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Abstract
The Abstraction and Reasoning Corpus (ARC)
(Chollet, 2019) and its most recent language-
complete instantiation (LARC) has been postu-
lated as an important step towards general AI.
Yet, even state-of-the-art machine learning mod-
els struggle to achieve meaningful performance
on these problems, falling behind non-learning
based approaches. We argue that solving these
tasks requires extreme generalization that can only
be achieved by proper accounting for core knowl-
edge priors. As a step towards this goal, we focus
on geometry priors and introduce LATFORMER, a
model that incorporates lattice symmetry priors in
attention masks. We show that, for any transfor-
mation of the hypercubic lattice, there exists a bi-
nary attention mask that implements that group ac-
tion. Hence, our study motivates a modification to
the standard attention mechanism, where attention
weights are scaled using soft masks generated by a
convolutional network. Experiments on synthetic
geometric reasoning show that LATFORMER re-
quires 2 orders of magnitude fewer data than stan-
dard attention and transformers. Moreover, our
results on ARC and LARC tasks that incorporate
geometric priors provide preliminary evidence
that these complex datasets do not lie out of the
reach of deep learning models.

1. Introduction
Infusing inductive biases and knowledge priors in neural
networks is regarded as a critical step to improve their sam-
ple efficiency (Battaglia et al., 2018; Bengio, 2017; Lake
et al., 2017; Lake & Baroni, 2018; Bahdanau et al., 2019).
The Core Knowledge priors for human intelligence have
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been studied extensively in developmental science (Spelke
& Kinzler, 2007), following the theory that humans are en-
dowed with a small number of separable systems of core
knowledge, so that new flexible skills and belief systems
can build on these core foundations. Recent research in
artificial intelligence (AI) has postulated the idea that the
same priors should be incorporated in AI systems (Chollet,
2019), but it is an open question how to incorporate these
priors in neural networks.

Following this chain of thought, the Abstraction and Rea-
soning Corpus (ARC) (Chollet, 2019) was proposed as an
AI benchmark built on top of the Core Knowledge priors
from developmental science. Chollet (2019) posits that
developing a domain-specific approach based on the Core
Knowledge priors is a challenging first step and that “solving
this specific subproblem is critical to general AI progress”.
Further, he argues that ARC “cannot be meaningfully ap-
proached by current machine learning techniques, including
Deep Learning”.

An important category of Core Knowledge priors includes
geometry and topology priors. Indeed, significant attention
has been devoted to incorporating such priors in deep learn-
ing architectures by rendering neural networks invariant (or
equivariant) to transformations represented through group
actions (Bronstein et al., 2021). However, group-invariant
learning helps to build models that systematically ignore
specific transformations applied to the input (such as trans-
lations or rotations).

We take a complementary perspective and aim to help neural
networks to learn functions that incorporate geometric trans-
formations of their input (rather than to be invariant to such
transformations). In particular, we focus on group actions
that belong to the symmetry group of a lattice. These trans-
formations are pervasive in machine learning applications,
as basic transformations of sequences, images, and other
higher-dimensional regular grids fall in this category. While
attention and transformers can in principle learn these kind
of group actions, we show that they require a significant
amount of training data to do so.

To address this sample complexity issue, we introduce LAT-
FORMER, a model that relies on attention masks in order to
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Figure 1: We consider problems that involve learning a geometric transformation on the input data as a sub-problem. The
displayed task (taken from ARC) entails learning to map, for each pair, the left to the right image. We investigate how to
solve such tasks more sample-efficiently by imbuing self-attention with the ability to exploit lattice symmetry priors.

learn actions belonging to the symmetry group of a lattice,
such as translation, rotation, reflection, and scaling, in a dif-
ferentiable manner. We show that, for any such action, there
exists an attention mask such that an untrained self-attention
mechanism initialized to the identity function performs that
action. We further prove that these attention masks can be
expressed as convolutions of the identity, which motivates
a modification to the standard attention module where the
attention weights are modulated by a mask generated by a
convolutional neural network (CNN).

Our experiments focus on abstract geometric reasoning and,
more specifically, on ARC and its variants, as they are
widely regarded as challenging benchmarks for machine
learning models (Acquaviva et al., 2021; Chollet, 2019).
On these datasets, we aim to reduce the gap between neu-
ral networks and hand-engineered search algorithms. To
probe the sample efficiency of our method, we compared its
ability to learn synthetic geometric transformations against
Transformers and attention modules. Then, we annotated
ARC tasks based on the knowledge priors they require, and
we evaluated LATFORMER on the ARC tasks requiring
geometric knowledge priors. Finally, we performed experi-
ments on the more recent Language-complete ARC (LARC)
(Acquaviva et al., 2021), which enriches ARC tasks with
natural-language descriptions, and we compared our model
against strong baselines based on neural program synthe-
sis. Our results provide evidence that LATFORMER can
learn geometric transformations with 2 orders of magnitude
fewer training data than transformers and attention. We also
significantly reduce the gap between neural and classical
approaches on ARC, providing the first neural network that
reaches good performance on ARC tasks requiring geomet-
ric knowledge priors.

2. Formalizing the Group-Action Learning
Problem

To build intuition on the kind of basic priors that we aim to
infuse in neural networks, Figure 1 shows a task borrowed

from ARC (Chollet, 2019). The task entails learning to fill
out the yellow patches in the leftmost image (input) so that
the resulting image satisfies a 90◦ rotation symmetry. The
learner is given only a small set of input-output pairs: the
ARC tasks have 3.3 training examples on average. Though
the task is challenging for a general neural network (due to
the small number of examples), it becomes easier under the
prior knowledge of discrete two-dimensional point groups,
one of which is the cyclic group of 4-fold rotations C4.
Under this prior, it can be solved by the composition of
a group action (rotating each image x by some g ∈ C4)
and a shallow neural network with a non-linear activation
(mapping yellow to zero and taking a pixel-wise max).

More formally, we are interested in helping neural networks
learn lattice transformations in a sample efficient manner
by infusing knowledge priors in the model. Motivated by
ARC, we focus on learning geometric transformations that
belong to the symmetry group of a lattice. This pertains to
the more general problem of learning group actions given
the input and the output of the transformation (group-action
learning).

