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ABSTRACT

Large language models (LLMs) have made fundamental changes in human life.
The attention scheme is one of the key components over all the LLMs, such as
BERT, GPT-1, Transformers, GPT-2, 3, 3.5 and 4. Inspired by previous theoretical
study of static version of the attention multiplication problem [Zandieh, Han,
Daliri, and Karbasi ICML 2023, Alman and Song NeurIPS 2023]. In this work,
we formally define a dynamic version of attention matrix multiplication problem.
There are matrices Q,K, V ∈ Rn×d, they represent query, key and value in
LLMs. In each iteration we update one entry in K or V . In the query stage,
we receive (i, j) ∈ [n] × [d] as input, and want to answer (D−1AV )i,j , where
A := exp(QK⊤) ∈ Rn×n is a square matrix and D := diag(A1n) ∈ Rn×n is a
diagonal matrix. Here 1n denote a length-n vector that all the entries are ones.
We provide two results: an algorithm and a conditional lower bound.

• On one hand, inspired by the lazy update idea from [Demetrescu and Italiano
FOCS 2000, Sankowski FOCS 2004, Cohen, Lee and Song STOC 2019,
Brand SODA 2020], we provide a data-structure that uses O(nω(1,1,τ)−τ )
amortized update time, and O(n1+τ ) worst-case query time, where nω(1,1,τ)

denotes Tmat(n, n, n
τ ) with matrix multiplication exponent ω and τ denotes

a constant in (0, 1].
• On the other hand, show that unless the hinted matrix vector multiplication

conjecture [Brand, Nanongkai and Saranurak FOCS 2019] is false, there is no
algorithm that can use both O(nω(1,1,τ)−τ−Ω(1)) amortized update time, and
O(n1+τ−Ω(1)) worst query time.

In conclusion, our algorithmic result is conditionally optimal unless hinted matrix
vector multiplication conjecture is false.
One notable difference between prior work [Alman and Song NeurIPS 2023] and
our work is, their techniques are from the area of fine-grained complexity, and our
techniques are not. Our algorithmic techniques are from recent work in convex
optimization, e.g. solving linear programming. Our hardness techniques are from
the area of dynamic algorithms.

1 INTRODUCTION

Large language models (LLMs) such as Transformer Vaswani et al. (2017), BERT Devlin et al. (2018),
GPT-3 Brown et al. (2020), PaLM Chowdhery et al. (2022), and OPT Zhang et al. (2022a) offer
better results when processing natural language compared to smaller models or traditional techniques.
These models possess the capability to understand and produce complex language, which is beneficial
for a wide range of applications like language translation, sentiment analysis, and question answering.
LLMs can be adjusted to multiple purposes without requiring them to be built from scratch. A
prime example of this is ChatGPT, a chat software developed by OpenAI utilizing GPT-3’s potential
to its fullest. GPT-4 OpenAI (2023), the latest iteration, has the potential to surpass the already
impressive abilities of GPT-3, including tasks such as language translation, question answering, and
text generation. As such, the impact of GPT-4 on NLP could be significant, with new applications
potentially arising in areas like virtual assistants, chatbots, and automated content creation.
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The primary technical foundation behind LLMs is the attention matrix Vaswani et al. (2017); Radford
et al. (2018); Devlin et al. (2018); Brown et al. (2020). Essentially, an attention matrix is a square
matrix with corresponding rows and columns representing individual words or “tokens,” and entries
indicating their correlations within a given text. This matrix is then utilized to gauge the essentiality
of each token in a sequence, relative to the desired output. As part of the attention mechanism, each
input token is assigned a score or weight based on its significance or relevance to the current output,
which is determined by comparing the current output state and input states through a similarity
function.

More formally, the attention matrix can be expressed as follows: Suppose we have two matrices,
Q and K, comprising query and key tokens respectively, where Q ∈ Rn×d and K ∈ Rn×d. The
attention matrix is a square n× n matrix denoted by A that relates the input tokens in the sequence.
After normalizing using the softmax function, each entry in this matrix quantifies the attention weight
or score between a specific input token (query token Q) and an output token (key token K). Notably,
entries along the diagonal reflect self-attention scores, indicating the significance of each token in
relation to itself.

