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Abstract

Recent studies on audio models [27, 15] show brain-tuning–fine-tuning models to
better predict corresponding fMRI activity–improves brain alignment and increases
performance on downstream semantic and audio tasks. We extend this approach to
a multimodal audio-video model to enhance social cognition, targeting the Superior
Temporal Sulcus (STS), a key region for social processing, while subjects watch
Friends. We find significant increases in brain alignment to the STS and an adjacent
ROI, as well as improvements to a social cognition task related to the training
data–sarcasm detection in sitcoms. In summary, our study extends brain-tuning to
the multi-modal domain, demonstrating improvements to a downstream task after
tuning to a relevant functional region.

1 Introduction

Recent works in fine-tuning audio models to human fMRI data, specifically language and auditory
areas, show improvements to brain alignment, as well as increases to performance on semantic and
audio evaluations [15, 27, 29]. However, frontier AI models are increasingly multi-modal [8, 41].
These models are uniquely posed to model human social cognition, i.e., inferring a perceived person’s
internal state, which requires integrating information across modalities [9, 5, 3] and is critical as AI
becomes more integrated in our daily lives [6]. However, a recent study [17] identified a major gap in
AI models’ abilities to match human social perception, as well as encode brain activity in the lateral
stream, a processing stream proposed for social cognition [32]. The Superior Temporal Sulcus (STS),
the end point of the lateral stream, is a brain-region that has been shown to encode features of social
interaction relevant to social cognition [26, 21, 39, 32, 19, 1, 13]. We therefore investigate whether
brain-tuning an audio-video model to the STS can 1) improve brain encoding of the STS and other
lateral stream ROIs, and 2) increase downstream performance on social cognition tasks.

Concretely, we brain-tune the joint audio-video transformer model, TVLT [37], to the STS using
data from n=6 subjects from the Courtois Neuromod Dataset [7], while subjects watch the sitcom
Friends. This significantly increases alignment to both the STS (our tuning target), and a further
(non-targetted) lateral-stream ROI.

To evaluate social cognition, we first test whether tuning improves performance in a context similar
to the Friends training data, and report significantly increased performance on a sarcasm detection
task containing data from sitcoms (MUStARD). We then test whether these improvements generalize
to a social cognition task in a markedly different context, emotion and sentiment prediction on
CMU-MOSEI, but find no significant increase in performance from brain-tuning, suggesting that
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Figure 1: Our audio-video brain-tuning approach. Audio-video stimuli are perceived by the subject,
and input to the model, and we fine-tune the model and projection head to better predict corresponding
brain activation.

tuning improves social cognition performance in related contexts but does not generalize to contexts
not represented in training.

Our main contributions are as follows: We extend the brain-tuning methodology to a multi-modal
audio-video domain, and show, for the first time, that brain-tuning a model to an ROI involved in
social cognition can improve its performance on a related social cognition task. This provides further
evidence [27, 15] that targeted brain tuning to specific functional ROIs can increase alignment and
improve performance to related downstream tasks.

2 Related Work

Lateral Stream & Superior Temporal Sulcus. The lateral stream has been recently proposed as a
third visual processing stream specialized for dynamic social processing ([32]), in addition to the
classical ventral and dorsal streams. Its endpoint, the Superior Temporal Sulcus (STS), robustly
encodes features of social interaction allowing for the processing of the intentions and inner states of
others. [26, 21, 39, 32, 19, 1, 13]. This motivates our use of STS activity as a tuning signal for social
cognitive tasks. See the appendix for a visualization of the STS on the whole brain.

Prior work in Brain Alignment and Brain Tuning. There is a large body of work measuring brain
alignment in neural models [30, 31, 14, 28, 24], however, few [27, 15] studies fine-tune a pretrained
model to increase alignment. Unlike these prior works [27, 15] which fine-tune audio-only models to
late language regions and evaluate on downstream auditory and semantic tasks, we instead tune our
multi-modal model to the STS, and evaluate on downstream social cognition tasks. Our work differs
from recent multi-modal brain encoder work [12], which trains a dedicated deep network for brain
prediction across regions. In contrast, we tune an existing model to a specific functional region, and
aim to improve alignment to that region and performance on a related task.

3 Method

3.1 Model and Stimulus

Model Selection. Recent works in Video-Language multimodal models are broadly split into LLM-
based methods ([20, 23, 22, 35, 16, 36, 11, 40, 25]) and feature encoder-based methods ([42, 18, 37]).
We chose to tune the Textless Vision Language Transformer (TVLT) [37], due to architectural
similarities with the models brain-tuned in [27] including number of encoders layers (12), embedding
size (768), and total number of parameters (∼ 90M). It is pretrained on around 130K hours of
audio-video with a joint masked auto-encoding and vision-audio matching objective. An initial
embedding layer embeds each 16x16 patch of each video frame, and converts the audio to a log-mel
spectrogram, which are then jointly encoded through the transformer layers.
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fMRI Data. We use a subset of the preprocessed fMRI data from the 2022-alpha release of the
Courtois Neuromod Dataset [7], containing n=6 subjects watching seasons 1-4 of the sitcom Friends
(seasons 1-3 for training, 4 for evaluation). It is one of the largest available fMRI dataset of participants
watching audio-video stimuli, and has previously been used for brain-tuning an audio model [15].
More information about this dataset can be found in the appendix.

