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ABSTRACT

In object detectors, enhancing model performance hinges on the ability to simulta-
neously consider inconsistencies across tasks and focus on difficult-to-train sam-
ples. Achieving this necessitates incorporating information from both the clas-
sification and regression tasks. However, prior work tends to either emphasize
difficult-to-train samples within their respective tasks or simply compute classifi-
cation scores with IoU, often leading to suboptimal model performance. In this
paper, we propose a Hybrid Classification-Regression Adaptive Loss, termed as
HCRAL. Specifically, we introduce the Residual of Classification and IoU (RCI)
module for cross-task supervision, addressing task inconsistencies, and the Con-
ditioning Factor (CF) to focus on difficult-to-train samples within each task. Fur-
thermore, we introduce a new strategy named Expanded Adaptive Training Sam-
ple Selection (EATSS) to provide additional samples that exhibit classification and
regression inconsistencies. To validate the effectiveness of the proposed method,
we conduct extensive experiments on COCO test-dev. Experimental evaluations
demonstrate the superiority of our approachs. Additionally, we designed experi-
ments by separately combining the classification and regression loss with regular
loss functions in popular one-stage models, demonstrating improved performance.

1 INTRODUCTION

Over recent years, object detection has garnered significant attention and has been widely employed
in domains like pedestrian detection (Dana et al. (2021); Zhou et al. (2023); Liu et al. (2018))
and face recognition (Fan & Jiang (2021)). It encompasses two primary tasks: classification and
regression. It aims to predict classification scores and bounding-box coordinates based on input
images with a large amount of background information, which lead to an imbalance between positive
and negative samples. This imbalance makes it arduous for models, particularly one-stage detectors
(Kim & Lee (2020); Zhu et al. (2019a); Zhang et al. (2019)), to focus training on relevant samples.
This imbalance between the background and positive samples has propelled researchers to explore
mechanisms that could enable models to concentrate more intently on the difficult-to-train samples.
For instance, methods like Focal Loss (Lin et al. (2017)) and GHM Loss (Li et al. (2019)) were
designed within classification tasks. Similarly, in regression task, methods such as Focal EIoU
(Zhang et al. (2022)) and Alpha IoU (He et al. (2021)) emphasize difficult samples by modulating
the gradient.

However, in recent years, researcher (Wu et al. (2020)) has found that redundant boxes processed by
non-maximum suppression (NMS) may lead to the exclusion of certain boxes with high localization
ability but low classification scores, thus reducing the model performance. This reminds us that
the loss function design needs to consider both the consistency of classification scores and IoU.
To address this issue, the Generalized Focal Loss (GFL) (Li et al. (2020)) function incorporates
the IoU as a classification label, while Varfocal loss (Zhang et al. (2021)) proposes a cross-entropy
function that incorporates localization information. However, both methods fail to effectively focus
on truly difficult-to-train samples when dealing with samples with similar IoU. In addition, the loss
functions of the IoU series (Yu et al. (2016); Zheng et al. (2020)) mostly ignore the consistency of
classification and regression, and more often than not focus only on difficult-to-localize samples.

To address the above challenges, we propose the HCRAL (Hybrid classification-regression adaptive
loss), which consists of a module that characterizes the consistency of classification and regression
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Figure 1: The diagram provides an overview of our HCRA loss composition and the positive-
negative sample selection strategy. Both the classification and regression loss functions incorporate
adaptive modules, such as the RCI (residual of cls and IoU) module and the CF (conditioning factor)
module. In the context of ambiguous anchors A, B, C, and D, the values associated with the RCI
module and CF module are visually represented in the bar chart. Notably, anchors C and D represent
samples newly introduced by EATSS (Expanded Anchor Target Sampling Strategy) in comparison
to ATSS. Please see more details about EATSS in Algorithm 1.

and is applied to both classification and regression tasks, namely residual of cls and IoU (RCI), and a
conditioning factor (CF) that can be focused according to the difficult-to-train samples of the respec-
tive tasks, as shown in Figure 1(a). First, we use GHM loss (Li et al. (2019)) and GIoU (Rezatofighi
et al. (2019)) loss as the basis functions and design RCI module, which provides mutual information
for the classification and regression loss functions. In addition, we adjust attention for positive and
negative samples in classification and difficult-to-train samples in regression. The distribution of
RCI and CF in classification and regression for different samples is shown in Figure 1(b). Also,
we propose a new positive and negative sample allocation strategy called Expand Adaptive Training
Sample Selection (EATSS) to provide more samples with just high IoU or just high classification
scores (C, D samples in Figure 1(a)) to optimize the loss function.

