
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ZEROTH-ORDER FINE-TUNING OF LLMS WITH TRANS-
FERABLE STATIC SPARSITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Zeroth-order optimization (ZO) is a memory-efficient strategy for fine-tuning Large
Language Models using only forward passes. However, applying ZO fine-tuning
in memory-constrained settings such as mobile phones and laptops remains chal-
lenging since these settings often involve weight quantization, while ZO requires
full-precision perturbation and update. In this study, we address this limitation by
combining static sparse ZO fine-tuning with quantization. Our approach transfers
a small, static subset (0.1%) of "sensitive" parameters from pre-training to down-
stream tasks, focusing fine-tuning on this sparse set of parameters. The remaining
untuned parameters are quantized, reducing memory demands. Our proposed work-
flow enables efficient ZO fine-tuning of an Llama2-7B model on a GPU device
with less than 8GiB of memory while outperforming full model ZO fine-tuning
performance and in-context learning.

1 INTRODUCTION

Large language models (LLMs) have demonstrated superior performance in general-purpose language
generation (Brown et al., 2020; Radford et al., 2019; Liu et al., 2019). Despite their success, fine-
tuning LLMs for specific tasks remains necessary to achieve optimal results. However, the fine-tuning
process often requires significantly more memory compared to inference. Specifically, there are
four main components that occupy the memory during fine-tuning LLMs: (1) the weight parameter
itself; (2) the optimizer state, which contains the information about the past gradient (Kingma &
Ba, 2015); (3) the gradient used to update the parameters; (4) the activation cached to calculate
the weight gradient (Liu et al., 2024c); Previous work, such as QLoRA (Dettmers et al., 2023),
has successfully reduced memory usage for both (1) and (2) by combining weight quantization
and low-rank adaptation (Hu et al., 2021), which enables fine-tuning huge LLMs under consumer
level GPUs. However, on memory-constrained hardware like smartphones, the memory required for
caching (3) gradient and (4) activations for backpropagation remains significant. Prior approaches to
address this issue are often system-based, such as CPU offloading. The disparity between the memory
demands of LLM fine-tuning and hardware capacity limits the adaptability of LLMs, especially when
personalizing them for edge devices.

SensZOQ MeZO FO-Adam
LoRA

FO-Adam
FT

0

20

40

60

80

C
U

D
A

M
em

or
y

(G
iB

)

RTE
model
optimizer
ZO forward
ZO perturbation
FO for-&backward
48 GiB
24 GiB
8 GiB (our target)

SensZOQ MeZO FO-Adam
LoRA

FO-Adam
FT

WiC

SensZOQ MeZO FO-Adam
LoRA

FO-Adam
FT

COPA

Figure 1: CUDA memory benchmarking of Llama2-7B on 3 fine-tuning tasks. We use a batch size of
8 for profiling the memory usage, and we find that SensZOQ (1st bar in each subfigure) can meet the
8 GiB memory target without any system-level solutions such as CPU offloading.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Exploring zeroth-order optimization in LLM fine-tuning. Recently, there has been a resurgence
of interest in zeroth-order (ZO) optimization methods for LLM fine-tuning (Malladi et al., 2023a;
Liu et al., 2024a; Chen et al., 2024). ZO optimization method perturbs model parameters in random
directions and utilize the loss value difference to compute the gradient direction for parameter updates.
A key advantage of ZO methods in LLM fine-tuning is that they do not require backpropagation
procedures, significantly reducing computation and memory requirements. Being backpropagation-
free, ZO methods does not need to cache (3) gradients and (4) activations during fine-tuning. In
practice, ZO methods have demonstrated the potential to achieve performance comparable to first-
order methods in LLM fine-tuning, which create new venues for efficient LLM adaptation strategies.

Efficient ZO LLM fine-tuning with sparsity. Although ZO methods remove the need for back-
propagation, a significant drawback of these methods is the slow convergence rate (Zhao et al., 2024;
Liu et al., 2024a). A recent approach addresses this by fine-tuning with a sparse mask (Liu et al.,
2024a; Zhang et al., 2024b), achieving approximately ∼ 75% dynamic sparsity (perturb & tune 25%
parameters per step). Nonetheless, this sparsity level barely reduces computational overhead, as
the latency during the forward pass with even ∼ 90% sparsity is still comparable to that of dense
matrix operations. This latency increase can greatly impact user experience on applications such as
personal assistants, where even a twofold increase in latency is perceptible. In addition, dynamic
sparsity leads to a reduction in training iterations but not necessarily wall-clock time – determine
and apply the sparsity pattern for each training step could be expensive. Moreover, dynamic sparsity
inherently assumes the whole model must all be in dense weights, and an attempt to combine dynamic
sparse training with parameter-size reduction techniques such as quantization is not computationally
tractable (otherwise it will involve frequent dequantization and quantization). This raises the question:

Is it possible to develop an extreme static sparsity method for ZO fine-tuning that is easy to combine
with quantization method? Would the memory-efficiency of ZO be even pushed further?

Our proposal: ZO LLM fine-tuning with transferable static sparsity. In this paper, we answer
the raised research question by proposing a transferable static sparse ZO LLM fine-tuning strategy.
We observe an extreme sparsity pattern in LLM parameters: a subset, determined by selecting the
top k magnitude entries from the diagonal of empirical Fisher information matrix, is effective for
ZO fine-tuning. Moreover, we find this sparsity pattern can be obtained through LLM’s pre-training
process and transferred to various downstream tasks without modification (as a static selection).

Summary of contributions. Building on these insights, our work proposes a comprehensive
framework for ZO fine-tuning, making the following contributions:

• We identify that only an extremely small portion (0.1%) of LLM parameters should be updated
during ZO LLM fine-tuning. Moreover, we observe that this sparsity pattern can be derived in
LLM pre-training process and transferred across different downstream tasks while still maintaining
good ZO performance without any modification.

• Based on this observation, we propose SensZOQ, an on-device LLM personalization workflow
via integrating Sensitive ZO optimization with Quantization to further improve the memory-
efficiency of ZO fine-tuning (Figure 1).

• We conduct extensive experiments across various LLMs and demonstrate that our method achieves
competitive performance across various downstream tasks.

2 SPARSE ZO FINE-TUNING WITH STATIC SENSITIVE PARAMETERS IN LLM

In this section, we first go through the background of ZO optimization in Section 2.1. We then inspect
an extreme sparsity pattern in LLMs in Section 2.2 and its theoretical guarantees in Section 2.3.

2.1 ZEROTH-ORDER OPTIMIZATION

ZO surrogate gradient estimator. ZO optimizers have been studied widely in the machine learning
community. Given a dataset D = {(x1, y1), . . . , (xn, yn)} and a loss function f with model
parameters w ∈ Rd, ZO optimizer will estimate the gradient at w via ZO surrogate gradient
estimator. Simultaneous Perturbation Stochastic Approximation (SPSA) (Spall, 1992) is such an

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

estimator that would first sample a random vector z ∈ Rd and uses the loss value difference to scale
the update direction. z is usually sampled from an Gaussian distribution N (0, Id).

Definition 1 (Simultaneous Perturbation Stochastic Approximation (SPSA) (Spall, 1992)). SPSA
estimates the gradient w.r.t. w with a data example (x, y), a small constant ϵ ∈ R, and a sampled
random vector z ∈ Rd as follows:

ĝ(w, (x, y), z) =
f(w + ϵz; (x, y))− f(w − ϵz; (x, y))

2ϵ
z (1)

There are other ZO surrogate gradient estimators (Liu et al., 2020; Ohta et al., 2020), but in practice
SPSA achieves good performance in ZO fine-tuning. Some ZO algorithms such as DeepZero (Chen
et al., 2024) would utilize the parameter-wise finite difference of loss values to derive parameter-wise
update directions. This would yield O(d) query costs per training step even when combining with
certain sparse masking methods and not practical for LLM fine-tuning scenarios. We therefore select
SPSA with random Gaussian perturbation as our ZO gradient estimator.

ZO-SGD algorithm. ZO-SGD is an optimizer similar to SGD but replaces the FO gradient with ZO
surrogate gradient estimate per training step, as defined below:

Definition 2 (ZO-SGD update rule). ZO-SGD is an optimizer that uses ZO surrogate gradient to
update parameters wt with learning rate ηt and a data example (xt, yt) sampled at timestep t:

wt+1 = wt − ηtĝw(wt, (xt, yt), zt) (2)

MeZO (Malladi et al., 2023a) is a ZO-SGD algorithm that uses the “random seed trick” to save
the need of caching ZO surrogate gradient. The choice of optimizer (SGD) is orthogonal to ZO
optimization techniques, but in our preliminary experiments we find adaptive optimizers such as
Adam (Kingma & Ba, 2015) would not necessarily accelerate ZO convergence in LLM fine-tuning
scenarios. There are other ZO optimizers aware of the parameter-wise heterogeneity of loss curvatures
to accelerate the optimization convergence (Zhao et al., 2024), and we leave how to combine our
method with theirs as future works.

2.2 SPARSE ZO OPTIMIZATION WITH STATIC SENSITIVE PARAMETERS.

Given model parameters w, a loss function f , a data example (x, y), sensitive parameters are defined
as parameters whose corresponding FO coordinate-wise gradient square values are maximized.

Definition 3 (Sensitive parameter mask). A sensitive sparse mask mk ∈ {0, 1}d with k nonzero
entries (

∑
i m(i) = k) is defined as1

mk = argmaxm∥m⊙∇f(w)∥22. (3)

In the context of ZO optimization, we will update sensitive parameters only. Denote that z̄ = z⊙mk.
We will modify the SPSA gradient estimator from ĝ(w, (x, y), z) to ĝ(w, (x, y), z̄), and accordingly:

Definition 4 (Sensitive sparse ZO-SGD update rule).

wt+1 = wt − ηtĝw(wt, (xt, yt), zt ⊙mk,t) (4)

The theoretical support of sensitive parameters can be derived from the lens of SPSA gradient
estimator and Fisher information matrix as follows:

• Maximum zeroth-order loss value changes, from the lens of ZO SPSA estimator.
The square (account for negativity) of loss value difference for ĝw(w, (x, y), z̄) is as follows:

Ez̄{f(w + ϵz̄; (x, y))− f(w − ϵz̄; (x, y))}2 ≈ Ez̄{2ϵz̄⊤∇wf(w)}2 = 4ϵ2∥mk⊙∇wf(w)∥22
Since by Definition 3 our sensitive mask would maximize ∥mk ⊙∇wf(w)∥2 for a given sparsity
ratio, we would expect our sensitive mask to maximize the magnitude of the loss value difference for
any given sparsity ratio. This property is important for ZO as ZO directly leverages the loss-value
difference as a probe of loss landscape to determine the descent direction.

1When the context is clear, we will abbreviate f(w; (x, y)) as f(w) and ∇f(w; (x, y)) as ∇f(w). Notice
that for full batched gradient we will use ∇F(w) .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• Maximum coverage of Hessian diagonal, from the lens of Fisher matrix.
LLMs are often pre-trained on large text corpus2 to reach low perplexity before entering the fine-
tuning stage. In this case, we would assume pLLM(y|x) ∼ pD(y|x), which implies the empirical
Fisher F̂ should be close to the (true) Fisher matrix F as follows:

F = Ex∼pD,ŷ∼pLLM(·|x)∇w log pLLM(ŷ|x)(∇w log pLLM(ŷ|x))⊤

≈ F̂ = E(x,y)∼pD∇w log pLLM(y|x)(∇w log pLLM(y|x))⊤

As we assume the empirical Fisher matrix approximates Fisher, which also approximates the
Hessian, and empirical Fisher’s diagonal is equal to the coordinate-wise gradient square vector when
computing with downstream task-specific loss, our sensitive parameters would cover a large fraction
of the largest Hessian diagonal entries.

10−5 10−4 10−3 10−2 10−1 100

Ratio

0.00

0.25

0.50

0.75

1.00

C
um

u.
no

rm
.

su
m

of
[∇
F

(w
)]

2 i RTE

mean ± std
0.5
0.2

10−5 10−4 10−3 10−2 10−1 100

Ratio

WiC

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA

Figure 2: Cumulative normalized sum of coordinate-wise [∇F(w)]2i of linear layers during Llama2-
7B (Touvron et al., 2023) fine-tuning. For each linear layer, we first sort parameters by the decreasing
order of their gradient square value [∇F(w)]2i , i ∈ [dlayer], and we take the cumulative sum and
normalize it to draw a blue curve, and the red-shaded region is the mean ± std of all blue curves.
Similar figures for Mistral-7B and OPT-6.7B are in Figure 7, and a closer inspection on its relation
with weight type and layer depth is in Figure 9 and 10 in Appendix F.2. We observe that roughly
0.1% parameters in all linear layers contribute about 50% gradient norm square ∥∇F(w)∥22.

This idea of sensitive parameters has been studied in the quantization community (Kim et al., 2024;
Guo et al., 2023) and FO optimization (Sung et al., 2021). However, we are the first one to leverage
the extremely sparse sensitive parameters in LLM fine-tuning to accelerate ZO fine-tuning with LLMs.
When we have perturbation and updating in the scale of billion parameters, finding which parameters
to fine-tune would be important for improving ZO performance. Notice that here we use sensitive
masks mk for understanding purposes. In Section 3.2, we will discuss how to transform Definition 4
to a parameter-efficient optimization pipeline via transferable static sparsity.

2.3 THEORETICAL CONVERGENCE RATE

We would investigate the theoretical convergence of sensitive sparse ZO-SGD on sensitive parameters
under the non-convex optimization settings. Our assumptions are included in Appendix C.2.

Theorem 1 (Convergence rate of sensitive sparse ZO-SGD (Definition 4)). If we pick ηt =
1/(L(k+2)), under Assumptions 1 (bounded gradient error), 2 (Lipschitz smoothness), and 4 (sparse
sensitive parameters), we would have

1

T

T−1∑
t=0

Ez̄,(x,y)∥∇wF(wt)∥2 ≤ O

(
k

c
· L
T

)
(F(w0)−F∗) + 3σ2. (5)

If we still pick ηt = 1/(L(k + 2)), with an extra Assumption 3 (P.L. condition), we would have

Ez̄,(x,y){F(wT)−F∗} ≤
(
1−O

(µ

L
· c
k

))T

(F(w0)−F∗) +
3σ2c

2L(k + 2)
. (6)

2Here we assume data examples (x, y) ∼ pD in fine-tuning datasets after verbalization would also appear in
the large text corpus during pre-training.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The proof for Inequality 5 is in Appendix C.2 and the proof for Inequality 6 is in Appendix C.3.
If we choose k = d and c = 1, both convergence rates trivially reduce to the standard zeroth-
order convergence rate as O(d/T) + O(constant) and O((1/d)T) + O(constant). As we assume
c ≫ k/d, we know d ≫ k/c and therefore both O((k/c)(1/T)) and O((c/k)T) are much lower
than O(d/T) +O(constant) and O((1/d)T) +O(constant) that zeroth-order method will yield.

We want to emphasize that our contributions are more on empirical LLM fine-tuning instead of
general machine learning tasks, and in Section 4.2 we extensively compare our sparse ZO methods
with other sparse ZO methods and we demonstrate its superiority during LLM fine-tuning. We
do not use the strict “local r-effective rank” assumption that Malladi et al. (2023a) uses, and our
Assumption 4 can be easily observed empirically in Figure 7. Liu et al. (2024a) and Ohta et al. (2020)
also provide analysis on the convergence of sparse ZO optimization but they do not include our
sensitive sparse masks in their studies.

3 SENSZOQ: A SPARSE ON-DEVICE FINE-TUNING RECIPE

In this section, we describe the transferable static sparsity pattern we observed in LLMs and how we
utilize it for developing an on-device fine-tuning pipeline of LLMs as SensZOQ.

3.1 TRANSFERABILITY OF STATIC SENSITIVE PARAMETER

Transferable sensitive gradient features: from dynamic to static sparsity. Our Theorem 1 focuses
on dynamic sparse fine-tuning. However, Panigrahi et al. (2023) notice that in real LLM fine-tuning
scenario, the fine-tuning performance could be attributed to a sparse subset of weights (∼ 0.01%).
Malladi et al. (2023b) also find certain fine-tuning tasks would demonstrate kernel behaviors, which
include “fixed (gradient) features”: ∇wf(wafter FT; (x, y)) ∼ ∇wf(wbefore FT; (x, y)).

