.00.0 82.10.3 59.90.5 43.41.8 66.20.1 23.51.9 57.50.0 64.4

ICL 90.50.2 80.02.0 80.31.4 79.80.7 84.50.9 69.91.0 46.86.5 74.00.8 26.61.1 59.20.2 69.2
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Alternative data sources for extracting sensitive parameters. C4 (Raffel et al., 2019) is cleaned
from the CommonCrawl and covers a wide range of domains, and this drives us to adopt it as the
default choice for extracting sensitive parameters. Here we evaluate the SensZOQ’s performance
when fine-tuning sensitive parameters extracted from some alternative text choices that have certain
domain specialties. As a case study, we only pick 3 alternative choices commonly selected for
pretraining dataset mixtures (e.g. Dolma (Soldaini et al., 2024)) as follows:

• OpenWebMath (Paster et al., 2024), a pile of Internet mathematical proofs. https://
huggingface.co/datasets/open-web-math/open-web-math
•ArXiv (Cohan et al., 2018), a pile of scientific papers. We use the ArXiv articles subset from this
dataset. https://huggingface.co/datasets/armanc/scientific_papers
•Wiki103 (Merity et al., 2016), a pile of selected Wikipedia articles. https://huggingface.
co/datasets/Salesforce/wikitext

Table 6: Fine-tuning performance of SensZOQ with 0.1% sensitive parameters extracted from C4,
OpenWebMath, ArXiv, and Wiki103 for Mistral-7B on 8 commonsense reasoning tasks, 1 math
task, MMLU task, and 3 SuperGLUE tasks (task category follows this order and is separated by the
vertical bar). For each cell, we report the mean accuracy (↑) over 3 random trials. In the last row,
we give ZO Full FT & ICL baselines as reference. We finally report the average accuracy across
tasks in the last column.

Source Arc-E Arc-C HS OBQA PIQA SIQA BoolQ WinoG AQuA MMLU RTE WiC COPA Avg

C4 88.6 77.9 82.1 76.5 84.5 68.1 75.1 74.1 27.7 58.2 78.0 63.6 88.3 72.5
OpenWebMath 87.8 78.5 81.8 74.1 83.7 67.2 71.5 72.2 25.2 58.8 66.7 60.8 89.0 70.6

ArXiv 87.7 77.0 82.7 75.2 84.2 68.7 69.1 72.2 25.9 58.8 70.0 59.4 89.0 70.8
Wiki103 87.8 77.9 82.0 73.0 83.9 68.6 79.7 73.2 26.4 57.6 69.2 60.9 88.7 71.5

ZO Full FT 89.2 78.6 80.5 76.4 84.1 67.6 76.6 72.2 24.1 59.2 74.6 62.6 88.3 71.8
ICL 90.5 80.0 80.3 79.8 84.5 69.9 46.8 74.0 26.6 59.2 55.2 63.8 74.0 68.0

In Table 6, we can find that when finetuning 0.1% sensitive parameters with Mistral-7B, C4 achieves
the highest average accuracy, with notable performance on commonsense QA tasks like OBQA
and PIQA, and NLU tasks like RTE and WiC. If we want better performance on education or hard
reasoning tasks like Arc-C or expert-level QA task like MMLU, OpenWebMath and ArXiv is a better
choice than C4.

We believe that C4 is not the only choice but rather a generally good choice for downstream tasks,
and this is quite important as we are using the same set of sparse parameters for different tasks and
we want it to yield satisfactory performance for as many tasks as possible. Otherwise we will have
to create a separate sparse mask and quantized models for each task and this will make our method
really unpractical.
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E EMPIRICAL CONVERGENCE OF SENSZOQ

To validate the faster convergence rate of sensitive sparse ZO-SGD proven in Theorem 1, we plot the
training loss of SensZOQ vs. ZO Full FT w.r.t. 20k optimization steps for OPT-13B fine-tuning tasks,
as shown in Figure 6. Note that the "Sensitive ZO (C4 mask, 4 bit)" is our SensZOQ method, and the
Sensitive ZO (C4 mask, 16 bit) will keep the dense weights in FP16 as it more aligns with our theory.

1. In Figure 6a, we find that an in-place learning rate transfer from ZO Full FT to SensZO-
Qcan already result in similar or faster convergence.

2. In Figure 6b, we identify that SensZOQ can tolerate higher learning rate without
divergence. For example, the best learning rates for ZO Full FT in WiC and COPA are 2e-7
(5e-7 would result in a divergence) while SensZOQ can tolerate 5e-7 and produce much
faster convergence results.

In conclusion, SensZOQ would have at least similar convergence as ZO Full FT with the same
learning rate (so a direct learning rate transfer would already yield satisfactory results), and with the
same learning rate grid search, SensZOQ can achieve much faster convergence in practice.
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(a) Convergence of Sensitive ZO vs. ZO Full FT under the best learning rate for ZO Full FT only.
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(b) Convergence of Sensitive ZO vs. ZO Full FT under the best learning rate for each method.