To better validate the effects of our HCRA loss, we incorporate it into a popular one-stage model,
as illustrated in Figure 2. Additionally, we introduce HCRA loss and EATSS based FCOS+ATSS
structure when compared with other loss methods. To further explore the performance of our meth-
ods, the star convolution and bounding box refinement components are applied as auxiliary modules.
In this adaptation, we retain the centerness branch while altering the target to IoU scores instead of
the original design.

Our main contributions can be summarized as follows:

• The HCRAL is proposed, which is a novel loss that focuses across tasks. It establishes an
RCI module for models to supervise each other in the classification and regression tasks
while CF modules focus on difficult-to-train samples within each task.

• To accommodate the proposed HCRA loss function, we introduce a new ATSS-based
EATSS strategy to provide more optimizable positive samples to the RCI module.

• To demonstrate the superiority and generality of our loss function, our proposed HCRA
loss is combined with different loss functions in popular one-stage models. We also show
higher accuracy of our proposed methods based on FCOS+ATSS structure when compared
to existing state-of-the-art loss functions on COCO test-dev.

2 RELATED WORK

One-stage Object Detectors: Unlike two-stage detectors (Ren et al. (2015); Cai & Vasconcelos
(2018); He et al. (2017); Dai et al. (2016)), one-stage detectors directly predict classification proba-
bilities and position coordinate offset, rather than generating manageable number of region propos-
als called region of interest (ROI) , which results in a fast detection speed. For one-stage detection
models, it is generally divided into anchor-based and anchor-free. Anchor-based aims to generate
classification and regression through anchor. Those models are classics such as Retinanet (Lin et al.
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Figure 2: A diagram of structure of HCRAL. HCRAL includes CF and RCI. RCI, derived from
the regression and classification predictions, aims to emphasize consistency. Meanwhile, CF is
designed to focus on difficult-to-train samples. To futher exploring the performance of HCRAL,
EATSS strategy is adopted.

(2017)) and SSD (Liu et al. (2016)). For anchor-free models, there are two ways to predict the
position of objects, which offer flexibility and convenience: anchor-point prediction and key-point
prediction. The key-point based model (Law & Deng (2018); Duan et al. (2019); Zhou et al. (2019))
predicts the target box and classifies it by predicting the corner points. Another anchor-point model
similar to key-point generates the prediction area of the target more dynamically, and predicts the
distance from the four boundaries of the target box through the information of the anchor-point it-
self, including FCOS (Tian et al. (2019)) and ATSS (Zhang et al. (2020)). In recent years, anchor
free methods has also been used in many popular frameworks, such as the yolo series (Ge et al.
(2021); Redmon et al. (2016); Redmon & Farhadi (2017)).

Cost Functions of Object Detectors: In the development of the object detection, the imbalance be-
tween positive and negative samples has always been a difficult problem to solve. For classification
loss, Focal loss (Lin et al. (2017)) and GHM (Li et al. (2019)) loss are applied in one-stage model.
To combine with IoU information, AP series (Xu et al. (2022)) loss aim to enhance the performance
metrics, which still hard to optimize. While Varifocal loss (Zhang et al. (2021)) and GFocal (Li et al.
(2020)) take IoU as classification lalels without considering difficult-to-train samples. For regression
loss, existing IoU series loss function fall into two main methods, one of them (Rezatofighi et al.
(2019); Zheng et al. (2020)) is to increase the penalty by increasing the centroid, width and height
of the error. The other methods (Tong et al. (2023); Zhang et al. (2022); He et al. (2021)) is mainly
to adjust the weights of high-quality examples and low-quality examples to increase the focus on
difficult-to-train samples. However, above loss functions fail to consider both the consistency of IoU
and score and difficult-to-train samples.

3 METHOD

Through above analysis, we introduce the RCI module for mutual supervision in classification and
regression, along with the CF module for focusing on difficult-to-train samples in Section 3.1. We
will present the new positive and negative sample selection strategy called EATSS in Section 3.2.