The similarity of gradient features during fine-tuning would imply that we do not need to re-select our
sensitive parameters during fine-tuning i.e. select once before fine-tuning should be sufficient. This
hypothesis can be validated by Figure 3 and Figure 5b. In Figure 3, the fact that “task grad, static”
does not vanish and still has a large ratio over “task grad, dyn.” at the end of training demonstrate
that we can select parameters before fine-tuning.

Surrogate static sensitive parameter mask. Another observation from Figure 3 is that the sensitive
parameters derived from pre-training datasets (C4) would still cover a large fraction of model
sensitivity. Specifically, the parameters overlap between top C4 gradient entries and task gradient
entries are much (>20×) higher than all weight magnitude baselines. Therefore, we could use it as a
surrogate sensitive sparse mask when gradients on downstream tasks are unavailable, particularly in
scenario of on-device personalization. 3

C4 covers a diverse set of text corpus across different domains and we believe it will produce a
generally good transferable static mask. We also note that if we have better knowledge on the exact
downstream domain or task our method will be applied to, we can extract sparse masks with better
specific task performance. So we include an ablation study on other surrogate sensitive parameter
masks in Table 6 and we dive deeper into the overlap of top gradient features in Appendix F.4.

3.2 SENSZOQ: AN OPPORTUNITY FOR ON-DEVICE LLM PERSONALIZATION

Transferable static sparse fine-tuning as a parameter-efficient optimization method. The sparse
optimization on fixed parameters can be implemented as a parameter-efficient optimization workflow,
which will reduce the perturbation and updating time during ZO optimization. Suppose we have
derived a sensitive sparse mask mk, and we know it is fixed during fine-tuning. Instead of applying
mk to z, we would apply it directly to w and extract the nonzero parts as below:

wsparse = w ⊙mk, wdense = w ⊙ (1d −mk) (7)

3Obtaining gradients of LLMs on edge devices is expensive, and we usually cannot transfer data from edge
devices to the cloud to compute the gradient on downstream tasks on cloud. In this case we would need some
surrogate gradient information to derive sensitive sparse masks on cloud. We will discuss this in Section 3.2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Before FT
Epoch 1

Epoch 5
End of FT

10−3

10−2

10−1

100

C
um

ul
at

iv
e

no
rm

al
iz

d
su

m
of

[∇
F

(w
)]

2 i

RTE

task grad (dyn.)
task grad (static)
C4 grad (static)

weights (largest, static)
weights (smallest, static)
random (static)

Before FT
Epoch 1

Epoch 5
End of FT

WiC

Before FT
Epoch 1

Epoch 5
End of FT

COPA

Figure 3: Cumulative normalized gradient square values of Llama2-7B model’s linear layers after
we apply 99.9% sparsity masks (0.1% nonzeros) of each method. “task grad (dyn.)” refers to the
sensitive parameters selected at the given timestep (x-axis) on each downstream dataset, and “task
grad (static)” refers to the sensitive parameters selected before fine-tuning. “C4 grad (static)” refers to
the sensitive parameters selected with gradients taken from causal language modeling on C4 datasets
(Raffel et al., 2019), and we keep it unchanged during fine-tuning. “weights (largest, static)” and
“weights (smallest, static)” mean we pick the weights with the largest/smallest magnitude in the
pre-trained model respectively. We provide a longer discussion in Appendix F.3.

Denote zk,t ∼ N (0k, Ik) as the Gaussian perturbation sampled in timestep t. We will determine
wsparse before fine-tuning and optimize on wsparse only and leave wdense frozen during fine-tuning. In
this case, our sensitive sparse ZO-SGD update rule will become:

wsparse,t+1 = wsparse,t − ηtĝ(wsparse,t, (xt, yt), zk,t) (8)

Equation 8’s formulation allows (1) a wall-clock efficient of ZO optimization method (2) an
opportunity to enable an on-device personalization workflow.

Wall-clock time efficiency from extreme static sparsity (more on Appendix H).

• ZO fine-tuning. A typical implementation of ZO fine-tuning procedures4 involve 2 forward calls
for SPSA estimator (Definition 1), 3 perturbation calls (2 for SPSA, 1 for resetting the parameters),
and 1 optimizer step calls. Under the extreme sparsity regime (only optimize 0.1% parameters),
sensitive ZO optimization on fixed parameters would nearly eliminate the perturbation and optimizer
step calls, which yields 1.2 - 2.5× speedup compared to ZO full fine-tuning.
• Token generation. Sensitive ZO would need to optimize far less parameters (0.1%) to reach the
same performance as other sparsity methods (will be shown in Figure 5a). This naturally leads to
less inference latency and higher throughput during the token generation process.

SensZOQ: integrating sensitive sparse ZO fine-tuning with quantization. As LLMs are often
pre-trained with user-agnostic public datasets, personalizing LLMs with individual user’s preferences
and meet user’s specific needs before real-world deployment are vital (Tan et al., 2024a; Mairittha
et al., 2020). However, transferring the user-specific data to upstream cloud before fine-tuning LLMs
would raise privacy concerns (Xu et al., 2018). On the other hand, personal devices usually have
less computational budget and are more memory-constrained than the cloud (Zhu et al., 2023), and
performing full fine-tuning would easily exceed the device memory budget.

In response, we propose an on-device personalization workflow SensZOQ illustrated in Figure 4.
The high-level overview is that we use surrogate gradient information from pre-training datasets
∇wpLLM(y|x) to extract sensitive parameters wsparse and keep wsparse in 16 bits, while we quantize
the remaining dense weights wdense (Step 1-4). We send wsparse and Q(wdense) to personal devices
(Step 5), and we perform on-device ZO fine-tuning only on wsparse (Step 6).

We highlight that SensZOQ’s memory consumption is nearly minimal: we can fine-tune a Llama2-7B
model under 8 GiB GPU memory without any offloading as illustrated in Figure 1. This would satisfy
the memory constraint by a wide range of edge or mobile devices as illustrated in Table 11.

4We take MeZO’s implementation (Malladi et al., 2023a) as a reference.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4. Quantize
dense parts

Stay frozen

ready to
serve!

1. Get gradients from
pre-training datasets

2. Get surrogate sensitive
sparse parameter masks

3. Decompose weights to
dense and sparse parts

5. send models to
personal devices

sparse parts
remain in 16-bit

6. on-device
ZO fine-tuning

Pre-trained LLM Apply sensitive sparse masks

Cloud Edge

Figure 4: SensZOQ: an on-device LLM personalization workflow via integrating Sensitive ZO
optimization with Quantization. The high-level idea is that we first decompose w to wsparse and
wdense, and then quantize wdense (on the cloud). On the edge devices, we will fine-tune wsparse only.

In addition, our method does not put strict constraints on specific choices of quantization al-
gorithms since any algorithm that aims to minimize the least-square quantization error term
Q(w) = argminQ(w)Ex∥(w − Q(w))x∥22 or its variant would suffice (Chee et al., 2024; Nagel
et al., 2020; Frantar et al., 2022; Lin et al., 2023; Kim et al., 2024).

Efficient implementation of sensitive sparse linear layers. In Appendix G, we discuss how to
efficiently implement our sensitive sparse ZO fine-tuning in forward passes of linear layers with
training and inference workflow: use Equation 18 when we have access to efficient uniform integer
matmul to compute Q(wdense)x and in other cases, we would usually use Equation 19 for token
generation and Equation 21 for ZO training.

4 EXPERIMENTS

In this section, we aim to validate the effectiveness of our SensZOQ, shown in Figure 4, as a memory-
efficient LLM fine-tuning solution. This naturally leads to comparison with other ZO methods, which
we evaluate in Section 4.1. Additionally, we assess the effectiveness of our sensitive parameter
mask derived from pre-training texts (C4) against other heuristic sparsity methods in Section 4.2.
Specifically, we aim to address the following research questions:

• RQ1: What is the performance of our SensZOQ compared with other ZO methods?
• RQ2: Is optimizing C4-gradient-derived sensitive parameters more effective than optimizing other
subset of parameters during ZO fine-tuning?

We focus on 7B-level LLM models including Llama2-7B (Touvron et al., 2023), Mistral-7B (Jiang
et al., 2023), and OPT-6.7B (Zhang et al., 2022) as they would fit with common on-device memory
constraints (8 GiB) listed on Table 11 after applying quantization. We use SST-2 (Socher et al.,
2013), RTE (Wang et al., 2018), CB (De Marneffe et al., 2019), BoolQ (Clark et al., 2019), WSC
(Levesque et al., 2012), WiC (Pilehvar & Camacho-Collados, 2019), COPA (Roemmele et al., 2011),
WinoGrande (WinoG) (Sakaguchi et al., 2020), and WikiText-2 (Wiki2) (Merity et al., 2017) datasets.
We follow standard ZO fine-tuning settings and use the same codebase as in Malladi et al. (2023a).
More details of our experiments (hyperparameters, task-specific prompts, etc.) are in Appendix I.

We include additional results for Llama2-13B and OPT-13B, and harder tasks such as commonsense
reasoning, math reasoning, and MMLU in Appendix D. To the best of our knowledge, there are no
ZO-LLM research yet evaluated on harder commonsense reasoning or math tasks. We take a
pioneering step in this direction and establish the ZO baselines. In addition, we investigate the
empirical training convergence w.r.t. optimization steps for OPT-13B in Appendix E.

4.1 ON-DEVICE PERSONALIZATION

We evaluate the performance of our SensZOQ method in Table 1. We follow the exact recipe as
described Figure 4, where we only optimize 0.1% sensitive parameters derived from a small batch of
C4 texts on top of a 4-bit quantized model. SensZOQ’s results are shown as 1st row for each subtable.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Fine-tuning performance of different methods. In the first column, “Q” means the full model
is quantized with 4-bit quantization method (SqueezeLLM (Kim et al., 2024)), and “ZO-SGD” means
the model is fine-tuned with ZO-SGD optimizer. For each cell, we report the mean and standard
deviation of test set accuracy (↑) of 3 random trials in the format of meanstd, except that we report test
set perplexity (↓) for Wiki2. We finally report the average performance rank (Wiki2 included) and
average accuracy (Wiki2 excluded) in the last 2 columns. Notice that we add the results for FO-SGD
& FO-Adam for reference and we do not use it for performance rank computation.

(a) Llama2-7B

Methods SST-2 RTE CB BoolQ WSC WiC COPA WinoG Wiki2 Rank↓ Acc↑

Q, ZO-SGD SensZOQ 94.70.4 74.71.2 66.72.2 83.00.5 57.43.9 65.20.9 85.02.2 65.70.7 5.39.005 1.9 74.1
LoRA 93.80.6 64.71.1 64.94.7 79.71.1 61.52.1 59.80.1 85.70.5 63.80.6 5.42.004 3.4 71.7
Prefix 80.54.3 65.51.2 63.13.0 80.30.2 54.511.4 58.31.3 82.00.8 62.60.5 5.74.016 4.6 68.4

ZO-SGD Full FT 94.60.5 73.35.1 66.70.8 81.90.8 58.04.3 61.90.2 82.71.7 63.10.4 5.42.002 2.8 72.2

Zero-shot 89.00.0 57.80.0 32.10.0 69.90.2 50.20.0 36.50.0 79.00.0 64.80.6 5.48.000 5.4 59.9
ICL 94.80.2 71.54.3 72.615.2 77.54.6 53.21.1 61.14.3 87.02.2 67.51.3 NA 2.5 73.2

FO-SGD Full FT 95.40.3 84.10.9 73.20.0 85.11.2 62.80.5 72.01.8 85.31.2 71.11.7 78.6
FO-Adam Full FT 96.00.4 85.10.3 86.99.9 85.50.7 57.73.6 71.80.4 87.70.5 79.21.0 4.83.000 81.2

(b) Mistral-7B

Q, ZO-SGD SensZOQ 94.00.3 78.00.6 70.22.2 75.12.4 59.64.9 63.60.7 88.31.2 74.10.5 5.24.002 1.7 75.4
LoRA 94.00.4 65.31.3 64.94.5 70.33.7 60.93.7 61.10.4 88.30.5 71.21.2 5.27.004 2.9 72.0
Prefix 86.92.1 57.31.4 63.75.9 62.20.9 60.34.6 49.00.3 81.31.7 64.21.3 5.44.003 4.0 65.6

ZO-SGD Full FT 94.60.1 74.62.1 68.86.2 76.60.2 54.86.2 62.60.5 88.30.5 72.20.5 5.23.004 2.1 74.1

Zero-shot 54.80.0 50.50.0 37.50.0 43.41.8 50.80.0 39.40.0 78.00.0 66.20.1 5.25.000 5.0 52.6
ICL 60.716.7 55.24.7 33.313.1 46.86.5 50.40.6 63.80.9 88.70.5 74.00.8 NA 3.9 59.1

FO-SGD Full FT 94.90.6 87.61.2 85.73.9 86.10.7 62.50.0 70.80.6 88.31.7 82.11.1 82.3
FO-Adam Full FT 95.10.2 86.40.7 88.13.4 83.11.5 64.77.3 72.72.9 82.71.7 85.90.3 4.81.013 82.3

(c) OPT-6.7B

Q, ZO-SGD SensZOQ 94.90.5 72.83.6 83.35.1 73.90.7 59.35.3 62.02.0 84.01.4 65.00.8 9.82.009 1.1 74.4
LoRA 94.20.2 69.61.6 69.01.7 69.62.0 57.19.1 57.20.8 83.02.2 63.10.4 9.90.000 3.4 70.4
Prefix 93.30.4 71.21.0 72.01.7 68.92.8 62.52.4 59.40.5 80.02.4 63.71.1 9.92.033 3.3 71.4

ZO-SGD Full FT 94.40.3 72.71.2 79.83.0 72.11.2 57.44.6 60.20.9 82.32.6 64.60.3 9.88.009 2.2 72.9

Zero-shot 61.00.0 60.70.0 46.40.0 55.71.0 55.50.0 36.50.0 77.00.0 61.10.3 10.88.000 5.8 56.7
ICL 74.014.6 65.811.2 54.85.9 67.92.1 53.21.7 41.04.5 80.72.9 61.50.8 NA 5.0 62.4

FO-SGD Full FT 95.20.3 81.80.9 92.33.0 79.21.3 59.07.7 66.52.3 85.70.9 68.80.6 78.6
FO-Adam Full FT 95.70.2 81.12.6 83.93.9 81.10.7 56.17.9 66.50.5 81.31.2 66.40.8 8.51.000 76.5

Comparison with ICL & ZO Full FT. The results of in-context learning (ICL) and ZO full fine-
tuning (ZO Full FT) on 16-bit models are shown as the 4th and 5th row for each substable in Table 1.
7B models are usually not large enough such that ICL would outperform with FT (Liu et al., 2022;
Mosbach et al., 2023). In addition, ICL induces additional KV-cache memory burden if the number
of demonstration examples are large or demonstration texts are long. Our method SensZOQ does
not induce significant inference latency and memory burden as it only needs to use 0.1% parameters.
SensZOQ also outperform ICL and ZO Full FT. This is impressive give that quantization would
degrade performance of the base model for SensZOQ, but SensZOQ still manages to match the
fine-tuning performance of 16-bit model.

Comparison with ZO PEFT methods. The primary purpose of quantization is to represent
parameters in less bits (therefore reducing model sizes) and improve system-level metrics such as
weight loading time and inference latency (Dettmers et al., 2022; Chee et al., 2024). In order to
retain such benefits during fine-tuning stage, our fine-tuning methods should be parameter-efficient.
A natural baseline becomes fine-tuning PEFT methods such as LoRA (Hu et al., 2021) and Prefix
Tuning (Li & Liang, 2021) on top of the same quantized LLM weights as SensZOQ. These results are
shown as the 2nd and 3rd row for each substable in Table 1. SensZOQ still outperforms both LoRA
and Prefix Tuning when applied to the same 4-bit quantized base model.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Comparison with Adam Full FT of smaller size model. The memory-efficiency of ZO is achieved
via cheap queries in the loss landscape with random perturbation. The absence of accurate descent
direction naturally leads an inferior performance than first-order (FO) full FT on the same model size,
as also observed by Malladi et al. (2023a). However, we argue that such performance degradation
is still acceptable in terms that ZO FT on larger models outperform FO FT on smaller models. In
Table 2, we pick 2 popular LLM sizes (1B and 7B scale) and we find that applying SensZOQ on
6.7B OPT model generally outperforms FO-Adam full FT on 1.3B OPT model, and the later already
surpasses the 8 GiB memory budget (e.g., 11.6 GiB on RTE compared to SensZOQ’s 5.2 GiB).