Concretely, we consider input-output transformations in-
volving a group element g taken from some known group G
that can be expressed under the general formulation:

y = f(g ◦ x, x), g = g(x) ∈ G. (group-act. learning)

Above, x ∈ Rdin and y ∈ Rdout are input and output exam-
ples, f, g are unknown functions, and ◦ denotes the appli-
cation of a group action. As seen, the group element g can
depend on the input data itself. More generally, the function
f may depend on more than one transformations of x based
on elements belonging to various groups of interest.

It is important to stress that group-action learning is the
exact antithesis of the typical group invariant and equivariant
learning problems (Bronstein et al., 2021):

y = f(g ◦ x) for every g ∈ G (invariant learning)
g ◦ y = f(g ◦ x) for every g ∈ G. (equiv. learning)
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Intuitively speaking, whereas in group-action learning one
aims to learn functions that involve specific (and data-
dependent) transformations of our data by actions of the
group, in in/equivariant learning the goal is to build models
that are oblivious to such actions in a systematic manner.

3. Attention Masks for Core Geometry Priors
This section prepares some theoretical grounding for LAT-
FORMER, our approach to learn the transformations for
lattice symmetry groups in the form of attention masks. The
section defines attention masks and explains how they can
be leveraged to incorporate geometry priors when solving
group action learning problems on sequences and images.

3.1. Modulating Attention Weights with Soft Masking

Consider the scaled dot-product attention mechanism as
defined in Vaswani et al. (2017). In our formulation, we
consider real-valued masks M ∈ [0, 1]nQ×nK that rescale
attention weights:

A = softmax
(QK⊤

√
d

)
⊙M ,

where Q ∈ RnQ×d is the query parameter of the attention
mechanism, K ∈ RnK×d is the key, d is the dimensionality
of the model, nQ and nK are the sizes of the sets encoded
by the query and key matrices respectively, and ⊙ is the
Hadamard product. Attention masks have been widely used
to constrain the values of the attention weights and are usu-
ally binary masks applied before the softmax activation
(Vaswani et al., 2017; Sartran et al., 2022). However, as we
aim to learn M , we apply the mask after the softmax opera-
tion in order to avoid squashing the gradient. Therefore, we
rescale the attention weights to sum to 1 when calculating
the output X of the attention mechanism:

MaskedAttention(Q,K,V ;M) =
A

A · 1nK
1⊤
nK

V ,

with 1n being a vector of ones of size n and V ∈ Rd×nK

being the value parameter of the attention mechanism.
Though masking can also be applied in cross-attention, in
the following we primarily focus on self-attention, where
Q = K = V = X . For ease of notation, we write
MaskedAttention(X;M) whenever the query, key and
value are the same matrix X .

3.2. Existence of Attention Masks Implementing Lattice
Symmetry Actions

This section discusses group actions that can be represented
by attention masks. To develop intuition, let us first con-
sider the simple example of translation in a one-dimensional
lattice. Supposing that x = (x1, . . . , xn)

⊤ is a vector of n

elements, we have:

MaskedAttention(x;M) = (xn, x1, . . . , xn−1)
⊤

with:

M =


0 0 · · · 1
1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0

 .

Hence, when M is the circulant permutation matrix shown
above, we have that the mask shifts the input x by one
element to the right.

Beyond translation, it is natural to ask what kinds of group
actions we can perform with attention masks on data with a
more high-dimensional topological structure. The follow-
ing theorem provides existence statements for data whose
underlying topological space is a hypercubic lattice (such as
sequences, images and higher-dimensional regular grids).

Theorem 3.1 (Existence). Let Gm be the symmetry group
of the m-dimensional hypercubic lattice, including trans-
lational symmetry, 4-fold rotational symmetry and vertical,
horizontal and diagonal reflections. Let X ∈ Rn×d be
a vectorized representation of an m-dimensional tensor
X ∈ Rl1×···×lm , with n = l1 · . . . · lm. For any group action
g ∈ Gm, there exists an attention mask Mg ∈ {0, 1}n×n,
such that:

MaskedAttention(X;Mg) = g ◦X.

In other words, Theorem 3.1 states that any translation,
rotation or reflection can be expressed in terms of an at-
tention mask. Figure 2 shows some examples of masks
corresponding to translation, rotation and reflection opera-
tions on square lattices.

In the following, we adopt the convention of writing Mg to
mean the mask that implements action g. For more details
and for a proof of Theorem 3.1, we refer the reader to
Appendix D.

3.3. Representing Attention Masks for Lattice
Transformations

To facilitate the learning of lattice symmetries, one needs to
determine methods to parameterize the set of feasible group
elements. Fortunately, as precised in the following theo-
rem, the attention masks considered in Theorem 3.1 can be
expressed conveniently under the same general formulation.

Theorem 3.2 (Representation). Let Gm be the symmetry
group of the m-dimensional hypercubic lattice and g ∈ Gm

be an action on a tensor X ∈ Rl1×···×lm . Then, there exist
some primitive attention masks Mgi ∈ {0, 1}ni×ni such
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(a) Translation (1, 1) (b) Rotation by 90◦ (c) Vertical reflection (d) Horiz. reflection

Figure 2: Examples of attention masks implementing transformations in two dimensions, including: (a) translation by 1
pixel on both axes, (b) rotation by 90◦ counterclockwise, (c) vertical reflection and (d) horizontal reflection around the
center. White represents value 1 and black 0.

Table 1: Fourier shifts for the transformations on the 1-
dimensional and square lattices. We denote with o(gi)k the
k-th component of the vector o(gi) ∈ Rn, for k = 1, . . . , n.
As stated in Theorem 3.2, attention masks for higher-
dimensional lattices can be obtained by the Kronecker prod-
uct of primitive masks defined over the 1-dimensional and
square lattices. Composition of actions is given by matrix
multiplication of the masks.