3.1 LOSS FUNCTION DESIGN

Consistency of Classification and Regression. As depicted in Figure 3(a), the points near the red
line adhere to classification-regression consistency, but the majority of points do not. In the existing
loss functions, there is limited consideration for simultaneously incorporating consistency into both
classification and regression tasks. To tackle this, we introduce RCI module, enabling optimization
of classification and regression based on the degree of inconsistency exhibited by each anchor point:

RCI = s− iou+ α (1)
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Figure 3: Illustrations of various curves of different parameter. (a) The distribution of IoU and
classification scores. (b) The curves of ω with different µ when p∗ = 0. (c) The curves of t with
different γ.

where s is the predicted cls score and iou is are the locations of the predicted bounding box and the
ground truth in pos samples. α is a parameter that regulates the balance between classification and
IoU (yellow lines in Figure 3(a)).

3.1.1 CLASSIFICATION LOSS FUNCTION

We analyze the existing classification functions based on experience. The detector can pay attention
to difficult-to-classify samples, GHM loss shows good adaptive ability, can be written as:

LGHM−C =
1

N

N∑
i=1

N

GD(gi)
LCE(pi, p

∗
i )

=
1

N

N∑
i=1

βiLCE(pi, p
∗
i )

(2)

where p is the predicted probability and p∗ is the ground-truth label. N is the number of total
samples. The gradient can be partitioned into M subintervals, each with a length of lε(g). gk is the
center of the k-th subinterval. δε(gk, g) is a function that determines whether the sample gradient
g is satisfied in the k-th subinterval. GD(g) = 1

lε(gk)

∑N
k=1 δε(gk, g) is described as calculating

the number of samples in each gradient subinterval. Where βi = N
GD(gi)

is the weight of the i-th
sample. However, the classification loss function needs to have the following points so that all the
training samples are effectively treated:

• For positive samples, the weights assigned to samples with high IoU should be greater than
those samples with low IoU to prevent large penalties on low IoU samples, when in same
subinterval.

• Further, samples with classification scores significantly lower than their corresponding IoU
should receive higher attention. However, as the classification scores approach the IoU, the
weights should decrease, potentially reaching zero. Beacause the model doesn’t need to
allocate excessive training focus on classification.

• For negative samples, the weighting logic differs. In cases samples with low IoU, indicating
a greater potential for a false positive, which remain relatively high. As the IoU increases,
these weights should gradually diminish, reflecting the decreasing risk of false positives.

To specify the above first and second conditions, we define adaptive matrix, denoted ω, which can
be expressed as:

ω=

{
IoU if p∗ = 1

(1− IoU(IoU − µ)2) if p∗ = 0
. (3)
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µ is a sample weight decay factor that controls for a high IoU when p∗ = 0, as can be seen in Figure
3(b). To satisfy the second point, we keep the gradient of GHMC and combine ω with it, namely
conditioning factor (CF), which is defined as follows:

CFcls(i) = ωi ∗ βi (4)

To meet the third condition, we introduce the RCI module to achieve consistency between classifi-
cation and IoU:

RCIcls =


eθRIC

(eθRIC+1)
if p∗ = 1 and p > IoU

0 if p∗ = 1 and p ≤ IoU
1 if p∗ = 0

(5)

θ is an adjustment factor for score and iou. When the score gets higher and closer to the iou, the
consensus matrix will become smaller, so as to reduce attention of the model to the sample. When
θ become larger, the more obvious the inhibitory effect. It can be observed that HCRAC comprises
RCIcls and CFcls in Figure 2, which can be expressed as follows:

LHCRA−C = CFcls(i) ∗RCIcls(i) ∗ LCE(pi, p
∗
i ) (6)

3.1.2 REGRESSION LOSS FUNCTION

We summarize the desired regression loss functions:

• The model needs to increase the gradient for some ordinary-quality anchor boxes.
• There are many low-quality samples with abnormal aspect ratios in the training data, which

are difficult to produce high overlap with the groud truth in training and reduce the training
quality.

• Low-score, high-IoU samples have limited learning potential, whereas high-score, low-IoU
samples show the opposite. Therefore the model needs to increase the punishment for some
low-iou anchor boxes accompanied by high scores, and reduce the gradient propagation for
anchor boxes with low scores and high IoU.