Figure 6: Convergence of SensZOQ for OPT-13B across 3 fine-tuning tasks. SensZOQ corresponds to
"Sensitive ZO (C4 mask, 4 bit)", and we also provide the convergence results of unquantized weight
(16 bit) as a reference. In Figure 6a, We first search the best learning rate for ZO Full FT that reaches
the lowest training loss in [1e-7, 2e-7, 5e-7, 1e-6] grid, and we use such learning rate for SensZOQ.
In Figure 6b, we search for the best learning rate for ZO Full FT and SensZOQ separately. The other
hyperparameters (perturbation constant ϵ and minibatch size B) are kept the same in both Figure 6a
and Figure 6b experiments.
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F SENSITIVE PARAMETERS IN LLMS UNDER MICROSCOPE

F.1 GRADIENT SPARSITY DURING LLM FINE-TUNING

SuperGLUE tasks. In Figure 2, we explore the FO gradient sparsity of Llama2-7B during fine-
tuning (at Epoch 5). Here we follow the identical setting and plot the FO-SGD gradient sparsity for
Llama2-7B, Mistral-7B, and OPT-6.7B during epoch 1, 5, and 10 (end of fine-tuning).

We observe that the gradient sparsity is exhibited throughout the fine-tuning with slightly increasing
towards the end. OPT-6.7B which uses ReLU as the activation function would demonstrate greater
sparsity across tasks compared with Llama2-7B and Mistral-7B which uses SwiGLU and SiLU
respectively. Nevertheless, the gradient sparsity pattern holds across architectures, tasks, and fine-
tuning time in general.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0.0

0.5

1.0

RTE, Epoch 1

mean ± std
0.5
0.2

RTE, Epoch 5 RTE, End of FT

0.0

0.5

1.0

WiC, Epoch1 WiC, Epoch5 WiC, End of FT

10−5 10−4 10−3 10−2 10−1 100

Ratio

0.0

0.5

1.0

COPA, Epoch 1

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA, Epoch 5

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA, End of FT

C
um

ul
at

iv
e

no
rm

al
iz

ed
su

m
of

[∇
F

(w
)]

2 i

(a) Llama2-7B

0.0

0.5

1.0

RTE, Epoch 1

mean ± std
0.5
0.2

RTE, Epoch 5 RTE, End of FT

0.0

0.5

1.0

WiC, Epoch1 WiC, Epoch5 WiC, End of FT

10−5 10−4 10−3 10−2 10−1 100

Ratio

0.0

0.5

1.0

COPA, Epoch 1

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA, Epoch 5

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA, End of FT

C
um

ul
at

iv
e

no
rm

al
iz

ed
su

m
of

[∇
F

(w
)]

2 i

(b) Mistral-7B
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(c) OPT-6.7B

Figure 7: Cumulative normalized sum of coordinate-wise gradient square [∇F(w)]2i of linear layers
for Llama2-7B (subfigure 7a), Mistral-7B (subfigure 7b), and OPT-6.7B (subfigure 7c) across RTE,
WiC, and COPA tasks during FO-SGD full FT for 10 epochs. For each linear layer, we first sort
parameters by the decreasing order of their gradient square value [∇F(w)]2i , i ∈ [dlayer], and we take
the cumulative sum and normalize it to draw a blue curve, and the red-shaded region is the mean ±
std of all blue curves.
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Figure 8: Cumulative normalized sum of coordinate-wise gradient square [∇F(w)]2i of linear layers
for Mistral-7B across Arc-C, HS, PIQA, and AQuA tasks during FO-Adam full FT for 1000 steps.

Reasoning tasks. We further analyze the sparsity of sensitive parameters for hard reasoning tasks
such as Arc-C, HellaSwag, PIQA, and math reasoning task AQuA. We follow the same methodology
that produced Figure 7b to produce Figure 8. We can see that sensitive parameters are still fairly
sparse for these 4 tasks. Specifically,

• For 3 commonsense reasoning tasks, the argument that 0.1% of parameters contribute about 50%
gradient norm still holds.
• For the math task, the sensitive parameters tend to be slightly denser, but 1% of parameters can still
cover 50% gradient norm (0.1% will cover ∼30% gradient norm).

F.2 BLOCK-WISE AND LAYER-WISE GRADIENT SPARSITY

Although this is not the main focus of this paper, we also inspect the gradient sparsity for each weight
type {WQ,WK ,WV ,WO, (WGate),WUp,WDown} and layers {1, 8, 16, 24, 32}. This might inspire
future adaptive sensitive parameter selection based on the weight type or model depth in different
transformers. The results for weight type are shown in Figure 9 and for layers are shown in Figure 10.
We order the gradient sparsity levels from top to down and get the following rankings across the
blocks and layers (the higher-ranked the sparser) as the following 2 lists.