Table 2: Fine-tuning performance of SensZOQ versus Adam FT of smaller model in the OPT family.
We follow the same experiment procedure as in Table 1.

Params Methods SST-2 RTE CB BoolQ WSC WiC COPA WinoG Wiki2 Rank↓ Acc↑

4-bit

ZO-SGD
6.7B SensZOQ 94.90.5 72.83.6 83.35.1 73.90.7 59.35.3 62.02.0 84.01.4 65.00.8 9.82.009 1.3 74.4

16-bit

ZO-SGD
6.7B Full FT 94.40.3 72.71.2 79.83.0 72.11.2 57.44.6 60.20.9 82.32.6 64.60.3 9.88.009 2.4 72.9

16-bit

FO-Adam
1.3B Full FT 93.60.5 73.92.4 75.03.9 73.81.0 61.91.2 62.41.5 76.71.2 60.80.6 10.75.000 2.2 72.3

10−5 10−4 10−3 10−2 10−1 100

Ratio to optimize

60

65

70

75

A
cc

ur
ac

y

RTE

10−5 10−4 10−3 10−2 10−1 100

Ratio to optimize

55.0

57.5

60.0

62.5

65.0

WiC

10−5 10−4 10−3 10−2 10−1 100

Ratio to optimize

80

82

84

86

COPA

10−5 10−4 10−3 10−2 10−1 100

Ratio to optimize

65.0

67.5

70.0

72.5

75.0

77.5 100 × sparser

Average

Sensitive (C4 grad, static)
Weights (largest, static)
Weights (smallest, static)
GraSP (static)
Random (static)
Full fine-tuning

(a) Static transferability performance of different sparsity masks. “static” means that we will determine the
trainable parameters (sparsity mask) before fine-tuning and other parameters are kept unchanged.

10−5 10−4 10−3 10−2 10−1 100

Ratio to optimize

55

60

65

70

75

A
cc

ur
ac

y

RTE

10−5 10−4 10−3 10−2 10−1 100

Ratio to optimize

58

60

62

64

66

WiC

10−5 10−4 10−3 10−2 10−1 100

Ratio to optimize

80

82

84

86

COPA

10−5 10−4 10−3 10−2 10−1 100

Ratio to optimize

65.0

67.5

70.0

72.5

75.0

Gap is small

Average

Sensitive (C4 grad, static)
Sensitive (task grad, static)
Sensitive (task grad, dyn.)
Random (static)
Random (dyn.)
Full fine-tuning

(b) The performance gap between sensitive parameters derived from causal LM loss in C4 datasets and gradients
from each fine-tuning task. “Static” means the parameters to optimize are determined before fine-tuning and
other parameters are kept unchanged during fine-tuning (static sparsity). “Dyn.” means the parameters to
optimize will be updated every 100 training steps (dynamic sparsity).

Figure 5: Performance of different sparsity methods in Llama2-7B ZO fine-tuning.

4.2 EFFECTIVENESS OF SPARSE ZO FINE-TUNING ON SENSITIVE PARAMETERS

Comparison with other static sparsity masks. We first investigate the performance of optimizing
our sensitive parameters versus other subsets of parameters in static sparsity regime with the 16-bit
model. We first consider standard weight-magnitude baselines as weights with largest magnitude,
weights with smallest magnitude (SparseMeZO’s sparsity patterns (Liu et al., 2024a)), and a random
subset of weights baseline. There are some other weight importance metrics in the pruning community
such as GraSP (Wang et al., 2020), and we also evaluate their performance in the static transfer
setting. We note that these pruning metrics were originally proposed for deciding which parameters
to retain instead of being removed during pruning, and it has no direct implications for ZO FT. Given
a threshold vector τ , the formal definitions of all methods are listed as below:

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

• sensitive parameters with C4 gradients: m = |∇f(wbefore FT; (xC4, yC4))| ≥ τ
• random subsets: m = random_dim_d_vector_with_k_nnz(d, k)
• weights with largest magnitude: m = |wbefore FT| ≥ τ
• weights with smallest magnitude: m = |wbefore FT| ≤ τ
• smallest GraSP scores: m = −wbefore FT ⊙ E(x,y)∼DH(wbefore FT)∇wf(wbefore FT) ≤ τ

As illustrated in Figure 5a, we can find that ZO fine-tuning would benefit from sparse optimization,
as all methods would achieve higher than ZO full fine-tuning when optimizing 10% parameters.
However, only sensitive parameters would maintain its performance as we move to the extreme
sparsity region (<1%). In fact, the performance curve of sensitive parameters w.r.t. different sparsity
levels is near a flat curve, which indicates the performance loss by moving from 10% to 0.1%
is minimal. We also find that optimizing weights with smallest magnitude is more effectively
than optimizing weights with largest magnitude, which aligns with Liu et al. (2024a)’s findings.
However, sensitive parameters is still more effective for optimizing weights with smallest magnitude.
This suggests that sensitive parameters are more effective to serve as the sparse parameters in our
SensZOQ instead of SparseMeZO’s weights with smallest magnitude.

Transferability of SensZOQ’s sparsity masks. SensZOQ uses C4 gradients to produce a transfer-
able static mask used in downstream tasks. In Figure 5b, we compare the performance of optimizing
sensitive parameters with gradients on C4 dataset with its theoretical upper bound: static sensitive
parameters derived from gradients on each fine-tuning task as the solid line and its dynamic version as
the dash-dotted line. We also include the static and dynamic random subset parameters as a baseline.
We can find that the gap of sensitive parameters between deriving from gradients on C4 dataset and
gradients on each fine-tuning task at ratio 1e-3 is small. Together with Figure 11 that we evaluate the
top gradient entries similarity between C4 and downstream tasks, we believe SensZOQ’s sensitive
masks from C4 gradients would yield satisfactory performance in general.

5 RELATED WORKS

Zeroth-order fine-tuning of LLMs. Since MeZO (Malladi et al., 2023a) first demonstrates
the effectiveness of ZO for LLM fine-tuning, ZO has attracted great research interests from the
LLM community in different aspects. For example, ZO is effective for edge device fine-tuning in
communication-constrained and federated settings (Ling et al., 2024; Zhang et al., 2024a; Tang et al.,
2024; Liu et al., 2024b). Notably, Zelikman et al. (2023) illustrate the possibility of exchanging
single-byte projected gradients in distributed zeroth-order workloads, yielding both communication
and privacy benefits. Numerous research has also focused on enhancing the optimizer aspect of zeroth-
order optimization (Jiang et al., 2024; Pang & Zhou, 2024; Gautam et al., 2024). Other researchers are
also interested in improving ZO’s efficiency or convergence rate from cleverer optimizer designs. Li
et al. (2024b) explore the middle ground between small-batched FO-SGD and large-batched ZO-SGD
to balance the convergence speed and memory footprints. Liu et al. (2024a) and Zhang et al. (2024b)
suggest that sparsity would potentially accelerate ZO optimization convergence. Zhao et al. (2024)
precondition ZO perturbation with knowledge from parameter-wise loss curvature heterogeneity to
gain convergence speedup. To tbe best of our knowledge, Liu et al. (2024a) is the only ZO fine-tuning
with sparsity (smallest weight magnitude mask) work at this moment, and we have ablated on its
static extreme sparsity performance in Figure 5a.

6 CONCLUSION

In this work, we identify that only a small portion of LLM parameters needs to be updated during ZO
fine-tuning, and these static and sparse subset parameters can be derived during the pre-training phase
and transferred across various downstream tasks without requiring any modifications, preserving effi-
cient ZO performance. We propose SensZOQ, a workflow that integrates sparse ZO optimization with
4-bit quantization to further enhance the memory efficiency of on-device fine-tuning. SensZOQ lever-
ages static sparse fine-tuning to enable the personalization of 7B LLMs on-device, reducing memory
consumption to less than 8 GiB of CUDA memory. Despite this efficiency, SensZOQ achieves better
performance than both in-context learning (ICL) and full ZO fine-tuning. Therefore, SensZOQ creates
a new venue to facilitate on-device fine-tuning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization of
large language models with guarantees. Advances in Neural Information Processing Systems, 36,
2024.

Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer, Jiancheng Liu, Konstantinos
Parasyris, Yihua Zhang, Zheng Zhang, Bhavya Kailkhura, and Sijia Liu. Deepzero: Scaling
up zeroth-order optimization for deep model training. In International Conference on Learning
Representations, 2024. doi: 10.48550/arXiv.2310.02025.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang,
and Nazli Goharian. A discourse-aware attention model for abstractive summarization of long
documents. Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), 2018.
doi: 10.18653/v1/n18-2097. URL http://dx.doi.org/10.18653/v1/n18-2097.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Marie-Catherine De Marneffe, Mandy Simons, and Judith Tonhauser. The commitmentbank: Inves-
tigating projection in naturally occurring discourse. In Proceedings of Sinn und Bedeutung, pp.
107–124, 2019.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
(eds.), Advances in Neural Information Processing Systems, volume 36, pp. 10088–10115. Curran
Associates, Inc., 2023.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019. doi: 10.48550/arXiv.
1803.03635.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Tanmay Gautam, Youngsuk Park, Hao Zhou, Parameswaran Raman, and Wooseok Ha. Variance-
reduced zeroth-order methods for fine-tuning language models, 2024.

In Gim and JeongGil Ko. Memory-efficient dnn training on mobile devices. In Proceedings of the
20th Annual International Conference on Mobile Systems, Applications and Services, pp. 464–476,
2022.

Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. Lq-lora: Low-rank plus quantized matrix
decomposition for efficient language model finetuning. In The Twelfth International Conference
on Learning Representations, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021.

11

http://dx.doi.org/10.18653/v1/n18-2097

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning of large
language models. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 5254–5276, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Shuoran Jiang, Qingcai Chen, Youcheng Pan, Yang Xiang, Yukang Lin, Xiangping Wu, Chuanyi
Liu, and Xiaobao Song. Zo-adamu optimizer: Adapting perturbation by the momentum and
uncertainty in zeroth-order optimization. Proceedings of the AAAI Conference on Artificial
Intelligence, 38(16):18363–18371, Mar. 2024. doi: 10.1609/aaai.v38i16.29796. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/29796.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Sehoon Kim, Coleman Richard Charles Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen,
Michael W Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. In Forty-first
International Conference on Machine Learning, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015. doi: 10.48550/arXiv.1412.6980.

Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In
Thirteenth international conference on the principles of knowledge representation and reasoning,
2012.

Luchang Li, Sheng Qian, Jie Lu, Lunxi Yuan, Rui Wang, and Qin Xie. Transformer-lite:
High-efficiency deployment of large language models on mobile phone gpus. arXiv preprint
arXiv:2403.20041, 2024a.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Zeman Li, Xinwei Zhang, and Meisam Razaviyayn. Addax: Memory-efficient fine-tuning of language
models with a combination of forward-backward and forward-only passes. In 5th Workshop on
practical ML for limited/low resource settings, 2024b.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
aware weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978,
2023.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word problems. ACL, 2017.

Zhenqing Ling, Daoyuan Chen, Liuyi Yao, Yaliang Li, and Ying Shen. On the convergence of
zeroth-order federated tuning for large language models. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD ’24, pp. 1827–1838, New York, NY,
USA, 2024. Association for Computing Machinery. ISBN 9798400704901. doi: 10.1145/3637528.
3671865. URL https://doi.org/10.1145/3637528.3671865.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

12

https://ojs.aaai.org/index.php/AAAI/article/view/29796
https://ojs.aaai.org/index.php/AAAI/article/view/29796
https://doi.org/10.1145/3637528.3671865

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K
Varshney. A primer on zeroth-order optimization in signal processing and machine learning:
Principals, recent advances, and applications. IEEE Signal Processing Magazine, 37(5):43–54,
2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Sparse mezo: Less
parameters for better performance in zeroth-order llm fine-tuning. arXiv preprint arXiv:2402.15751,
2024a.

Z Liu, J Lou, W Bao, Y Hu, B Li, Z Qin, and K Ren. Differentially private zeroth-order methods
for scalable large language model finetuning. arXiv preprint arXiv:2402.07818, 2024b. URL
https://arxiv.org/abs/2402.07818.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning, pp. 22137–22176. PMLR,
2023.

Zirui Liu, Guanchu Wang, Shaochen Henry Zhong, Zhaozhuo Xu, Daochen Zha, Ruixiang Ryan
Tang, Zhimeng Stephen Jiang, Kaixiong Zhou, Vipin Chaudhary, Shuai Xu, et al. Winner-take-all
column row sampling for memory efficient adaptation of language model. Advances in Neural
Information Processing Systems, 36, 2024c.

Nattaya Mairittha, Tittaya Mairittha, and Sozo Inoue. Improving activity data collection with on-
device personalization using fine-tuning. In Adjunct Proceedings of the 2020 ACM International
Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM
International Symposium on Wearable Computers, pp. 255–260, 2020.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023a.

Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A kernel-based
view of language model fine-tuning. In International Conference on Machine Learning, pp.
23610–23641. PMLR, 2023b.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2016.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2017.

Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Dietrich Klakow, and Yanai Elazar. Few-shot fine-
tuning vs. in-context learning: A fair comparison and evaluation. arXiv preprint arXiv:2305.16938,
2023.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International Conference on Machine
Learning, pp. 7197–7206. PMLR, 2020.

Mayumi Ohta, Nathaniel Berger, Artem Sokolov, and Stefan Riezler. Sparse perturbations for
improved convergence in stochastic zeroth-order optimization. In Machine Learning, Optimization,
and Data Science: 6th International Conference, LOD 2020, Siena, Italy, July 19–23, 2020,
Revised Selected Papers, Part II 6, pp. 39–64. Springer, 2020.

Yijiang Pang and Jiayu Zhou. Stochastic two points method for deep model zeroth-order optimization.
arXiv preprint arXiv:2402.01621, 2024. URL https://arxiv.org/abs/2402.01621.

13

https://arxiv.org/abs/2402.07818
https://arxiv.org/abs/2402.01621

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and Sanjeev Arora. Task-specific skill localization
in fine-tuned language models. In International Conference on Machine Learning, pp. 27011–
27033. PMLR, 2023.

Gunho Park, Minsub Kim, Sungjae Lee, Jeonghoon Kim, Beomseok Kwon, Se Jung Kwon, Byeong-
wook Kim, Youngjoo Lee, Dongsoo Lee, et al. Lut-gemm: Quantized matrix multiplication
based on luts for efficient inference in large-scale generative language models. In The Twelfth
International Conference on Learning Representations, 2024.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open dataset
of high-quality mathematical web text. In The Twelfth International Conference on Learning
Representations, 2024.

Zhimin Peng, Ming Yan, and Wotao Yin. Parallel and distributed sparse optimization. In 2013
Asilomar conference on signals, systems and computers, pp. 659–646. IEEE, 2013.

Mohammad Taher Pilehvar and Jose Camacho-Collados. Wic: the word-in-context dataset for
evaluating context-sensitive meaning representations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 1267–1273, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible alternatives:
An evaluation of commonsense causal reasoning. In 2011 AAAI Spring Symposium Series, 2011.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 8732–8740, 2020.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods in natural language processing, pp.
1631–1642, 2013.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Jha, Sachin
Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas Muennighoff,
Aakanksha Naik, Crystal Nam, Matthew Peters, Abhilasha Ravichander, Kyle Richardson, Zejiang
Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Evan Walsh, Luke Zettlemoyer, Noah
Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge, and Kyle Lo. Dolma: an
open corpus of three trillion tokens for language model pretraining research. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 15725–15788, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.840.
URL https://aclanthology.org/2024.acl-long.840.

James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE transactions on automatic control, 37(3):332–341, 1992.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems, 34:24193–24205, 2021.