Transformation Fourier shift Size of X

Identity o(gi)k = 0 n = l1

Translation (by δ) o(gi)k = −δ n = l1

Reflection o(gi)1 = (n− 1),
o(g)k = o(g)k−1 − 2

n = l1

Rotation (90◦)
o(gi)k =k · (l1 − 1)−

⌊(k − 1)/l1⌋
n = l1 × l2

Upscaling (by h)
o(gi)k =(k − 1 mod h)+

(h− 1) · ⌊(k − 1)/h⌋
n = l1

that

Mg =
⊗
i

Mgi and

F(Mgi) = F(Ini
) exp(−2πj

ni
o(gi) r

⊤
ni
),

where Mg ∈ {0, 1}n×n is an attention mask implementing
g, gi ∈ Gmi for some mi ∈ {1, 2} is an action on the one-
dimensional or square lattice, ⊗ is the Kronecker product,
F is the Fourier transform applied column-wise, Ini is the
ni × ni identity matrix, j is the imaginary unit, rni

=
(1, 2, . . . , ni)

⊤, and o(gi) is defined as in Table 1.

To obtain an intuitive understanding of Theorem 3.2, it
helps to revisit the example of translation by δ = 1 of a
sequence x ∈ Rn on the 1-dimensional lattice (m = 1).
Consulting Table 1, we find that o(g) is a vector containing
−1 at every position and we know Mg is the permutation
circulant matrix of Section 3.2. Indeed, by the time-shifting
property of the Fourier transform, Mg can be obtained by

shifting the rows of the identity by −1. In general, vector
o(g) has a convenient intuitive interpretation as its k-th
component represents the relative position (with respect to
k) of the element that the k-th row of X attends to. For
instance, in the one-dimensional example of translation by
one element to the right, each element attends to the one
immediately before. Hence, we have o(g)k = −1 for any
k = 1, . . . , n.

For higher-dimensional lattices, attention masks can be ex-
pressed as the Kronecker product of the attention masks for
lower-dimensional cases. For instance, on the square lattice,
a translation by 1 pixel on both dimensions is the Kronecker
product of the two circulant matrices corresponding to a
translation by 1 pixel on the one-dimensional lattice, as
shown in Figure 2a. On more than one dimension, we can
additionally define 4-fold rotations, still following the same
formulation, with o(gi) defined as in Table 1.

Although strictly not a symmetry operation, scaling trans-
formations of the lattice can also be defined in terms of
attention masks under the same general formulation of The-
orem 3.2, as reported in Table 1. Therefore, for complete-
ness, we will consider scaling transformations as well in our
experiments.

Notice that Theorem 3.2 allows us to derive a way to calcu-
late the attention masks. In particular, we can express our
attention masks as a convolution operation on the identity,
as stated below.
Corollary 3.3. Let Gm be the symmetry group of the m-
dimensional hypercubic lattice and let Mg ∈ Rn×n be an
attention mask implementing action g ∈ Gm. Then:

Mg[:, i] = F−1(exp(−2πj

n
· o(g) · r⊤n ))[:, i] ⋆ In[:, i],

where ⋆ denotes the convolution operation.

In other words, we can represent any mask in our frame-
work as a convolution of the identity matrix with predefined
kernels. This motivates us to design a convolutional neural
network that produces our attention masks by successive
convolutions of the identity.
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4. The LATFORMER Architecture
While in principle the problem of inferring group actions
from input-output pairs can be solved via search over finite
groups, in practice the size of the group for lattice symmetry
actions makes this approach unfeasible1. Moreover, we are
interested in learning unknown functions jointly with the
transformation, which cannot be solved by searching on
the space of group actions. Using a neural agent to search
the space of possible actions would be a viable alternative,
but this would make the problem non-differentiable and we
would need to resort to reinforcement learning methods.

In this work, we aim to solve the problem in a differen-
tiable way. Inspired by the observations above, we introduce
LATFORMER, which incorporates the insights of Section 3
into a neural architecture. We propose to use gated CNNs
to parameterize the masks and we introduce an additional
smoothing technique for easier optimization.

4.1. Lattice Mask Experts as Convolutional Networks

Attention modules in neural networks usually include an
attention mechanism with learnable linear transformations
of the inputs2 followed by a feed-forward network (FFN),
as in the Transformer encoder layer (Vaswani et al., 2017).

To infuse core geometry priors in the attention module, we
propose to modulate the attention weights with a mask gen-
erated by an additional layer, as shown in Figure 3a. We
refer to this layer as Lattice mask expert, as it specializes to-
wards specific transformations of the lattice. To understand
the purpose of this layer, it is useful to remember that, by
the analysis conducted in Section 3, even if the attention and
FFN layers are initialized to the identity function, the mask
expert can generate attention masks that produce precise
geometric transformations of the input.

By Corollary 3.3, we know that each group action on the
lattice can be represented by a mask that is a convolution
of the identity and we have an analytical expression to cal-
culate the kernels of the convolution. We can leverage this
notion to design CNNs that produce attention masks corre-
sponding to specific group actions by following the general
formulation:

M0 = I,

Ml+1 = αl Conv(Ml,Kl) + (1− αl)Ml

for l = 0, . . . , L − 1. Above, ML is the predicted mask,
αl = σl(X;θ) = FFNl(X,θ) is the output of a gating
function, θ is a learnable parameter, and Kl is the kernel of
the l-th convolutional layer whose weights are determined

1The size of the groups we consider grows with a polynomial
of n and exponentially with m.

2For simplicity, we omitted linear transformations in the defini-
tion of MaskedAttention in Section 3.1.

based on Corollary 3.3 and Table 1.

As an example, Figure 3b shows an architecture that gener-
ates translation masks. Following Theorem 3.2, the expert
computes the translations along the two dimensions sepa-
rately and then aggregates the resulting masks doing the
Kronecker product. Hence, a Lattice translation expert with
L convolutional layers for each dimension can generate any
translation up to δ = 2L − 1 elements per dimension. At
inference time, the values of the gates can be discretized,
in such a way that the generated mask provably performs a
meaningful group action.

Similarly to the expert in Figure 3b, we can define gated
CNNs for rotation, reflection, and scaling. The product
of experts (i.e., the combination of more actions) can be
obtained by either chaining the experts or multiplying the
attention masks generated by different experts. For more
details, we refer the reader to Appendix A.