Weight types. It is consistent across all 3 models that WV has the highest gradient sparsity and
WO has the lowest gradient sparsity.

• Llama2-7B (Figure 9a): WV > WQ ∼ WK > WGate ∼ WUp ∼ WDown > WO.
• Mistral-7B (Figure 9b): WV > WQ ∼ WK > WGate ∼ WUp ∼ WDown > WO.
• OPT-6.7B (Figure 9c): WV > WUp > WQ > WDown ∼ WK > WO.

Layer depth. For Llama2-7B and Mistral-7B, it is consistent that Layer 1 (first layer) has the
highest gradient sparsity followed by Layer 32 (last layer). The gradient sparsity for middle layers
are lower and do not show a meaningful trend. The only meaningful result for OPT-6.7B is that Layer
1 has the lowest gradient sparsity.

• Llama2-7B (Figure 10a): Layer 1 > Layer 32 ∼ Layer 24 > Layer 8 ∼ Layer 16
• Mistral-7B (Figure 10b): Layer 1 > Layer 32 > Layer 8 ∼ Layer 16 ∼ Layer 24
• OPT-6.7B (Figure 10c): Layer 8 ∼ Layer 16 > Layer 24 ∼ Layer 32 > Layer 1
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Figure 9: Cumulative normalized sum of coordinate-wise [∇F(w)]2i of Llama2-7B (subfigure 9a),
Mistral-7B (subfigure 9b), and OPT-6.7B (subfigure 9c)’s weight blocks at Epoch 1 of FO-SGD full
fine-tuning. For a given model and a given weight block type, we report the average value across 32
transformer layers as a line in each subfigure.

F.3 TRANSFERABILITY OF GRADIENT FEATURES FROM PRE-TRAINING DATASETS TO
DOWNSTREAM TASKS

SuperGLUE tasks. In Figure 3, we explore the transferability of gradient features from pre-training
datasets (C4) to downstream tasks, and here we will also validate this phenomenon across models, as
shown in Figure 11. As there are no solid lines (top-(1e-2,1e-3,1e-4)) parameters with C4 gradient
entries prior to fine-tuning) vanish to 0, we know the transferability of gradient features from C4
datasets to downstream datasets hold across models and downstream tasks. As a comparison, we
also include the results of weights with largest magnitude, weights with smallest magnitude, and
random subsets in Figure 12 at 1e-3 nnz threshold (same as 1e-3 in Figure 11) for comparison. It is
clear that “C4 grad (static)” has exponentially higher similarity with “task grad (dyn.)” than all of
these 3 baselines. We also note that weights with largest magnitude (weight outliers) are usually NOT
gradient outliers as observed in Figure 12.

In this case, sensitive parameters determined from C4 gradients would still be similar to sensitive
parameters determined from downstream task-specific gradients across models.

Reasoning tasks. The transferability results for reasoning tasks are shown in Figure 13.

As there are still no solid lines (for all top-(1e-2,1e-3,1e-4) parameters with C4 mask) vanish to 0, C4
gradient mask still demonstrates great transferability to these 3 commonsense and 1 math task. For
top-1e-3 C4 gradient mask, the lowest covered gradient norm is ∼0.2, while the maximum possible
(*task grad, dyn.*) is ∼0.6 across tasks.
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Figure 10: Cumulative normalized sum of coordinate-wise [∇F(w)]2i of Llama2-7B (subfigure 10a),
Mistral-7B (subfigure 10b), and OPT-6.7B (subfigure 10c)’s linear weights at Epoch 1 of FO-SGD
full fine-tuning. For a given model and a given transformer layer, we report the average value across
all linear layers at this transformer layer as a line in each subfigure.

We still note that for AQuA (math algebraic word problem task), C4’s transferability is weaker than
the other 3 commonsense reasoning tasks. We speculate that this is due to the need to learn more
math-related knowledge during FT as the covered task gradient squares by task gradient mask before
FT mask (task grad, static) also declines more during FT.
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Figure 11: Cumulative normalized sum of coordinate-wise [∇F(w)]2i of Llama2-7B (subfigure 11a),
Mistral-7B (subfigure 11b), and OPT-6.7B (subfigure 11c)’s linear layers after applying sparsity
masks of each method during FO-SGD full fine-tuning for 10 epochs. For a given model and training
checkpoint, we report the average value across all linear layers as a line in each subfigure. For each
line, the colors represent the fraction of parameters (1e-2,1e-3,1e-4) and the line style represents the
category. “task grad, dyn.” refers to the sensitive parameters selected at the given timestep (x-axis),
and “task grad, static” refers to the sensitive parameters selected before fine-tuning. “C4 grad, static”
refers to the sensitive parameters selected with gradients taken from causal language modeling on C4
datasets, and we keep it unchanged during fine-tuning.
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Figure 12: Cumulative normalized sum of coordinate-wise [∇F(w)]2i of Llama2-7B (subfigure 12a),
Mistral-7B (subfigure 12b), and OPT-6.7B (subfigure 12c)’s linear layers after applying 99.9%
sparsity masks of each method during FO-SGD full fine-tuning. The results of “C4 grad, static”,
“task grad, dyn.”, and “task grad, static” are the same as their 1e-3 results in Figure 11.
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Figure 13: Cumulative normalized sum of coordinate-wise [∇F(w)]2i of Mistral-7B after applying
sparsity masks of each method during FO-Adam full FT for 1000 steps.
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F.4 OVERLAP RATIO OF TOP GRADIENT FEATURES