Cross Subject Prediction Accuracy Estimation. Noise in the fMRI data–both natural fMRI noise as
well as signal unrelated to the stimulus–can impair both our brain-tuning and evaluation procedures.
To estimate the level of noise present in each voxel, we follow recent studies [31], [14] in adapting
[34]’s method to estimate cross-subject prediction accuracy for each voxel. See A.2 for technical
details. Following previous brain-tuning studies [27], we filter out voxels with a low cross-subject
prediction accuracy to tune only on voxels reliably related to the stimulus. We attempt to reach the
threshold of 0.4 used in prior brain-tuning [27], but find that beyond a threshold of 0.25, all STS
voxels are removed for some subjects, preventing training (see appendix A.2). Therefore, we set
our threshold to 0.25, leaving subjects with 100-700 STS brain-tuning target voxels. We also use
cross-subject prediction accuracy to normalize voxel activations when computing normalized brain
alignment (more in section 3.3).

3.2 Brain Tuning

Training Objective. Following [27], we fine-tune our pretrained model to predict the fMRI voxels
in the STS with a high cross subject prediction accuracy. Formally, let S be the synchronized
audio–video stimulus, and R(S)[t] the recorded fMRI response at time t. We define a voxel masking
function M such that:

y = M(R(S)[t]),

where y ∈ Rm is the STS-masked fMRI vector of m voxels. Let T be the length of the temporal
receptive field, approximately 12s in our case. We take an audio–video clip from t− T to t, denoted
S[t − T : t], and process it with TVLT to obtain output tokens [o1, o2, . . . , on] ∈ Rn×768. We
mean-pool the tokens: ô = 1

n

∑n
i=1 oi. A linear projection layer W ∈ Rm×768 maps ô to the

predicted fMRI vector:
ŷ = Wô.

We minimize the L2 loss, L, between the predicted voxel activations ŷ and true activations y:

L = ∥ŷ − y∥22,

and backpropagate L through both the projection layer W and the TVLT transformer layers. The
overall process is illustrated in fig. 1.

Training Details. To predict each fMRI snapshot, we give the model the previous 8 TR-lengths
(T = 11.92s) of audio-video stimulus. This finite response window is similar to that used in prior
work [27], and is in line with the average hemodynamic response cycle of 12s [38]. Following [15],
we train our model on the first three seasons (68,063 TRs, TR=1.49s) of Friends, and evaluate on
season four. Following the finding by [15] that individual models often outperformed models tuned to
multiple subjects at once, we tune one model to each subject’s (n=6) brain activity. Due to compute
limits, we restrict our tuning to 10 epochs. For each 11.92s clip, we evenly sample 8 frames from
the video following [37], and sample audio at the standard 44,100 Hz. We optimize with Adam with
a constant learning rate of 1.0 × 10−6. Brain-tuning each model uses 1 H100 GPU and 16 AMD
EPYC 9654 CPUs on 244 GB of RAM, and takes approximately 70 hours on an H100 GPU. Each
evaluation uses identical compute specs, and takes approximately 90 minutes.

3.3 Evaluation Procedure

Comparison Models. Following [27], we compare against a stimulus-tuned and a pretrained baseline
on both brain-encoding and downstream evaluations. The pretrained baseline is the original pretrained
TVLT model introduced in [37]. The stimulus-tuned baseline is trained using the original TVLT joint
training objective, with the same video data and learning hyperparameters as the brain-tuned model.
This baseline tests whether changes in performance are the result of simply training on the Friends
dataset, or are due to the fMRI training objective used in brain-tuning.

Encoding Evaluation. Following [27], we use standard voxel-wise encoding models ([2] [31], [30])
to evaluate the change in brain alignment between our brain-tuned and baseline models. We follow
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Figure 2: a: Average change in alignment to lateral ROIs after brain-tuning over subjects. We find
significant increases in the pSTS, aSTS, and LOC. b: Change in alignment before and after tuning on
Subject-03. Differences for all subjects can be found in the appendix.

the same steps as during brain tuning to create TR-video pairs where each fMRI TR is paired with the
8 TR-lengths (11.92s) of video that precede it. This video is input into each model, and a voxel wise
ridge regression model is learned to predict the fMRI activations for that TR, from the concatenation
of the [CLS] and mean pooled output tokens. For training and testing, we use data from season 4 of
Friends which was unseen during brain-tuning, using 8298 TRs to train and 2630 to test.