4.2. Mask Smoothing for Easier Training

The framework described so far parameterizes discrete trans-
formations of a lattice in a differentiable manner. Never-
theless, to improve the training of LATFORMER, we found
it beneficial to also apply a smoothing operation on the
attention masks. Our approach entails defining an adja-
cency relation between group elements and applying graph
convolution with a heat kernel on the corresponding graph.
This encourages the optimizer to favor weight updates that
change the masks in a smooth manner w.r.t. the geodesic dis-
tance implied by the graph. Concretely, we define the neigh-
bors of each element gi on the lattice as those gj = e ◦ gi
reachable by an application of a primitive action e, such
as translation by a single pixel in one dimension, rotation
by 90◦, and vertical/horizontal reflection. The notion of
neighborhood gives rise to a graph whose vertex set is the
lattice group and that contains one edge for every pair of
neighboring actions.

As before, it helps to consider different kinds of transforma-
tions separately. For instance, as shown in Figure 4, for 2D
rotations the underlying graph is a cycle with 4 elements
due to the underlying point group for 4-fold rotations be-
ing the cyclic group C4. Performing heat diffusion can be
achieved by repeated neighborhood averaging over the cy-
cle and yields a smoothed rotation mask that performs all
rotations at the same time (rightmost image in Figure 4). We
can extend the same approach to all lattice transformations:
for instance, in the case of translation, the underlying graph
is a grid and the smoothing operation is akin to convolution
with a Gaussian kernel.

To train LATFORMER with smoothed masks, we compute
two predictions: one with the non-smooth mask predicted
by the model and one with a smoothed version of the same

5



Infusing Lattice Symmetry Priors in Attention Mechanisms for Sample-Efficient Abstract Geometric Reasoning

Masked Attention

Lattice Mask Expert

FFN

(a)

   

Lattice Translation Expert

  

     

(b)

Figure 3: A LATFORMER layer (a) and an architecture for a Lattice translation expert (b). The LATFORMER layer (a)
is a standard Transformer encoder layer augmented with a Lattice mask expert constrained to generate attention masks
corresponding to a geometric transformation of the input. The Lattice translation expert (b) is a particular instance of a
Lattice mask expert that produces translation masks. In the architecture above, every convolutional layer is meant to shift the
input by a power of 2 and can be skipped by a gating function (denoted as σ).

Smooth rotation mask

Figure 4: Rotational smoothing can be obtained by heat
diffusion over the cyclic graph of rotation masks.

mask. The final loss is the sum of two cross-entropy losses
calculated separately for the two predictions.

5. Experiments
To evaluate our method, we first developed a set of synthetic
tasks in order to compare LATFORMER to attention modules
and Transformers with respect to sample efficiency in learn-
ing basic geometric transformations. Then, we annotated
the ARC tasks based on the knowledge priors they require,
and we assessed the performance of our method on this chal-
lenging dataset. Finally, we experimented with the LARC
(Acquaviva et al., 2021) dataset and compared our method
to stronger baselines based on neural program synthesis. We
report additional experimental results in Appendix B.5.

5.1. Sample Efficiency on Geometric Transformations

As a preliminary study, we probed the ability of LAT-
FORMER to learn geometric transformations efficiently. To
this end, we compared the performance of our model to a
transformer (Vaswani et al., 2017) and an attention module
(the same architecture as our approach, without the mask ex-
pert) on synthetic tasks with increasing number of examples.
Inspired by ARC, we generated a set tasks where the model
needs to infer a geometric transformation from input-output
pairs. The input is a grid taken from the ARC tasks and the
output is either a translation, rotation, reflection or scaling
of the input. The specific transformation applied to the input

grid defines the task and is consistent across all examples in
the same task.

We evaluated the models based on the mean accuracy across
tasks. Figure 5 shows the accuracy of our model compared
to the baselines and to a version of LATFORMER without
smoothing. The plots show that LATFORMER can general-
ize better and from fewer examples than transformers and
attention modules both with absolute positional encodings
(Vaswani et al., 2017) and relative positional encodings
(Shaw et al., 2018). Additionally, our results show that the
smoothing operation described in Section 4.2 is helpful for
larger groups. More details on this experiment are reported
in Appendix B.1.

5.2. Geometric Reasoning on ARC Tasks

To assess the ability of our approach to learn efficiently on
a more challenging use case, we focused on a subset of the
ARC dataset (Chollet, 2019) requiring geometric priors for
which our method could be a principled solution. To this end,
we annotated the ARC tasks based on the knowledge priors
they require, using the list of priors provided by Chollet
(2019) as a reference. Appendix B.2 provides more details
about the annotation of ARC and Figure 7a in the Appendix
shows the knowledge priors that we considered and their
distribution across the ARC tasks.

We assessed the performance of our model on the tasks that
require only knowledge priors corresponding to the basic
geometrical transformations that we addressed in this work,
namely translation, rotation, reflection and scaling. Table 2
shows our results compared to neural baselines, including
CNNs, attention with relative positional encodings (Shaw
et al., 2018), PixelCNN (Gul et al., 2019), and Transformers
(Vaswani et al., 2017), and a Differentiable Neural Computer
(Graves et al., 2016) with spectral regularization (Kolev
et al., 2020). We additionally compared to a Transformer
model that has access to precomputed transformations of the
input (Transformer + data augmentation). Precomputing
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Figure 5: Sample efficiency of our method compared to the baselines on synthetic tasks on translation (a), rotation (b),
reflection (c) and scaling (d). The y axis denotes the mean accuracy across tasks belonging to the same category, whereas
the error shade is the standard deviation.

all group actions is only feasible for smaller groups (rotation,
reflection and scaling).

Further, Table 2 reports the performance obtained by a
search algorithm applied on top of a hand-engineered
domain-specific language (DSL). This approach searches
all possible programs in the DSL that can map the input
grids to the corresponding output grids successfully. We
use the implementation of Wind (2020), which obtained
the best results at the ARC Kaggle competition out of al-
most 1000 submissions 3. This approach does not use any
learnable component and the results are provided as a refer-
ence. We notice that LATFORMER significantly reduces the
gap between neural networks and the current best approach
for ARC, even outperforming the search algorithm for one
category of tasks.

Though we restrict to only a subset of the tasks and there
is definitely room for improvement even on these tasks, we
reach considerably better performance than the baselines.
Therefore, we believe our results advocate for the applica-
bility of end-to-end differentiable models even on problems
requiring sample-efficient abstract reasoning. To the ex-
tent of our knowledge, this is the first evidence of a neural
network achieving this performance on ARC tasks.