Besides Table 6, we dive deeper into the overlap ratio of top gradient entries from different data
sources as shown in Figure 14.

Notice that the order here maps to the column/row rank for each subfigure in Figure 14.

1. C4, SensZOQ’s choice.
2. OpenWebMath
3. ArXiv
4. Wiki103
5. Task gradient before FT (start). We abbreviate it as ∇F(wst).
6. Task gradient after 10% finetuning steps (mid). We abbreviate it as ∇F(wmid).
7. Task gradient at the end of FT (end). We abbreviate it as ∇F(wend).

We consider 7 tasks (3 commonsense reasoning tasks Arc-C, HellaSwag, PIQA, 1 math task AQuA, 3
SuperGLUE tasks RTE, WiC, COPA).

For a quick overview, we include Figure 15 as the average overlap ratio across tasks for the 4
pretraining text. The second row in Figure 15 gives an empirical evidence for the "fixed gradient
feature" during FT as the top entries in ∇F(wst) (task grad before FT) resemble ∇F(wmid) (task
grad during FT) and ∇F(wend) (task grad during FT)

Empirical findings

• The top gradient entries from all 4 pretraining text corpus still overlap considerably with the
task gradient, at least for top-0.1% entries.

• C4 generally covers more top gradient entries than OpenWebMath, ArXiv, and Wiki103.
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Figure 14: Overlap ratio in top entries of gradient squares of Mistral-7B for C4, OpenWebMath,
ArXiv, Wiki103, and ∇F(wbefore FT), ∇F(wmid FT), ∇F(wafter FT) across 3 commonsense reasoning,
1 math, and 3 SuperGLUE tasks.
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Figure 15: Average overlap ratio of top entries of gradient squares across 7 tasks in Figure 14.

C4 Math ArXiv Wiki

C4

Math

ArXiv

Wiki

1.000 0.267 0.217 0.283

0.267 1.000 0.118 0.149

0.217 0.118 1.000 0.331

0.283 0.149 0.331 1.000

Top 0.01%

C4 Math ArXiv Wiki

1.000 0.318 0.274 0.324

0.318 1.000 0.210 0.207

0.274 0.210 1.000 0.320

0.324 0.207 0.320 1.000

Top 0.1%

C4 Math ArXiv Wiki

1.000 0.357 0.311 0.307

0.357 1.000 0.213 0.187

0.311 0.213 1.000 0.311

0.307 0.187 0.311 1.000

Top 1%

10−2

10−1

100

O
ve

rla
p

ra
tio

of
to

p
en

tr
ie

s
of

gr
ad

ie
nt

sq
ua

re
s

ac
ro

ss
4

da
ta

m
ix

tu
re

s

Figure 16: Overlap ratio of top entries of gradient squares among C4, OpenWebMath, ArXiv, and
Wiki103.
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G IMPLEMENTATION OF SPARSE OPERATIONS IN LINEAR LAYERS

Linear layers in LLMs often contribute most parameters (Kaplan et al., 2020). Since from Equation 7
we know

wsparse = w ⊙mk, wdense = w ⊙ (1d −mk), w = wsparse +wdense (12)

and since wdense would have the same shape (and the same computational intensities) as w, we need
to improve wall-clock time efficiency of wsparsex to improve the computational efficiency of linear
layers after extracting the sparse parameters. In this case, we would have two different methods to
implement the forward pass of linear layers (with induced sparse operation colored in red):

wx = wdensex+wsparsex (13)
= SparseAddMM(DenseMM(wdense,x),wsparse,x) faster with token generation (14)
= (wdense+wsparse)x (15)
= DenseMM(SparseAdd(wsparse,wdense),x) faster with ZO training (16)

1 class SensitiveZOLinear(nn.Linear):
2 w_sparse
3 w_dense
4

5 def forward_small_batched_decoding(self, X):
6 # dense matmul
7 dense_result = F.linear(X, self.w_dense, self.bias)
8 # sparse addmm
9 return torch.sparse.addmm(dense_result, X, self.w_sparse.T)

10

11 def forward_large_batched_ZO_training(self, X):
12 # sparse addition
13 w = self.w_dense.add(self.w_sparse)
14 # dense matmul
15 return F.linear(X, w, self.bias)