Zhaoxuan Tan, Qingkai Zeng, Yijun Tian, Zheyuan Liu, Bing Yin, and Meng Jiang. Democra-
tizing large language models via personalized parameter-efficient fine-tuning. arXiv preprint
arXiv:2402.04401, 2024a.

14

https://aclanthology.org/2024.acl-long.840

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Zhen Tan, Tianlong Chen, Zhenyu Zhang, and Huan Liu. Sparsity-guided holistic explanation for
llms with interpretable inference-time intervention. In Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 21619–21627, 2024b.

Xinyu Tang, Ashwinee Panda, Milad Nasr, Saeed Mahloujifar, and Prateek Mittal. Private fine-tuning
of large language models with zeroth-order optimization. arXiv preprint arXiv:2401.04343, 2024.
URL https://arxiv.org/abs/2401.04343.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pp. 353–355, 2018.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020.

Haocheng Xi, Changhao Li, Jianfei Chen, and Jun Zhu. Training transformers with 4-bit integers.
Advances in Neural Information Processing Systems, 36:49146–49168, 2023.

Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei Lin,
and Shuaiwen Leon Song. Flash-llm: Enabling cost-effective and highly-efficient large generative
model inference with unstructured sparsity. In Proceedings of the VLDB Endowment, Vol. 17, No.
2, 2023. doi: 10.14778/3626292.3626303.

Mengwei Xu, Feng Qian, Qiaozhu Mei, Kang Huang, and Xuanzhe Liu. Deeptype: On-device deep
learning for input personalization service with minimal privacy concern. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(4):1–26, 2018.

Xinyu Yang, Jixuan Leng, Geyang Guo, Jiawei Zhao, Ryumei Nakada, Linjun Zhang, Huaxiu Yao,
and Beidi Chen. s2ft: Efficient, scalable and generalizable llm fine-tuning by structured sparsity.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Eric Zelikman, Qian Huang, Percy Liang, Nick Haber, and Noah D. Goodman. Just one byte
(per gradient): A note on low-bandwidth decentralized language model finetuning using shared
randomness. arXiv preprint arXiv:2306.10015, 2023. URL https://arxiv.org/abs/
2306.10015.

Liang Zhang, Bingcong Li, Kiran Koshy Thekumparampil, Sewoong Oh, and Niao He. Dpzero:
Private fine-tuning of language models without backpropagation. arXiv preprint arXiv:2310.09639,
2024a. URL https://arxiv.org/abs/2310.09639.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D Lee, Wotao Yin, Mingyi Hong, et al. Revisiting zeroth-order optimization for
memory-efficient llm fine-tuning: A benchmark. arXiv preprint arXiv:2402.11592, 2024b.

Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor W Tsang. Second-order
fine-tuning without pain for llms: A hessian informed zeroth-order optimizer. arXiv preprint
arXiv:2402.15173, 2024.

Shaochen Zhong, Guanqun Zhang, Ningjia Huang, and Shuai Xu. Revisit kernel pruning with lottery
regulated grouped convolutions. In International Conference on Learning Representations, 2021.

Shaochen Henry Zhong, Zaichuan You, Jiamu Zhang, Sebastian Zhao, Zachary LeClaire, Zirui
Liu, Daochen Zha, Vipin Chaudhary, Shuai Xu, and Xia Hu. One less reason for filter pruning:
Gaining free adversarial robustness with structured grouped kernel pruning. Advances in Neural
Information Processing Systems, 36, 2024.

15

https://arxiv.org/abs/2401.04343
https://arxiv.org/abs/2306.10015
https://arxiv.org/abs/2306.10015
https://arxiv.org/abs/2310.09639

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Ligeng Zhu, Lanxiang Hu, Ji Lin, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song Han.
Pockengine: Sparse and efficient fine-tuning in a pocket. In Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 1381–1394, 2023.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

APPENDIX

In Section A, we discuss some related works of sparsity techniques in LLM. In Section B we describe
all notations used in this paper. In Section C, we include the assumptions and exact proof on the
convergence rate (Theorem 1). In Section D, we include experiment results on OPT-13B and Llama2-
13B. We also take a pioneering move to investigate the effectiveness of SensZOQ and ZO methods in
commonsense reasoning, Math, and MMLU tasks. In Section E, we investigate the empirical training
convergence w.r.t. optimization steps for OPT-13B. In Section F, we inspect the appearance of
sensitive parameters across models and tasks. We also investigate the effects of different data sources
that would produce different sensitive masks. In Section G, we provide a high-level recommendation
on how to efficiently implement our sensitive sparse ZO fine-tuning in forward passes of linear layers
with existing quantization methods or training / inference workflow. In Section H, we investigate the
wall-clock time efficiency of our static sparse ZO fine-tuning formulation. In Section I, we describe
miscellaneous details (hyperparameters, task templates, hardware config, etc.) in our experiments.

A RELATED WORKS OF SPARSITY IN LLM

Sparsity-driven techniques are widely adopted in improving ML model’s efficiency (Tan et al., 2024b;
Xia et al., 2023; Liu et al., 2023; Peng et al., 2013; Frankle & Carbin, 2019) and robustness (Zhong
et al., 2024; 2021). Frankle & Carbin (2019) show that within large feed-forward networks, there
exists a subnetwork that, when trained in isolation, can achieve test accuracy comparable to that of the
original network. In the foundation models era, Liu et al. (2023) demonstrate that transformer-based
models, such as OPT (Zhang et al., 2022), exhibit great sparsity (≥ 95%) in activations. Moreover,
Panigrahi et al. (2023) discover that for RoBERTa (Liu et al., 2019), fine-tuning a very small subset
of parameters (∼ 0.01%) can yield performance exceeding 95% of that achieved by full fine-tuning.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B NOTATIONS

We present the notations used in this work as follows.

Table 3: Notations used in this paper

Term/Symbol Explanation
f loss function
t optimization timestep t

d number of model parameters
dlayer number of parameters in one linear layer. This means the number of rows times

the number of columns in each linear layer.

(xt, yt) a data example sampled at timestep t as a pair of input vector and training target

wt ∈ Rd weight/parameter vector at optimization timestep t

f(w; (x, y)) training loss of w evaluated at a single data example (x, y)

F(w) full-batched training loss of w

H(w; (x, y)) Hessian matrix of w evaluated at (x, y)
ϵ a small perturbation scaling constant (close to 0)

zt ∈ Rd random Gaussian perturbation vector sampled at timestep t

ĝ(w, (x, y), z) estimated ZO surrogate gradient for w with a data example (x, y) and a sampled
Gaussian perturbation vector z (Definition 1)

ηt learning rate for ZO-SGD optimizer (Definition 2) at timestep t

mk ∈ {0, 1}d a sensitive sparse mask with k nonzero entries (Definition 3)

mk,t ∈ {0, 1}d a sensitive sparse mask with k nonzero entries derived at optimization timestep t

Id Identity matrix with shape Rd×d

Ĩd,mk Ĩd,mk is equal to the identity matrix Id with the main diagonal masked by mk

1d a vector of size d with all entries equal to 1
Tr trace operation

Q(w) parameter vector w that is quantized by Q

F (true) Fisher information matrix

F̂ empirical Fisher information matrix
pLLM LLM as a probabilistic model
pD true data distribution
L Lipschitz constant in Assumption 2
µ PL condition number in Assumption 3

σ2 stochastic gradient error term in Assumption 1
WQ the query weight matrix Q in attention layers
WK the key weight matrix K in attention layers
WV the value weight matrix V in attention layers
WO linear weight matrix for the output embedding matrix O in attention layers
WGate the gated unit layer in SwiGLU for Llama architecture
WUp the up projection weight layer in SwiGLU for Llama architecture
WDown the down projection weight layer in SwiGLU for Llama architecture

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C THEORETICAL CONVERGENCE RATE

C.1 ASSUMPTIONS

We start with listing standard assumptions in nonconvex optimization literature:

Assumption 1 (Bounded stochastic gradient errors). For any data example (x, y) ∈ D and for
any w ∈ Rd, denote the full-batched loss function F(w) = E(x,y)∈Df(w; (x, y)), we have

∥∇wf(w; (x, y))−∇wF(w)∥2 ≤ σ2. (9)

Assumption 2 (Lipschitz smoothness). We assume that f(w,x) is L-Lipschitz smooth (L > 0): for
any w,w′ ∈ Rd,

∥∇wf(w; (x, y))−∇wf(w′; (x, y))∥ ≤ L∥w −w′∥. (10)

Assumption 3 (PL inequality). We assume that F(w) fulfills the Polyak-Lojasiewicz (PL) condition:
there exists some µ > 0, for any w ∈ Rd

1

2
∥∇wF(w)∥2 ≥ µ(F(w)−F∗), F∗ is the minimum value F∗ = inf

w
F(w). (11)

Inspired by Figure 7, we would assume the sensitive parameters of w are sparse.

Assumption 4 (Sensitive parameters are sparse). We assume at timestep t ∃mt ∈ {0, 1}d with the
number of nonzero entries as k, ∃c ∈ [0, 1] such that

∥mt ⊙∇wf(wt; (xt, yt))∥2 = c∥∇wf(wt; (xt, yt))∥2.
Here we assume c ≫ k/d. 5

C.2 PROOF FOR EQUATION 5, THEOREM 1

We will start with formulating the expectation of sensitive sparse ZO surrogate gradient norm square
in terms of its corresponding stochastic gradient norm square.

Lemma 1 (Sensitive sparse ZO surrogate gradient norm square).

Ez̄[∥ĝ(wt, (xt, yt), z̄t)∥2] = (2 + k)c∥∇wf(w, (xt, yt))∥2

Proof for Lemma 1. We know that our z̄ can be considered as being sampled from N (0, Ĩd,mk
)

where Ĩd,mk
is the identity matrix Id with the main diagonal masked by mk.

We expand the sensitive sparse ZO surrogate gradient covariance matrix as follows:

Ez̄ĝ(w, (x, y), z̄)ĝ(w, (x, y), z̄)⊤

= Ez̄i
[z̄iz̄

⊤
i

(
(mk ⊙∇wf(w; (x, y)))(mk ⊙∇wf(w; (x, y)))⊤

)
z̄iz̄

⊤
i]

= 2
(
(mk ⊙∇wf(w; (x, y)))(mk ⊙∇wf(w; (x, y)))⊤

)
+ ∥mk ⊙∇wf(w; (x, y))∥2Ĩd,mk

Then the sensitive sparse ZO surrogate gradient norm square is the square of the diagonal of its
corresponding covariance matrix:

Ez̄[∥ĝ(wt,xt, z̄t)∥2] = diag
(
Ez̄ĝ(w, (x, y), z̄)ĝ(w, (x, y), y), z̄)⊤

)2
= 2c∥∇wf(w, (xt, yt))∥2 + kc∥∇wf(w, (xt, yt))∥2

= (2 + k)c∥∇wf(w, (xt, yt))∥2

Then we are in good shape of deriving the convergence rate under the Lipschitz smoothness condition:

5From Figure 7, we know that for c ∼ 0.5, we only need k/d ∼ 0.001. In this case k/c ∼ 0.002d.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proof for Equation 5, Theorem 1.

f(wt+1,xt) ≤ f(wt; (xt, yt)) + ⟨∇f(wt; (xt, yt)),wt+1 −wt⟩+
L

2
∥wt+1 −wt∥2

≤ f(wt; (xt, yt))− ηt⟨∇f(wt; (xt, yt)), ĝ(wt,xt, z̄t)⟩+
Lη2t
2

∥ĝ(wt,xt, z̄t)∥2

Ez̄f(wt+1,xt) ≤ Ez̄f(wt; (xt, yt))− ηtEz̄∥mk,t ⊙∇f(wt; (xt, yt))∥2 +
Lη2t
2

Ez̄∥ĝ(wt,xt, z̄)∥2

Ez̄f(wt+1,xt) ≤ Ez̄f(wt; (xt, yt))− cηtEz̄∥∇f(wt; (xt, yt))∥2 +
Lη2t
2

c(k + 2)Ez̄∥∇wf(wt; (xt, yt))∥2

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y){F(wt)− cηt∥∇wF(wt)∥2 + cσ2ηt +
Lη2t
2

c(k + 2)∥∇wF(wt)∥2 +
Lη2t
2

c(k + 2)σ2}

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y){F(wt)−
(
cηt −

Lη2t
2

c(k + 2)

)
∥∇wF(wt)∥2 +

(
cσ2ηt +

Lη2t
2

c(k + 2)σ2

)
}

Denote α = Lc(k + 2), we will have

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y){F(wt)− ηt

(
c− α

2
ηt

)
∥∇wF(wt)∥2 +

(
cσ2ηt +

α

2
σ2η2t

)
}

Set ηt <
c

α
=

1

L(k + 2)
, we have

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y){F(wt)−
cηt
2

∥∇F(wt)∥2 +
(
cσ2ηt +

α

2
σ2η2t

)
}

If we apply our sparse ZO update rule recursively for T steps,

1

T

T−1∑
t=0

Ez̄,(x,y)∥∇wF(wt)∥2 ≤ 2α

Tc2
(F(w0)−F∗) +

1

T

T−1∑
t=0

(
cσ2ηt +

α

2
σ2η2t

)
cηt
2

≤ 2α

Tc2
(F(w0)−F∗) + (2σ2 + σ2)

≤ 2L(k + 2)

c

1

T
(F(w0)−F∗) + 3σ2

≤ O

(
k

c
· L
T

)
(F(w0)−F∗) + 3σ2

C.3 PROOF FOR EQUATION 6, THEOREM 1

We can derive a convergence rate of sensitive sparse ZO-SGD optimization method under PL
inequality and Lipschitz-smoothness as follows (this proof resumes from our prior proof with the
Lipschitz-smoothness condition alone):

Proof for Equation 6, Theorem 1. Denote κ as the condition number κ =
µ

L
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y){F(wt)−
cηt
2

∥∇F(wt)∥2 +
(
cσ2ηt +

α

2
σ2η2t

)
}

≤ Ez̄,(x,y){F(wt)− cµηt(F(wt)−F∗) +
(
cσ2ηt +

α

2
σ2η2t

)
}

Ez̄,(x,y){F(wt+1)−F∗} ≤ Ez̄,(x,y){(F(wt)−F∗)− cµηt(F(wt)−F∗) +
(
cσ2ηt +

α

2
σ2η2t

)
}

Ez̄,(x,y){F(wt+1)−F∗} ≤ Ez̄,(x,y){(F(wt)−F∗)− cµηt(F(wt)−F∗) +
(
cσ2ηt +

α

2
σ2η2t

)
}

Plugging in ηt ≤
c

α
and applying recursively for T iterations.

Ez̄,(x,y){F(wT)−F∗} ≤ (1− cκ

(k + 2)
)T (F(w0)−F∗) +

3σ2c2

2α

≤ (1− cκ

(k + 2)
)T (F(w0)−F∗) +

3σ2c

2L(k + 2)

≤
(
1−O

(µ

L
· c
k

))T

(F(w0)−F∗) +
3σ2c

2L(k + 2)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D MORE EXPERIMENT RESULTS

13B model results. In Table 4, we compare SensZOQ vs. ZO full FT & ICL in 2 popular 13B
models: Llama2-13B and OPT-13B. SensZOQ still maintains its superior performance over both ICL
and ZO Full FT. In the last row of OPT-13B (Table 4b), we ablate on the effect of 4-bit SqueezeLLM
quantization and as expected, the average test accuracy will increase a little but not too much (∼0.1)
after we remove the quantization on the dense weight parts.

Table 4: Fine-tuning performance of different methods. In the first column, “Q” means the full model
is quantized with 4-bit quantization method (SqueezeLLM (Kim et al., 2024)), and “ZO” means
the model is fine-tuned with ZO-SGD optimizer. For each cell, we report the mean and standard
deviation of test set accuracy (↑) of 3 random trials in the format of meanstd. We finally report the
average accuracy across tasks in the last column.