5.3. Comparison with Neural Program Synthesis

Recently, Acquaviva et al. (2021) introduced the Language-
complete Abstraction and Reasoning Corpus (LARC),
which provides natural language descriptions of 88% of
the ARC tasks, generated by human participants who where
asked to communicate to other humans a set of precise in-
structions to solve a task.

Acquaviva et al. (2021) evaluated several models based
on neural program synthesis on LARC. All models gener-
ate symbolic programs from a carefully designed domain-
specific language (DSL) following a generate-and-check

3https://www.kaggle.com/competitions/
abstraction-and-reasoning-challenge/

strategy. First a neural model generates a program from
the grammar of the DSL (Ellis et al., 2020) and then the
program is checked against the input-output pairs to ensure
that it can generate all training examples.

We compare against the following baselines identified by
Acquaviva et al. (2021). LARC (IO) is a model that has only
access to input-output pairs, as our LATFORMER. LARC
(IO + NL) has access to the natural language descriptions as
well and uses a pre-trained T5 model (Raffel et al., 2020) to
represent the text. LARC (IO + NL pseudo) uses pseudo-
annotation to encourage the learning of compositional rela-
tionships between language and programs: during training,
the model is given additional synthetic language-to-program
pairs generated by annotating primitive examples in the DSL
with linguistic comments. We refer the reader to Appendix
B.3 for more details.

In order to compare to the work of Acquaviva et al. (2021),
we evaluated their models on the set of LARC tasks that
correspond to ARC tasks in our subset requiring geomet-
ric knowledge priors. Additionally, following Acquaviva
et al. (2021) we allowed LATFORMER to access the textual
descriptions by using a pre-trained T5 model to generate a
representation of the text. This embedding is provided as
input both to the Lattice Mask Expert and the FFN layers of
LATFORMER (LatFormer + NL). Table 3 shows the results
of our experiments on the LARC dataset. The program-
synthesis methods require a training stage on a portion of
the tasks. Therefore, the LATFORMER models where only
evaluated on the same testing tasks of LARC, using the same
train-test split of Acquaviva et al. (2021). Overall, our re-
sults show that LATFORMER performs better than program
synthesis on the subset of tasks requiring geometric priors,
with no need for a carefully designed DSL. This advantage
comes to the expense of being restricted to tasks involving
geometric priors, whereas program-synthesis approaches
can be used on a wider set of tasks. We also observe that the
natural language descriptions marginally helped our model
on one category of tasks. Our findings corroborate with
Acquaviva et al. (2021) in this remark.
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Table 2: Performance on ARC tasks that involve lattice symmetry priors.

Translate Rotate + Translate Reflect + Translate Scale + Translate

CNN 0.019 0.000 0.000 0.000
Attention (abs. pos.) 0.019 0.000 0.023 0.000
Attention (rel. pos.) 0.019 0.000 0.023 0.000
PixelCNN 0.019 0.000 0.000 0.000
Transformer 0.038 0.000 0.045 0.000
Differentiable Neural Computer 0.038 0.000 0.045 0.000
Transformer + data augmentation - 0.200 0.184 0.091
LatFormer 0.365 0.800 0.591 0.545

Search over hand-crafted DSL 0.673 0.400 0.614 0.727

Table 3: Comparison of LATFORMER with neural program synthesis methods with access to both input-output pairs and
natural language descriptions on LARC

Translate Rotate + Translate Reflect + Translate Scale + Translate

LARC (IO) 0.17 0.00 0.42 1.00
LARC (IO + NL) 0.17 0.00 0.42 1.00
LARC (IO + NL pseudo) 0.25 0.00 0.42 1.00
LatFormer 0.33 1.00 0.50 1.00
LatFormer + NL 0.33 1.00 0.58 1.00

6. Related Work
Our work was inspired by a previous investigation of self-
attention layers which identified sufficient conditions such
that they can perform convolution when equipped with rela-
tive positional encodings (Cordonnier et al., 2020; Andreoli,
2019). Rather than relying on relative encodings, we here
show how soft-masking can be used to learn sample effi-
ciently more general input transformations, such as rotation,
reflection, and scaling.

To the extent of our knowledge, the group-action learn-
ing problem has not been explicitly and generally formu-
lated in previous work. That being said, many previous
works have focused on specific instances, such as learning to
sort (Graves et al., 2014; Reed & De Freitas, 2015; Li et al.,
2020) by selecting an element of the permutation group
Sn, docking/folding by roto-translating objects according to
an action in the special Euclidean group SE(3) (Sverrisson
et al., 2022; Stärk et al., 2022; Jumper et al., 2021), and
graph spectrum generation where the learned actions belong
to the Stiefel manifold (Martinkus et al., 2022).

Our work is similar in spirit to recent efforts in neuro-
symbolic visual reasoning (Johnson et al., 2017b;a; Goyal
et al., 2017; Mao et al., 2019; Higgins et al., 2018) and in
the area of enhancing machine-learning models with the
ability to reason over structured data (Atzeni et al., 2021;
Murugesan et al., 2021a; Atzeni & Atzori, 2018; Murugesan
et al., 2021b). Many approaches based on attention mecha-
nisms have been proposed in the past few years (Hudson &
Manning, 2018; 2019). Our work differentiates from previ-
ous lines of research in that we aim to learn basic geometric

reasoning in a sample-efficient way, rather than modeling
relationships between high-level concepts.

Finally, some recent works came to our same conclusion
on the advantages of using attention masks to incorporate
prior knowledge in neural networks. As an example, Yan
et al. (2020) focus on the task of learning subroutines (e.g.,
sorting algorithms) and use a CNN to generate an attention
mask for a Transformer encoder. Similarly, Sartran et al.
(2022) used precomputed attention masks to incorporate
syntactic biases in language models.