When modeling long sequences with large n, the most significant hindrance to accelerating LLM
operations is the duration required for carrying out attention matrix calculations Kitaev et al. (2020);
Wang et al. (2020). These calculations involve multiplying the attention matrix A with another value
token matrix V ∈ Rn×d. In Wang et al. (2020), they demonstrate that the self-attention mechanism
can be approximated by a low-rank matrix. They propose a new self-attention mechanism and used it
in their Linformer model. In Kitaev et al. (2020), they replace dot-product attention with one that
uses locality-sensitive hashing, which also improves the time complexity.

Furthermore, the static attention computation and approximation has been studied by Alman & Song
(2023) from both algorithmic and hardness perspectives. However, in practice, the attention matrix
needs to be trained and keeps changing. In this work, we study the dynamic version of the attention
computation problem. By using a dynamic approach, the attention weights can be updated on-the-fly
as new information is introduced, enabling the model to adapt more effectively to changes in the
input. This is particularly beneficial in cases where the input data is highly dynamic and subject to
frequent changes, such as in natural language processing applications where the meaning and context
of words and phrases can be influenced by the surrounding text.

Following the prior work Zandieh et al. (2023); Alman & Song (2023), we formally define the
standard attention computation problem as follows. To distinguish their standard model with the
dynamic version studied in this paper, we call the problem defined in Zandieh et al. (2023); Alman &
Song (2023) “static” version of attention multiplication. Another major difference between previous
work Zandieh et al. (2023); Alman & Song (2023) and our work is that they studied an approximate
version, whereas we study the exact version.

Definition 1.1 (Static Attention Multiplication). Given three matrices Q,K, V ∈ Rn×d, we define
attention computation Att(Q,K, V ) = D−1AV where square matrix A ∈ Rn×n and diagonal
matrix D ∈ Rn×n are A := exp(QK⊤), D := diag(A1n). Here we apply the exp(·) function
entry-wise1. We use 1n to denote a length-n vector where all the entries are ones. The diag()
function is taking a length-n vector as input and outputs an n× n diagonal matrix by copying that
vector on the diagonal of the output matrix. See Figure 1 and Figure 2 for an illustration.
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Figure 1: Computation of the attention matrix A = exp(QK⊤) and the diagonal matrix D ∈ Rn×n

(defined in Definition 1.1). Here exp() is the entry-wise function.

1For a matrix M ∈ Rn×n, following the transformer literature, we use exp(M)i,j := exp(Mi,j).
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Figure 2: Computation of the target matrix Att(Q,K, V ) = D−1AV (defined in Definition 1.1)

In applied LLMs training, the model parameters are changing slowly during training Chen et al.
(2021). In addition, deep neural network architectures frequently exhibit significant redundancy, and
empirical evidence supports the capacity of deep neural networks to tolerate substantial levels of
sparsity Han et al. (2015); Gale et al. (2019). In downstream fine-tuning tasks, the dimensions of
the model often make the fine-tuning infeasible. Over the past few years, numerous techniques for
inducing sparsity have been proposed to sparsify the neural network such as magnitude pruning Zhu
& Gupta (2017), RegL Evci et al. (2020) and dynamic sparse reparameterization Mostafa & Wang
(2019). Thus, it is worth considering the dynamic version of Attention multiplication problem which
update the attention matrix entry-wise. Next, we formally define the “dynamic” or “online” version
of attention multiplication problem, we call it ODAMV2. For consistency of the discussion, we will
use the word “online” in the rest of the paper.

Definition 1.2 (ODAMV(n, d)). The goal of Online Diagonal-based normalized Attention Matrix
Vector multiplication problem ODAMV(n, d) is to design a data-structure that satisfies the following
operations:

1. INIT: Initialize on three n× d matrices Q, K, V .

2. UPDATE: Change any entry of K, or V .

3. QUERY: For any given i ∈ [n], j ∈ [d], return (D−1 exp(QK⊤)V )i,j .

• Here D := diag(exp(QK⊤)1n) ∈ Rn×n is a positive diagonal matrix.
• Here [n] denotes the set {1, 2, · · · , n}.