Listing 1: Example PyTorch-like code snippet that implements the forward calls with 16-bit sparse
and 16-bit dense parameters.
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Figure 17: Time of SparseAdd (Equation 16) versus SparseAddMM (Equation 14) in Llama2-7B ZO
training forward & inference. In subfigure 1 and 3, we use Nvidia RTX A6000 and Intel Xeno Gold
6342 CPUs, with PyTorch version 2.2, HuggingFace version 4.36, and CUDA 12.2. In subfigure 2
and 4, we use Nvidia A100-SXM4 (40 GiB) and AMD EPYC 7543P 32-Core CPU with PyTorch
version 2.1, HuggingFace version 4.38.2, and CUDA 12.2. We use Flash Attention 2 (Dao, 2023) for
all 4 subfigures.

The specific choice of employing Equation 14 or Equation 16 needs careful consideration and
benchmarking, but here we can provide a general guideline based on the size of input vector (or
arithmetic intensity) and potential integration with weight quantization method:
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Size of input vectors x and arithmetic intensity. wsparsex in Equation 14 would have a compu-
tational dependency over x. During large-batched ZO training, x would be large enough such that
Equation 14 would induce large computational overhead, as shown in subfigure 1 of Figure 17. In
contrast, the computational complexity of Equation 16 is independent of x and when x is large, we
would expect Equation 16 is much faster than Equation 14. As an example, we use sequence length
of 512 and batch size 16 sampled from WikiText-2 dataset (Merity et al., 2016) as a representative
computational intensity for ZO training in subfigures 1 and 2 in Figure 17.

However, during autoregressive token generation, on each step we would only append a single token
to the previously cached embeddings, and in this case x is small and computing wdense +wsparse is
generally not worthwhile, especially given that wsparse is already sparse. This is also illustrated in
subfigure 3 and 4 in Figure 17. However, we note that the specific implementation choice is hardware
and task dependent and requires thorough benchmarking and we will leave it as a future work.

We recommend using Equation 16 during large-batched ZO training and Equation 14 during
small-batched autoregressive token generation.

In light of this observation, in our Figure 19, we implement both “SparseAdd” and “SparseAddMM”
methods for “Sensitive (0.1%)” and “Random (10%)”. For each method we report the lowest time out
of these 2 implementations: for “Sensitive (0.1%)” training and “Random (10%)” training and infer-
ence, we use “SparseAdd” approach. For “Sensitive (0.1%)” inference, we use the “SparseAddMM”
approach.

Integration with weight quantization method. Weight quantization algorithms can be categorized
into 2 categories: uniform quantization method and non-uniform quantization method. For uniform
quantization method, we could use integer matrix multiplication to compute Q(wdense)x efficiently
without first dequantizing Q(wdense) to 16 bits (Xi et al., 2023; Park et al., 2024). However, this
creates difficulty on our “SparseAdd” approach as we will violate the constraint of uniformly-spaced
quantization bins by computing SparseAdd(Q(wdense) + wsparse). In this case, we also have 3
different implementations:

Q(w)x ∼ Q(wdense)x+wsparsex (17)

= SparseAddMM
(
Dequantize

(
UniformMM(Q(wdense),x)

)
,wsparse,x

)
uniform quantization

(18)

= SparseAddMM
(

Dequantize(Q(wdense)),x,wsparse

)
similar to Equation 14 (19)

= (Dequantize(Q(wdense))+wsparse)x (20)
= DenseMM(SparseAdd (wsparse,Dequantize(Q(wdense)),x) similar to Equation 16

(21)

Equation 18 would compute UniformMM(Q(wdense),x) without dequantizing Q(wdense) to 16
bits. This would make “SparseAdd” approach infeasible and we can only employ “SparseAddMM”
approach in this case. Notice that both Equation 19 and Equation 21 would still dequantize Q(wdense)
first and the choice of implementation would follow into our discussion of input vector size x in last
paragraph. We leave a practical implementation and thorough benchmarking into a future work.

1 class SensitiveZOLinear(nn.Linear):
2 w_sparse
3 w_dense_quantized
4

5 def dequantize(self, w_quantized):
6 ...
7 return w_16_bit
8

9 def forward_uniform_matmul(self, X):
10 # fast uniform quantization matmul
11 dense_result = uniform_quantized(X, self.w_dense_quantized.T)
12 # sparse addmm
13 return torch.sparse.addmm(dense_result, X, self.w_sparse.T)
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14

15 def forward_small_batched_decoding(self, X):
16 # dequantize the dense weights
17 w_dense_16_bit = self.dequantize(self.w_dense_quantized)
18 # dense matmul
19 dense_result = F.linear(X, w_dense_16_bit, self.bias)
20 # sparse addmm
21 return torch.sparse.addmm(dense_result, X, self.w_sparse.T)
22

23 def forward_large_batched_ZO_training(self, X):
24 # dequantize the dense weights
25 w_dense_16_bit = self.dequantize(self.w_dense_quantized)
26 # dense matmul
27 dense_result = F.linear(X, w_dense_16_bit, self.bias)
28 # sparse addmm
29 return torch.sparse.addmm(dense_result, X, self.w_sparse.T)

Listing 2: Example PyTorch-like code snippet that implements the forward calls with 16-bit sparse
and quantized dense parameters.