(a) Llama2-13B

Methods SST-2 RTE CB BoolQ WSC WiC COPA WinoG Avg

Q, ZO SensZOQ 94.80.4 76.52.9 86.32.2 80.71.1 56.71.6 58.02.4 88.70.9 72.91.3 76.8

ZO Full FT 95.00.2 74.41.0 85.71.5 80.50.4 54.84.7 60.91.4 90.70.5 70.50.2 76.6

Zero-shot 30.40.0 50.90.0 44.60.0 57.01.2 41.30.0 50.80.0 83.00.0 65.20.4 52.9
ICL 38.84.8 51.41.9 22.66.1 59.93.0 36.50.0 52.10.9 88.71.7 71.00.5 52.6

(b) OPT-13B

Q, ZO SensZOQ 93.80.4 76.71.6 65.51.7 72.80.6 59.90.5 59.91.4 88.71.2 63.70.4 72.6

ZO Full FT 93.90.5 74.01.0 67.92.5 72.40.3 61.52.4 58.62.3 87.01.4 63.31.3 72.3

Zero-shot 61.00.0 58.50.0 48.20.0 59.80.1 36.50.0 52.00.0 80.00.0 60.70.2 57.1
ICL 83.08.5 59.84.2 72.01.7 71.62.4 38.12.3 53.62.2 84.02.9 63.20.8 65.6

ZO Sens. (C4, static) 93.30.2 75.21.0 64.21.5 73.50.3 62.52.1 60.01.7 87.30.5 65.50.7 72.7

Commonsense reasoning, math, MMLU dataset results. In Table 5, we still compare Sen-
sZOQ vs. ZO full FT & ICL in standard commonsense benchmarks (Hu et al., 2023; Yang et al.,
2024), 1 math algebraic word problem task AQuA (Ling et al., 2017), and MMLU (Hendrycks et al.,
2021). To the best of our knowledge, there are no ZO-LLM research yet evaluated on harder
commonsense reasoning or math tasks. We take a pioneering step in this direction and establish
the ZO baselines.

SensZOQ still achieves the highest average accuracy. If we compare SensZOQ with ZO full FT on
pairs, SensZOQ wins 5/8 for commonsense reasoning, and the math task. However, SensZOQ loses
in MMLU task, and we speculate this might be due to a data distribution mismatch between C4 and
education domain/expert-level QA in MMLU. In Table 6 we find switching the source of extracting
sensitive parameters from C4 to OpenWebMath or ArXiv will significantly close this gap. Even so,
C4 is still a generally good choice.

Table 5: Fine-tuning performance of different methods for Mistral-7B on 8 commonsense reasoning
tasks (cs), 1 math task (math), and MMLU task. For each cell, we report the mean and standard
deviation of test set accuracy (↑) of 3 random trials in the format of meanstd. We finally report the
average accuracy across tasks in the last column.

Methods Arc-E (cs) Arc-C (cs) HS (cs) OBQA (cs) PIQA (cs) SIQA (cs) BoolQ (cs) WinoG (cs) AQuA (math) MMLU Avg

SensZOQ 88.60.1 77.91.3 82.10.4 76.50.6 84.50.5 68.10.4 75.12.4 74.10.5 27.72.1 58.20.2 71.3

ZO Full FT 89.20.5 78.60.8 80.51.1 76.40.3 84.10.2 67.60.1 76.60.2 72.20.5 24.12.0 59.20.1 70.9

Zero-shot 86.80.0 75.90.0 77.90.8 71.00.0 82.10.3 59.90.5 43.41.8 66.20.1 23.51.9 57.50.0 64.4

ICL 90.50.2 80.02.0 80.31.4 79.80.7 84.50.9 69.91.0 46.86.5 74.00.8 26.61.1 59.20.2 69.2

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Alternative data sources for extracting sensitive parameters. C4 (Raffel et al., 2019) is cleaned
from the CommonCrawl and covers a wide range of domains, and this drives us to adopt it as the
default choice for extracting sensitive parameters. Here we evaluate the SensZOQ’s performance
when fine-tuning sensitive parameters extracted from some alternative text choices that have certain
domain specialties. As a case study, we only pick 3 alternative choices commonly selected for
pretraining dataset mixtures (e.g. Dolma (Soldaini et al., 2024)) as follows:

• OpenWebMath (Paster et al., 2024), a pile of Internet mathematical proofs. https://
huggingface.co/datasets/open-web-math/open-web-math
•ArXiv (Cohan et al., 2018), a pile of scientific papers. We use the ArXiv articles subset from this
dataset. https://huggingface.co/datasets/armanc/scientific_papers
•Wiki103 (Merity et al., 2016), a pile of selected Wikipedia articles. https://huggingface.
co/datasets/Salesforce/wikitext

Table 6: Fine-tuning performance of SensZOQ with 0.1% sensitive parameters extracted from C4,
OpenWebMath, ArXiv, and Wiki103 for Mistral-7B on 8 commonsense reasoning tasks, 1 math
task, MMLU task, and 3 SuperGLUE tasks (task category follows this order and is separated by the
vertical bar). For each cell, we report the mean accuracy (↑) over 3 random trials. In the last row,
we give ZO Full FT & ICL baselines as reference. We finally report the average accuracy across
tasks in the last column.

Source Arc-E Arc-C HS OBQA PIQA SIQA BoolQ WinoG AQuA MMLU RTE WiC COPA Avg

C4 88.6 77.9 82.1 76.5 84.5 68.1 75.1 74.1 27.7 58.2 78.0 63.6 88.3 72.5
OpenWebMath 87.8 78.5 81.8 74.1 83.7 67.2 71.5 72.2 25.2 58.8 66.7 60.8 89.0 70.6

ArXiv 87.7 77.0 82.7 75.2 84.2 68.7 69.1 72.2 25.9 58.8 70.0 59.4 89.0 70.8
Wiki103 87.8 77.9 82.0 73.0 83.9 68.6 79.7 73.2 26.4 57.6 69.2 60.9 88.7 71.5

ZO Full FT 89.2 78.6 80.5 76.4 84.1 67.6 76.6 72.2 24.1 59.2 74.6 62.6 88.3 71.8
ICL 90.5 80.0 80.3 79.8 84.5 69.9 46.8 74.0 26.6 59.2 55.2 63.8 74.0 68.0

In Table 6, we can find that when finetuning 0.1% sensitive parameters with Mistral-7B, C4 achieves
the highest average accuracy, with notable performance on commonsense QA tasks like OBQA
and PIQA, and NLU tasks like RTE and WiC. If we want better performance on education or hard
reasoning tasks like Arc-C or expert-level QA task like MMLU, OpenWebMath and ArXiv is a better
choice than C4.

We believe that C4 is not the only choice but rather a generally good choice for downstream tasks,
and this is quite important as we are using the same set of sparse parameters for different tasks and
we want it to yield satisfactory performance for as many tasks as possible. Otherwise we will have
to create a separate sparse mask and quantized models for each task and this will make our method
really unpractical.

23

https://huggingface.co/datasets/open-web-math/open-web-math
https://huggingface.co/datasets/open-web-math/open-web-math
https://huggingface.co/datasets/armanc/scientific_papers
https://huggingface.co/datasets/Salesforce/wikitext
https://huggingface.co/datasets/Salesforce/wikitext

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E EMPIRICAL CONVERGENCE OF SENSZOQ

To validate the faster convergence rate of sensitive sparse ZO-SGD proven in Theorem 1, we plot the
training loss of SensZOQ vs. ZO Full FT w.r.t. 20k optimization steps for OPT-13B fine-tuning tasks,
as shown in Figure 6. Note that the "Sensitive ZO (C4 mask, 4 bit)" is our SensZOQ method, and the
Sensitive ZO (C4 mask, 16 bit) will keep the dense weights in FP16 as it more aligns with our theory.

1. In Figure 6a, we find that an in-place learning rate transfer from ZO Full FT to SensZO-
Qcan already result in similar or faster convergence.

2. In Figure 6b, we identify that SensZOQ can tolerate higher learning rate without
divergence. For example, the best learning rates for ZO Full FT in WiC and COPA are 2e-7
(5e-7 would result in a divergence) while SensZOQ can tolerate 5e-7 and produce much
faster convergence results.

In conclusion, SensZOQ would have at least similar convergence as ZO Full FT with the same
learning rate (so a direct learning rate transfer would already yield satisfactory results), and with the
same learning rate grid search, SensZOQ can achieve much faster convergence in practice.

0 5000 10000 15000 20000

Optimization steps

0.50

0.55

0.60

0.65

Tr
ai

ni
ng

lo
ss

RTE
Sensitive ZO (C4 mask, 4 bit)
Sensitive ZO (C4 mask, 16 bit)
ZO Full FT (16 bit)

0 5000 10000 15000 20000

Optimization steps

0.67

0.68

0.69

0.70

0.71

WiC

0 5000 10000 15000 20000

Optimization steps

1.6

1.8

2.0

2.2

COPA

(a) Convergence of Sensitive ZO vs. ZO Full FT under the best learning rate for ZO Full FT only.

0 5000 10000 15000 20000

Optimization steps

0.50

0.55

0.60

0.65

Tr
ai

ni
ng

lo
ss

RTE
Sensitive ZO (C4 mask, 4 bit)
Sensitive ZO (C4 mask, 16 bit)
ZO Full FT (16 bit)

0 5000 10000 15000 20000

Optimization steps

0.66

0.68

0.70

WiC

0 5000 10000 15000 20000

Optimization steps

1.4

1.6

1.8

2.0

2.2

COPA

(b) Convergence of Sensitive ZO vs. ZO Full FT under the best learning rate for each method.

Figure 6: Convergence of SensZOQ for OPT-13B across 3 fine-tuning tasks. SensZOQ corresponds to
"Sensitive ZO (C4 mask, 4 bit)", and we also provide the convergence results of unquantized weight
(16 bit) as a reference. In Figure 6a, We first search the best learning rate for ZO Full FT that reaches
the lowest training loss in [1e-7, 2e-7, 5e-7, 1e-6] grid, and we use such learning rate for SensZOQ.
In Figure 6b, we search for the best learning rate for ZO Full FT and SensZOQ separately. The other
hyperparameters (perturbation constant ϵ and minibatch size B) are kept the same in both Figure 6a
and Figure 6b experiments.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

F SENSITIVE PARAMETERS IN LLMS UNDER MICROSCOPE

F.1 GRADIENT SPARSITY DURING LLM FINE-TUNING

SuperGLUE tasks. In Figure 2, we explore the FO gradient sparsity of Llama2-7B during fine-
tuning (at Epoch 5). Here we follow the identical setting and plot the FO-SGD gradient sparsity for
Llama2-7B, Mistral-7B, and OPT-6.7B during epoch 1, 5, and 10 (end of fine-tuning).

We observe that the gradient sparsity is exhibited throughout the fine-tuning with slightly increasing
towards the end. OPT-6.7B which uses ReLU as the activation function would demonstrate greater
sparsity across tasks compared with Llama2-7B and Mistral-7B which uses SwiGLU and SiLU
respectively. Nevertheless, the gradient sparsity pattern holds across architectures, tasks, and fine-
tuning time in general.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0.0

0.5

1.0

RTE, Epoch 1

mean ± std
0.5
0.2

RTE, Epoch 5 RTE, End of FT

0.0

0.5

1.0

WiC, Epoch1 WiC, Epoch5 WiC, End of FT

10−5 10−4 10−3 10−2 10−1 100

Ratio

0.0

0.5

1.0

COPA, Epoch 1

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA, Epoch 5

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA, End of FT

C
um

ul
at

iv
e

no
rm

al
iz

ed
su

m
of

[∇
F

(w
)]

2 i

(a) Llama2-7B

0.0

0.5

1.0

RTE, Epoch 1

mean ± std
0.5
0.2

RTE, Epoch 5 RTE, End of FT

0.0

0.5

1.0

WiC, Epoch1 WiC, Epoch5 WiC, End of FT

10−5 10−4 10−3 10−2 10−1 100

Ratio

0.0

0.5

1.0

COPA, Epoch 1

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA, Epoch 5

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA, End of FT

C
um

ul
at

iv
e

no
rm

al
iz

ed
su

m
of

[∇
F

(w
)]

2 i

(b) Mistral-7B

0.0

0.5

1.0

RTE, Epoch 1

mean ± std
0.5
0.2

RTE, Epoch 5 RTE, End of FT

0.0

0.5

1.0

WiC, Epoch1 WiC, Epoch5 WiC, End of FT

10−5 10−4 10−3 10−2 10−1 100

Ratio

0.0

0.5

1.0

COPA, Epoch 1

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA, Epoch 5

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA, End of FT

C
um

ul
at

iv
e

no
rm

al
iz

ed
su

m
of

[∇
F

(w
)]

2 i

(c) OPT-6.7B

Figure 7: Cumulative normalized sum of coordinate-wise gradient square [∇F(w)]2i of linear layers
for Llama2-7B (subfigure 7a), Mistral-7B (subfigure 7b), and OPT-6.7B (subfigure 7c) across RTE,
WiC, and COPA tasks during FO-SGD full FT for 10 epochs. For each linear layer, we first sort
parameters by the decreasing order of their gradient square value [∇F(w)]2i , i ∈ [dlayer], and we take
the cumulative sum and normalize it to draw a blue curve, and the red-shaded region is the mean ±
std of all blue curves.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0.0

0.5

1.0

Arc-C, Start of FT

mean ± std
0.5
0.2

Arc-C, Step 100 Arc-C, End of FT

0.0

0.5

1.0

HellaSwag, Start of FT HellaSwag, Step 100 HellaSwag, End of FT

0.0

0.5

1.0

PIQA, Start of FT PIQA, Step 100 PIQA, End of FT

10−5 10−4 10−3 10−2 10−1 100

Ratio

0.0

0.5

1.0

AQuA, Start of FT

10−5 10−4 10−3 10−2 10−1 100

Ratio

AQuA, Step 100

10−5 10−4 10−3 10−2 10−1 100

Ratio

AQuA, End of FT

C
um

ul
at

iv
e

no
rm

al
iz

ed
su

m
of

[∇
F

(w
)]

2 i

Figure 8: Cumulative normalized sum of coordinate-wise gradient square [∇F(w)]2i of linear layers
for Mistral-7B across Arc-C, HS, PIQA, and AQuA tasks during FO-Adam full FT for 1000 steps.

Reasoning tasks. We further analyze the sparsity of sensitive parameters for hard reasoning tasks
such as Arc-C, HellaSwag, PIQA, and math reasoning task AQuA. We follow the same methodology
that produced Figure 7b to produce Figure 8. We can see that sensitive parameters are still fairly
sparse for these 4 tasks. Specifically,

• For 3 commonsense reasoning tasks, the argument that 0.1% of parameters contribute about 50%
gradient norm still holds.
• For the math task, the sensitive parameters tend to be slightly denser, but 1% of parameters can still
cover 50% gradient norm (0.1% will cover ∼30% gradient norm).

F.2 BLOCK-WISE AND LAYER-WISE GRADIENT SPARSITY

Although this is not the main focus of this paper, we also inspect the gradient sparsity for each weight
type {WQ,WK ,WV ,WO, (WGate),WUp,WDown} and layers {1, 8, 16, 24, 32}. This might inspire
future adaptive sensitive parameter selection based on the weight type or model depth in different
transformers. The results for weight type are shown in Figure 9 and for layers are shown in Figure 10.
We order the gradient sparsity levels from top to down and get the following rankings across the
blocks and layers (the higher-ranked the sparser) as the following 2 lists.

Weight types. It is consistent across all 3 models that WV has the highest gradient sparsity and
WO has the lowest gradient sparsity.

• Llama2-7B (Figure 9a): WV > WQ ∼ WK > WGate ∼ WUp ∼ WDown > WO.
• Mistral-7B (Figure 9b): WV > WQ ∼ WK > WGate ∼ WUp ∼ WDown > WO.
• OPT-6.7B (Figure 9c): WV > WUp > WQ > WDown ∼ WK > WO.

Layer depth. For Llama2-7B and Mistral-7B, it is consistent that Layer 1 (first layer) has the
highest gradient sparsity followed by Layer 32 (last layer). The gradient sparsity for middle layers
are lower and do not show a meaningful trend. The only meaningful result for OPT-6.7B is that Layer
1 has the lowest gradient sparsity.