In this paper, we first propose a data-structure that efficiently solves the ODAMV problem (Definition
1.2) by using lazy update techniques. We then complement our result by a conditional lower bound.
On the positive side, we use lazy update technique in the area of dynamic algorithms to provide
an upper bound. In the area of theoretical computer science, it is very common to assume some
conjecture in complexity when proving a lower bound. For example, P ̸= NP, (strong) exponential
time hypothesis, orthogonal vector and so on Abboud & Williams (2014); Henzinger et al. (2015);
Backurs & Indyk (2015); Backurs et al. (2017); Chen (2018); Rubinstein (2018); Alman et al. (2020;
2023); Alman & Song (2023). To prove our conditional lower bound, we use a conjecture which is
called Hinted Matrix Vector multiplication (HMV) conjecture (Brand et al., 2019, Conjecture 5.2).
On the negative side, we show a lower bound of computing solving ODAMV assuming the HMV
conjecture holds.

1.1 OUR RESULTS

We first show our upper bound result making use of the lazy update strategy.

Theorem 1.3 (Upper bound, informal version of Theorem B.1). For any constant a ∈ (0, 1]. Let
d = O(n). Let δ ∈ R denote the update to the matrix. There is a dynamic data structure that uses
O(n2) space and supports the following operations:

• INIT(Q,K, V ). It runs in O(Tmat(n, n, n)) time.3

2The name of our problem is inspired by a well-known problem in theoretical computer science which is
called Online Matrix Vector multiplication problem (OMV) Henzinger et al. (2015); Larsen & Williams (2017);
Chakraborty et al. (2018).

3We use Tmat(n, d,m) to denote the time of multiplying a n× d matrix with another d×m matrix. For
more details, we refer the readers to Section 2.
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• UPDATEK(i ∈ [n], j ∈ [d], δ ∈ R). This operation updates one entry in K, and it runs in
O(Tmat(n, n

a, n)/na) amortized4 time.

• UPDATEV(i ∈ [n], j ∈ [d], δ ∈ R). This operation takes same amortized4 time as UP-
DATEK.

• QUERY(i ∈ [n], j ∈ [d]). This operation outputs (D−1(exp(QK⊤))V )i,j and takes O(na)
worst-case time.

The parameter a allows for a trade-off between update and query time. For example, a = 1 leads
to O(n1.373) update time and O(n) query time whereas a = 1/2 leads to O(n1.55) update and
O(
√
n) query time, using current bounds on Tmat(·, ·, ·) Alman & Williams (2021); Gall & Urrutia

(2018). We remark that our results beat the naive O(n2) update time regardless of which fast matrix
multiplication algorithm is used5. E.g., when using Strassen’s algorithm Strassen et al. (1969) we get
an update time of O(n2+(1.8075−2)a).

Our second result makes use of a variation of the popular online matrix vector multiplication (OMV)
conjecture which is called hinted matrix vector multiplication conjecture (see Definition C.2 and
Brand et al. (2019)). Next, we present a lower bound for the problem of dynamically maintaining the
attention computation Att(Q,K, V ) that matches our upper bound from Theorem 1.3.

Lemma 1.4 (Lower bound, informal version of Lemma C.5). Assuming the HMV conjecture is true.
For every constant 0 < τ ≤ 1, there is no algorithm that solves the ODAMV(n, d) problem (see
formal version in Definition C.4) with

• polynomial initialization time, and

• amortized update time O(Tmat(n, n
τ , d)/nτ+Ω(1)), and

• worst query time O(nτ−Ω(1)).

Conditional lower bounds identify the nature/origin of the hardness. E.g., problems with hardness
from the OV (orthogonal vector) conjecture Williams (2005); Abboud et al. (2014) boil down to
the fundamental bottleneck of searching, hardness from the BMM (boolean matrix multiplication)
conjecture Abboud & Williams (2014) show that hardness comes from matrix multiplication, and
problems with hardness from the HMV conjecture boil down to the trade-off between matrix-vector
multiplication vs fast matrix multiplication. We show that dynamic attention maintenance belongs to
the latter class by providing tight upper and conditional lower bounds.