7. Conclusion
Motivated by the long-term ambitious goal of infusing core
knowledge priors in neural networks, this paper focused
on how to help deep learning models to learn geometric
transformations efficiently. Specifically, we proposed to
incorporate lattice symmetry biases into attention mecha-
nisms by modulating the attention weights using learned soft
masks. We have shown that attention masks implementing
the actions of the symmetry group of a hypercubic lattice
exist, and we provided a way to represent these masks. This
motivated us to introduce LATFORMER, a model that gen-
erates attention masks corresponding to lattice symmetry
priors using a CNN. Our results on synthetic tasks show
that our model can generalize better than the same attention
modules without masking and Transformers. Moreover, the
performance of our method on a subset of ARC provides the
first evidence that deep learning can be used on this dataset,
which is widely considered as an important open challenge
for research on artificial intelligence.
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A. Additional Details on the Model
This section describes the LATFORMER architecture providing additional details that were not covered in Section 4.1. As
mentioned in Section 4.1, it is possible to design convolutional neural networks that perform all considered transformations
of the lattice. Figure 6 shows the architecture of the four expert models that generate translation, rotation, reflection and
scaling masks.

 

   

Lattice Translation Expert

  

     

 

Lattice Rotation Expert

  

 

Lattice Reflection Expert

 

 

 

 

Lattice Scaling Expert

Figure 6: Model architecture of all the mask experts that we considered.

All models are CNNs applied to the identity matrix. In the figure, we use the following notation:

• M
(δ)
T denotes an attention mask implementing a translation by δ along one dimension;

• M
(90)
R denotes an attention mask implementing a translation by 90◦;

• MF denotes an attention mask implementing a reflection along one dimension;

• M
(h)
S denotes an attention mask implementing an upscaling by h along one dimension.

Using Corollary 3.3, we can derive the kernels of the convolutional layers shown in Figure 6. These kernels are frozen at
training time, the model only learns the gating function, denoted as σ in the figure. Notice that all the models follow the
same overall structure. However, for scaling, we also learn an additional gate, denoted as σ(MS ,M

⊤
S ) in the Figure 6. This

gate allows the model to transpose the mask and serves the purpose of implementing down-scaling operations (down-scaling
is the transpose of up-scaling).

The composition of more actions can be obtained by combining different experts. This can be done either by chaining the
experts or by matrix multiplication of the masks. In preliminary experiments, we did not notice any significant difference in
performance between the two options and we rely on the latter in our implementation.

B. Additional Experiments and Details on the Experimental Setup
This section provides additional details on the experimental setup of all our experiments, including further information on
the generation of the synthetic tasks and the data annotation process for ARC.

B.1. Experiments on Synthetic Data

We considered four categories of tasks, namely translation, rotation, reflection and scaling. Each task is defined in terms of
input-output pairs, which are sampled from the set of all ARC grids and padded to the size of 30× 30 cells. To each input
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grid, a synthetic transformation is applied in order to obtain the corresponding output grid. For each task in each category,
we generated 2048 training pairs and 100 test pairs.

For translation tasks, we have a total of 900 possible translations in a 30× 30 grid. However, generating data and training
models on 900 tasks is computationally expensive, so we randomly sampled 5 translations in the interval [1, 29]× [1, 29],
obtaining a total of 100 translation tasks. Rotation tasks include all 4-fold rotations except the identity. Similarly, reflection
tasks involve horizontal, vertical and diagonal reflections. Scaling tasks include all possible up/down scaling transformations
of the input grid by factors of [2, 5]× [2, 5] for a total of 32 scaling tasks.

The models are evaluated based on the mean accuracy on each category. For each task we compute the accuracy on the test
set based on how many of the predicted images match exactly the ground truth.

B.2. Experiments on ARC

0 20 40 60 80 100 120 140 160
None

Goal directedness
Sorting

Counting
Math

Object influence via contact
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Projections
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Reflection

Rotation
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Figure 7: Distribution of the considered core knowledge priors across the ARC tasks (a) and user interface built to annotate
the dataset (b).

In order to experiment with ARC, we first performed an annotation of the dataset to identify the underlying knowledge
priors for each task. To this end, we built a user interface where the annotator could browse the tasks and label them by
selecting any combination of the available knowledge priors. Figure 7b shows the user interface provided to the annotator,
whereas Figure 7a shows the distribution of knowledge priors across the ARC tasks. Most tasks follow in more than one of
the categories represented in Figure 7a.

ARC can be regarded as a meta-learning benchmark, as it provides a set of training tasks and a set of unseen tasks to evaluate
the performance of the model learned on the meta-training data. It is important to emphasize that we do not target this use
case, as we instead use the same setup as in the synthetic data and learn each task from scratch using only its training set.
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Table 4: Results of the experiment on the robustness to noise

Translation Rotation Reflection Scaling

w = 0.2 0.91 1.00 1.00 1.00
w = 0.4 0.89 0.96 0.96 0.92
w = 0.6 0.62 0.69 0.68 0.65

Though simple and elegant, the supervised-learning formulation prevents our models from reusing knowledge that can be
shared between different tasks. In order to mitigate this issue, we rely on a data-augmentation strategy. At training time, for
each model and every iteration, we augment each grid 10 times by mapping each color to a different color (using the same
mapping across training examples). The rationale behind this data-augmentation strategy is that (1) we assume that for tasks
involving only geometric knowledge priors to be not affected by color mapping and (2) all models (including LATFORMER)
need to learn a function from d-dimensional color representations to categorical variables, hence it is beneficial if all colors
are represented in the training set.

All models are evaluated based on the ratio of solved tasks and a task is considered solved if the model can predict the
correct output grid for all examples in the test set.

B.3. Experiments on LARC

All baselines relying on program synthesis for the experiment on LARC are taken from the work of Acquaviva et al. (2021).
They share an underlying formulation based on the generate-and-check strategy. The program synthesizer generates a
program prog given a natural program natprog (which can defined by either the input-output pairs alone or by input-output
pairs and the corresponding natural language description) from the following distribution:

Psynth(prog | natprog) ∝ Pgen(prog | natprog)1[prog ⊢ IO].

Above, Pgen is the generative distribution and 1[prog ⊢ IO] is the checker. The generative distribution proposes programs
by first generating a tree bigram over the grammar of a DSL and then enumerating deterministically programs from a
probabilistic context free grammar fitted to this bigram distribution in decreasing probability. For simplicity, Acquaviva et al.
(2021) used an unconditioned generator Psynth(prog) (i.e., a fitted prior) when language is absent, and language-conditioned
models Psynth(prog | NL) when a natural language description NL is given.