We recommend using Equation 18 when we use efficient uniform integer matmul to compute
Q(wdense)x and in other cases, using Equation 19 or Equation 21 follows our previous

recommendation based on the size of input vectors.
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H WALL-CLOCK TIME EFFICIENCY FROM SENSITIVE ZO’S STATIC SPARSITY

Static sparse ZO fine-tuning (Equation 7 and 8) can be written as a parameter-efficient perturbation &
update rule:

wsparse = w ⊙mk, wdense = w ⊙ (1d −mk) (22)
wsparse,t+1 = wsparse,t − ηtĝ(wsparse,t, (xt, yt), zk,t) (23)

Under the extreme sparsity regime (0.1% sparsity), this parameter-efficient rule will have wall-clock
time efficiency in both ZO training and token generation process.

Comparison with ZO Full FT: faster in training. By employing parameter-efficient ZO fine-
tuning with extreme sparsity, we also achieve 1.2 - 2.5× wall-clock time convergence speedup
compared with ZO full fine-tuning as we nearly eliminate the ZO perturbation and optimizer update
time, as Figure 18 shows. This also boosts the GPU utilization rate as large-batched ZO forward is
often compute-bounded while the perturbation and optimization steps are often memory-bounded.
As a result, we answer this question that optimizing extremely sparse and fixed parameters leads to
substantial iteration-wise and total wall-clock time improvements.
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Figure 18: Iteration-wise time & wall-clock convergence time of sensitive ZO fine-tuning with static
sparsity (“Sensitive”) versus ZO full fine-tuning (“Full”) for Llama2-7B. Here we use the 16-bit
model as the base model for fine-tuning.
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Figure 19: Inference speed of Llama2-7B with 0.1% sensitive parameters, 10% random subset sparse
parameters, and the base model (no static sparsity extraction). The implementation of 0.1% sensitive
parameters and 10% random subset sparse parameters are discussed in Appendix G.

Comparison with other sparsity methods: faster in inference. As the sensitive sparse fine-tuning
method achieves great performance via optimizing only 0.1% parameters (performance comparable
to ZO full fine-tuning and 10% random subsets), during inference we achieve an end-to-end 1.49×
speedup, with 2.15× speedup at sparse operations compared to 10% random subsets.
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I SUPPLEMENTARY EXPERIMENT DETAILS

I.1 HYPERPARAMETERS IN EXPERIMENTS

For all ZO experiments, we use 20,000 training steps with ZO-SGD optimizer (Definition 2). We
will save a model checkpoint every 500 steps, and load the checkpoint with the lowest loss on
the validation set at the end of the training, and report its test set accuracy as result. Usually, the
training/validation set will be sampled from the original dataset with size 1000/500 respectively and
the test set is of size min(1000, |original test set|), except for CB and COPA that we use 100 for the
validation set size. For all ZO experiments (Table 7 and Table 8), we use batch size of 16. This
experiment setting is identical to Malladi et al. (2023a).

Table 7: The chosen hyperparameters for experiments in Table 1. We repeat each hyperparameters
for 3 random trials and report the average and standard deviation in Table 1.

(a) Llama2-7B

Methods SST-2 RTE CB BoolQ WSC WiC COPA WinoG Wiki2

Q, ZO SensZOQ (ϵ =1e-3) 5e-7 1e-6 1e-6 1e-6 5e-7 1e-6 1e-6 2e-6 5e-6
LoRA (ϵ =1e-3) 1e-5 5e-5 1e-5 2e-5 1e-5 2e-5 1e-5 5e-5 1e-4
Prefix (ϵ =1e-2) 1e-4 2e-4 5e-4 5e-4 1e-4 5e-4 2e-4 1e-3 1e-3

ZO Full FT (ϵ =1e-3) 5e-7 5e-7 5e-7 5e-7 2e-7 5e-7 5e-7 1e-7 2e-6

ICL (#examples) 16 16 16 8 16 8 8 16 NA

(b) Mistral-7B

Q, ZO SensZOQ (ϵ =1e-4) 2e-8 5e-8 2e-8 2e-8 1e-8 2e-8 2e-8 1e-7 1e-7
LoRA (ϵ =1e-4) 2e-6 5e-6 2e-6 2e-6 2e-6 2e-6 2e-6 1e-5 2e-5
Prefix (ϵ =1e-3) 1e-3 2e-3 1e-3 1e-2 5e-4 1e-3 5e-4 2e-4 1e-2

