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Agent-based models (Macal and North, 2010) are used
for studying agents that interact in a shared environment.
They are widely used in science (Rollins et al.| [2014), for
example in ecosystem modeling, where animals of differ-
ent species interact with other organisms and the physical
environment (DeAngelis and Grimm), [2014). A common
practice in agent-based ecosystem modeling is to hand-code
models of animal behavior (Jadhav et al., | 2024} Widyas-
tuti et al., 2022). However, this is challenging because
the mechanisms of animal behavior are highly complex and
not fully understood (Tohyama et al.| 2025). An alterna-
tive approach is to use reinforcement learning (RL) (Sut-
ton and Bartol 2018), in particular multi-agent reinforce-
ment learning (MARL), which focuses precisely on multi-
ple agents interacting in a shared environment (Zhang et al.,
2021). MARL has been used to model animal behavior in
predator—prey dynamics (Yang et al., |2017; Sunehag et al.|
2019) and in ecosystem modeling (Strannegard et al., 2025)).
Reinforcement learning mechanisms have been observed
throughout the animal kingdom (Neftci and Averbeck,2019;
Barron et al., 2010). Typically, a reward signal is com-
puted by the brain’s reward system, which integrates sev-
eral internal and external cues into signals controlling the
release of dopamine and other neurotransmitters associated
with learning (Arias-Carrion et al.,|2010). A natural strategy
in RL—forming the basis of homeostatic RL—is therefore
to model natural reward signals by defining functions that
convert homeostatic signals into scalar rewards (Yoshida
et al., |2024a). While animals use RL to learn during their
lives, many artificial agents only learn before deployment.
Here, we study how the choice of reward function influences
the performance of MARL-based ecosystem models from
three perspectives: animal lifespan, population size, and re-
silience, defined as the ability of a set of species to coexist
under environmental change.

Ecosystem environment

We conducted experiments with different reward functions
using an environment defined by the agent-based ecosystem
model in (Strannegard et al., 2025), representing an Alpine

landscape in Italy with wolves, chamois (mountain goats),
and three species of grass. The geographical area is repre-
sented by a grid of cells, where each cell has its own popu-
lations of organisms and its own land-cover class. The an-
imal agents can move, eat, drink, and reproduce under cer-
tain conditions. They are all mortal and can die from star-
vation, thirst, predation, or old age (after 500 time steps).
The behavior of each animal species is controlled by a neu-
ral network (policy network), which determines what each
individual agent will do at each time step. The observations
and actions of each chamois or wolf agent are as follows:

Observations: The agent observes its own internal levels of
energy and hydration, both in the range [0, 1], and its own
species (chamois or wolf). It also observes the properties
of the cells in the 3 x 3 neighborhood surrounding it. Thus,
it is aware of the presence of grass, water, chamois, and
wolves in its nearby environment. It also senses aggre-
gated smells of these objects in the same cells, informing
it about distant objects.

Actions: The agent eats and drinks automatically when in a
cell where food or water is present. It moves as specified
by three output values of the policy network: a direction
given by two coordinates, and a speed.

The policy networks were trained across a range of envi-
ronments to enable the agents to survive in multiple environ-
ment that they have never encountered before.

Reward functions

The following reward functions were used during training,
cf. [Konidaris and Barto|(2006) and |Yoshida et al.| (2024alb):

Classic: Reward for eating or drinking: chamois gain re-
ward for eating grass or drinking water; wolves for eating
a chamois or drinking water.

Survival: Reward +1 at each time step as long as the agent
remains alive.

Euclidean: Negative Euclidean distance between the
present homeostatic state and an ideal setpoint (1, 1).



Delta Euclidean: Change in Euclidean reward from one
time step to the next.

Homeostatic: Sum of the levels of energy and hydration.

Delta Homeostatic: Change in homeostatic reward from
one time step to the next.

Wellness: Capped quadratic function of energy and hydra-
tion that provides no additional reward when both exceed
0.8 (satiation).

Method

We used the RL algorithm PPO from Stable-Baselines3
(Raffin et al., [2021) and the seven reward functions de-
scribed above to train a total of 49 policy networks, each
with 144 inputs, two hidden layers, and three outputs. Since
randomness affects the training process, we trained seven
policy networks per reward function. All policy networks
were trained on a large number of randomly generated Per-
lin worlds of varying difficulty. To evaluate the policy net-
works, we used a test set consisting of 190 environments.
By varying the amount of grass in the original model, we
produced ten environments at each of 19 levels of diffi-
culty, ranging from simple to impossibly hard. All envi-
ronments were populated with 100 chamois and 25 wolves
randomly distributed on the map. Each of the 49 policy
networks was run once on each environment, for a total of
49 x 190 = 9310 simulations. Each simulation lasted until
either the chamois or the wolves died out, or for a maximum
of 4000 steps. The Python code for the project is available
at https://gitlab.com/ecotwin/alife-2025-workshop.

Results

To test whether differences between reward functions were
statistically significant (p < 0.05), we applied the non-
parametric Friedman test (Friedman, [1937), which ranks
functions by average performance (1 = best, 7 = worst). Re-
sults are shown in critical difference diagrams (e.g., Fig.[I),
where a red bar between two reward functions indicates no
significant difference, and its absence indicates a significant
one.

Average lifespan The average lifespan for wolves ranged
from 140 to 162 time steps across the seven rewards, and for
chamois from 64 to 70. For chamois, Wellness and Delta
Euclidean produced the longest lifespans, while for wolves
it was Survival, Wellness, and Euclidean (Fig. E])

Population size The average number of wolves was 13—-15
across reward functions, while chamois populations ranged
from 170 to 200. Classic yielded the largest chamois pop-
ulations, whereas Homeostatic and Wellness favored larger
wolf populations (Fig. 2).
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Figure 1: Average lifespans of chamois and wolves.
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Figure 2: Population sizes of chamois and wolves.

Resilience Resilience (average episode length) ranged
from 1526 to 2151 time steps. Homeostatic, Wellness,
and Euclidean led to the most resilient animal populations

(Fig. [3).
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Figure 3: Resilience (ability of the species to coexist).

Conclusion

Several statistically significant differences were detected be-
tween the reward functions, but none emerged as a clear
overall winner or loser. All seven reward functions, except
Survival, could potentially benefit from reward shaping—
for example, by adjusting the relative weights assigned to
energy and hydration. In contrast, Survival can be applied
without modification to construct behavioral models of di-
verse animal species. Agents optimized for survival are, a
fortiori, also optimized for locating food and water, evading
predators, conserving energy, and navigating terrain.
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