Once a program has been proposed, the checker validates the program prog by executing it on the interpreter, ensuring that
prog(x) = y for all input-output pairs (x, y) ∈ IO, where IO denotes the set of input-output pairs. The key strength of this
approach lies in its generalizability, as programs that can be checked successfully on all training examples are likely to
generalize.

B.4. Robustness to Noise

In order to assess the robustness of our method, we performed an additional experiment with synthetic tasks, where we
introduced noise based on the following process. Input-output grids in our tasks contain categorical values from 1 to 10. In
our experiments of Section 5, we represented each categorical value using an embedding layer, which essentially applies
a linear transformation on a one-hot encoding of the categorical value. Given that we use one-hot vectors to represent
categorical values, we apply noise directly to the one-hot vectors as follows:

xnoise = (1− w)W⊤1hot(x) + wW⊤1

where w ∈ [0, 1] is the noise level, 1hot(x) is the one-hot encoding of a categorical value x, W ∈ Rn×d is a learnable matrix,
n is the total number of categorical values (10 in our experiments) and xnoise is the noisy representation of the categorical
value x. We evaluated the ability of LatFormer to denoise the input and apply the correct transformation at the same time on
our synthetic tasks. Each task has a training set consisting of 32 examples and a test set consisting of 100 examples. The
following table reports the accuracy for 3 different noise levels and shows the robustness of our method to noise.
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Table 5: Results of the experiment on image registration. The rows represent different models trained to translate images
from modality A to B (A −→ B) or viceversa (B −→ A).

Aerial data Cytological data

α-AMD SIFT LatFormer α-AMD SIFT LatFormer

CycleGAN (A −→ B) 5.3 ± 3.1 67.2 ± 16.8 68.3 ± 4.5 74.2 ± 3.8 30.2 ± 4.2 68.3 ± 2.2
CycleGAN (B −→ A) 65.7 ± 6.7 84.0 ± 2.5 86.1 ± 3.1 21.3 ± 1.8 18.2 ± 3.5 24.2 ± 3.3
DRIT++ (A −→ B) 35.3 ± 2.4 38.1 ± 8.1 38.2 ± 5.9 50.4 ± 12.1 24.2 ± 2.7 62.7 ± 10.2
DRIT++ (B −→ A) 20.2 ± 2.1 38.3 ± 4.5 43.2 ± 4.1 30.1 ± 4.5 5.2 ± 3.1 15.6 ± 3.5
pixel2pixel (A −→ B) 84.2 ± 4.0 98.7 ± 0.4 89.3 ± 2.2 53.2 ± 6.9 9.5 ± 1.0 61.2 ± 5.5
pixel2pixel (B −→ A) 68.2 ± 7.5 87.5 ± 4.03 89.7 ± 3.3 0.2 ± 0.1 4.0 ± 1.0 4.2 ± 1.1
StarGAN (A −→ B) 63.1 ± 7.8 7.4 ± 2.7 72.2 ± 6.3 60.2 ± 12.2 12.2 ± 2.0 59.5 ± 5.9
StarGAN (B −→ A) 52.1 ± 4.0 7.9 ± 1.3 53.3 ± 4.0 20.8 ± 3.9 4.1 ± 0.9 13.4 ± 3.1
CoMIR 94.2 ± 5.7 100.0 ± 0.0 90.2 ± 3.3 76.2 ± 12.1 74.1 ± 6.3 78.1 ± 3.4

B.5. Additional Experiments on Image Registration

As an additional experiment, to assess the applicability of our LATFORMER on natural images, we performed experiments
on multimodal image registration, namely the problem of spatially aligning images from different modalities. Image
registration is a well-studied problem in computer vision and we do not aim to establish state-of-the-art performance. The
main purpose of this experiment is giving a hint on the applicability of our method to natural images beyond ARC. We
refer the reader to SuperGlue (Sarlin et al., 2020) and COTR (Jiang et al., 2021) to have a sense of approaches specifically
designed for this task.

Popular approaches to multimodal image registrations work in two stages: first, they learn a model that converts one modality
into the other (or to transfer both modalities in the same representation as proposed by Pielawski et al. (2020)), then they
align the two images using traditional techniques. We follow the experimental setup of Lu et al. (2021) and experiment with
two datasets, one containing aerial views of a urban neighborhood and one containing cytological images. The images we
employ are views of the same scene, but they are taken with different modalities and they are translated with respect to one
another. We use the code of the authors to generate data involving only translations. Lu et al. (2021) additionally consider
small rotations, but these transformations are not actions in the symmetry group of a lattice, so we are not interested in
resolving them.

We employ several state-of-the-art methods for modality translation and we compare our method to α-AMD (Lindblad
& Sladoje, 2014) and SIFT (Lowe, 1999) based on the success rate metric defined by Lu et al. (2021). A registration
is considered successful if the relative registration error (i.e., the residual distance between the reference patch and the
transformed patch after registration normalized by the height and width of the patch) is below 2%. Table 5 reports our
results on the image registration tasks and shows that our approach performs well on both datasets coupled with different
methods for modality translation. We use the same models of Lu et al. (2021) for the modality translation task. Then, in
order to solve the image registration task with LATFORMER, we divide each image into 30× 30 patches and we run our
model to predict the translation from one patch in an image to its counterpart in the corresponding image.

C. Limitations and Future Work
Although we believe our results are interesting and promising for learning group actions with neural networks, we would
like to point out some limitations of our approach. First, our method is limited to actions on the symmetry group of the
hypercubic lattice and it is not immediately extendable to other groups. For instance, though permutation matrices are still
convolutions of the identity and they can be generated by a CNN, providing an architecture with predefined kernels that can
compute any permutation matrix is not feasible. Second, the model is hard to fine-tune: we noticed that once the gates of the
CNN have been trained, it is hard for the model to adapt to different actions.

We believe that both limitations can be addressed by still keeping the same overall idea of modulating attention weights
using soft attention masks, possibly with a different parametrization of the masks. Future work will focus on this research
direction and on extending our work to cover a wider set of the ARC tasks.
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D. Deferred Proofs
We prove both Theorem 3.1 and 3.2 by induction on the dimensionality of the hypercubic lattice m.