1.2 RELATED WORK

Static Attention Computation A recent work by Zandieh, Han, Daliri, and Karbasi Zandieh et al.
(2023) was the first to give an algorithm with provable guarantees for approximating the attention
computation. Their algorithm makes use of locality sensitive hashing (LSH) techniques Charikar
et al. (2020). They show that the computation of partition functions in the denominator of softmax
function can be reduced to a variant of the kernel density estimation (KDE) problem, and an efficient
KDE solver can be employed through subsampling-based swift matrix products. They propose
the KDEformer which can approximate the attention within sub-quadratic time and substantiated
with provable spectral norm bounds. In contrast, earlier findings only procure entry-wise error
bounds. Based on empirical evidence, it was confirmed that KDEformer outperforms other attention
approximations in different pre-trained models, in accuracy, memory, and runtime.

In another recent work Alman & Song (2023), they focus on the long-sequence setting with d =
O(log n). The authors established that the existence of a fast algorithm for approximating the attention
computation is dependent on the value of B, given the guarantees of ∥Q∥∞ ≤ B, ∥K∥∞ ≤ B,
and ∥V ∥∞ ≤ B. They derived their lower bound proof by building upon a different line of work
that dealt with the fine-grained complexity of KDE problems, which was previously studied in

4We remark that the presented data structure can be made worst-case via standard techniques (sometimes
referred to as “global rebuilding”) from the dynamic algorithm area Overmars (1983); Sankowski (2004);
Goranci et al. (2017); Frandsen & Frandsen (2009).

5This is because Tmat(n, n
a, n) ≤ n2+(ω−2)a.
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Backurs et al. (2017); Alman et al. (2020). Their proof was based on a fine-grained reduction from
the Approximate Nearest Neighbor search problem ANN. Additionally, their findings explained
how LLM computations can be made faster by assuming that matrix entries are bounded or can be
well-approximated by a small number of bits, as previously discussed in Zafrir et al. (2019), Section
2 and Katharopoulos et al. (2020), Section 3.2.1. Specifically, they Alman & Song (2023) showed
a lower bound stating that when B ≥ Ω(

√
log n), there is no algorithm that can approximate the

computation in subquadratic time. However, when B < o(
√
log n), they proposed an algorithm that

can approximate the attention computation almost linearly.

Transformer Theory Although the achievements of transformers in various fields are undeniable,
there is still a significant gap in our precise comprehension of their learning mechanisms. Although
these models have been examined on benchmarks incorporating numerous structured and reasoning
activities, comprehending the mathematical aspects of transformers still considerably lags behind.
Prior studies have posited that the success of transformer-based models, such as BERT Devlin et al.
(2018), can be attributed to the information contained within its components, specifically the attention
heads. These components have been found to hold a significant amount of information that can aid
in solving various probing tasks related to syntax and semantics, as noted by empirical evidence
found in several studies Hewitt & Manning (2019); Clark et al. (2019); Tenney et al. (2019); Hewitt
& Liang (2019); Vig & Belinkov (2019); Belinkov (2022).

Various recent studies have delved into the representational power of transformers and have attempted
to provide substantial evidence to justify their expressive capabilities. These studies have employed
both theoretical as well as controlled experimental methodologies through the lens of Turing com-
pleteness Bhattamishra et al. (2020b), function approximation Yun et al. (2020), formal language
representation Bhattamishra et al. (2020a); Ebrahimi et al. (2020); Yao et al. (2021), abstract algebraic
operation learning Zhang et al. (2022b), and statistical sample complexity Wei et al. (2021); Edelman
et al. (2022) aspects. According to the research conducted by Yun et al. (2020), transformers possess
the capability of functioning as universal approximators for sequence-to-sequence operations. Simi-
larly, the studies carried out by Pérez et al. (2019); Bhattamishra et al. (2020b) have demonstrated
that attention models may effectively imitate Turing machines. In addition to these recent works,
there have been several previous studies that aimed to assess the capacity of neural network models
by testing their learning abilities on simplistic data models Siegelmann & Sontag (1992); Yao et al.
(2021); Zhang et al. (2022b). Furthermore, Li et al. (2023a) conducted a formal analysis of the
training dynamics to further understand the type of knowledge that the model learns from such data
models. According to findings from a recent study Zhao et al. (2023), moderately sized masked
language models have demonstrated the ability to parse with satisfactory results. Additionally, the
study utilized BERT-like models that were pre-trained using the masked language modeling loss
function on the synthetic text generated with probabilistic context-free grammar. They empirically
validated that these models can recognize syntactic information that aids in partially reconstructing a
parse tree. Li et al. (2023b) studied the computation of regularized version of exponential regression
problem (without normalization factor). In Zhang et al. (2023); Liu et al. (2023), they speedup
the inference time from both theoretical perspective and experimental perspective by leverage the
property of attention. In Wu et al. (2023), they develop an information-theoretic framework that
formulates soft prompt tuning as maximizing mutual information between prompts and other model
parameters.