ZO Full FT (ϵ =1e-4) 2e-8 2e-8 1e-8 1e-8 1e-8 1e-8 2e-8 5e-8 1e-7

ICL (#examples) 4 8 4 16 4 4 8 8 NA

(c) OPT-6.7B

Q, ZO SensZOQ (ϵ =1e-3) 2e-7 5e-7 5e-7 5e-7 2e-7 5e-7 2e-7 1e-6 1e-6
LoRA (ϵ =1e-3) 1e-5 2e-5 1e-5 2e-5 1e-5 2e-5 2e-5 5e-5 1e-4
Prefix (ϵ =1e-2) 2e-3 1e-2 1e-3 5e-3 5e-3 1e-2 5e-3 2e-2 2e-1

ZO Full FT (ϵ =1e-3) 2e-7 2e-7 2e-7 2e-7 2e-7 2e-7 5e-7 5e-7 1e-6

ICL (#examples) 16 4 16 16 16 8 16 16 NA

Our hyperparameters (learning rate η, perturbation scaling constant ϵ, and the number of ICL
examples) for Table 1 is reported in Table 7. For Table 1, we use constant η and ϵ throughout our
experiments. We also report the chosen hyperparameter for Figure 5a and Figure 5b in Table 8. For
LoRA, we always add to all linear layers with r = 8 and α = 16, and for Prefix Tuning, we always
add to WK and WV with length as 5 except for Wiki2 that we always use 20 (as the best performance
from {5, 20, 50, 100}).

For the smaller FO-Adam experiment in Table 2, we use the same codebase and we report the used
learning rates in Table 9. We use a batch size of 8 and train for 1000 steps. We use the Adam optimizer
with linear learning rate decay to 0 and no weight decay. We evaluate the model’s performance at the
end of 1000-step training.
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Table 8: The chosen hyperparameters for experiments in Figure 5a and Figure 5b. We repeat each
hyperparameters for 3 random trials and report the average to draw a line in Figure 5a and Figure 5b,
and we use Llama2-7B for all experiments. For each subtable, we include the fraction to optimize on
its header and report the chosen learning rate on each cell.

(a) RTE

Methods 1e-5 1e-4 1e-3 1e-2 1e-1

Sensitive (C4, static) (ϵ =1e-3) 1e-5 1e-6 1e-6 1e-6 1e-6
Sensitive (task-specific, static) (ϵ =1e-3) 1e-5 1e-6 1e-6 1e-6 1e-6

Sensitive (task-specific, dynamic) (ϵ =1e-3) 1e-5 1e-6 1e-6 1e-6 1e-6
Random (static) (ϵ =1e-3) 2e-2 5e-3 5e-4 5e-5 5e-5

Random (dynamic) (ϵ =1e-3) 2e-2 5e-3 2e-4 5e-5 5e-6
Weights with largest magnitude (static) (ϵ =1e-3) 2e-3 1e-3 2e-4 5e-5 1e-5

Weights with smallest magnitude (static) (ϵ =1e-3) 2e-3 5e-4 1e-4 1e-5 1e-6
smallest GraSP scores (static) (ϵ =1e-3) 2e-5 5e-6 2e-6 2e-6 1e-6

(b) WiC

Methods 1e-5 1e-4 1e-3 1e-2 1e-1

Sensitive (C4, static) (ϵ =1e-3) 1e-5 2e-6 1e-6 1e-6 1e-6
Sensitive (task-specific, static) (ϵ =1e-3) 1e-5 2e-6 1e-6 1e-6 1e-6

Sensitive (task-specific, dynamic) (ϵ =1e-3) 1e-5 2e-6 1e-6 1e-6 1e-6
Random (static) (ϵ =1e-3) 2e-2 5e-3 5e-4 5e-5 5e-6

Random (dynamic) (ϵ =1e-3) 2e-2 5e-3 5e-4 5e-5 5e-6
Weights with largest magnitude (static) (ϵ =1e-3) 1e-3 5e-4 2e-4 1e-4 2e-5

Weights with smallest magnitude (static) (ϵ =1e-3) 1e-3 5e-4 1e-4 1e-5 2e-6
smallest GraSP scores (static) (ϵ =1e-3) 2e-5 1e-5 5e-6 2e-6 2e-6

(c) COPA

Methods 1e-5 1e-4 1e-3 1e-2 1e-1

Sensitive (C4, static) (ϵ =1e-3) 5e-6 1e-6 1e-6 1e-6 5e-7
Sensitive (task-specific, static) (ϵ =1e-3) 5e-6 2e-6 2e-6 1e-6 1e-6

Sensitive (task-specific, dynamic) (ϵ =1e-3) 5e-6 1e-6 1e-6 1e-6 1e-6
Random (static) (ϵ =1e-3) 1e-2 2e-3 5e-4 5e-5 5e-6

Random (dynamic) (ϵ =1e-3) 2e-3 1e-3 2e-4 2e-5 2e-6
Weights with largest magnitude (static) (ϵ =1e-3) 1e-3 5e-4 5e-4 1e-4 1e-5

Weights with smallest magnitude (static) (ϵ =1e-3) 2e-3 5e-4 2e-5 2e-6 2e-6
smallest GraSP scores (static) (ϵ =1e-3) 5e-6 5e-6 1e-6 2e-6 1e-6

Table 9: The chosen hyperparameters for experiments in Table 2. We repeat each hyperparameters
for 3 random trials and report the average and standard deviation in Table 2.