Following the classification loss function, we separate all these conditions above from the compu-
tational graph to avoid the backpropagation will affect each other. The properties 1 and 2 are based
on IoU to adjust the weight of the sample, we can construct conditioning factor as follows:

CFreg = t · eRDIoU · IoU (7)

Here, CFreg represents the attention weight assigned to anchors that are both ordinary-quality and

have a high IoU, and γ is parameters in t = e−
IoU2

γ that govern the shape of the weight function
for suppressing of high-iou anchor. Figure 3(c) shows the graph of t about for different control
parameters. RDIoU = ρ(b,bgt)

c2 represents a certain degree of offset from the center point, and it can
improve the model’s attention to the unaligned anchors at the center point. c is the diagonal length of
the smallest enclosing box. ρ represents calculating the distance between the center b of the anchor
box and the center bgt of the ground truth.

In conjunction with the third point above, we introduce the RCI module in order to focus on the
samples with high IoU but low scores. As Figure 3(a) illustrates the distribution of scores and
IoU, the coordinates are partitioned into two regions based on y(Score) = x(IoU) + α. In region
1, where samples exhibit higher scores compared to IoU values, the model should prioritize its
attention accordingly. Conversely, in region 2, the model’s focus should decrease, as samples in this
region have higher IoU values relative to their scores. We construct a RCI-based coefficient as:
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RCIreg =


(s+ α)2 + IoU2(tb, cb) + ep

2 ∗ (s+ α) ∗ IoU(tb, cb) + ep
, if RCI ≥ 0

2 ∗ (s+ α) ∗ IoU(tb, cb) + ep

(s+ α)2 + IoU2(tb, cb) + ep
, if RCI < 0

(8)

Here, (s+α)2 + IoU2 >= 2 ∗ (s+α) ∗ IoU , when s, IoU ∈ [0, 1]. Thus, when samples in region
1, RCI >= 0, which means RCIreg >= 1. While samples in region 2 that satisfying RCI < 0,
RCIreg ∈ [0, 1]. ep is an adjustment parameter that prevents RCIreg from being too large. We
normalize RCIreg by running mean. The exponential moving average (EMA) method is applied to
calculate weights in our work, which can be expressed as follows:

r(t) = (1−m)r(t−1) +mRCI(t)reg (9)

From Figure 2, we introduce r and CFreg , utilizing GIoU as the foundational function. Conse-
quently, our proposed HCRAR can be formulated as follows:

LHCRA−R =
N∑
i=1

r × CFreg × LGIoU

LGIoU = 1− IoU +
|C − (A ∪B)|

|C|

(10)

Where IoU = |A∩B|
|A∪B| . A, B are two arbitrary boxes. C is the smallest convex box enclosing both A

and B.

3.2 EXPAND ADAPTIVE TRAINING SAMPLE SELECTION

Algorithm 1 Expand Adaptive Training Sample Selection (EATSS)

Require: G is a set of ground-truth boxes on the image, L is the number of feature pyramid levels,
Ai is a set of anchor boxes from the ith pyramid levels, A is a set of all anchor boxes, k is a
hyperparameter.

Ensure: P is a set of positive samples, N is a set of negative samples.
1: for each ground-truth g ∈ G do
2: Determine positive candidate anchors Cg for g using ATSS.
3: Filter candidates in Cg based on IoU with g and add to positive set P .
4: Get the set E satisfying the maximum distance Disf of P .
5: for each candidate e ∈ Eg do
6: Compute distance and IoU of e.
7: end for
8: Add selected l candidates from E to P based on distance and IoU.
9: end for

10: Determine negative set N as anchors not in P .
11: return P , N ;

While the adaptation of ATSS Zhang et al. (2020) algorithm facilitates the selection of k samples
near the center of ground truth of each pyramid feature and dynamically identifies positive samples
adhering to mean and variance of IoU, which may omit certain samples characterized by high scores
and high IoU that hold promise.