Dynamic Maintenance In recent years, projection maintenance has emerged as a crucial data
structure problem. The effectiveness and efficiency of several cutting-edge convex programming
algorithms greatly hinge upon a sturdy and streamlined projection maintenance data structure Cohen
et al. (2019); Lee et al. (2019); Brand (2020); Jiang et al. (2020b); Brand et al. (2020); Jiang et al.
(2021); Song & Yu (2021); Brand (2021); Jiang et al. (2020a); Huang et al. (2022); Gu & Song
(2022). There are two major differences between the problem in the dynamic data structure for
optimization and our dynamic attention matrix maintenance problem. The first notable difference is
that, in the optimization task, the inverse of a full rank square matrix is typically computed, whereas,
in the attention problem, we care about the inverse of a positive diagonal matrix which behaves the
normalization role in LLMs. The second major difference is, in the standard optimization task, all the
matrix matrix operations are linear operations. However, in LLMs, non-linearity such as softmax/exp
function is required to make the model achieve good performance. Therefore, we need to apply an
entry-wise nonlinear function to the corresponding matrix. In particular, to compute f(QK⊤)V
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when f is linear function, we can pre-compute K⊤V . However when f is exp function, we are not
allowed to compute K⊤V directly.

Next, we will give more detailed reviews for classical optimization dynamic matrix maintenance
problems. Let B ∈ Rm×n, consider the projection matrix P = B⊤(BB⊤)−1B. The projection
maintenance problem asks the following data structure problem: it can preprocess and compute an
initial projection. At each iteration, B receives a low rank or sparse change, and the data structure
needs to update B to reflect these changes. It will then be asked to approximately compute the matrix-
vector product, between the updated P and an online vector h. For example, in linear programming,
one sets B =

√
WA, where A ∈ Rm×n is the constraint matrix and W is a diagonal matrix. In

each iteration, W receives relatively small perturbations. Then, the data structure needs to output an
approximate vector to

√
WA⊤(AWA⊤)−1A

√
Wh, for an online vector h ∈ Rn.

Roadmap The rest of the paper is organized as follows. In Section 2, we give some preliminaries.
In Section 3, we explain the techniques used to show our upper bound and lower bound results. In
Section 4, we provide a lower bound proof for the simplified version of dynamic attention problem.
In Section 5, we provide the conclusion for our paper. We defer the full proofs of upper bound in
Appendix B. We defer the full proofs of lower bound in Appendix C.

2 PRELIMINARY

For a matrix A, we use A⊤ to denote its transpose. For a matrix A, use Ai,j to denote its entry at i-th
row and j-th column. For a non-zero diagonal matrix D ∈ Rn×n, we use D−1 ∈ Rn×n to denote
the matrix where the (i, i)-th diagonal entry is (Di,i)

−1 for all i ∈ [n]. For a vector x ∈ Rn, we
use diag(x) ∈ Rn×n to denote an n × n matrix where the i, i-th entry on the diagonal is xi and
zero everywhere else for all i ∈ [n]. We use exp(M) to denote the entry-wise exponential, i.e.,
exp(M)i,j := exp(Mi,j). We use 1n to denote the length-n vector where all the entries are ones.
We use 0n to denote the length-n vector where all entries are zeros.

We define a standard notation for describing the running time of matrix multiplication.

Definition 2.1. For any three positive integers, we use Tmat(a, b, c) to denote the time of multiplying
an a× b matrix with another b× c matrix.

We use ω to denote the time that nω = Tmat(n, n, n). Currently ω ≈ 2.373 Williams (2012); Le Gall
(2014); Alman & Williams (2021).

Definition 2.2. We define ω(·, ·, ·) function as follows, for any a, b and c, we use ω(a, b, c) to denote
that nω(a,b,c) = Tmat(n

a, nb, nc).