• Llama2-7B (Figure 10a): Layer 1 > Layer 32 ∼ Layer 24 > Layer 8 ∼ Layer 16
• Mistral-7B (Figure 10b): Layer 1 > Layer 32 > Layer 8 ∼ Layer 16 ∼ Layer 24
• OPT-6.7B (Figure 10c): Layer 8 ∼ Layer 16 > Layer 24 ∼ Layer 32 > Layer 1

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

10−5 10−4 10−3 10−2 10−1 100

Ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

no
rm

al
iz

ed
su

m
of

[∇
F

(w
)]

2 i

RTE

WQ

WK

WV

WO

WGate

WUp

WDown

0.5

10−5 10−4 10−3 10−2 10−1 100

Ratio

WiC

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA

(a) Llama2-7B

10−5 10−4 10−3 10−2 10−1 100

Ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

no
rm

al
iz

ed
su

m
of

[∇
F

(w
)]

2 i

RTE

WQ

WK

WV

WO

WGate

WUp

WDown

0.5

10−5 10−4 10−3 10−2 10−1 100

Ratio

WiC

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA

(b) Mistral-7B

10−5 10−4 10−3 10−2 10−1 100

Ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

no
rm

al
iz

ed
su

m
of

[∇
F

(w
)]

2 i

RTE

WQ

WK

WV

WO

WUp

WDown

0.5

10−5 10−4 10−3 10−2 10−1 100

Ratio

WiC

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA

(c) OPT-6.7B

Figure 9: Cumulative normalized sum of coordinate-wise [∇F(w)]2i of Llama2-7B (subfigure 9a),
Mistral-7B (subfigure 9b), and OPT-6.7B (subfigure 9c)’s weight blocks at Epoch 1 of FO-SGD full
fine-tuning. For a given model and a given weight block type, we report the average value across 32
transformer layers as a line in each subfigure.

F.3 TRANSFERABILITY OF GRADIENT FEATURES FROM PRE-TRAINING DATASETS TO
DOWNSTREAM TASKS

SuperGLUE tasks. In Figure 3, we explore the transferability of gradient features from pre-training
datasets (C4) to downstream tasks, and here we will also validate this phenomenon across models, as
shown in Figure 11. As there are no solid lines (top-(1e-2,1e-3,1e-4)) parameters with C4 gradient
entries prior to fine-tuning) vanish to 0, we know the transferability of gradient features from C4
datasets to downstream datasets hold across models and downstream tasks. As a comparison, we
also include the results of weights with largest magnitude, weights with smallest magnitude, and
random subsets in Figure 12 at 1e-3 nnz threshold (same as 1e-3 in Figure 11) for comparison. It is
clear that “C4 grad (static)” has exponentially higher similarity with “task grad (dyn.)” than all of
these 3 baselines. We also note that weights with largest magnitude (weight outliers) are usually NOT
gradient outliers as observed in Figure 12.

In this case, sensitive parameters determined from C4 gradients would still be similar to sensitive
parameters determined from downstream task-specific gradients across models.

Reasoning tasks. The transferability results for reasoning tasks are shown in Figure 13.

As there are still no solid lines (for all top-(1e-2,1e-3,1e-4) parameters with C4 mask) vanish to 0, C4
gradient mask still demonstrates great transferability to these 3 commonsense and 1 math task. For
top-1e-3 C4 gradient mask, the lowest covered gradient norm is ∼0.2, while the maximum possible
(*task grad, dyn.*) is ∼0.6 across tasks.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

10−5 10−4 10−3 10−2 10−1 100

Ratio

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

no
rm

al
iz

ed
su

m
of

[∇
F

(w
)]

2 i

RTE

Layer 1
Layer 8
Layer 16
Layer 24
Layer 32
0.5

10−5 10−4 10−3 10−2 10−1 100

Ratio

WiC

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA

(a) Llama2-7B

10−5 10−4 10−3 10−2 10−1 100

Ratio

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

no
rm

al
iz

ed
su

m
of

[∇
F

(w
)]

2 i

RTE

Layer 1
Layer 8
Layer 16
Layer 24
Layer 32
0.5

10−5 10−4 10−3 10−2 10−1 100

Ratio

WiC

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA

(b) Mistral-7B

10−5 10−4 10−3 10−2 10−1 100

Ratio

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

no
rm

al
iz

ed
su

m
of

[∇
F

(w
)]

2 i

RTE

Layer 1
Layer 8
Layer 16
Layer 24
Layer 32
0.5

10−5 10−4 10−3 10−2 10−1 100

Ratio

WiC

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA

(c) OPT-6.7B

Figure 10: Cumulative normalized sum of coordinate-wise [∇F(w)]2i of Llama2-7B (subfigure 10a),
Mistral-7B (subfigure 10b), and OPT-6.7B (subfigure 10c)’s linear weights at Epoch 1 of FO-SGD
full fine-tuning. For a given model and a given transformer layer, we report the average value across
all linear layers at this transformer layer as a line in each subfigure.

We still note that for AQuA (math algebraic word problem task), C4’s transferability is weaker than
the other 3 commonsense reasoning tasks. We speculate that this is due to the need to learn more
math-related knowledge during FT as the covered task gradient squares by task gradient mask before
FT mask (task grad, static) also declines more during FT.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Before FT
Epoch 1

Epoch 5

End of FT
0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

no
rm

al
iz

d
su

m
of

[∇
F

(w
)]

2 i RTE

10−2

10−3

10−4

task grad, dyn.
task grad, static
C4 grad, static

Before FT
Epoch 1

Epoch 5

End of FT

WiC

Before FT
Epoch 1

Epoch 5

End of FT

COPA

(a) Llama2-7B

Before FT
Epoch 1

Epoch 5

End of FT
0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

no
rm

al
iz

d
su

m
of

[∇
F

(w
)]

2 i RTE

10−2

10−3

10−4

task grad, dyn.
task grad, static
C4 grad, static

Before FT
Epoch 1

Epoch 5

End of FT

WiC

Before FT
Epoch 1

Epoch 5

End of FT

COPA

(b) Mistral-7B

Before FT
Epoch 1

Epoch 5

End of FT
0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

no
rm

al
iz

d
su

m
of

[∇
F

(w
)]

2 i RTE

10−2

10−3

10−4

task grad, dyn.
task grad, static
C4 grad, static

Before FT
Epoch 1

Epoch 5

End of FT

WiC

Before FT
Epoch 1

Epoch 5

End of FT

COPA

(c) OPT-6.7B

Figure 11: Cumulative normalized sum of coordinate-wise [∇F(w)]2i of Llama2-7B (subfigure 11a),
Mistral-7B (subfigure 11b), and OPT-6.7B (subfigure 11c)’s linear layers after applying sparsity
masks of each method during FO-SGD full fine-tuning for 10 epochs. For a given model and training
checkpoint, we report the average value across all linear layers as a line in each subfigure. For each
line, the colors represent the fraction of parameters (1e-2,1e-3,1e-4) and the line style represents the
category. “task grad, dyn.” refers to the sensitive parameters selected at the given timestep (x-axis),
and “task grad, static” refers to the sensitive parameters selected before fine-tuning. “C4 grad, static”
refers to the sensitive parameters selected with gradients taken from causal language modeling on C4
datasets, and we keep it unchanged during fine-tuning.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Before FT
Epoch 1

Epoch 5
End of FT

10−3

10−2

10−1

100

C
um

ul
at

iv
e

no
rm

al
iz

d
su

m
of

[∇
F

(w
)]

2 i

RTE

task grad (dyn.)
task grad (static)
C4 grad (static)

weights (largest, static)
weights (smallest, static)
random (static)

Before FT
Epoch 1

Epoch 5
End of FT

WiC

Before FT
Epoch 1

Epoch 5
End of FT

COPA

(a) Llama2-7B

Before FT
Epoch 1

Epoch 5
End of FT

10−3

10−2

10−1

100

C
um

ul
at

iv
e

no
rm

al
iz

d
su

m
of

[∇
F

(w
)]

2 i

RTE

task grad (dyn.)
task grad (static)
C4 grad (static)

weights (largest, static)
weights (smallest, static)
random (static)

Before FT
Epoch 1

Epoch 5
End of FT

WiC

Before FT
Epoch 1

Epoch 5
End of FT

COPA

(b) Mistral-7B

Before FT
Epoch 1

Epoch 5
End of FT

10−3

10−2

10−1

100

C
um

ul
at

iv
e

no
rm

al
iz

d
su

m
of

[∇
F

(w
)]

2 i

RTE

task grad (dyn.)
task grad (static)
C4 grad (static)

weights (largest, static)
weights (smallest, static)
random (static)

Before FT
Epoch 1

Epoch 5
End of FT

WiC

Before FT
Epoch 1

Epoch 5
End of FT

COPA

(c) OPT-6.7B

Figure 12: Cumulative normalized sum of coordinate-wise [∇F(w)]2i of Llama2-7B (subfigure 12a),
Mistral-7B (subfigure 12b), and OPT-6.7B (subfigure 12c)’s linear layers after applying 99.9%
sparsity masks of each method during FO-SGD full fine-tuning. The results of “C4 grad, static”,
“task grad, dyn.”, and “task grad, static” are the same as their 1e-3 results in Figure 11.

Before FT

Step 100

Step 500

End of FT
0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

no
rm

al
iz

d
su

m
of

[∇
F

(w
)]

2 i Arc-C
10−2

10−3

10−4

task grad, dyn.
task grad, static
C4 grad, static

Before FT

Step 100

Step 500

End of FT

HellaSwag

Before FT

Step 100

Step 500

End of FT

PIQA

Before FT

Step 100

Step 500

End of FT

AQuA

Figure 13: Cumulative normalized sum of coordinate-wise [∇F(w)]2i of Mistral-7B after applying
sparsity masks of each method during FO-Adam full FT for 1000 steps.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

F.4 OVERLAP RATIO OF TOP GRADIENT FEATURES

Besides Table 6, we dive deeper into the overlap ratio of top gradient entries from different data
sources as shown in Figure 14.

Notice that the order here maps to the column/row rank for each subfigure in Figure 14.

1. C4, SensZOQ’s choice.
2. OpenWebMath
3. ArXiv
4. Wiki103
5. Task gradient before FT (start). We abbreviate it as ∇F(wst).
6. Task gradient after 10% finetuning steps (mid). We abbreviate it as ∇F(wmid).
7. Task gradient at the end of FT (end). We abbreviate it as ∇F(wend).

We consider 7 tasks (3 commonsense reasoning tasks Arc-C, HellaSwag, PIQA, 1 math task AQuA, 3
SuperGLUE tasks RTE, WiC, COPA).

For a quick overview, we include Figure 15 as the average overlap ratio across tasks for the 4
pretraining text. The second row in Figure 15 gives an empirical evidence for the "fixed gradient
feature" during FT as the top entries in ∇F(wst) (task grad before FT) resemble ∇F(wmid) (task
grad during FT) and ∇F(wend) (task grad during FT)

Empirical findings

• The top gradient entries from all 4 pretraining text corpus still overlap considerably with the
task gradient, at least for top-0.1% entries.

• C4 generally covers more top gradient entries than OpenWebMath, ArXiv, and Wiki103.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

C4

Math

ArXiv

Wiki

∇F(wst.)

∇F(wmid)

∇F(wend)

1.000

0.267

0.217

0.283

0.041

0.054

0.020

0.267

1.000

0.118

0.149

0.031

0.046

0.017

0.217

0.118

1.000

0.331

0.018

0.033

0.011

0.283

0.149

0.331

1.000

0.035

0.061

0.016

0.041

0.031

0.018

0.035

1.000

0.178

0.072

0.054

0.046

0.033

0.061

0.178

1.000

0.209

0.020

0.017

0.011

0.016

0.072

0.209

1.000

Arc-C, Top 0.01%
1.000

0.318

0.274

0.324

0.126

0.162

0.108

0.318

1.000

0.210

0.207

0.095

0.114

0.076

0.274

0.210

1.000

0.320

0.089

0.118

0.074

0.324

0.207

0.320

1.000

0.110

0.137

0.082

0.126

0.095

0.089

0.110

1.000

0.272

0.220

0.162

0.114

0.118

0.137

0.272

1.000

0.411

0.108

0.076

0.074

0.082

0.220

0.411

1.000

Arc-C, Top 0.1%
1.000

0.357

0.311

0.307

0.195

0.219

0.184

0.357

1.000

0.213

0.187

0.131

0.145

0.128

0.311

0.213

1.000

0.311

0.119

0.132

0.120

0.307

0.187

0.311

1.000

0.127

0.142

0.121

0.195

0.131

0.119

0.127

1.000

0.294

0.298

0.219

0.145

0.132

0.142

0.294

1.000

0.452

0.184

0.128

0.120

0.121

0.298

0.452

1.000

Arc-C, Top 1%

C4

Math

ArXiv

Wiki

∇F(wst.)

∇F(wmid)

∇F(wend)

1.000

0.267

0.217

0.283

0.443

0.138

0.051

0.267

1.000

0.118

0.149

0.150

0.081

0.048

0.217

0.118

1.000

0.331

0.148

0.039

0.012

0.283

0.149

0.331

1.000

0.205

0.071

0.028

0.443

0.150

0.148

0.205

1.000

0.117

0.034

0.138

0.081

0.039

0.071

0.117

1.000

0.257

0.051

0.048

0.012

0.028

0.034

0.257

1.000

HellaSwag, Top 0.01%
1.000

0.318

0.274

0.324

0.419

0.293

0.206

0.318

1.000

0.210

0.207

0.215

0.148

0.113

0.274

0.210

1.000

0.320

0.229

0.134

0.099

0.324

0.207

0.320

1.000

0.287

0.154

0.117

0.419

0.215

0.229

0.287

1.000

0.199

0.134

0.293

0.148

0.134

0.154

0.199

1.000

0.265

0.206

0.113

0.099

0.117

0.134

0.265

1.000

HellaSwag, Top 0.1%
1.000

0.357

0.311

0.307

0.419

0.270

0.229

0.357

1.000

0.213

0.187

0.226

0.155

0.130

0.311

0.213

1.000

0.311

0.226

0.142

0.110

0.307

0.187

0.311

1.000

0.244

0.153

0.127

0.419

0.226

0.226

0.244

1.000

0.231

0.166

0.270

0.155

0.142

0.153

0.231

1.000

0.217

0.229

0.130

0.110

0.127

0.166

0.217

1.000

HellaSwag, Top 1%

C4

Math

ArXiv

Wiki

∇F(wst.)

∇F(wmid)

∇F(wend)

1.000

0.267

0.217

0.283

0.324

0.206

0.048

0.267

1.000

0.118

0.149

0.123

0.105

0.061

0.217

0.118

1.000

0.331

0.113

0.054

0.009

0.283

0.149

0.331

1.000

0.171

0.109

0.027

0.324

0.123

0.113

0.171

1.000

0.171

0.028

0.206

0.105

0.054

0.109

0.171

1.000

0.316

0.048

0.061

0.009

0.027

0.028

0.316

1.000

PIQA, Top 0.01%
1.000

0.318

0.274

0.324

0.370

0.286

0.202

0.318

1.000

0.210

0.207

0.215

0.163

0.104

0.274

0.210

1.000

0.320

0.210

0.152

0.092

0.324

0.207

0.320

1.000

0.242

0.180

0.110

0.370

0.215

0.210

0.242

1.000

0.259

0.108

0.286

0.163

0.152

0.180

0.259

1.000

0.243

0.202

0.104

0.092

0.110

0.108

0.243

1.000

PIQA, Top 0.1%
1.000

0.357

0.311

0.307

0.364

0.295

0.232

0.357

1.000

0.213

0.187

0.213

0.176

0.136

0.311

0.213

1.000

0.311

0.216

0.161

0.110

0.307

0.187

0.311

1.000

0.216

0.181

0.122

0.364

0.213

0.216

0.216

1.000

0.320

0.147

0.295

0.176

0.161

0.181

0.320

1.000

0.224

0.232

0.136

0.110

0.122

0.147

0.224

1.000

PIQA, Top 1%

C4

Math

ArXiv

Wiki

∇F(wst.)