D.1. Base Case for Theorems 1 and 2

First, it is useful to notice that whenever M ∈ {0, 1}n×n has exactly a single 1 per row, in other words M · 1n = 1n, then,
for any X ∈ Rn×d

MaskedAttention(X;M) =
A

A · 1n1⊤
n

X

=
softmax

(
XX⊤
√
d

)
⊙M

softmax
(
XX⊤√

d

)
⊙M · 1n1⊤

n

X

= M ·X.

In order to prove the theorems, we need to show that, for any action g ∈ G1, including translations, reflections and rotations,
there exists a mask Mg such that:

MaskedAttention(X;Mg) = g ◦X.

Let us consider different families of actions separately.

Translation. As mentioned in Section 3.2, in the 1-dimensional case, a translation by one element to the right for a vector
x = (x1, x2, . . . , xn)

⊤ is given by the circulant permutation matrix:

M = M
(1)
T =


0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0

 .

This holds because M
(1)
T · 1n = 1n, so:

MaskedAttention(x;M
(1)
T ) = M

(1)
T · x = (xn, x1, x2, . . . , xn−1)

⊤.

In general, a translation by δ elements is given by the circulant matrix M
(δ)
T = (M

(1)
T )δ. This follows directly from the

properties of circulant permutation matrix M
(δ)
T . Therefore, we have a base case for Thereom 3.1, as we have shown that

masks implementing translation operations exist in the 1-dimensional case and they are circulant permutation matrices.

For Theorem 3.2, simply notice that, by the time-shifting property of the Fourier transform:

M
(δ)
T = F−1

(
F(In) exp(−

2πj

n
o
(δ)
T r⊤n )

)
where o

(δ)
T =


−δ
−δ

...
−δ

 .

Intuitively, the reader can notice that the equation above states that the circulant permutation matrix M
(δ)
T can be obtained

by shifting the rows of the identity by δ to the left. Thus, we provided a base case for Thereom 3.2 as well.

Reflection. In the 1-dimensional case, the reflection of a vector x = (x0, x1, . . . , xn)
⊤ is:

MaskedAttention(x;MF ) = MF · x = (xn, xn−1, . . . , x2, x1)
⊤
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with

MF =


0 · · · 0 0 1
0 · · · 0 1 0
0 · · · 1 0 0
... · · ·

...
...

...
1 · · · 0 0 0

 .

The attention mask MF can be obtained by shifting the rows of the identity matrix by:

oF =


n− 1
n− 3
n− 5

...
1

 .

Therefore, by the time-shifting property of the Fourier transform we have:

MF = F−1
(
F(In) exp(−

2πj

n
oF r⊤n )

)
.

Rotation. Rotation (4-fold) is not defined in one dimension, so for a base case we need to consider the square lattice. Let
X ∈ Rl1·l2 be a vectorized representaiton of a n = l1 × l2 dimensional matrix. We need to define a vector oR ∈ Rn such
that:

M
(90)
R = F−1

(
F(In) exp(−

2πj

n
oR r⊤n )

)
is a rotation mask. Since rotation is a permutation of the identity, we know the vector exists. As X is vectorized, the o

(90)
R

needs to take into account the size of the first dimension l1. For example, in order to perform a rotation on a vectorized
representation, we need to map the first element of X to the position (l1 − 1). The reader can check that the vector given by

(o
(90)
R )k = k · (l1 − 1)− ⌊(k − 1)/l1⌋

satisfies the equation above.

Scaling. Although scaling is not a group action of the symmetry group of the lattice, we pointed out that it still can
be defined within the same general formulation as the other transformations. We can take the 1-dimensional lattice as a
base case and consider a vector x = (x0, x1, . . . , xn)

⊤. Let h ∈ N be a parameter specifying the filter size of the scaling
operation. As an example, for h = 2, we have:

MaskedAttention(x;M
(h)
S ) = M

(h)
S · x = (x1, x1, x2, x2, . . . , x⌊n/2⌋)

⊤,

where:

M
(h)
S =



1 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 0 0


.

This kind of matrix can also be obtained by shifting the rows of the identity as follows:

M
(h)
S = F−1

(
F(In) exp(−

2πj

n
o
(h)
S r⊤n )

)
,

where (o
(h)
S )k = (k − 1 mod h) + (h− 1) · ⌊(k − 1)/h⌋.
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D.2. Inductive Step for Theorems 1 and 2

Suppose that Mg1 ∈ {0, 1}n1×n1 and Mg2 ∈ {0, 1}n2×n2 are attention masks implementing actions g1 ∈ Gm1 and
g2 ∈ Gm2 on some tensors X1 ∈ Rl1×···×lm1 and X2 ∈ Rl′1×···×l′m2 , with n1 = l1 · . . . · lm1 and n2 = l′1 · . . . · l′m2

. Consider
a tensor X ∈ Rl1×···×lm1

×l′1×···×l′m2 and its vectorization X ∈ Rn with n = n1n2.

We have:

MaskedAttention(X;Mg1 ⊗Mg2) =

= (Mg1 ⊗Mg2)X

= (Mg1 ⊗ In2)(In1 ⊗Mg2)X

= MaskedAttention(MaskedAttention(X; In1 ⊗Mg2);Mg1 ⊗ In2).

Now notice that:

MaskedAttention(X; In1
⊗Mg2) = (In1

⊗Mg2)X

= vec(Mg2 vec
−1(X) In1

)

= vec(Mg2 vec
−1(X)),

and similarly

MaskedAttention(X;Mg1 ⊗ In2
) = (Mg1 ⊗ In2

)X

= vec(In2
vec−1(X)M⊤

g1)

= vec((Mg1 vec
−1(X)⊤)⊤).

Therefore, we conclude that performing masked attention with the mask Mg1 ⊗Mg2 on X is equivalent to applying g1
on the first m1 dimensions and g2 on the last m2 dimensions of X. This provides a way for building attention masks for
higher-dimensional lattices using the primitive masks defined in Section D.1, proving both Theorem 3.1 and 3.2.

D.3. Proof of Corollary 1

The proof of Corollary 1 follows immediately from Theorem 3.2 and from the property of the Fourier transform according
to which multiplying in the Fourier domain implements a convolution in the original domain.
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