3 TECHNIQUE OVERVIEW

Given three matrices Q,K, V ∈ Rn×d, we need to compute the attention given by Att(Q,K, V ) =
D−1AV where square matrix A ∈ Rn×n and diagonal matrix D ∈ Rn×n are A := exp(QK⊤),
D := diag(A1n). The static problem Alman & Song (2023) is just computing Att for given Q,K
and V . In the dynamic problem, we can get updates for K and V in each iteration.

Due to space limitation, we only describe the core ideas and proof sketch of upper bound in Section 3.1.
For the complete proofs, we refer the readers to read the Appendix B. Similarly, we only give high
description for lower bound in Section 3.2 and defer the details into Appendix C.

3.1 ALGORITHM

Problem Formulation For each update, we receive δ as input and update one entry in either matrix
K or V . In the query function, we take index i ∈ [n], j ∈ [d] as input, and return the {i, j}-th element
in the target matrix B := D−1AV .

Let C denote AV . Let B̃ denote the updated target matrix B. We notice that the computation of
the attention can be written as B̃ = (D−1 +∆D)(C +∆C). Let ∆(t) denote the change in the t-th
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iteration. In a lazy-update fashion, we write B̃ in the implicit form

B̃ = (D−1 +

ct∑
t=1

∆
(t)
D )(C +

ct∑
t=1

∆
(t)
C )

where ct denotes the number of updates since the last time we recomputed D and C.

Lazy Update We propose a lazy-update algorithm (Algorithm 2) that does not compute the attention
matrix when there is an update on the key matrix K. We also propose a lazy-update algorithm
(Algorithm 3) that does not compute the attention matrix when there is an update on the value matrix
V . Instead, we maintain a data-structure (Algorithm 1) that uses ListC ,ListD and ListV to record
the update by storing rank-1 matrices before the iteration count reaches the threshold na for some
constant a. For the initialization (Algorithm 1), we compute the exact target matrix D−1AV and
other intermediate matrices, which takes O(Tmat(n, d, n)) time (Lemma B.3).

Re-compute When the iteration count reaches the threshold na, we re-compute all the variables in
the data-structure as follows (Lemma B.8). By using Fact A.1, we first stack all the rank-1 matrices in
ListC and compute the matrix multiplication once to get

∑ct
t=1 ∆

(t)
C using Tmat(n, n

a, d) = nω(1,1,a)

time (Lemma B.9). Then, we compute C +
∑ct

t=1 ∆
(t)
C to get the re-computed C̃. Similarly, to

re-compute V , we stack all the rank-1 matrices in ListV and compute the matrix multiplication
once to get

∑ct
t=1 ∆

(t)
V using Tmat(n, n

a, d) = nω(1,1,a) time. Then, we compute V +
∑ct

t=1 ∆
(t)
V

to get the re-computed Ṽ . To re-compute the diagonal matrix D, we sum up all the updates by∑ct
t=1 ∆

(t)
D and add it to the old D−1 (detail can be found in Algorithm 5). Hence, our algorithm

takes nω(1,1,a)/na amortized time to update K and V (Lemma B.4, Lemma B.5).

Fast Query Recall that the query function takes index i ∈ [n], j ∈ [d] as input, and returns the
{i, j}-th element in the target matrix B := D−1AV . Let D̃−1 denote the lates D−1 obtained from
ListD. Let ∆V,1 and ∆V,2 be stacked matrix obtained from list from V . We can rewrite the output by

((D̃−1) · (A) · (V +∆V,1∆V,2))i,j = ((D̃−1) · (A · V ))i,j + ((D̃−1) ·A · (∆V,1∆V,2))i,j

= (D̃)−1
i (Ci,j + (∆C,1∆C,2)i,j) + (D̃)−1

i Ai,∗∆V,1(∆V,2)∗,j .

Note that we maintain C in our re-compute function. Hence, computing the first part takes O(na)
time. As each column of ∆V,1 and row of ∆V,2 is 1-sparse, computing the second part takes O(na)
time. The total running time needed for the query function is O(na) (Lemma B.7, Lemma B.6).

3.2 HARDNESS

We now turn to our lower bound result, which is inspired by the HMV conjecture (Brand et al., 2019,
Conjecture 5.2). Let us firstly define the HMV problem (see formal definition in Definition C.2).