∇F(wmid)

∇F(wend)

1.000

0.267

0.217

0.283

0.026

0.087

0.232

0.267

1.000

0.118

0.149

0.020

0.035

0.081

0.217

0.118

1.000

0.331

0.012

0.048

0.075

0.283

0.149

0.331

1.000

0.019

0.046

0.095

0.026

0.020

0.012

0.019

1.000

0.240

0.104

0.087

0.035

0.048

0.046

0.240

1.000

0.086

0.232

0.081

0.075

0.095

0.104

0.086

1.000

AQuA, Top 0.01%
1.000

0.318

0.274

0.324

0.097

0.074

0.163

0.318

1.000

0.210

0.207

0.090

0.088

0.127

0.274

0.210

1.000

0.320

0.081

0.097

0.127

0.324

0.207

0.320

1.000

0.085

0.098

0.140

0.097

0.090

0.081

0.085

1.000

0.162

0.164

0.074

0.088

0.097

0.098

0.162

1.000

0.130

0.163

0.127

0.127

0.140

0.164

0.130

1.000

AQuA, Top 0.1%
1.000

0.357

0.311

0.307

0.163

0.115

0.213

0.357

1.000

0.213

0.187

0.124

0.090

0.146

0.311

0.213

1.000

0.311

0.114

0.092

0.136

0.307

0.187

0.311

1.000

0.108

0.084

0.140

0.163

0.124

0.114

0.108

1.000

0.131

0.198

0.115

0.090

0.092

0.084

0.131

1.000

0.131

0.213

0.146

0.136

0.140

0.198

0.131

1.000

AQuA, Top 1%

C4

Math

ArXiv

Wiki

∇F(wst.)

∇F(wmid)

∇F(wend)

1.000

0.267

0.217

0.283

0.027

0.031

0.239

0.267

1.000

0.118

0.149

0.011

0.019

0.079

0.217

0.118

1.000

0.331

0.006

0.010

0.073

0.283

0.149

0.331

1.000

0.011

0.024

0.100

0.027

0.011

0.006

0.011

1.000

0.583

0.093

0.031

0.019

0.010

0.024

0.583

1.000

0.107

0.239

0.079

0.073

0.100

0.093

0.107

1.000

RTE, Top 0.01%
1.000

0.318

0.274

0.324

0.086

0.075

0.176

0.318

1.000

0.210

0.207

0.053

0.062

0.108

0.274

0.210

1.000

0.320

0.038

0.056

0.114

0.324

0.207

0.320

1.000

0.050

0.075

0.135

0.086

0.053

0.038

0.050

1.000

0.494

0.283

0.075

0.062

0.056

0.075

0.494

1.000

0.293

0.176

0.108

0.114

0.135

0.283

0.293

1.000

RTE, Top 0.1%
1.000

0.357

0.311

0.307

0.144

0.150

0.190

0.357

1.000

0.213

0.187

0.093

0.100

0.114

0.311

0.213

1.000

0.311

0.088

0.102

0.112

0.307

0.187

0.311

1.000

0.100

0.112

0.125

0.144

0.093

0.088

0.100

1.000

0.564

0.402

0.150

0.100

0.102

0.112

0.564

1.000

0.390

0.190

0.114

0.112

0.125

0.402

0.390

1.000

RTE, Top 1%

C4

Math

ArXiv

Wiki

∇F(wst.)

∇F(wmid)

∇F(wend)

1.000

0.267

0.217

0.283

0.018

0.023

0.025

0.267

1.000

0.118

0.149

0.033

0.029

0.018

0.217

0.118

1.000

0.331

0.008

0.010

0.015

0.283

0.149

0.331

1.000

0.009

0.009

0.026

0.018

0.033

0.008

0.009

1.000

0.769

0.369

0.023

0.029

0.010

0.009

0.769

1.000

0.459

0.025

0.018

0.015

0.026

0.369

0.459

1.000

WiC, Top 0.01%
1.000

0.318

0.274

0.324

0.065

0.091

0.120

0.318

1.000

0.210

0.207

0.078

0.079

0.074

0.274

0.210

1.000

0.320

0.055

0.058

0.059

0.324

0.207

0.320

1.000

0.056

0.062

0.081

0.065

0.078

0.055

0.056

1.000

0.728

0.516

0.091

0.079

0.058

0.062

0.728

1.000

0.574

0.120

0.074

0.059

0.081

0.516

0.574

1.000

WiC, Top 0.1%
1.000

0.357

0.311

0.307

0.158

0.167

0.174

0.357

1.000

0.213

0.187

0.108

0.108

0.108

0.311

0.213

1.000

0.311

0.101

0.107

0.108

0.307

0.187

0.311

1.000

0.108

0.115

0.119

0.158

0.108

0.101

0.108

1.000

0.718

0.520

0.167

0.108

0.107

0.115

0.718

1.000

0.590

0.174

0.108

0.108

0.119

0.520

0.590

1.000

WiC, Top 1%

C4 Math ArXiv Wiki ∇F(wst.) ∇F(wmid)∇F(wend)

C4

Math

ArXiv

Wiki

∇F(wst.)

∇F(wmid)

∇F(wend)

1.000

0.267

0.217

0.283

0.291

0.296

0.172

0.267

1.000

0.118

0.149

0.099

0.122

0.072

0.217

0.118

1.000

0.331

0.081

0.117

0.049

0.283

0.149

0.331

1.000

0.117

0.185

0.075

0.291

0.099

0.081

0.117

1.000

0.355

0.068

0.296

0.122

0.117

0.185

0.355

1.000

0.135

0.172

0.072

0.049

0.075

0.068

0.135

1.000

COPA, Top 0.01%

C4 Math ArXiv Wiki ∇F(wst.) ∇F(wmid)∇F(wend)

1.000

0.318

0.274

0.324

0.207

0.335

0.316

0.318

1.000

0.210

0.207

0.151

0.190

0.149

0.274

0.210

1.000

0.320

0.130

0.201

0.129

0.324

0.207

0.320

1.000

0.182

0.253

0.142

0.207

0.151

0.130

0.182

1.000

0.389

0.111

0.335

0.190

0.201

0.253

0.389

1.000

0.209

0.316

0.149

0.129

0.142

0.111

0.209

1.000

COPA, Top 0.1%

C4 Math ArXiv Wiki ∇F(wst.)∇F(wmid)∇F(wend)

1.000

0.357

0.311

0.307

0.299

0.328

0.259

0.357

1.000

0.213

0.187

0.173

0.185

0.141

0.311

0.213

1.000

0.311

0.150

0.180

0.129

0.307

0.187

0.311

1.000

0.193

0.209

0.137

0.299

0.173

0.150

0.193

1.000

0.341

0.121

0.328

0.185

0.180

0.209

0.341

1.000

0.235

0.259

0.141

0.129

0.137

0.121

0.235

1.000

COPA, Top 1%

10−2

10−1

100

10−2

10−1

100

10−2

10−1

100

10−2

10−1

100

10−2

10−1

100

10−2

10−1

100

10−2

10−1

100

O
ve

rla
p

ra
tio

of
to

p
en

tr
ie

s
of

gr
ad

ie
nt

sq
ua

re
s

Figure 14: Overlap ratio in top entries of gradient squares of Mistral-7B for C4, OpenWebMath,
ArXiv, Wiki103, and ∇F(wbefore FT), ∇F(wmid FT), ∇F(wafter FT) across 3 commonsense reasoning,
1 math, and 3 SuperGLUE tasks.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

C4

Math

ArXiv

Wiki

0.167 0.119 0.113

0.067 0.062 0.054

0.055 0.044 0.035

0.081 0.072 0.052

Top 0.01%

0.196 0.188 0.184

0.128 0.121 0.107

0.119 0.117 0.099

0.145 0.137 0.115

Top 0.1%

0.249 0.220 0.212

0.153 0.137 0.129

0.145 0.131 0.118

0.157 0.142 0.127

Top 1%

∇F(wst.) ∇F(wmid) ∇F(wend)

∇F(wst.)

∇F(wmid)

∇F(wend)

1.000

0.345

0.110

0.345

1.000

0.224

0.110

0.224

1.000

∇F(wst.) ∇F(wmid) ∇F(wend)

1.000

0.358

0.220

0.358

1.000

0.304

0.220

0.304

1.000

∇F(wst.) ∇F(wmid) ∇F(wend)

1.000

0.371

0.265

0.371

1.000

0.320

0.265

0.320

1.000

10−2

10−1

100

10−2

10−1

100

A
ve

ra
ge

ov
er

la
p

ra
tio

of
to

p
en

tr
ie

s
of

gr
ad

ie
nt

sq
ua

re
s

ac
ro

ss
3

co
m

m
on

se
ns

e,
1

m
at

h,
an

d
3

S
up

er
G

LU
E

ta
sk

s

Figure 15: Average overlap ratio of top entries of gradient squares across 7 tasks in Figure 14.

C4 Math ArXiv Wiki

C4

Math

ArXiv

Wiki

1.000 0.267 0.217 0.283

0.267 1.000 0.118 0.149

0.217 0.118 1.000 0.331

0.283 0.149 0.331 1.000

Top 0.01%

C4 Math ArXiv Wiki

1.000 0.318 0.274 0.324

0.318 1.000 0.210 0.207

0.274 0.210 1.000 0.320

0.324 0.207 0.320 1.000

Top 0.1%

C4 Math ArXiv Wiki

1.000 0.357 0.311 0.307

0.357 1.000 0.213 0.187

0.311 0.213 1.000 0.311

0.307 0.187 0.311 1.000

Top 1%

10−2

10−1

100

O
ve

rla
p

ra
tio

of
to

p
en

tr
ie

s
of

gr
ad

ie
nt

sq
ua

re
s

ac
ro

ss
4

da
ta

m
ix

tu
re

s

Figure 16: Overlap ratio of top entries of gradient squares among C4, OpenWebMath, ArXiv, and
Wiki103.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

G IMPLEMENTATION OF SPARSE OPERATIONS IN LINEAR LAYERS

Linear layers in LLMs often contribute most parameters (Kaplan et al., 2020). Since from Equation 7
we know

wsparse = w ⊙mk, wdense = w ⊙ (1d −mk), w = wsparse +wdense (12)

and since wdense would have the same shape (and the same computational intensities) as w, we need
to improve wall-clock time efficiency of wsparsex to improve the computational efficiency of linear
layers after extracting the sparse parameters. In this case, we would have two different methods to
implement the forward pass of linear layers (with induced sparse operation colored in red):

wx = wdensex+wsparsex (13)
= SparseAddMM(DenseMM(wdense,x),wsparse,x) faster with token generation (14)
= (wdense+wsparse)x (15)
= DenseMM(SparseAdd(wsparse,wdense),x) faster with ZO training (16)

1 class SensitiveZOLinear(nn.Linear):
2 w_sparse
3 w_dense
4

5 def forward_small_batched_decoding(self, X):
6 # dense matmul
7 dense_result = F.linear(X, self.w_dense, self.bias)
8 # sparse addmm
9 return torch.sparse.addmm(dense_result, X, self.w_sparse.T)

10

11 def forward_large_batched_ZO_training(self, X):
12 # sparse addition
13 w = self.w_dense.add(self.w_sparse)
14 # dense matmul
15 return F.linear(X, w, self.bias)

Listing 1: Example PyTorch-like code snippet that implements the forward calls with 16-bit sparse
and 16-bit dense parameters.

0.01% 0.1% 1%

Fraction to optimize

0.01

0.1

1.0

10.0

S
ec

/f
or

w
ar

d

Training
(A6000)
SparseAdd
SparseAddMM

0.01% 0.1% 1%

Fraction to optimize

Training
(A100)

0.01% 0.1% 1%

Fraction to optimize

0

0.1

0.2

0.3

S
ec

/t
ok

en

Inference
(A6000)

0.01% 0.1% 1%

Fraction to optimize

Inference
(A100)

Figure 17: Time of SparseAdd (Equation 16) versus SparseAddMM (Equation 14) in Llama2-7B ZO
training forward & inference. In subfigure 1 and 3, we use Nvidia RTX A6000 and Intel Xeno Gold
6342 CPUs, with PyTorch version 2.2, HuggingFace version 4.36, and CUDA 12.2. In subfigure 2
and 4, we use Nvidia A100-SXM4 (40 GiB) and AMD EPYC 7543P 32-Core CPU with PyTorch
version 2.1, HuggingFace version 4.38.2, and CUDA 12.2. We use Flash Attention 2 (Dao, 2023) for
all 4 subfigures.

The specific choice of employing Equation 14 or Equation 16 needs careful consideration and
benchmarking, but here we can provide a general guideline based on the size of input vector (or
arithmetic intensity) and potential integration with weight quantization method:

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Size of input vectors x and arithmetic intensity. wsparsex in Equation 14 would have a compu-
tational dependency over x. During large-batched ZO training, x would be large enough such that
Equation 14 would induce large computational overhead, as shown in subfigure 1 of Figure 17. In
contrast, the computational complexity of Equation 16 is independent of x and when x is large, we
would expect Equation 16 is much faster than Equation 14. As an example, we use sequence length
of 512 and batch size 16 sampled from WikiText-2 dataset (Merity et al., 2016) as a representative
computational intensity for ZO training in subfigures 1 and 2 in Figure 17.

However, during autoregressive token generation, on each step we would only append a single token
to the previously cached embeddings, and in this case x is small and computing wdense +wsparse is
generally not worthwhile, especially given that wsparse is already sparse. This is also illustrated in
subfigure 3 and 4 in Figure 17. However, we note that the specific implementation choice is hardware
and task dependent and requires thorough benchmarking and we will leave it as a future work.

We recommend using Equation 16 during large-batched ZO training and Equation 14 during
small-batched autoregressive token generation.

In light of this observation, in our Figure 19, we implement both “SparseAdd” and “SparseAddMM”
methods for “Sensitive (0.1%)” and “Random (10%)”. For each method we report the lowest time out
of these 2 implementations: for “Sensitive (0.1%)” training and “Random (10%)” training and infer-
ence, we use “SparseAdd” approach. For “Sensitive (0.1%)” inference, we use the “SparseAddMM”
approach.

Integration with weight quantization method. Weight quantization algorithms can be categorized
into 2 categories: uniform quantization method and non-uniform quantization method. For uniform
quantization method, we could use integer matrix multiplication to compute Q(wdense)x efficiently
without first dequantizing Q(wdense) to 16 bits (Xi et al., 2023; Park et al., 2024). However, this
creates difficulty on our “SparseAdd” approach as we will violate the constraint of uniformly-spaced
quantization bins by computing SparseAdd(Q(wdense) + wsparse). In this case, we also have 3
different implementations:

Q(w)x ∼ Q(wdense)x+wsparsex (17)

= SparseAddMM
(
Dequantize

(
UniformMM(Q(wdense),x)

)
,wsparse,x

)
uniform quantization

(18)

= SparseAddMM
(

Dequantize(Q(wdense)),x,wsparse

)
similar to Equation 14 (19)

= (Dequantize(Q(wdense))+wsparse)x (20)
= DenseMM(SparseAdd (wsparse,Dequantize(Q(wdense)),x) similar to Equation 16

(21)

Equation 18 would compute UniformMM(Q(wdense),x) without dequantizing Q(wdense) to 16
bits. This would make “SparseAdd” approach infeasible and we can only employ “SparseAddMM”
approach in this case. Notice that both Equation 19 and Equation 21 would still dequantize Q(wdense)
first and the choice of implementation would follow into our discussion of input vector size x in last
paragraph. We leave a practical implementation and thorough benchmarking into a future work.

1 class SensitiveZOLinear(nn.Linear):
2 w_sparse
3 w_dense_quantized
4

5 def dequantize(self, w_quantized):
6 ...
7 return w_16_bit
8

9 def forward_uniform_matmul(self, X):
10 # fast uniform quantization matmul
11 dense_result = uniform_quantized(X, self.w_dense_quantized.T)
12 # sparse addmm
13 return torch.sparse.addmm(dense_result, X, self.w_sparse.T)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

14

15 def forward_small_batched_decoding(self, X):
16 # dequantize the dense weights
17 w_dense_16_bit = self.dequantize(self.w_dense_quantized)
18 # dense matmul
19 dense_result = F.linear(X, w_dense_16_bit, self.bias)
20 # sparse addmm
21 return torch.sparse.addmm(dense_result, X, self.w_sparse.T)
22

23 def forward_large_batched_ZO_training(self, X):
24 # dequantize the dense weights
25 w_dense_16_bit = self.dequantize(self.w_dense_quantized)
26 # dense matmul
27 dense_result = F.linear(X, w_dense_16_bit, self.bias)
28 # sparse addmm
29 return torch.sparse.addmm(dense_result, X, self.w_sparse.T)

Listing 2: Example PyTorch-like code snippet that implements the forward calls with 16-bit sparse
and quantized dense parameters.