Normalized Brain Alignment. Following [27, 31] prediction performance of this encoding model on
the test data is computed by voxel-wise Pearson correlation between the predicted fMRI activations,
and the corresponding real brain responses. To account for different levels of noise between voxels,
this voxel-wise correlation is then divided by the voxel-wise cross subject prediction accuracy, and
averaged across all voxels in each ROI to provide a standardized measure for alignment between
the model and different ROIs. We report normalized brain-alignment scores for two subdivions of
the STS–the anterior STS (aSTS), and posterior STS (pSTS), as well as to two adjacent ROIs in the
lateral stream (LOC, EBA). For each subject, we visualize the difference in normalized alignment
between our brain-tuned models and pretrained (brain-tuned - pretrained) over the entire brain surface.
Following [27], to test whether the brain-tuned models have significantly improved alignment to
an ROI compared to our baselines, for each baseline we perform a wilcoxon signed rank test over
the alignment of our brain-tuned models compared to the baseline models’ alignment. We indicate
significant differences (p < 0.05) with an asterisk *.

3.4 Downstream Evaluation

Sarcasm Detection. We first evaluate our brain-tuned and baseline models on MUStARD [10], an
audio-video sarcasm detection database consisting of clips from various sitcoms. Because our models
are brain-tuned to stimulus from a sitcom, this measures how our model’s performance changes on a
social cognition task with stimuli similar to the stimulus seen during brain-tuning. Each clip contains
an utterance, accompanied by conversational context and is labeled for the sarcasm of the utterance.
Because some MUStARD clips are from Friends, we train and test our classifier separately on both
the full dataset, and a subset of the dataset with all Friends clips removed. Due to the small size of
the dataset, models are evaluated on their mean performance across 10-fold cross validation.

Sentiment and Emotion Detection. To probe social cognition on our baseline and brain-tuned
models’ in a task markedly different from the Friends training data, we evaluate on CMU-MOSEI
sentiment and emotion prediction [4], a dataset containing clips of people speaking into the camera
from YouTube, and manually labeled for scalar sentiment, and the presence of each of six emotions
(happy, sad, anger, surprise, disgust, fear). We use the original 15,288/4,830 train-test split provided
by the original TVLT paper [37].

Evaluation Protocol. For both tasks, we a train a linear binary classifier on a concatenation of
the [CLS] token and mean pooled tokens from the last layer. Since we brain-tune models through
mean pooled tokens, but pretrained TVLT typically probes its [CLS] token for classification tasks,
we concatenate both to fairly compare to baselines. We report A2 accuracy and F1 score for our
binary classification tasks (sentiment, sarcasm), and weighted A2 accuracy and F1 score for emotion,
averaged across n=6 for our brain-tuned models. We use a one-sided one sample t-test over the
change in performance of our n=6 subject models compared to each baseline to test for significance,
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Figure 3: Brain-tuned and baseline performance on downstream social perception benchmarks. We
find significant improvements on MUSTtARD A2 scores both including Friends clips (p < 0.05) and
omitting them (p < 0.01).

indicating significant improvements (p < 0.05) with an asterisk *, and highly significant improvements
(p < 0.01) with a double asterisk ** in our graphs. Error bars report SEM across n=6 brain-tuned
models.

4 Results

Brain Alignment Results. We plot the change in alignment compared to the pretrained model
(brain-tuned - pretrained) over the entire cortex for subject 03 in fig. 2, with other subjects plotted
in fig. 5. Using cross-subject prediction accuracy underestimates the true noise ceiling, as some
biological signal that varies between subjects is treated as noise. This leads to some normalized
brain alignment scores above 1.0 for baseline and brain-tuned models, but their relative performance
is unaffected by this scaling. Compared to both pretrained and stimulus tuned baselines, our n=6
brain-tuned models show significant improvements to brain alignment across various lateral stream
ROIs (fig. 2). We report significantly increased alignment (p<0.05) to both subregions (aSTS, pSTS)
of the STS (tuning target), and to one of two neighboring ROIs in the lateral stream (LOC). We
observe no significant changes in alignment between our pretrained and stimulus-tuned baselines,
confirming that increased brain-alignment in our brain-tuned models is not merely due to stimulus
exposure.

Downstream Tasks Results. Our brain-tuned models significantly outperform baselines on both the
full MUStARD sarcasm detection dataset (p<0.05), as well as the dataset after removing all Friends
clips (p<0.01) (fig. 3a). In contrast, we observe no improvements or decreased performance on the
sentiment and emotion prediction task (CMU-MOSEI). These results suggest our model improves
performance on a social cognition task similar to the training stimulus (MUStARD), but that these
increases do not generalize to a markedly different context (CMU-MOSEI). In the appendix, we
break down our emotion classification results by individual emotion.

5 Conclusion

Our findings demonstrate that brain-tuning a multimodal audio-video model to a social cognition
region (STS) not only increases alignment to the target area but also extends improved alignment to
an adjacent lateral stream ROI. This increased alignment is accompanied by significant gains on a
related social cognition task when the evaluation context resembles the training stimulus, sarcasm
detection in sitcoms. However, these gains do not generalize to sentiment and emotion prediction in
markedly different contexts, suggesting a limitation in the transferability of brain-tuning effects to
contexts unseen during training. While our study was limited to a single model and a small number
of evaluations, the results serve as a proof of concept for targeted brain-tuning as a means to enhance
both brain alignment and task performance in relevant domains. We suggest future researchers
experiment with larger LLM based multi-modal architectures, as well as more diverse evaluation and
training datasets.
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