Methods SST-2 RTE CB BoolQ WSC WiC COPA WinoG Wiki2

FO-Adam Full FT 1e-5 2e-5 1e-5 1e-5 2e-5 1e-5 1e-5 2e-5 5e-5
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I.2 TASK-SPECIFIC PROMPTS IN EXPERIMENTS

We describe our task templates in Table 10.

Table 10: Task templates for all experiments. On the left column we include the task name and the
model name, and on the right column we describe the exact prompt with answer candidates.

Task Prompts

SST-2
(Llama2-7B)

### Sentence: <text> ### Sentiment: negative/positive

SST-2
(Mistral-7B, OPT-6.7B)

<text> It was terrible/great

RTE
(Llama2-7B)

Suppose "<premise>" Can we infer that "<hypothesis>"?
Yes or No? Yes/No

RTE
(Mistral-7B, OPT-6.7B)

<premise>
Does this mean that "<hypothesis>" is true? Yes or No?
Yes/No

CB
(Llama2-7B, Mistral-7B, OPT-6.7B)

Suppose <premise> Can we infer that "<hypothesis>"? Yes,
No, or Maybe?
Yes/No/Maybe

BoolQ
(Llama2-7B)

<passage> <question>? Yes/No

BoolQ
(Mistral-7B, OPT-6.7B)

<passage> <question>?
Yes/No

WSC
(Llama2-7B, Mistral-7B, OPT-6.7B)

<text>
In the previous sentence, does the pronoun "<span2>" refer
to <span1>? Yes or No?
Yes/No

WiC
(Llama2-7B, Mistral-7B, OPT-6.7B)

Does the word "<word>" have the same meaning in these
two sentences? Yes, No?
<sent1>
<sent2>
Yes/No

COPA
(Llama2-7B, Mistral-7B, OPT-6.7B)

<premise> so/because <candidate>

WinoGrande
(Llama2-7B, Mistral-7B, OPT-6.7B)

<context> <option>
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I.3 ON-DEVICE MEMORY CONSTRAINTS

As illustrated in Table 11, a wide range of mobile or edge devices impose a memory constraint of 8
GiB, which is the our target when we develop our SensZOQ in Section 3.2.

Table 11: Device memory of some mobile devices or consumer-graded GPUs.

Devices Memory

Nvidia GeForce GTX 1080 Ti 11 GiB

Nvidia GeForce RTX 3060 Ti 8 GiB

Nvidia Jetson TX2 8 GiB

OPPO Find X7 Ultra (Li et al., 2024a) 12 GiB

Samsung Galaxy S10 with Mali-G76 GPU (Gim & Ko, 2022) 8 GiB

I.4 HARDWARE, PLATFORM, LIBRARIES, AND OTHER DETAILS FOR FINE-TUNING AND
BENCHMARKING

Figure 17 (subfigure 1 and 3), Figure 18, and Figure 19 are trained and evaluated on an internal
cluster with 8 Nvidia RTX A6000 GPUs and 2 Intel Xeon Gold 6342 CPUs, with PyTorch version
2.2, HuggingFace version 4.36, and CUDA 12.2. In subfigure 2 and 4 in Figure 17, we use Nvidia
A100-SXM4 (40 GiB) and AMD EPYC 7543P 32-Core CPU with PyTorch version 2.1, HuggingFace
version 4.38.2, and CUDA 12.2. We use Flash Attention 2 (Dao, 2023) in HuggingFace Transformers
library throughout our experiments, and the base model for ZO full fine-tuning and benchmarking
is always Llama2-7B with Float16 datatype (torch.float16). We also use the Float16 datatype
(torch.float16) for all of our sparse parameters (sensitive sparse, random subsets, etc.) in ZO fine-
tuning experiments. Notice that for all of the FO fine-tuning demonstrations (Figure 7 and Figure 11)
we use the BrainFloat16 datatype (torch.bfloat16) to avoid the NaN issue from the Float16 datatype.

In Figure 17, we use sequence length of 512 and batch size 16 sampled from WikiText-2 dataset (Mer-
ity et al., 2016) as a representative computational intensity for ZO training, and (same for Figure 19)
for inference we generate 128 tokens with top-p (p = 0.9) sampling from the prompt “Please describe
the effect of sparse zeroth-order optimization methods on memory-efficient LLM fine-tuning: ”. We
still use the Float16 datatype (torch.float16) for both benchmarks.
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