We recommend using Equation 18 when we use efficient uniform integer matmul to compute
Q(wdense)x and in other cases, using Equation 19 or Equation 21 follows our previous

recommendation based on the size of input vectors.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

H WALL-CLOCK TIME EFFICIENCY FROM SENSITIVE ZO’S STATIC SPARSITY

Static sparse ZO fine-tuning (Equation 7 and 8) can be written as a parameter-efficient perturbation &
update rule:

wsparse = w ⊙mk, wdense = w ⊙ (1d −mk) (22)
wsparse,t+1 = wsparse,t − ηtĝ(wsparse,t, (xt, yt), zk,t) (23)

Under the extreme sparsity regime (0.1% sparsity), this parameter-efficient rule will have wall-clock
time efficiency in both ZO training and token generation process.

Comparison with ZO Full FT: faster in training. By employing parameter-efficient ZO fine-
tuning with extreme sparsity, we also achieve 1.2 - 2.5× wall-clock time convergence speedup
compared with ZO full fine-tuning as we nearly eliminate the ZO perturbation and optimizer update
time, as Figure 18 shows. This also boosts the GPU utilization rate as large-batched ZO forward is
often compute-bounded while the perturbation and optimization steps are often memory-bounded.
As a result, we answer this question that optimizing extremely sparse and fixed parameters leads to
substantial iteration-wise and total wall-clock time improvements.

Sensitive Full
0

1

2

S
ec

on
ds

/S
te

p

1.21×

RTE

Sensitive Full
0.0

0.5

1.0
1.51×

WiC

Sensitive Full
0.0

0.2

0.4

0.6

2.57×

COPA
forward
perturbation
optimization

0 5 10 15

Time (hr)

0.4

0.6

Tr
ai

n
lo

ss

1.45×

0 2 4 6

Time (hr)

0.65

0.70

0.75

1.25×

0 1 2 3

Time (hr)

1.0

1.5

2.0

2.64×

Sensitive
Full

Figure 18: Iteration-wise time & wall-clock convergence time of sensitive ZO fine-tuning with static
sparsity (“Sensitive”) versus ZO full fine-tuning (“Full”) for Llama2-7B. Here we use the 16-bit
model as the base model for fine-tuning.

Sensitive
0.1%

Random
10%

Base model
0.0

0.2

0.4

0.6

S
ec

/t
ok

en

Token generation
sparse ops
other
dense mm (linear layer)

Figure 19: Inference speed of Llama2-7B with 0.1% sensitive parameters, 10% random subset sparse
parameters, and the base model (no static sparsity extraction). The implementation of 0.1% sensitive
parameters and 10% random subset sparse parameters are discussed in Appendix G.

Comparison with other sparsity methods: faster in inference. As the sensitive sparse fine-tuning
method achieves great performance via optimizing only 0.1% parameters (performance comparable
to ZO full fine-tuning and 10% random subsets), during inference we achieve an end-to-end 1.49×
speedup, with 2.15× speedup at sparse operations compared to 10% random subsets.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

I SUPPLEMENTARY EXPERIMENT DETAILS

I.1 HYPERPARAMETERS IN EXPERIMENTS

For all ZO experiments, we use 20,000 training steps with ZO-SGD optimizer (Definition 2). We
will save a model checkpoint every 500 steps, and load the checkpoint with the lowest loss on
the validation set at the end of the training, and report its test set accuracy as result. Usually, the
training/validation set will be sampled from the original dataset with size 1000/500 respectively and
the test set is of size min(1000, |original test set|), except for CB and COPA that we use 100 for the
validation set size. For all ZO experiments (Table 7 and Table 8), we use batch size of 16. This
experiment setting is identical to Malladi et al. (2023a).

Table 7: The chosen hyperparameters for experiments in Table 1. We repeat each hyperparameters
for 3 random trials and report the average and standard deviation in Table 1.

(a) Llama2-7B

Methods SST-2 RTE CB BoolQ WSC WiC COPA WinoG Wiki2

Q, ZO SensZOQ (ϵ =1e-3) 5e-7 1e-6 1e-6 1e-6 5e-7 1e-6 1e-6 2e-6 5e-6
LoRA (ϵ =1e-3) 1e-5 5e-5 1e-5 2e-5 1e-5 2e-5 1e-5 5e-5 1e-4
Prefix (ϵ =1e-2) 1e-4 2e-4 5e-4 5e-4 1e-4 5e-4 2e-4 1e-3 1e-3

ZO Full FT (ϵ =1e-3) 5e-7 5e-7 5e-7 5e-7 2e-7 5e-7 5e-7 1e-7 2e-6

ICL (#examples) 16 16 16 8 16 8 8 16 NA

(b) Mistral-7B

Q, ZO SensZOQ (ϵ =1e-4) 2e-8 5e-8 2e-8 2e-8 1e-8 2e-8 2e-8 1e-7 1e-7
LoRA (ϵ =1e-4) 2e-6 5e-6 2e-6 2e-6 2e-6 2e-6 2e-6 1e-5 2e-5
Prefix (ϵ =1e-3) 1e-3 2e-3 1e-3 1e-2 5e-4 1e-3 5e-4 2e-4 1e-2

ZO Full FT (ϵ =1e-4) 2e-8 2e-8 1e-8 1e-8 1e-8 1e-8 2e-8 5e-8 1e-7

ICL (#examples) 4 8 4 16 4 4 8 8 NA

(c) OPT-6.7B

Q, ZO SensZOQ (ϵ =1e-3) 2e-7 5e-7 5e-7 5e-7 2e-7 5e-7 2e-7 1e-6 1e-6
LoRA (ϵ =1e-3) 1e-5 2e-5 1e-5 2e-5 1e-5 2e-5 2e-5 5e-5 1e-4
Prefix (ϵ =1e-2) 2e-3 1e-2 1e-3 5e-3 5e-3 1e-2 5e-3 2e-2 2e-1

ZO Full FT (ϵ =1e-3) 2e-7 2e-7 2e-7 2e-7 2e-7 2e-7 5e-7 5e-7 1e-6

ICL (#examples) 16 4 16 16 16 8 16 16 NA

Our hyperparameters (learning rate η, perturbation scaling constant ϵ, and the number of ICL
examples) for Table 1 is reported in Table 7. For Table 1, we use constant η and ϵ throughout our
experiments. We also report the chosen hyperparameter for Figure 5a and Figure 5b in Table 8. For
LoRA, we always add to all linear layers with r = 8 and α = 16, and for Prefix Tuning, we always
add to WK and WV with length as 5 except for Wiki2 that we always use 20 (as the best performance
from {5, 20, 50, 100}).

For the smaller FO-Adam experiment in Table 2, we use the same codebase and we report the used
learning rates in Table 9. We use a batch size of 8 and train for 1000 steps. We use the Adam optimizer
with linear learning rate decay to 0 and no weight decay. We evaluate the model’s performance at the
end of 1000-step training.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Table 8: The chosen hyperparameters for experiments in Figure 5a and Figure 5b. We repeat each
hyperparameters for 3 random trials and report the average to draw a line in Figure 5a and Figure 5b,
and we use Llama2-7B for all experiments. For each subtable, we include the fraction to optimize on
its header and report the chosen learning rate on each cell.

(a) RTE

Methods 1e-5 1e-4 1e-3 1e-2 1e-1

Sensitive (C4, static) (ϵ =1e-3) 1e-5 1e-6 1e-6 1e-6 1e-6
Sensitive (task-specific, static) (ϵ =1e-3) 1e-5 1e-6 1e-6 1e-6 1e-6

Sensitive (task-specific, dynamic) (ϵ =1e-3) 1e-5 1e-6 1e-6 1e-6 1e-6
Random (static) (ϵ =1e-3) 2e-2 5e-3 5e-4 5e-5 5e-5

Random (dynamic) (ϵ =1e-3) 2e-2 5e-3 2e-4 5e-5 5e-6
Weights with largest magnitude (static) (ϵ =1e-3) 2e-3 1e-3 2e-4 5e-5 1e-5

Weights with smallest magnitude (static) (ϵ =1e-3) 2e-3 5e-4 1e-4 1e-5 1e-6
smallest GraSP scores (static) (ϵ =1e-3) 2e-5 5e-6 2e-6 2e-6 1e-6

(b) WiC

Methods 1e-5 1e-4 1e-3 1e-2 1e-1

Sensitive (C4, static) (ϵ =1e-3) 1e-5 2e-6 1e-6 1e-6 1e-6
Sensitive (task-specific, static) (ϵ =1e-3) 1e-5 2e-6 1e-6 1e-6 1e-6

Sensitive (task-specific, dynamic) (ϵ =1e-3) 1e-5 2e-6 1e-6 1e-6 1e-6
Random (static) (ϵ =1e-3) 2e-2 5e-3 5e-4 5e-5 5e-6

Random (dynamic) (ϵ =1e-3) 2e-2 5e-3 5e-4 5e-5 5e-6
Weights with largest magnitude (static) (ϵ =1e-3) 1e-3 5e-4 2e-4 1e-4 2e-5

Weights with smallest magnitude (static) (ϵ =1e-3) 1e-3 5e-4 1e-4 1e-5 2e-6
smallest GraSP scores (static) (ϵ =1e-3) 2e-5 1e-5 5e-6 2e-6 2e-6

(c) COPA

Methods 1e-5 1e-4 1e-3 1e-2 1e-1

Sensitive (C4, static) (ϵ =1e-3) 5e-6 1e-6 1e-6 1e-6 5e-7
Sensitive (task-specific, static) (ϵ =1e-3) 5e-6 2e-6 2e-6 1e-6 1e-6

Sensitive (task-specific, dynamic) (ϵ =1e-3) 5e-6 1e-6 1e-6 1e-6 1e-6
Random (static) (ϵ =1e-3) 1e-2 2e-3 5e-4 5e-5 5e-6

Random (dynamic) (ϵ =1e-3) 2e-3 1e-3 2e-4 2e-5 2e-6
Weights with largest magnitude (static) (ϵ =1e-3) 1e-3 5e-4 5e-4 1e-4 1e-5

Weights with smallest magnitude (static) (ϵ =1e-3) 2e-3 5e-4 2e-5 2e-6 2e-6
smallest GraSP scores (static) (ϵ =1e-3) 5e-6 5e-6 1e-6 2e-6 1e-6

Table 9: The chosen hyperparameters for experiments in Table 2. We repeat each hyperparameters
for 3 random trials and report the average and standard deviation in Table 2.

Methods SST-2 RTE CB BoolQ WSC WiC COPA WinoG Wiki2

FO-Adam Full FT 1e-5 2e-5 1e-5 1e-5 2e-5 1e-5 1e-5 2e-5 5e-5

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

I.2 TASK-SPECIFIC PROMPTS IN EXPERIMENTS

We describe our task templates in Table 10.

Table 10: Task templates for all experiments. On the left column we include the task name and the
model name, and on the right column we describe the exact prompt with answer candidates.

Task Prompts

SST-2
(Llama2-7B)

Sentence: <text> ### Sentiment: negative/positive

SST-2
(Mistral-7B, OPT-6.7B)

<text> It was terrible/great

RTE
(Llama2-7B)

Suppose "<premise>" Can we infer that "<hypothesis>"?
Yes or No? Yes/No

RTE
(Mistral-7B, OPT-6.7B)

<premise>
Does this mean that "<hypothesis>" is true? Yes or No?
Yes/No

CB
(Llama2-7B, Mistral-7B, OPT-6.7B)

Suppose <premise> Can we infer that "<hypothesis>"? Yes,
No, or Maybe?
Yes/No/Maybe

BoolQ
(Llama2-7B)

<passage> <question>? Yes/No

BoolQ
(Mistral-7B, OPT-6.7B)

<passage> <question>?
Yes/No

WSC
(Llama2-7B, Mistral-7B, OPT-6.7B)

<text>
In the previous sentence, does the pronoun "<span2>" refer
to <span1>? Yes or No?
Yes/No

WiC
(Llama2-7B, Mistral-7B, OPT-6.7B)

Does the word "<word>" have the same meaning in these
two sentences? Yes, No?
<sent1>
<sent2>
Yes/No

COPA
(Llama2-7B, Mistral-7B, OPT-6.7B)

<premise> so/because <candidate>

WinoGrande
(Llama2-7B, Mistral-7B, OPT-6.7B)

<context> <option>

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

I.3 ON-DEVICE MEMORY CONSTRAINTS

As illustrated in Table 11, a wide range of mobile or edge devices impose a memory constraint of 8
GiB, which is the our target when we develop our SensZOQ in Section 3.2.

Table 11: Device memory of some mobile devices or consumer-graded GPUs.

Devices Memory

Nvidia GeForce GTX 1080 Ti 11 GiB

Nvidia GeForce RTX 3060 Ti 8 GiB

Nvidia Jetson TX2 8 GiB

OPPO Find X7 Ultra (Li et al., 2024a) 12 GiB

Samsung Galaxy S10 with Mali-G76 GPU (Gim & Ko, 2022) 8 GiB

I.4 HARDWARE, PLATFORM, LIBRARIES, AND OTHER DETAILS FOR FINE-TUNING AND
BENCHMARKING

Figure 17 (subfigure 1 and 3), Figure 18, and Figure 19 are trained and evaluated on an internal
cluster with 8 Nvidia RTX A6000 GPUs and 2 Intel Xeon Gold 6342 CPUs, with PyTorch version
2.2, HuggingFace version 4.36, and CUDA 12.2. In subfigure 2 and 4 in Figure 17, we use Nvidia
A100-SXM4 (40 GiB) and AMD EPYC 7543P 32-Core CPU with PyTorch version 2.1, HuggingFace
version 4.38.2, and CUDA 12.2. We use Flash Attention 2 (Dao, 2023) in HuggingFace Transformers
library throughout our experiments, and the base model for ZO full fine-tuning and benchmarking
is always Llama2-7B with Float16 datatype (torch.float16). We also use the Float16 datatype
(torch.float16) for all of our sparse parameters (sensitive sparse, random subsets, etc.) in ZO fine-
tuning experiments. Notice that for all of the FO fine-tuning demonstrations (Figure 7 and Figure 11)
we use the BrainFloat16 datatype (torch.bfloat16) to avoid the NaN issue from the Float16 datatype.

In Figure 17, we use sequence length of 512 and batch size 16 sampled from WikiText-2 dataset (Mer-
ity et al., 2016) as a representative computational intensity for ZO training, and (same for Figure 19)
for inference we generate 128 tokens with top-p (p = 0.9) sampling from the prompt “Please describe
the effect of sparse zeroth-order optimization methods on memory-efficient LLM fine-tuning: ”. We
still use the Float16 datatype (torch.float16) for both benchmarks.

42

	Introduction
	Sparse ZO Fine-tuning with Static Sensitive Parameters in LLM
	Zeroth-order Optimization
	Sparse ZO optimization with static sensitive parameters.
	Theoretical Convergence Rate

	SensZOQ: a Sparse On-device Fine-tuning Recipe
	Transferability of Static Sensitive Parameter
	SensZOQ: an Opportunity for On-Device LLM Personalization

	Experiments
	On-Device Personalization
	Effectiveness of Sparse ZO Fine-Tuning on Sensitive Parameters

	Related works
	Conclusion
	Related works of Sparsity in LLM
	Notations
	Theoretical Convergence Rate
	Assumptions
	Proof for Equation 5, Theorem 1
	Proof for Equation 6, Theorem 1

	More experiment results
	Empirical convergence of SensZOQ
	Sensitive parameters in LLMs under microscope
	Gradient sparsity during LLM fine-tuning
	Block-wise and layer-wise gradient sparsity
	Transferability of gradient features from pre-training datasets to downstream tasks
	Overlap ratio of top gradient features

	Implementation of sparse operations in linear layers
	Wall-Clock Time Efficiency from Sensitive ZO's Static Sparsity
	Supplementary Experiment Details
	Hyperparameters in experiments
	Task-specific prompts in experiments
	On-device memory constraints
	Hardware, platform, libraries, and other details for fine-tuning and benchmarking