Specifically, we need to increase effective positive samples, such as some high IoU and high score
anchor, to optimize RCI for every group truth. As Algorithm 1 described, after the ATSS algorithm
screening obtains positive and negative samples for each ground truth, find the maximum distance
between centers of anchors and ground truth. Disf that can meet sum of mean and variance of IoU,
so as to find the biggest boundary to find a positive sample. In order to explore high IoU and high
score anchor, we design a ranking function, consist of the distance between the center of the box to
the center of the ground truth and IoU, to get the most positive sample screening l-point with the
highest ranking score to provide more samples that can be optimized by RCI.
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4 EXPERIMENTS

Datasets. We assess HCRAL and EATSS on the large-scale object detection dataset COCO (Lin
et al. (2014)). Following common practice, we train detectors on the train2017 split, report ablation
results on the val2017 split, and compare with other detectors on the test-dev split by uploading the
results to the evaluation server. We adopt the standard COCO-style Average Precision (AP) as the
evaluation metric.

Experimental Setup. To validate the efficacy of our loss function in two different one-stage detec-
tion methods, anchor-free and anchor-based, we choose ATSS and RetinaNet as detectors. Note that
all loss weights of regression tasks are set as 2.5 for RetinaNet. Further, Due to the expandability of
FCOS+ATSS structure, we selected it to combine our proposed loss function and EATSS. The initial
learning rate is 0.01, and we implement the linear warm-up policy at the beginning of training, with
a warm-up ratio (Goyal et al. (2017)) set to 0.1, except for ATSS, where the warm-up ratio is set
to 0.001. Except for validating regression performance with 4 GPUs on RetinaNet, we use 8 V100
GPUs for training with a total batch size of 16 (2 images per GPU) in both ablation studies and
performance comparisons. In particular, we conducted ablation studies on RetinaNet with backbone
as ResNet-50 (He et al. (2016)) on COCO val2017 and trained FCOS+ATSS with different back-
bones on COCO test-dev. If the backbone utilizes DCN, it is also incorporated into the final layers
preceding the star deformable convolution. When introducing auxiliary modules, we use the star
convolution and bounding box refinement components into FCOS+ATSS. For fair comparison with
state-of-the-art methods on COCO test-dev, 2x (24 epochs) training scheme and multi-scale training
(MSTrain) are adopted.

4.1 ABLATION STUDIES

Classification hyperparameters. The tuning of positive samples relies on two hyperparameters:
RCI and CF. The hyperparameter of M control the number of gradient subintervals. θ is used to
regulate the weights of positive samples when score is less than IoU. γ is used to adjust the relative
weights of the negative samples. In Table 1 we show parameters θ from 4 to 6 and parameters M
from 20 to 30. it can be summarized that the model preforms best when θ is set to 5 and M is set to
20. In the third line, 0.2 AP is drop without RCI module. This illustrates the effectiveness of RCI
in classification tasks. From the results in Table 2, we choose the parameter γ of 0.7 as the optimal
parameter.

Regression hyperparameters. For regression analysis, there are three key hyperparameters. RCI
modules, consists of two hyperparameters, α and ep. Parameter α represents the gap between clas-
sification and regression. When this gap increases, the consistency problem will become more sig-
nificant because the number of samples located in region 1 will increase accordingly. On the other
hand, the hyperparameter ep is used to control for the effects of classification scores and IoU incon-
sistency. Specifically in region 1, a decrease in the parameter ep leads to an increase of RCIreg to
enable model focus on the inconsistency between classification and regression, while an increase in
ep reduces the attention of inconsistency. Table 3 shows that the two parameters of RCI, α and ep,
work best when taken 0.1, 0.001. It can observed that without RCI module, 0.3 AP is drop. This
illustrates the effectiveness of RCI in regression tasks. It can be observed in Table 4 that γ is set as
1.2 to get good performance. Due to the different samples selection in RetinaNet and ATSS, ATSS
tends to include more low-IoU samples. To address this, we removed the γ when using the ATSS
and set set the weight to 1.5, ensuring that high-quality samples are not suppressed during training.

EATSS. Based on FCOS+ATSS with auxiliary modules and using ResNet-50 as the backbone, we
combine HCRAL with EATSS to explore the effects of the l-additional anchor point. The parameter
l controls the number of anchor points are added to each ground truth. Table 6 indicates that varying
this parameter results in AP values ranging from 41.7 AP to 42.1 AP, demonstrating the sensitivity
of performance of our HCRA loss to parameter l.

4.2 EVALUATION OF INDIVIDUAL METHOD CONTRIBUTIONS

To verify the effectiveness of individual methods, we add them in turn and summarize them in Table
5. Firstly, it can be seen that replacing EATSS with ATSS, only 0.1 AP increase for FL+GIoU. How-
ever, when the additional sample quantity (l) for EATSS increases from 2 to 3, there is a performance
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Table 1: Performances by setting different values
of θ and M in HCRAC.