Let the computation be performed over the boolean semi-ring. For any 0 < τ ≤ 1, the HMV problem
has the following three phases

• Phase 1. Input two n× n matrices M and V

• Phase 2. Input an n× n matrix P with at most nτ non-zero entries
• Phase 3. Input a single index i ∈ [n]

– We need to answer MPV∗,i
– Here V∗,i ∈ Rn is the i-th column of matrix V

According to Brand et al. (2019), the above problem is conjectured to be hard in the following sense,
Conjecture 3.1 (Hinted MV (HMV), (Brand et al., 2019, Conjecture 5.2)). For every constant
0 < τ ≤ 1 no algorithm for the hinted Mv problem (Definition C.2) can simultaneously satisfy

• polynomial time in Phase 1.

• O(nω(1,1,τ)−ϵ) time complexity in Phase 2. and
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• O(n1+τ−ϵ) in Phase 3.

for some constant ϵ > 0.

Our primary contribution lies in demonstrating how to reduce HMV problem (Definition C.2)
to OAMV (Definition 4.1) and ODAMV (Definition C.4). To achieve this, we have adopted a
contradiction-based approach. Essentially, we begin by assuming the existence of an algorithm
that can solve the OAMV problem with polynomial initialization time and amortized update time
of O(Tmat(n, n

τ , d)/nτ+Ω(1)), while worst-case query time is O(nτ−Ω(1)) for all τ ∈ (0, 1]. Our
assumption implies that there exists a data structure that is faster than our result (Theorem B.1). We
subsequently proceed to demonstrate that using this algorithm enables us to solve the HMV problem
too quickly, which contradicts the HMV conjecture.

Specifically, let us take an instance for the HMV problem (Definition C.2)

• Let M,V ∈ {0, 1}n×n denote two matrices from Phase 1. from HMV.

We create a new instance OAMV(ñ = n, d̃ = n) where Q̃ = M, K̃ = 0, Ṽ = V.

In Claim 4.3 and Claim 4.4, by making use of our construction of Q̃, K̃ and Ṽ , we show that for each
i ∈ [n] and j ∈ [n],

If ((exp(Q̃K̃⊤)− 1n×n)Ṽ )j,i > 0, then (MPV)j,i = 1.

If ((exp(Q̃K̃⊤)− 1n×n)Ṽ )j,i = 0, then (MPV)j,i = 0.

By using the above two statements, we know that exp(Q̃K̃⊤)Ṽ∗,i is enough to reconstruct MPV∗,i for
the HMV problem (Definition C.2). Then, solving MPV∗,i takes polynomial initialization time and
amortized update time of O(Tmat(n, n

τ , d)/nτ+Ω(1)), while worst-case query time is O(nτ−Ω(1))
for every τ ∈ (0, 1]. The contradiction of the HMV conjecture shows that there is no such algorithm.
Similarly, for the normalized case ODAMV (Definition C.4) problem, we show how to reconstruct
another instance of the HMV problem and complete the proof by contradiction.

4 THE LOWER BOUND FOR A SIMPLIFIED VERSION

We define the dynamic attention matrix vector problem here. For the following definition, we ignore
the effect by the normalization factor for simplicity. We will show how to handle the normalization
factor in the Appendix (see Appendix C).
Definition 4.1 (OAMV(n, d)). The goal of the Online Attention Matrix Vector Multiplication
problem OAMV(n, d) is to design a data structure that satisfies the following operations:

1. INIT: Initialize on n× d matrices Q, K, V .

2. UPDATE: Change any entry of Q, K, or V .

3. QUERY: For any given i ∈ [n], j ∈ [d], return (exp(QK⊤)V )i,j .

Next, we present our lower bound result ignoring the normalization factor.
Lemma 4.2. Assuming the hinted Mv conjecture (Conjecture C.3): For every constant 0 < τ ≤ 1,
there is no dynamic algorithm for OAMV(n, d) problem (Definition 4.1) with

• polynomial initialization time, and

• amortized update time O(Tmat(n, n
τ , d)/nτ+Ω(1)), and

• worst query time O(nτ−Ω(1)).