θ M AP AP50 AP75

4 20 37.5 56.8 40.2
5 20 37.6 57.2 40.1
- 20 37.4 57.1 39.8
6 20 37.4 57 39.8
5 25 37.3 56.6 39.9
5 30 37.5 57 40.1

Table 2: Performances of different val-
ues of γ in HCRAC.

µ AP AP50 AP75

0.6 37.3 56.8 39.7
0.7 37.6 57.2 40.1
0.8 37.5 57.1 39.7
0.9 37.5 56.8 40.2

Table 3: Performances of different values of α and
ep in HCRAR.

α ep AP AP50 AP75

0 0.01 37.2 55.7 39.2
-0.1 0.01 37.3 55.9 39.7
-0.1 0.1 37.2 55.8 39.4
-0.1 0.001 37.4 56 39.8
-0.2 0.01 37.2 55.7 39.7

- - 37.1 55.6 39.6

Table 4: Performances of Retinanet of
different values of γ in HCRAR.

γ AP AP50 AP75

0.8 37.1 55.8 39.7
1.0 37.1 55.7 39.5
1.2 37.4 56 39.8
1.4 37.2 55.9 39.5

Table 5: The individual impact of each element based
on FCOS+ATSS. (With auxiliary modules)

EATSS HCRAR HCRAC AP AP50 AP75

41.2 58.2 44.6
✓ 41.3 58.7 44.7
✓ ✓ 41.7 59.3 45.4
✓ ✓ ✓ 42.1 59.1 45.8

Table 6: Performance of different
parameter l of EATSS based on
FCOS+ATSS.

l AP AP50 AP75

2 41.7 58.7 45.4
3 42.1 59.1 45.8
4 41.9 59.2 45.7

improvement of 0.4 AP in Table 6. This confirms that HCRAL has a significant optimization effect
on samples with high scores and low IoU or low scores and high IoU, and EATSS’s strategy aligns
well with HCRAL. Secondly, classification loss is not in terms of focal loss but in terms of HCRAC
loss, the performance is improved to 41.7 AP. Finally, GIoU loss is replaced with HCRAR loss, the
performance boost to 42.1 AP. These results verify the effectiveness of the method we proposed.

4.3 COMPARISON WITH STATE-OF-THE-ART

In Table 7, we compared HCRAL with state-of-the-art loss functions on COCO test-dev. Notably,
all loss function use one-stage model with same multi-scale training (Li et al. (2020); Zhang et al.
(2021; 2020)). HCRA loss achieves 44.4 AP on FCOS+ATSS with backbone as ResNet-50, exceed
all other competitive methods with the same backbone, such as GFL(43.1 AP) and VFL(43.6 AP).
We also apply HCRAL into deeper network like ResNet-101, surpassing VFL and GFL by 1.2
AP and 1.1 AP, which show HCRAL verify its great performance. With auxiliary modules, our
proposed method achieve higher accuracy than other recent state-of-the-art methods. Furthermore,
we use Res2Net (Gao et al. (2021)) and deformable convolution layers (Dai et al. (2017); Zhu et al.
(2019b)), resulted in a remarkable performance, achieving a notable AP of 51.4.

4.4 GENERALIZATION AND SUPERIORITY OF HCRA

We assessed HCRA loss functions by substituting HCRAC for existing classification loss functions
and HCRAR for regression loss functions in popular detectors, RetinaNet and ATSS, using the
COCO val2017 dataset. In Table 8, HCRAC achieves a 1.1 AP improvement for RetinaNet (37.6
AP vs. 36.5 AP) and a 0.4 AP improvement for ATSS (40.4 AP vs. 40 AP), which show its
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Table 7: Performance (one-stage model) comparison with state-of-the-art detectors on MS COCO
test-dev. R : ResNet. R2 : Res2Net. DCN : Deformable convolution network. AUX means adding
auxiliary modules.

Method Backbone AUX Epoch AP AP50 AP75 APS APM APL

RetinaNet (Lin et al. (2017)) R-101 × 18 39.1 59.1 42.3 21.8 42.7 50.2
FreeAnchor (Zhang et al. (2019)) R-101 × 24 43.1 62.2 46.4 24.5 46.1 54.8

FSAF (Zhu et al. (2019a)) R-101 × 18 40.9 61.5 44.0 24.0 44.2 51.3
FCOS (Tian et al. (2019)) R-101 × 24 41.5 60.7 45.0 24.4 44.8 51.6
SAPD (Zhu et al. (2020)) R-101 × 24 43.6 62.1 47.4 26.1 47.0 53.6
SAPD (Zhu et al. (2020)) R-101-DCN × 24 46.0 65.9 49.6 26.3 49.2 59.6

ATSS (Zhang et al. (2020)) R-101 × 24 43.6 62.1 47.4 26.1 47.0 53.6
ATSS (Zhang et al. (2020)) R-101-DCN × 24 46.3 64.7 50.4 27.7 49.8 58.4

GFL (Li et al. (2020)) R-50 × 24 43.1 62.0 46.8 26.0 46.7 52.3
GFL (Li et al. (2020)) R-101 × 24 45.0 63.7 48.9 27.2 48.8 54.5

GFLv2 (Li et al. (2021)) R-101-DCN ✓ 24 48.3 66.5 52.8 28.8 51.9 60.7
VFL (Zhang et al. (2021)) R-50 × 24 43.6 62.2 47.4 26.3 47 53.5
VFL(Zhang et al. (2021)) R-101 × 24 44.9 64.1 48.9 27.1 48.7 55.1
VFL (Zhang et al. (2021)) R-101-DCN ✓ 24 49.2 67.5 53.7 29.7 52.6 62.4

HCRAL (ours) R-50 × 24 44.4 62.2 48.6 26.9 47.6 55.5
HCRAL (ours) R-101 × 24 46.1 64.1 50.4 28.1 49.7 57.5
HCRAL (ours) R-101-DCN ✓ 24 49.3 67.3 53.9 30.4 52.8 63.1
HCRAL (ours) R2-101-DCN ✓ 24 51.4 69.5 56.1 32.5 54.9 64.9

superior performance over other classification loss functions. For regression loss functions, it could
be concluded in Table 9 that HCRAR achieved a notable mAP of 37.4 on RetinaNet, outperforming
other IoU loss functions, resulting in a significant improvement of 0.9 AP compared to the baseline.
While the improvement on ATSS was relatively smaller due to its combination with a rescaling
regression weight, it still surpassed Focal EIoU by 0.6 AP.

Table 8: Performance comparison using pop-
ular classification losses versus our HCRAC
loss on Retinanet and ATSS. † means denotes
the default loss function for the baseline.

Detector Loss AP

Retina

FL† (Lin et al. (2017)) 36.5
QFL (Li et al. (2020)) 37.3

DR (Qian et al. (2020)) 37.4
VFL (Zhang et al. (2021)) 37.4

HCRAC (ours) 37.6

ATSS

FL† (Lin et al. (2017)) 40.0
QFL (Li et al. (2020)) 40.2

VFL (Zhang et al. (2021)) 39.8
HCRAC (ours) 40.4

Table 9: Comparison of performances when ap-
plying popular IoU Loss and our HCRAR loss
to Retinanet and ATSS. † means denotes the de-
fault loss function for the baseline.

Detector Loss AP

Retina

L1† 36.5
EIoU (Zhang et al. (2022)) 37.0

F-EIoU (Zhang et al. (2022)) 37.2
α-IoU (He et al. (2021)) 36.4

HCRAR (ours) 37.4

ATSS

GIoU† (Rezatofighi et al. (2019)) 40.0
F-EIoU (Zhang et al. (2022)) 39.6
α-IoU (He et al. (2021)) 39.1

HCRAR (ours) 40.2

5 CONCLUSION

In this paper, we propose HCRA loss, a hybrid classification and regression loss function, along
with a novel strategy called EATSS for object detection. We incorporate the RCI module, designed
to address inconsistencies between classification and regression tasks, and the CF module, which
focuses on difficult-to-train samples within each task, enabling the model to concentrate on the most
informative training samples. To further assess the effectiveness of our loss function, we incorporate
EATSS into dense object detectors and evaluate the performance of our proposed approach. More-
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over, we conduct comparative experiments on one-stage detectors, demonstrating the efficacy and
generalization of HCRAL.
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A APPENDIX

You may include other additional sections here.
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