Proof. Assume there was a dynamic algorithm faster than what is stated in Lemma 4.2 for some
parameter τ , i.e. update time O(Tmat(n, n

τ , d)/nτ+ϵ) and query time O(nτ−ϵ) for some constant
ϵ > 0. We show that this would contradict the hinted Mv conjecture (Conjecture C.3).
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Let us take an instance for the v-hinted Mv problem (Definition C.2) with M,V ∈ {0, 1}n×n. We
create a new instance OAMV(ñ = n, d̃ = n) where

Q̃ = M, K̃ = 0, Ṽ = V

During phase 1, we give this input to the dynamic algorithm for the OAMV problem (Definition 4.1).
During phase 2, when we receive the n×n matrix P with nτ non-zero entries, we perform nτ updates
to the data structure to set K̃⊤ = P. This time is bounded by

O(ñτ · (Tmat(ñ, ñ
τ , d̃)/ñτ+ϵ)) = O(nω(1,1,τ)−ϵ).

At last, in phase 3, we perform ñ queries to obtain the column exp(Q̃K̃⊤)Ṽ∗,i in O(ñ · ñτ−ϵ) =
O(n1+τ−ϵ) time.

Using Claim 4.3, and Claim 4.4, we know that exp(Q̃K̃⊤)Ṽ∗,i is enough to reconstruct MPV∗,i for
the hinted Mv problem.

Claim 4.3. For each i ∈ [n] and j ∈ [n], if ((exp(Q̃K̃⊤)− 1n×n)Ṽ )j,i is > 0, then (MPV)j,i = 1,

Proof. Assume we have ((exp(Q̃K̃⊤)− 1n×n)Ṽ )j,i > 0, We defined Q̃ = M, K̃ = P, Ṽ = V, so
we can rewrite it as ((exp(MP) − 1n×n)V)j,i > 0. Using the definition of matrix multiplication,
and the fact that exp(x) > 1 for all x > 0, we have some k ∈ [n] with

((exp(MP)− 1n×n)j,k(V)k,i > 0

((exp(MP)j,k − 1)(V)k,i > 0

We can conclude that for each i ∈ [n], j ∈ [n], there is at least one k ∈ [n] such that Vk,i > 0
and (MP)j,k > 0. Therefore, by using the definition of boolean semi-ring, we can conclude that
(MPV)j,i = 1

Claim 4.4. For each i ∈ [n] and j ∈ [n], if ((exp(Q̃K̃⊤)− 1n×n)Ṽ )j,i is 0 then (MPV)j,i = 0.

Proof. We have

((exp(Q̃K̃⊤)− 1n×n)Ṽ )j,k = ((exp(Q̃K̃⊤)− 1n×n))j,∗Ṽ∗,i = ((exp(MP)− 1n×n))j,∗V∗,i

where the first step follows from the definition of matrix multiplication and the second step follows
from the definition of Q̃, K̃ and Ṽ .

By using the above equation, if ((exp(Q̃K̃⊤)− 1n×n)Ṽ )j,k = 0, we have

(exp(MP)− 1n×n)j,∗V∗,i = 0 (1)

Eq. (1) implies that, for all k ∈ [n] such that Vk,i = 1 , we have (exp(MP)− 1n×n)j,k = 0 , which
also implies that (MP)j,k = 0.

Now, we can conclude that (MPV)j,i = 0 for each i ∈ [n] and j ∈ [n].

5 CONCLUSION

The development of Large Language Models (LLMs) has had a profound impact on society, with the
attention mechanism being a critical aspect of LLMs. This study introduces the dynamic version of
the attention matrix multiplication and delivers two outcomes - an algorithm and a conditional lower
bound. The algorithmic outcome presents a data structure that supports the dynamic maintenance of
attention computations, with a O(nω(1,1,τ)−τ ) amortized update time, and O(n1+τ ) worst-case query
time. The lower bound illustrates that the algorithm is conditionally optimal unless the conjecture
on hinted matrix vector multiplication is incorrect. It is an interesting future direction to prove an
unconditional lower bound. The problem of dynamic attention matrix multiplication, as proposed,
focuses on updating only one entry at a time in either the K or V matrix during each iteration. It is
possible to update multiple entries simultaneously in both matrices in practice. Therefore, further
research could expand the scope of the problem formulation to include such situations. To the best of
our knowledge, our research is purely theoretical and does not appear to have any negative societal
impact that should be noted.
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